COVERS AND THE CURVE COMPLEX
KASRA RAFI AND SAUL SCHLEIMER

ABSTRACT. The inclusion of curve complexes, induced by a cov-
ering map, is a quasi-isometric embedding.

1. INTRODUCTION

Suppose that X is a compact connected orientable surface. A simple
closed curve a C X is essential if o does not bound a disk in ¥. The

curve « is non-peripheral if o does not bound a once-punctured disk in
2.

Definition 1.1 (Harvey [2]). The complex of curves C(X) has isotopy
classes of essential, non-peripheral curves as its vertices. A collection
of k4 1 vertices spans a k—simplex if every pair of vertices has disjoint
representatives.

We are interested in the coarse geometry of C(3), since this is closely
related to the geometry of both Teichmiiller space and the study of
Kleinian groups. It will be enough to study only the 1-skeleton of
C(Y), for which we use the same notation. Giving all edges of C(X)
length one, we denote the distance between vertices by dx(-,-).

As a bit of notation, if A, B, c are non-negative real numbers, with
c>1, and if

A<cB+ec

then we write A < B. If A < B and B < A then we write A < B.
The number c is always some constant uniform over a family of (A, B)
pairs.

Let > and S be two compact connected orientable and let p: ¥ — §
be a covering map. This defines a relation between the corresponding
complexes of curves. That is, a € C(S) is related to o € C(X) if
p(a) = a. Abusing notation, we write this as p*: C(S) — C(X). Our
goal is:

Theorem 6.1. The relation p*: C(S) — C(X) is a quasi-isometric
embedding. That is, if p(a) = a and p(B) = b, for o, € C(X) and
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a,b e C(S), then
dz(a,ﬁ) = ds(a, b)

Note that one of the inequalities, namely dx (o, 5) < dg(a,b), follows
immediately because disjoint curves in S have disjoint lifts in 3. The
opposite inequality is harder to obtain and occupies the rest of the
paper.

In a slightly different situation, where ¥ is the orientation double
cover of a nonorientable S, Theorem 6.1 is due to Masur-Schleimer [5].

2. SUBSURFACE PROJECTION

Suppose that ¥ is a compact connected orientable surface. A sub-
surface W is cleanly embedded if all components of QU are essential and
whenever v C 0V is istopic to 6 C 0% then v = J. All subsurfaces we
consider will be cleanly embedded.

We now recall the definition of the subsurface projection relation
my: C(X) — C(¥), supposing that ¥ is not an annulus. Fix a hyper-
bolic metric on the interior of ¥. Let ¥’ be the Gromov compactifica-
tion of the cover of ¥ corresponding to the inclusion m(¥) — m(2).
Thus ¥’ = ¥ and we identify C(X') with C(V). For any a € C(X) let o/
be the closure of the preimage of o in ¥, Let o” be any component of
o/ which is not properly isotopic into the boundary. (If none exist then
« is not related to any vertex of C(¥) and we write my(a) = 0.) Let
N be a closed regular neighborhood of o U 9%'. Fix attention on o,
any boundary component of N which is essential and non-peripheral.
Then a € C(X) is related to o € C(V) and we write 7y () = .

If U is an annulus, then the definition of C(WV) is altered. Vertices are
proper isotopy classes of essential arcs in W. Edges are placed between
vertices with representatives having disjoint interiors. The projection
map is defined as above, omitting the final steps involving the regular
neighborhood N.

If W is a four-holed sphere or once-holed torus then the curve complex
of U is the well-known Farey graph: since all curves intersect, edges are
instead placed between curves that intersect exactly twice or exactly
once. The definition of 7wy is as in the non-annular case.

We say that a € C(X) cuts the subsurface W if 7y () # (). Otherwise
we say that a misses W. Suppose now that «, 5 € C(X) both cut V.
We define the projection distance to be

dy(a, 8) = dy(me(a), 7w (3)).

Here is the Bounded Geodesic Image Theorem:
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Theorem 2.1 (Masur-Minsky [4]). Fiz a surface . There is a con-
stant B = B(X) so that for any vertices a, 3 € C(X), for any geodesic
[' C C(X) connecting « to 3, and for any Q C %, if do(a, ) > B then
there is a vertex of I' which misses €.
Fix o and § in C(X). Fix threshholds Tog > 0 and Ty > 0. We say
that
j = j(E, a, ﬁ, T(), Tl),

a set of subsurfaces 2 C X, is an antichain if J satisfies the following
properties.

o If 2, €Y € J then ) is not a subsurface of €.

o If O € J then dg(a, 3) > To.

e IfQe Jand Q C ¥ C X then dy(«, 5) < Tj.
Notice that there may be many different antichains for the given data
(3, a, 3, To, T1). One particularly nice example is when Ty < T; and
J is defined to be the maxima of the set

B={QCX|do(o, ) > To}

as ordered by inclusion. We call this an antichain of mazima. By |TJ|
we mean the number of elements of 7.
We may now state and prove our first result.

Theorem 2.2. For every surface ¥ and for every pair of sufficiently
large threshholds Ty, Ty there is an accumulation constant A = A(X, T, Tq)
so that, if J is an antichain then

ds(a, 3) = |T|/A.

Proof. We prove the theorem by induction: for the Farey graph it
suffices for both threshholds to be larger than 3 and then A = 1.

Let C' be a constant so that the following holds: If Q@ C ¥ C ¥ and
o, 3" are the projections of a, § to ¥ then

da(a, B) — do(a’, 5')] < C.
In the general case, we take the threshholds large enough so that:

e the theorem still applies to any strict subsurface ¥ with thresh-
olds To — C, Ty + C, and

e Ty > B(X); thus by Theorem 2.1 any surface in J is disjoint
from some curve «y of the geodesic in C(X) connecting v and f.

Now fix such a curve v. Let ¥ (and ¥’) be the component(s) of ¥~\7.

Claim. Let Ay = A(V, Tg — C, Ty + C). The number of elements of
Jue={Q e J|QC ¥} is at most

Ay - (T 4+ C).
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By the claim it will suffice to take A(X, T, T1) equal to
(Ay + AL (T, +C) + 3.

This is because any element of J which is disjoint from ~ is either a
strict subsurface of ¥ or W', an annular neighborhood of ~, or ¥ or
U’ themselves. Since every surface in J is disjoint from some curve
~ of the geodesic connecting o and 3, the theorem follows from the
pigeonhole principle.

It remains to prove the claim. If ¥ is a subsurface of an element of
J there is nothing to prove. Likewise, if U contains no elements of J
then there is nothing to prove.

Thus we may assume that

T1 > dy(a, B).

Let o/ and (' be the projections of @ and § to ¥. From the defini-
tion of C', Jy satisfies the conditions of the theorem with the data
(U, o, 3", To— C, Ty + C). Thus,

Tl 2 d‘ll(aaﬁ) Z d‘l/(a/>ﬁ/> - C Z |j\I/|/A\I/ - C

and so
T4+ C > |Ju|/Av.

3. TEICHMULLER SPACE

We also need several definitions involving 7 (X), the Teichmiiller space
of interior(X). Suppose that a, 3 are vertices of C(X). Fix 0,7 points
of T(X) so that a and ( have bounded length at o and 7 respectively.
Let I': [t,,t:] — T(S) be a geodesic connecting o to 7. For any curve
let 1;(y) be the length of the geodesic representative of v in the surface
Iy

By the work of the first author, there are constants €; > €, both
smaller than the Margulis constant and depending only on >, so that
for any subsurface 2 there is a (possibly empty) accessible interval
I C domain(I') with the following properties:

e For all t € I, every component v C 0Q2\0X satisfies [;(7) < €.

e For all t ¢ I there is a component v C 0Q2\0X which satisfies
l(7) = e

e If ~ is essential and non-peripheral in §2 then there is a t € I
so that l;(7y) > €.

e Furthermore, there is a constant D depending only on ¥ so that
if do(a, ) > D then I is non-empty.
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We say that I'; is e-thick if the shortest closed geodesic v in I'; has
length at least e.

Theorem 3.1. Fix Y. For any € > 0 there is a constant D > 0 so that
for any o, B and T': [t,,t;] — T(S) as above, if T'y is e-thick at every
time t then

1

D<t‘r - to) + D 2 dZ(CWﬁ) Z 6

(t, —t,) — D.

O

In general I' may stray into the thin part of 7(S). We take I'=¢ to
be the set of times in the domain of I' which are e-thick. Notice that
['=¢ is a union of closed intervals. Let I'(¢, L) be the union of intervals
of I'2¢ which have length at least L. We use |T'(¢, L)| to denote the sum
of the lengths of the components of I'(¢, L).

Theorem 3.2.
dZ(aaﬁ) ~ |F<€7L>’

Proof. Sketch: Pick an interval [s,t] € I'(e, L). Let ~5,7 be a pair of
bounded length curves in I'y and I';. Note that ds(vys, ) < t — s, by
Theorem 3.1. Also, by Masur-Minsky [3], the bounded length curves
of T'y, as t varies, forms a unparametrized quasi-geodesic in C(X). In
particular, these curves do not backtrack. It follow that

ds(a, 3) = Z t—s.

[s,t]€D(e,L)

4. AN ESTIMATE OF DISTANCE

Theorem 4.1. For any surface 3, 3T¢g > 0 VT > Ty deg > 0 Ve €
(0,€0] Lo > 0 VL > Ly so that for any o, 3, and Teichmiiller geodesic
I' as above we have

ds(a, 3) < |T| + [T(e, L)].
Here J is the antichain of mazxima with both threshholds equal to T.
Proof. The inequality

ds(o, 3) = |T| + [T(e, L)|

follows Theorems 2.2 and 3.2. This completes the proof in one direc-
tion. It remains to show that

dE(a7B) = |\7| + |F(€7L)|
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Let € be the set of endpoints of all intervals in I'(e, L) and of all
intervals I where Q € J. Write € = {to,...,t,}, indexed so that
t; < tig1. Note that ‘5’ < |j’

Remark 4.2. To see this: we choose ¢, sufficently small so that if
li(7) < € then there exists a subsurface ¥ disjoint from - where
dy(a,3) > To. This ¥ is contained in some element 2 € J. We
then choose Ly large enough so that any {2 € J is so associated to at
most two endpoints of intervals in I'(e, L).

Let v; be a curve of bounded length in I';,.
Claim 4.3.

tiv1 — ti, if [tiati—&-l] cle F(E, L)
ds:(7i, Vi = .
=(%i: i) {1, otherwise.

Proof of Claim. Sketch: The first case follows from Theorem 3.1. So
suppose that the interior of I = [t;, t;11] is disjoint from the interior of
[(e, L). If I is contained in an interval I, for Q € J then ds(7v;, viv1) <
2 and we are done. So suppose that [ is also disjoint from the interior
of all Ig, Q € J.

Then [ is a union of intervals

LUIg,U...Uly, , UI,

where the [j; lie in the e-thick part of 7(X) and the Iy, are accessible
intervals for the subsurface W;. These intervals may overlap (and some
of the Iy may be empty) but they do cover I. This is essentially due
to Remark 4.2. Let 0 be a boundary component of Wy.

By assumption W ¢ J for all k. Since J is an antichain of maxima,
every W, is a subsurface of some €, € J. Let k be the last index
so that sup I, < t;. Since mx(I") does not backtrack, it follows that
7; lies close to the geodesic (in C(X)) between 09, and 5. But these
are disjoint and we conclude that dx(7;,dr) = O(1). Now, the same
reasoning applies to dx11, a boundary component of Wy, except this
time we find that inf Io, > t;41. Thus ds(xq1,7i41) = O(1).

Finally, either Iy, and Iy, overlap, and so dg(dg, dk+1) = 1, or the
two intervals are separated by I,q lying in the e-thick part of 7 (3).
However, we have assumed that I does not lie in I'(¢, L) and so || <
L. Thus dx(dk, 0g+1) = O(1) by Theorem 3.1. This completes the proof
of the claim. 0
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It follows that

ds(a, B) < ds(v0,7) + .-+ ds(Vn-1,7n)
<2n+[I'(e, L)|
< |T[+ |T(e, L)]
This completes the proof of Theorem 4.1. [l

5. SYMMETRIC CURVES AND SURFACES

Definition 5.1. A curve a C X is symmetric if there is a curve a C S
so that p(a) = a. We make the same definition for a subsurface 2 C X
lying over a subsurface Z C S.

For the rest of the paper, fix symmetric curves o and 3. Let x,y €
7 (S) be points in the Teichmiiller space of S such that a has bounded
length in x and b is bounded in y. Let ¢ and 7 be the lifts of z and y
respectively. Let G be the Teichmiiller geodesic connecting x to y and
' be the lift.

Theorem 5.2. There is a constant K such that, for any subsurface
QCy ifdola,B) > K, then Q is symmetric.

Proof. Consider the interval I = I given above. Since the boundary
of © is short, so is its image p(0f2) in S during the corresponding
interval. Therefore, all components of the image are simple. (This is a
version of the “Collar Lemma”. See Theorem 4.2.2 of [1].) It follows
that the boundary of € is symmetric. Curves in p~!(p(Q2)) can not
intersect (2, because of the third property of Ig. Thus, the subsurface
Q) is symmetric. U

6. THE QUASI-ISOMETRIC EMBEDDING

We are now equipped to prove:

Theorem 6.1. The relation p*: C(S) — C(X) is a quasi-isometric
embedding. That is, if p(a) = a and p(B) = b, for a,f € C(X) and
a,b € C(S), then

ds (o, f) < ds(a,b).

Proof. Here is a rough sketch.

Suppose that D is the degree of the covering. ds(a,b) is less than
|T|+|G (€, L)| where J is the antichain of maxima with a large enough
threshhold. Let J’ be the set of components of covers of elements of
J. (So J'is at most D times larger that J.) The projection distance
of an element 0 € J' may be smaller than that of the surface, Z,
which € covers, but applying the theorem inductively to Z there is a
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multiplicative bound on how much the projection distance drops. So,
we may take the lower and upper threshholds for 7 to be at least this
multiplicative constant times the lower bound for all threshholds for
Y. Taking the upper and lower threshholds of 7’ to be equal, we find
that J’ is an antichain for ¥ and so dx(«, 3) = |J’|.

Notive that I'; is at least as thick as G;. It follows that [I'(e, L)| >
|G(¢, L)|. Applying the theorems above completes the proof. O
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