
COVERS AND THE CURVE COMPLEX

KASRA RAFI AND SAUL SCHLEIMER

Abstract. The removal of a point from a closed surface induces a
quasi-isometric embedding of the associated curve complexes. The
same is true of finite-sheeted coverings.

1. Introduction

Suppose that Σ is a compact connected orientable surface. A simple
closed curve α ⊂ Σ is essential if α does not bound a disk in Σ. The
curve α is non-peripheral if α is not boundary parallel.

Definition 1.1 (Harvey [Har81]). The complex of curves C(Σ) has
isotopy classes of essential, non-peripheral curves as its vertices. A
collection of k + 1 vertices spans a k–simplex if every pair of vertices
has disjoint representatives.

Virtually all known information about the geometry of C(Σ) is due
to Masur and Minsky [MM99] and [MM00]. Both of these, especially
the first, are influenced by Gromov’s notion of quasi-isometry. Recall
that the most important invariant of quasi-isometry is the growth: for
example, the increase of volume of metric balls. However, since the
curve complex is locally infinite it is unclear how such invariants can
be used in this context.

Thus, we concentrate on a different family of invariants: the metri-
cally natural subspaces. Note that almost all of the well-known sub-
spaces of the curve complex, such as the complex of separating curves,
the disk complex, and so on, are not quasi-isometrically embedded and
so do not obviously give invariants.

This paper discusses the first non-trivial examples of one curve com-
plex being quasi-isometrically embedded is another. These arise in two
ways: by puncturing a closed surface and from covering maps.

2. Statements

It will be enough to study only the one-skeleton of C(Σ), for which
we use the same notation. This is because the one-skeleton and the
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entire complex are quasi-isometric. Giving all edges of C(Σ) of length
one, we denote the distance between vertices by dΣ(·, ·).

Puncturing. Let S be the closed surface of genus g and Σ be the
surface of genus g with one puncture. Inspired by Lemma 3.6 of
Harer [Har86]:

Theorem 2.1. C(S) embeds isometrically into C(Σ).

In fact, as we shall see, there are many such embeddings.

Proof of Theorem 2.1. Pick a hyperbolic metric on S. By the Baire
category theorem, the union of geodesic representatives of simple closed
curves does not cover S. (In fact this union has Hausdorff dimension
one, by work of Bonahon.) Let ∗ be a point in the complement of
this union and identify Σ with Sr{∗}. This defines an embedding
Π: C(S) → C(Σ) which depends on the choice of metric, point, and
identification. Let P : C(Σ)→ C(S) be the map obtained by filling the
point ∗. Note that P ◦ Π is the identity map.

We observe, for a, b ∈ C(S) and α = Π(a), β = Π(b) that

dS(a, b) = dΣ(α, β).

This is because P and Π send disjoint curves to disjoint curves. There-
fore, if L ⊂ C(S) is a geodesic connecting a and b, then Π(L) is a path
in C(Σ) of the same length connecting α to β. Conversely, if Λ ⊂ C(Σ)
is a geodesic connecting α to β, then P (Λ) is a path in C(S) of the
same length connecting a to b. ¤

Coverings. Let Σ and S be compact connected orientable surfaces
and let P : Σ→ S be a covering map. This defines a relation between
the corresponding complexes of curves. That is, a ∈ C(S) is related to
α ∈ C(Σ) if P (α) = a. Abusing notation, we write this relation as a
map Π: C(S)→ C(Σ).

As a bit of notation, if A,B, c are non-negative real numbers, with
c ≥ 1, and if A ≤ cB+ c then we write A ≺c B. If A ≺c B and B ≺c A
then we write A ³c B. Our goal is:

Theorem 7.1. The relation Π: C(S)→ C(Σ) is a quasi-isometric em-
bedding. That is, if P (α) = a and P (β) = b, for α, β ∈ C(Σ) and
a, b ∈ C(S), then

dΣ(α, β) ³Q dS(a, b),

where the constant Q depends on the topology of S and the degree of
the covering map only.

When Σ is the orientation double cover of a nonorientable S, Theo-
rem 7.1 is due to Masur-Schleimer [MS07].
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Note that one of the inequalities, namely dΣ(α, β) ≤ dS(a, b), follows
immediately because disjoint curves in S have disjoint lifts to Σ. The
opposite inequality is harder to obtain and occupies the rest of the
paper.

3. Subsurface projection

Suppose that Σ is a compact connected orientable surface. A sub-
surface Ψ is cleanly embedded if all components of ∂Ψ are essential and
whenever γ ⊂ ∂Ψ is isotopic to δ ⊂ ∂Σ then γ = δ. All subsurfaces we
consider will be cleanly embedded.

We now recall the definition of the subsurface projection relation
πΨ : C(Σ) → C(Ψ), supposing that Ψ is not an annulus. Fix a hyper-
bolic metric on the interior of Σ. Let Σ′ be the Gromov compactifica-
tion of the cover of Σ corresponding to the inclusion π1(Ψ) → π1(Σ).
Thus Σ′ is homeomorphic to Ψ; this gives a canonical identification of
C(Ψ) with C(Σ′). For any α ∈ C(Σ) let α′ be the closure of the preim-
age of α in Σ′. Let α′′ be any component of α′ which is not properly
isotopic into the boundary. Note that if none exist then α is not related
to any vertex of C(Ψ); here we write πΨ(α) = ∅. Let N be a closed
regular neighborhood of α′′ ∪ ∂Σ′. Fix attention on α′′′, any boundary
component of N which is essential and non-peripheral. Then α ∈ C(Σ)
is related to α′′′ ∈ C(Ψ) and we write πΨ(α) = α′′′.

If Ψ is an annulus, then the definition of C(Ψ) is altered. Vertices are
proper isotopy classes of essential arcs in Ψ. Edges are placed between
vertices with representatives having disjoint interiors. The projection
map is defined as above, omitting the final steps involving the regular
neighborhood N .

If Ψ is a four-holed sphere or a once-holed torus then the curve
complex of Ψ is the well-known Farey graph: since all curves intersect,
edges are instead placed between curves that intersect exactly twice or
exactly once. The definition of πΨ is as in the non-annular case.

We say that α ∈ C(Σ) cuts the subsurface Ψ if πΨ(α) 6= ∅. Otherwise
we say that α misses Ψ. Suppose now that α, β ∈ C(Σ) both cut Ψ.
We define the projection distance to be

dΨ(α, β) = dΨ(πΨ(α), πΨ(β)).

Now we may state the Bounded Geodesic Image Theorem:

Theorem 3.1 (Masur-Minsky [MM00]). Fix a surface Σ. There is
a constant M = M(Σ) so that for any vertices α, β ∈ C(Σ), for any
geodesic Λ ⊂ C(Σ) connecting α to β, and for any Ω ( Σ, if dΩ(α, β) ≥
M then there is a vertex of Λ which misses Ω. ¤
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Fix α and β in C(Σ) and thresholds T0 > 0 and T1 > 0. We say that
a set J of subsurfaces Ω ( Σ, is an (T0,T1)–antichain for Σ, α and β
if J satisfies the following properties.

• If Ω,Ω′ ∈ J then Ω is not a strict subsurface of Ω′.
• If Ω ∈ J then dΩ(α, β) ≥ T0.
• For any Ψ ( Σ, either Ψ is a subsurface of some element of J

or dΨ(α, β) < T1.

Notice that there may be many different antichains for the given data
(Σ, α, β,T0,T1). One particularly nice example is when T0 = T1 = T
and J is defined to be the maxima of the set

{Ω ( Σ | dΩ(α, β) ≥ T}
as ordered by inclusion. We call this the T–antichain of maxima for
Σ, α and β. By |J | we mean the number of elements of J .

We may now state and prove:

Lemma 3.2. For every surface Σ and for every pair of sufficiently large
thresholds T0,T1, there is an accumulation constant A = A(Σ,T0,T1)
so that, if J is an (T0,T1)–antichain for Σ, α and β then

dΣ(α, β) ≥ |J |/A.

Proof. We proceed via induction: for the Farey graph it suffices for
both thresholds to be larger than 3 and then A = 1 (see [Min99]). Let
C be a constant so that: if Ω ⊂ Ψ ⊂ Σ and α′, β′ are the projections
of α, β to Ψ then

|dΩ(α, β)− dΩ(α′, β′)| ≤ C.

In the general case, we take the thresholds large enough so that:

• the theorem still applies to any strict subsurface Ψ with thresh-
olds T0 − C,T1 + C, and
• T0 ≥ M(Σ); thus by Theorem 3.1 for any surface in Ω ∈ J and

any geodesic Λ in C(Σ) connecting α and β, there is a curve γ
in Λ so that γ misses Ω.

Now fix such a Λ and γ. Let Ψ (and Ψ′) be the component(s) of Σrγ.

Claim. Let AΨ = A(Ψ,T0 − C,T1 + C). The number of elements of
JΨ = {Ω ∈ J | Ω ( Ψ} is at most

AΨ · (T1 + C).

By the claim it will suffice to take A(Σ,T0,T1) equal to

(AΨ + A′Ψ)(T1 + C) + 3.

This is because any element of J which is disjoint from γ is either a
strict subsurface of Ψ or Ψ′, an annular neighborhood of γ, or Ψ or Ψ′
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themselves. Since every surface in J is disjoint from some vertex of Λ,
the theorem follows from the pigeonhole principle.

It remains to prove the claim. If Ψ is a subsurface of an element of
J there is nothing to prove. Thus we may assume that

T1 ≥ dΨ(α, β).

Let α′ and β′ be the projections of α and β to Ψ. From the definition
of C, JΨ is a (T0 − C,T1 + C)–antichain for Ψ, α′ and β′. Thus,

T1 ≥ dΨ(α, β) ≥ dΨ(α′, β′)− C ≥ |JΨ|/AΨ − C

and so

T1 + C ≥ |JΨ|/AΨ. ¤

4. Teichmüller space

We use T (Σ) to denote the Teichmüller space of Σ: the space of
complete hyperbolic metrics on the interior of Σ up to isotopy.

There is a uniform bound for the length of the shortest closed curve
in any hyperbolic metric on Σ. For any metric σ on Σ, a curve γ has
bounded length in σ if the length of γ in σ is less than this constant.
Let e0 > 0 be a constant such that, for curves γ and δ, if γ has bounded
length in σ and δ has a length less than e0 then γ and δ have intersection
number zero.

Suppose that α and β are vertices of C(Σ). Fix metrics σ and τ in
T (Σ) so that α and β have bounded length at σ and τ respectively.
Let Γ: [tσ, tτ ]→ T (S) be a geodesic connecting σ to τ . For any curve
γ let lt(γ) be the length of its geodesic representative in the hyperbolic
metric Γ(t). The following theorems are consequences of Theorem 6.2
and Lemma 7.3 in [Raf05].

Theorem 4.1 ([Raf05]). For e0 as above there exists a threshold Tmin

such that, for a strict subsurface Ω of Σ, if dΩ(α, β) ≥ Tmin then there
is a time tΩ so that the length of each boundary component of Ω in
Γ(tΩ) is less than e0. ¤
Theorem 4.2 ([Raf05]). For every threshold T1, there is a constant e1

such that of lt(γ) ≤ e1, for some curve γ, then there exists a subsurface
Ψ disjoint from γ such that dΨ(α, β) ≥ T1. ¤

The shadow of the Teichmüller geodesic Γ to C(Σ) is the set of curves
γ, such that γ has bounded length in Γ(t) for some t ∈ [tσ, tτ ]. The
following is a consequence of the fact that the shadow is an unparame-
terized quasi-geodesic. (See Theorem 2.6 and then apply Theorem 2.3
in [MM99].)
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Theorem 4.3 ([MM99]). The shadow of a Teichmüller geodesic to
C(Σ) does not backtrack and so satisfies the reverse triangle inequality.
That is, there exists a backtracking constant B = B(Σ) such that if
tσ ≤ t0 ≤ t1 ≤ t2 ≤ tτ and if γi has bounded length in Γ(ti), i = 0, 1, 2
then

dΣ(γ0, γ2) ≥ dΣ(γ0, γ1) + dΣ(γ1, γ2)− B.

We say that Γ(t) is e–thick if the shortest closed geodesic γ in Γ(t)
has a length of at least e.

Lemma 4.4. For any e > 0 there is a progress constant P > 0 so that
if tσ ≤ t0 ≤ t1 ≤ tτ , Γ(t) is e–thick at every time t ∈ [t0, t1], and if γi
has bounded length in Γ(ti), i = 0, 1, then

dΣ(γ0, γ1) ³P t1 − t0.

Proof. Let µi be a short markings in Γ(ti), i = 0, 1. As above, using
Theorem 6.2 and Lemma 7.3 in [Raf05], and the fact that Γ(t) is e–thick
at every time t ∈ [t0, t1], we can conclude that dΩ(µ0, µ1) is uniformly
bounded for any strict subsurface of Ω of Σ. The lemma is then a
consequence of Theorem 1.1 and Remark 5.5 in [Raf06]. (Referring
to the statement and notation of [Raf06, Theorem 1.1]: take k large
enough such that the only non-zero term in the right hand side of
[Raf06, Equation (1)] is dΣ(µ0, µ1)). ¤

In general Γ may stray into the thin part of T (S). We take Γ≥e to
be the set of times in the domain of Γ which are e–thick. Notice that
Γ≥e is a union of closed intervals. Let Γ(e, L) be the union of intervals
of Γ≥e which have length at least L. We use |Γ(e, L)| to denote the sum
of the lengths of the components of Γ(e, L).

Lemma 4.5. For every e there exists L0 such that if L ≥ L0, then

dΣ(α, β) ≥ |Γ(e, L)|/2P.

Proof. Pick L0 large enough so that, for L ≥ L0,

(L/2P) ≥ P + 2B.

Let Γ(e, L) be the union of intervals [ti, si], i = 1, . . . ,m. Let γi be a
curve of bounded length in Γ(ti) and δi be a curve of bounded length
in Γ(si).

By Theorem 4.3 we have

dΣ(α, β) ≥
(∑

i

dΣ(γi, δi)

)
− 2mB.
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By Lemma 4.4 we deduce

dΣ(α, β) ≥
(∑

i

1

P
(si − ti)− P

)
− 2mB.

Rearranging, we find

dΣ(α, β) ≥ 1

P
|Γ(e, L)| −m(P + 2B).

Thus, as desired:

dΣ(α, β) ≥ 1

2P
|Γ(e, L)|. ¤

5. An estimate of distance

In this section we provide the main estimate for dΣ(α, β). Let e0 be
as before. We choose thresholds T0 ≥ Tmin (see Theorem 4.1) and T1 so
that Lemma 3.2 holds. Let e1 be the constant provided in Lemma 4.4
and let e > 0 be any constant smaller than min(e0, e1). Finally, we
pick L0 such that Lemma 4.5 holds and that L0/2P > 4. Let L be any
length larger than L0.

Theorem 5.1. Let T0, T1, e and L be constants chosen as above and
assume that J is a (T0,T1)–antichain for Σ, α and β. Then, there is
a constant K = K(Σ,T0,T1, e, L) such that

dΣ(α, β) ³K |J |+ |Γ(e, L)|.

Proof. For K ≥ max(2P,A), the inequality

dΣ(α, β) ÂK |J |+ |Γ(e, L)|
follows from Lemmas 3.2 and 4.5. It remains to show that

dΣ(α, β) ≺K |J |+ |Γ(e, L)|.
For each Ω ∈ J , fix a time tΩ ∈ [tσ, tτ ] so that all boundary com-

ponents of Ω are e0–short in Γ(tΩ) (see Theorem 4.1). Let E be the
union:
{
tΩ

∣∣∣ Ω ∈ J , tΩ 6∈ Γ(e, L)
}
∪
{
∂I
∣∣∣ I a component of Γ(e, L)

}
.

We write E = {t0, . . . , tn}, indexed so that ti < ti+1.

Claim. The number of intervals in Γ(e, L) is at most |J | + 1. Hence,
|E| ≤ 3|J |+ 1.
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Proof. At some time between any consecutive intervals I and J in
Γ(e, L) some curve γ becomes e–short (and hence e1–short). Therefore,
by Theorem 4.2, γ is disjoint from a subsurface Ψ where dΨ(α, β) ≥ T1.
Since J is an (T0,T1)–antichain, Ψ is a subsurface of some element
Ω ∈ J . It follows that dΣ(γ, ∂Ω) ≤ 2. This defines a one-to-one map
from pairs of consecutive intervals to J . To see the injectivity consider
another such pair of consecutive intervals I ′ and J ′ and the correspond-
ing curve γ ′ and subsurface Ω′. By Lemma 4.4, dΣ(γ, γ′) ≥ L/2P > 4,
and therefore Ω is not equal to Ω′. ¤

Let γi be a curve of bounded length in Γ(ti).

Claim.

dΣ(γi, γi+1) ≤
{

P(ti+1 − ti) + P, if [ti, ti+1] ⊂ Γ(e, L)

2B + PL + P + 2, otherwise

Proof. The first case follows from Lemma 4.4. So suppose that the
interior of [ti, ti+1] is disjoint from the interior of Γ(e, L).

We define sets I+, I− ⊂ [ti, ti+1] as follows: A point t ∈ [ti, ti+1] lies
in I− if

• there is a curve γ which is e–short in Γ(t) and
• for some Ω ∈ J , so that dΣ(∂Ω, γ) ≤ 2, tΩ ≤ ti.

If instead tΩ ≥ ti+1 then we place t in I+. Finally, we place ti in I−
and ti+1 in I+.

Notice that if Ω ∈ J then tΩ does not lie in the open interval (ti, ti+1).
It follows that every e–thin point of [ti, ti+1] lies in I−, I+, or both. If
t ∈ I− and γ is the corresponding e–short curve then dΣ(γi, γ) ≤ B + 2.
This is because either t = ti and so γ and γi are in fact disjoint, or
there is a surface Ω ∈ J as above with

2 ≥ dΣ(∂Ω, γ) ≥ dΣ(γi, γ)− B,

Similarly if t ∈ I+, dΣ(γi+1, γ) ≤ B + 2.
If I+ and I− have non-empty intersection then dΣ(γi, γi+1) ≤ 2B+ 4

by the triangle inequality.
Otherwise, there is an interval [s, s′] that is e–thick, has length less

than L such that s ∈ I− and s′ ∈ I+. Let γ and γ′ be the corresponding
short curves in Γ(s) and Γ(s′). Thus

dΣ(γi, γ) ≤ B + 2 and dΣ(γ′, γi+1) ≤ B + 2.

We also know from Lemma 4.4 that

dΣ(γ, γ′) ≤ PL + P.

This finishes the proof of our claim. ¤
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It follows that

dΣ(α, β) ≤ dΣ(γ0, γ1) + . . .+ dΣ(γn−1, γn)

≤ |E|(2B + PL + P + 2) + P|Γ(e, L)|+ |E|P
≺K |J |+ |Γ(e, L)|,

for an appropriate choice of K. This finishes the proof of the theorem.
¤

6. Symmetric curves and surfaces

Recall that P : Σ→ S is a covering map.

Definition 6.1. A curve α ⊂ Σ is symmetric if there is a curve a ⊂ S
so that P (α) = a. We make the same definition for a subsurface Ω ⊂ Σ
lying over a subsurface Z ⊂ S.

For the rest of the paper, fix symmetric curves α and β. Let x, y ∈
T (S) be points in the Teichmüller space of S such that a = P (α) has
bounded length in x and b = P (β) is bounded in y. Let σ and τ be
the lifts of x and y respectively. Let G be the Teichmüller geodesic
connecting x to y and Γ be the lift of G. Note that Γ is a geodesic in
T (Σ). This is because a Teichmüller geodesic is an image of a quadratic
differential under the action of{[

et 0
0 e−t

] ∣∣∣∣ t ∈ R
}
.

Both quadratic differentials and the action of this group are defined
locally and therefore lift to the cover.

Proposition 6.2 (Proposition 3.7 [Raf06]). For any e, there is a con-
stant N such that the following holds. Assume that, for all t ∈ [r, s],
there is a component of ∂Ω whose length in Γ(t) is larger than e. Sup-
pose γ has bounded length in Γ(r) and δ has bounded length in Γ(s).
Then

dΩ(γ, δ) ≤ N.

Lemma 6.3. For e small enough, N as above and any subsurface Ω ⊂
Σ, if dΩ(α, β) ≥ 2N + 1, then Ω is symmetric.

Proof. Consider the first time t− and last time t+ that the boundary
of Ω is e–short. Since the boundary of Ω is short in Γ at these times,
so is its image P (∂Ω) in G at the corresponding times. Therefore, all
components of the image are simple. (This is a version of the Collar
Lemma. See Theorem 4.2.2 of [Bus92].) It follows that the boundary
of Ω is symmetric. This is because, choosing e small enough will ensure
that curves in P−1(P (Ω)) have bounded length at both t− and t+. (The
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length of each is at most the degree of the covering map times e.) If
any such curve γ intersects Ω we have dΩ(γ, α) ≤ N and dΩ(γ, β) ≤ N,
contradicting the assumption dΩ(α, β) ≥ 2N + 1. Thus, the subsurface
Ω is symmetric. ¤

7. The quasi-isometric embedding

We now prove the main theorem:

Theorem 7.1. The covering relation Π: C(S) → C(Σ) is a quasi-
isometric embedding. That is, if P (α) = a and P (β) = b, for α, β ∈
C(Σ) and a, b ∈ C(S), then

dΣ(α, β) ³Q dS(a, b),

where Q depends on the topology of S and the degree of the covering
map only.

Proof. As mentioned before, we only need to show that

dΣ(α, β) ÂQ dS(a, b).

Suppose that d is the degree of the covering. We prove the theorem by
induction on the complexity of S. In the case where S is an annulus,
the cover Σ is also an annulus and the distances in C(Σ) and C(S) are
equal to the intersection number plus one. But, in this case,

i(α, β) ≥ i(a, b)/d.

Therefore, the theorem is true with Q = d.
Now assume the theorem is true for all subsurfaces of S with the

quasi-isometric constant Q′. Choose the threshold T, constant e and
length L such that Theorem 5.1 holds for both the data (S,T,T, e, L)
as well as (Σ, (T/Q′) − Q′,T, e, L). We also assume that T ≥ 2N + 1.
Note that all these choices depend on the topology of S and the degree
d only.

Let JS be the T–antichain of maxima for S, a and b and let JΣ be
the set of lifts of elements of JS.

Claim. The set JΣ is a ((T/Q′)− Q′,T)–antichain for Σ, α, and β.

We check the conditions for being an antichain. Since elements of
JS are not subsets of each other, the same holds for their lifts. The
condition dΩ(α, β) ≥ (T/Q′) − Q′ is the induction hypothesis. Now
suppose Ψ ⊂ Σ with dΨ(α, β) ≥ T. By Lemma 6.3, Ψ is symmetric.
That is, it is a lift of a surface Y ⊂ S and

dY (a, b) ≥ dΨ(α, β) ≥ T.
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This implies that Y ⊂ Z for some Z ∈ JS. Therefore, taking Ω to be
the lift of Z, we have Ψ ⊂ Ω ∈ JΣ. This proves the claim.

Hence, there are constants K and K′ such that

dS(a, b) ³K |JS|+ |G(e, L)|,
and

dΣ(α, β) ³K′ |JΣ|+ |Γ(e, L)|.
Note that |JS| ≤ d|JΣ| as a subsurface of S has at most d lifts. Note
also that |G(e, L)| ≤ |Γ(e, L)| because Γ(t) is at least as thick as G(t).
Therefore

dS(a, b) ≺Q dΣ(α, β),

for Q = d K K′. This finishes the proof. ¤
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