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KASRA RAFI AND SAUL SCHLEIMER

Abstract. The inclusion of curve complexes, induced by a cov-
ering map, is a quasi-isometric embedding.

1. Introduction

Suppose that Σ is a compact connected orientable surface. A simple
closed curve α ⊂ Σ is essential if α does not bound a disk in Σ. The
curve α is non-peripheral if α does not bound a once-punctured disk in
Σ.

Definition 1.1 (Harvey [2]). The complex of curves C(Σ) has isotopy
classes of essential, non-peripheral curves as its vertices. A collection
of k+ 1 vertices spans a k–simplex if every pair of vertices has disjoint
representatives.

We are interested in the coarse geometry of C(Σ), since this is closely
related to the geometry of both Teichmüller space and the study of
Kleinian groups. It will be enough to study only the 1–skeleton of
C(Σ), for which we use the same notation. Giving all edges of C(Σ)
length one, we denote the distance between vertices by dΣ(·, ·).

As a bit of notation, if A,B, c are non-negative real numbers, with
c ≥ 1, and if

A ≤ cB + c

then we write A ≺ B. If A ≺ B and B ≺ A then we write A ³ B.
The number c is always some constant uniform over a family of (A,B)
pairs.

Let Σ and S be two compact connected orientable and let p : Σ→ S
be a covering map. This defines a relation between the corresponding
complexes of curves. That is, a ∈ C(S) is related to α ∈ C(Σ) if
p(α) = a. Abusing notation, we write this as p∗ : C(S) → C(Σ). Our
goal is:

Theorem 6.1. The relation p∗ : C(S) → C(Σ) is a quasi-isometric
embedding. That is, if p(α) = a and p(β) = b, for α, β ∈ C(Σ) and
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a, b ∈ C(S), then

dΣ(α, β) ³ dS(a, b).

Note that one of the inequalities, namely dΣ(α, β) ≤ dS(a, b), follows
immediately because disjoint curves in S have disjoint lifts in Σ. The
opposite inequality is harder to obtain and occupies the rest of the
paper.

In a slightly different situation, where Σ is the orientation double
cover of a nonorientable S, Theorem 6.1 is due to Masur-Schleimer [5].

2. Subsurface projection

Suppose that Σ is a compact connected orientable surface. A sub-
surface Ψ is cleanly embedded if all components of ∂Ψ are essential and
whenever γ ⊂ ∂Ψ is istopic to δ ⊂ ∂Σ then γ = δ. All subsurfaces we
consider will be cleanly embedded.

We now recall the definition of the subsurface projection relation
πΨ : C(Σ) → C(Ψ), supposing that Ψ is not an annulus. Fix a hyper-
bolic metric on the interior of Σ. Let Σ′ be the Gromov compactifica-
tion of the cover of Σ corresponding to the inclusion π1(Ψ) → π1(Σ).
Thus Σ′ ∼= Ψ and we identify C(Σ′) with C(Ψ). For any α ∈ C(Σ) let α′

be the closure of the preimage of α in Σ′. Let α′′ be any component of
α′ which is not properly isotopic into the boundary. (If none exist then
α is not related to any vertex of C(Ψ) and we write πΨ(α) = ∅.) Let
N be a closed regular neighborhood of α′′ ∪ ∂Σ′. Fix attention on α′′′,
any boundary component of N which is essential and non-peripheral.
Then α ∈ C(Σ) is related to α′′′ ∈ C(Ψ) and we write πΨ(α) = α′′′.

If Ψ is an annulus, then the definition of C(Ψ) is altered. Vertices are
proper isotopy classes of essential arcs in Ψ. Edges are placed between
vertices with representatives having disjoint interiors. The projection
map is defined as above, omitting the final steps involving the regular
neighborhood N .

If Ψ is a four-holed sphere or once-holed torus then the curve complex
of Ψ is the well-known Farey graph: since all curves intersect, edges are
instead placed between curves that intersect exactly twice or exactly
once. The definition of πΨ is as in the non-annular case.

We say that α ∈ C(Σ) cuts the subsurface Ψ if πΨ(α) 6= ∅. Otherwise
we say that α misses Ψ. Suppose now that α, β ∈ C(Σ) both cut Ψ.
We define the projection distance to be

dΨ(α, β) = dΨ(πΨ(α), πΨ(β)).

Here is the Bounded Geodesic Image Theorem:
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Theorem 2.1 (Masur-Minsky [4]). Fix a surface Σ. There is a con-
stant B = B(Σ) so that for any vertices α, β ∈ C(Σ), for any geodesic
Γ ⊂ C(Σ) connecting α to β, and for any Ω ( Σ, if dΩ(α, β) ≥ B then
there is a vertex of Γ which misses Ω.

Fix α and β in C(Σ). Fix threshholds T0 > 0 and T1 > 0. We say
that

J = J (Σ, α, β,T0,T1),

a set of subsurfaces Ω ( Σ, is an antichain if J satisfies the following
properties.

• If Ω,Ω′ ∈ J then Ω is not a subsurface of Ω′.
• If Ω ∈ J then dΩ(α, β) ≥ T0.
• If Ω ∈ J and Ω ( Ψ ( Σ, then dΨ(α, β) ≤ T1.

Notice that there may be many different antichains for the given data
(Σ, α, β,T0,T1). One particularly nice example is when T0 < T1 and
J is defined to be the maxima of the set

B = {Ω ( Σ | dΩ(α, β) ≥ T0}
as ordered by inclusion. We call this an antichain of maxima. By |J |
we mean the number of elements of J .

We may now state and prove our first result.

Theorem 2.2. For every surface Σ and for every pair of sufficiently
large threshholds T0,T1 there is an accumulation constant A = A(Σ,T0,T1)
so that, if J is an antichain then

dΣ(α, β) ≥ |J |/A.

Proof. We prove the theorem by induction: for the Farey graph it
suffices for both threshholds to be larger than 3 and then A = 1.

Let C be a constant so that the following holds: If Ω ⊂ Ψ ⊂ Σ and
α′, β′ are the projections of α, β to Ψ then

|dΩ(α, β)− dΩ(α′, β′)| ≤ C.

In the general case, we take the threshholds large enough so that:

• the theorem still applies to any strict subsurface Ψ with thresh-
olds T0 − C,T1 + C, and
• T0 ≥ B(Σ); thus by Theorem 2.1 any surface in J is disjoint

from some curve γ of the geodesic in C(Σ) connecting α and β.

Now fix such a curve γ. Let Ψ (and Ψ′) be the component(s) of Σrγ.

Claim. Let AΨ = A(Ψ,T0 − C,T1 + C). The number of elements of
JΨ = {Ω ∈ J | Ω ( Ψ} is at most

AΨ · (T1 + C).
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By the claim it will suffice to take A(Σ,T0,T1) equal to

(AΨ + A′Ψ)(T1 + C) + 3.

This is because any element of J which is disjoint from γ is either a
strict subsurface of Ψ or Ψ′, an annular neighborhood of γ, or Ψ or
Ψ′ themselves. Since every surface in J is disjoint from some curve
γ of the geodesic connecting α and β, the theorem follows from the
pigeonhole principle.

It remains to prove the claim. If Ψ is a subsurface of an element of
J there is nothing to prove. Likewise, if Ψ contains no elements of J
then there is nothing to prove.

Thus we may assume that

T1 ≥ dΨ(α, β).

Let α′ and β′ be the projections of α and β to Ψ. From the defini-
tion of C, JΨ satisfies the conditions of the theorem with the data
(Ψ, α′, β′,T0 − C,T1 + C). Thus,

T1 ≥ dΨ(α, β) ≥ dΨ(α′, β′)− C ≥ |JΨ|/AΨ − C
and so

T1 + C ≥ |JΨ|/AΨ.

¤

3. Teichmüller space

We also need several definitions involving T (Σ), the Teichmüller space
of interior(Σ). Suppose that α, β are vertices of C(Σ). Fix σ, τ points
of T (Σ) so that α and β have bounded length at σ and τ respectively.
Let Γ: [tσ, tτ ]→ T (S) be a geodesic connecting σ to τ . For any curve γ
let lt(γ) be the length of the geodesic representative of γ in the surface
Γt.

By the work of the first author, there are constants ε1 ≥ ε2, both
smaller than the Margulis constant and depending only on Σ, so that
for any subsurface Ω there is a (possibly empty) accessible interval
IΩ ⊂ domain(Γ) with the following properties:

• For all t ∈ IΩ, every component γ ⊂ ∂Ωr∂Σ satisfies lt(γ) ≤ ε2.
• For all t /∈ IΩ there is a component γ ⊂ ∂Ωr∂Σ which satisfies
lt(γ) ≥ ε1.
• If γ is essential and non-peripheral in Ω then there is a t ∈ IΩ

so that lt(γ) ≥ ε1.
• Furthermore, there is a constant D depending only on Σ so that

if dΩ(α, β) ≥ D then IΩ is non-empty.
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We say that Γt is ε–thick if the shortest closed geodesic γ in Γt has
length at least ε.

Theorem 3.1. Fix Σ. For any ε > 0 there is a constant D > 0 so that
for any α, β and Γ: [tσ, tτ ] → T (S) as above, if Γt is ε–thick at every
time t then

D(tτ − tσ) + D ≥ dΣ(α, β) ≥ 1

D
(tτ − tσ)− D.

¤
In general Γ may stray into the thin part of T (S). We take Γ≥ε to

be the set of times in the domain of Γ which are ε–thick. Notice that
Γ≥ε is a union of closed intervals. Let Γ(ε, L) be the union of intervals
of Γ≥ε which have length at least L. We use |Γ(ε, L)| to denote the sum
of the lengths of the components of Γ(ε, L).

Theorem 3.2.

dΣ(α, β) Â |Γ(ε, L)|.
Proof. Sketch: Pick an interval [s, t] ∈ Γ(ε, L). Let γs, γt be a pair of
bounded length curves in Γs and Γt. Note that dΣ(γs, γt) ³ t − s, by
Theorem 3.1. Also, by Masur-Minsky [3], the bounded length curves
of Γt, as t varies, forms a unparametrized quasi-geodesic in C(Σ). In
particular, these curves do not backtrack. It follow that

dΣ(α, β) Â
∑

[s,t]∈Γ(ε,L)

t− s.

¤

4. An estimate of distance

Theorem 4.1. For any surface Σ, ∃T0 > 0 ∀T ≥ T0 ∃ε0 > 0 ∀ε ∈
(0, ε0] ∃L0 > 0 ∀L ≥ L0 so that for any α, β, and Teichmüller geodesic
Γ as above we have

dΣ(α, β) ³ |J |+ |Γ(ε, L)|.
Here J is the antichain of maxima with both threshholds equal to T.

Proof. The inequality

dΣ(α, β) Â |J |+ |Γ(ε, L)|
follows Theorems 2.2 and 3.2. This completes the proof in one direc-
tion. It remains to show that

dΣ(α, β) ≺ |J |+ |Γ(ε, L)|.
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Let E be the set of endpoints of all intervals in Γ(ε, L) and of all
intervals IΩ where Ω ∈ J . Write E = {t0, . . . , tn}, indexed so that
ti < ti+1. Note that |E| ≺ |J |.

Remark 4.2. To see this: we choose ε0 sufficently small so that if
lt(γ) ≤ ε0 then there exists a subsurface Ψ disjoint from γ where
dΨ(α, β) ≥ T0. This Ψ is contained in some element Ω ∈ J . We
then choose L0 large enough so that any Ω ∈ J is so associated to at
most two endpoints of intervals in Γ(ε, L).

Let γi be a curve of bounded length in Γti .

Claim 4.3.

dΣ(γi, γi+1) ³
{
ti+1 − ti, if [ti, ti+1] ⊂ I ∈ Γ(ε, L)

1, otherwise.

Proof of Claim. Sketch: The first case follows from Theorem 3.1. So
suppose that the interior of I = [ti, ti+1] is disjoint from the interior of
Γ(ε, L). If I is contained in an interval IΩ, for Ω ∈ J then dΣ(γi, γi+1) ≤
2 and we are done. So suppose that I is also disjoint from the interior
of all IΩ, Ω ∈ J .

Then I is a union of intervals

I1 ∪ IΨ1 ∪ . . . ∪ IΨn−1 ∪ In

where the Ik lie in the ε–thick part of T (Σ) and the IΨk are accessible
intervals for the subsurface Ψk. These intervals may overlap (and some
of the Ik may be empty) but they do cover I. This is essentially due
to Remark 4.2. Let δk be a boundary component of Ψk.

By assumption Ψk /∈J for all k. Since J is an antichain of maxima,
every Ψk is a subsurface of some Ωk ∈ J . Let k be the last index
so that sup IΩk ≤ ti. Since πΣ(Γ) does not backtrack, it follows that
γi lies close to the geodesic (in C(Σ)) between ∂Ωk and δk. But these
are disjoint and we conclude that dΣ(γi, δk) = O(1). Now, the same
reasoning applies to δk+1, a boundary component of Ψk+1, except this
time we find that inf IΩk+1

≥ ti+1. Thus dΣ(δk+1, γi+1) = O(1).
Finally, either IΨk and IΨk overlap, and so dΣ(δk, δk+1) = 1, or the

two intervals are separated by Ik+1 lying in the ε–thick part of T (Σ).
However, we have assumed that Ik does not lie in Γ(ε, L) and so |Ik| ≤
L. Thus dΣ(δk, δk+1) = O(1) by Theorem 3.1. This completes the proof
of the claim. ¤
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It follows that

dΣ(α, β) ≤ dΣ(γ0, γ1) + . . .+ dΣ(γn−1, γn)

≺ 2n+ |Γ(ε, L)|
≺ |J |+ |Γ(ε, L)|

This completes the proof of Theorem 4.1. ¤

5. Symmetric curves and surfaces

Definition 5.1. A curve α ⊂ Σ is symmetric if there is a curve a ⊂ S
so that p(α) = a. We make the same definition for a subsurface Ω ⊂ Σ
lying over a subsurface Z ⊂ S.

For the rest of the paper, fix symmetric curves α and β. Let x, y ∈
T (S) be points in the Teichmüller space of S such that a has bounded
length in x and b is bounded in y. Let σ and τ be the lifts of x and y
respectively. Let G be the Teichmüller geodesic connecting x to y and
Γ be the lift.

Theorem 5.2. There is a constant K such that, for any subsurface
Ω ⊂ Σ, if dΩ(α, β) ≥ K, then Ω is symmetric.

Proof. Consider the interval I = IΩ given above. Since the boundary
of Ω is short, so is its image p(∂Ω) in S during the corresponding
interval. Therefore, all components of the image are simple. (This is a
version of the “Collar Lemma”. See Theorem 4.2.2 of [1].) It follows
that the boundary of Ω is symmetric. Curves in p−1(p(Ω)) can not
intersect Ω, because of the third property of IΩ. Thus, the subsurface
Ω is symmetric. ¤

6. The quasi-isometric embedding

We are now equipped to prove:

Theorem 6.1. The relation p∗ : C(S) → C(Σ) is a quasi-isometric
embedding. That is, if p(α) = a and p(β) = b, for α, β ∈ C(Σ) and
a, b ∈ C(S), then

dΣ(α, β) ³ dS(a, b).

Proof. Here is a rough sketch.
Suppose that D is the degree of the covering. dS(a, b) is less than
|J |+ |G(ε, L)| where J is the antichain of maxima with a large enough
threshhold. Let J ′ be the set of components of covers of elements of
J . (So J ′ is at most D times larger that J .) The projection distance
of an element Ω ∈ J ′ may be smaller than that of the surface, Z,
which Ω covers, but applying the theorem inductively to Z there is a



8 KASRA RAFI AND SAUL SCHLEIMER

multiplicative bound on how much the projection distance drops. So,
we may take the lower and upper threshholds for J to be at least this
multiplicative constant times the lower bound for all threshholds for
Σ. Taking the upper and lower threshholds of J ′ to be equal, we find
that J ′ is an antichain for Σ and so dΣ(α, β) Â |J ′|.

Notive that Γt is at least as thick as Gt. It follows that |Γ(ε, L)| ≥
|G(ε, L)|. Applying the theorems above completes the proof. ¤
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