COVERS AND THE CURVE COMPLEX

KASRA RAFI AND SAUL SCHLEIMER

ABSTRACT. The inclusion of curve complexes, induced by a covering map, is a quasi-isometric embedding.

1. INTRODUCTION

Suppose that Σ is a compact connected orientable surface. A simple closed curve $\alpha \subset \Sigma$ is *essential* if α does not bound a disk in Σ . The curve α is *non-peripheral* if α does not bound a once-punctured disk in Σ .

Definition 1.1 (Harvey [2]). The complex of curves $\mathcal{C}(\Sigma)$ has isotopy classes of essential, non-peripheral curves as its vertices. A collection of k + 1 vertices spans a k-simplex if every pair of vertices has disjoint representatives.

We are interested in the coarse geometry of $\mathcal{C}(\Sigma)$, since this is closely related to the geometry of both Teichmüller space and the study of Kleinian groups. It will be enough to study only the 1-skeleton of $\mathcal{C}(\Sigma)$, for which we use the same notation. Giving all edges of $\mathcal{C}(\Sigma)$ length one, we denote the distance between vertices by $d_{\Sigma}(\cdot, \cdot)$.

As a bit of notation, if A, B, c are non-negative real numbers, with $c \geq 1$, and if

$$A \le cB + c$$

then we write $A \prec B$. If $A \prec B$ and $B \prec A$ then we write $A \simeq B$. The number c is always some constant uniform over a family of (A, B) pairs.

Let Σ and S be two compact connected orientable and let $p: \Sigma \to S$ be a covering map. This defines a relation between the corresponding complexes of curves. That is, $a \in \mathcal{C}(S)$ is related to $\alpha \in \mathcal{C}(\Sigma)$ if $p(\alpha) = a$. Abusing notation, we write this as $p^*: \mathcal{C}(S) \to \mathcal{C}(\Sigma)$. Our goal is:

Theorem 6.1. The relation $p^* \colon \mathcal{C}(S) \to \mathcal{C}(\Sigma)$ is a quasi-isometric embedding. That is, if $p(\alpha) = a$ and $p(\beta) = b$, for $\alpha, \beta \in \mathcal{C}(\Sigma)$ and

Date: January 2, 2007.

This work is in the public domain.

 $a, b \in \mathcal{C}(S)$, then

$$d_{\Sigma}(\alpha,\beta) \asymp d_S(a,b).$$

Note that one of the inequalities, namely $d_{\Sigma}(\alpha, \beta) \leq d_S(a, b)$, follows immediately because disjoint curves in S have disjoint lifts in Σ . The opposite inequality is harder to obtain and occupies the rest of the paper.

In a slightly different situation, where Σ is the orientation double cover of a nonorientable S, Theorem 6.1 is due to Masur-Schleimer [5].

2. Subsurface projection

Suppose that Σ is a compact connected orientable surface. A subsurface Ψ is *cleanly embedded* if all components of $\partial \Psi$ are essential and whenever $\gamma \subset \partial \Psi$ is isopic to $\delta \subset \partial \Sigma$ then $\gamma = \delta$. All subsurfaces we consider will be cleanly embedded.

We now recall the definition of the subsurface projection relation $\pi_{\Psi} \colon \mathcal{C}(\Sigma) \to \mathcal{C}(\Psi)$, supposing that Ψ is not an annulus. Fix a hyperbolic metric on the interior of Σ . Let Σ' be the Gromov compactification of the cover of Σ corresponding to the inclusion $\pi_1(\Psi) \to \pi_1(\Sigma)$. Thus $\Sigma' \cong \Psi$ and we identify $\mathcal{C}(\Sigma')$ with $\mathcal{C}(\Psi)$. For any $\alpha \in \mathcal{C}(\Sigma)$ let α' be the closure of the preimage of α in Σ' . Let α'' be any component of α' which is not properly isotopic into the boundary. (If none exist then α is not related to any vertex of $\mathcal{C}(\Psi)$ and we write $\pi_{\Psi}(\alpha) = \emptyset$.) Let N be a closed regular neighborhood of $\alpha'' \cup \partial \Sigma'$. Fix attention on α''' , any boundary component of N which is essential and non-peripheral. Then $\alpha \in \mathcal{C}(\Sigma)$ is related to $\alpha''' \in \mathcal{C}(\Psi)$ and we write $\pi_{\Psi}(\alpha) = \alpha'''$.

If Ψ is an annulus, then the definition of $\mathcal{C}(\Psi)$ is altered. Vertices are proper isotopy classes of essential arcs in Ψ . Edges are placed between vertices with representatives having disjoint interiors. The projection map is defined as above, omitting the final steps involving the regular neighborhood N.

If Ψ is a four-holed sphere or once-holed torus then the curve complex of Ψ is the well-known *Farey graph*: since all curves intersect, edges are instead placed between curves that intersect exactly twice or exactly once. The definition of π_{Ψ} is as in the non-annular case.

We say that $\alpha \in \mathcal{C}(\Sigma)$ cuts the subsurface Ψ if $\pi_{\Psi}(\alpha) \neq \emptyset$. Otherwise we say that α misses Ψ . Suppose now that $\alpha, \beta \in \mathcal{C}(\Sigma)$ both cut Ψ . We define the projection distance to be

$$d_{\Psi}(\alpha,\beta) = d_{\Psi}(\pi_{\Psi}(\alpha),\pi_{\Psi}(\beta)).$$

Here is the Bounded Geodesic Image Theorem:

 $\mathbf{2}$

Theorem 2.1 (Masur-Minsky [4]). Fix a surface Σ . There is a constant $\mathsf{B} = \mathsf{B}(\Sigma)$ so that for any vertices $\alpha, \beta \in \mathcal{C}(\Sigma)$, for any geodesic $\Gamma \subset \mathcal{C}(\Sigma)$ connecting α to β , and for any $\Omega \subsetneq \Sigma$, if $d_{\Omega}(\alpha, \beta) \ge \mathsf{B}$ then there is a vertex of Γ which misses Ω .

Fix α and β in $\mathcal{C}(\Sigma)$. Fix thresholds $\mathsf{T}_0 > 0$ and $\mathsf{T}_1 > 0$. We say that

$$\mathcal{J} = \mathcal{J}(\Sigma, \alpha, \beta, \mathsf{T}_0, \mathsf{T}_1),$$

a set of subsurfaces $\Omega \subsetneq \Sigma$, is an *antichain* if \mathcal{J} satisfies the following properties.

- If $\Omega, \Omega' \in \mathcal{J}$ then Ω is not a subsurface of Ω' .
- If $\Omega \in \mathcal{J}$ then $d_{\Omega}(\alpha, \beta) \geq \mathsf{T}_0$.
- If $\Omega \in \mathcal{J}$ and $\Omega \subsetneq \Psi \subsetneq \Sigma$, then $d_{\Psi}(\alpha, \beta) \leq \mathsf{T}_1$.

Notice that there may be many different antichains for the given data $(\Sigma, \alpha, \beta, \mathsf{T}_0, \mathsf{T}_1)$. One particularly nice example is when $\mathsf{T}_0 < \mathsf{T}_1$ and \mathcal{J} is defined to be the maxima of the set

$$\mathcal{B} = \{ \Omega \subsetneq \Sigma \mid d_{\Omega}(\alpha, \beta) \ge \mathsf{T}_0 \}$$

as ordered by inclusion. We call this an *antichain of maxima*. By $|\mathcal{J}|$ we mean the number of elements of \mathcal{J} .

We may now state and prove our first result.

Theorem 2.2. For every surface Σ and for every pair of sufficiently large thresholds $\mathsf{T}_0, \mathsf{T}_1$ there is an accumulation constant $\mathsf{A} = \mathsf{A}(\Sigma, \mathsf{T}_0, \mathsf{T}_1)$ so that, if \mathcal{J} is an antichain then

$$d_{\Sigma}(\alpha,\beta) \ge |\mathcal{J}|/\mathsf{A}.$$

Proof. We prove the theorem by induction: for the Farey graph it suffices for both thresholds to be larger than 3 and then A = 1.

Let C be a constant so that the following holds: If $\Omega \subset \Psi \subset \Sigma$ and α', β' are the projections of α, β to Ψ then

$$|d_{\Omega}(\alpha,\beta) - d_{\Omega}(\alpha',\beta')| \le C.$$

In the general case, we take the thresholds large enough so that:

- the theorem still applies to any strict subsurface Ψ with thresholds $\mathsf{T}_0 C, \mathsf{T}_1 + C$, and
- $\mathsf{T}_0 \geq \mathsf{B}(\Sigma)$; thus by Theorem 2.1 any surface in \mathcal{J} is disjoint from some curve γ of the geodesic in $\mathcal{C}(\Sigma)$ connecting α and β .

Now fix such a curve γ . Let Ψ (and Ψ') be the component(s) of $\Sigma \setminus \gamma$.

Claim. Let $A_{\Psi} = A(\Psi, \mathsf{T}_0 - C, \mathsf{T}_1 + C)$. The number of elements of $\mathcal{J}_{\Psi} = \{\Omega \in \mathcal{J} \mid \Omega \subsetneq \Psi\}$ is at most

$$\mathsf{A}_{\Psi} \cdot (\mathsf{T}_1 + C).$$

By the claim it will suffice to take $A(\Sigma, T_0, T_1)$ equal to

$$(\mathsf{A}_{\Psi} + \mathsf{A}'_{\Psi})(\mathsf{T}_1 + C) + 3.$$

This is because any element of \mathcal{J} which is disjoint from γ is either a strict subsurface of Ψ or Ψ' , an annular neighborhood of γ , or Ψ or Ψ' themselves. Since every surface in \mathcal{J} is disjoint from some curve γ of the geodesic connecting α and β , the theorem follows from the pigeonhole principle.

It remains to prove the claim. If Ψ is a subsurface of an element of \mathcal{J} there is nothing to prove. Likewise, if Ψ contains no elements of \mathcal{J} then there is nothing to prove.

Thus we may assume that

$$\mathsf{T}_1 \ge d_{\Psi}(\alpha, \beta).$$

Let α' and β' be the projections of α and β to Ψ . From the definition of C, \mathcal{J}_{Ψ} satisfies the conditions of the theorem with the data $(\Psi, \alpha', \beta', \mathsf{T}_0 - C, \mathsf{T}_1 + C)$. Thus,

$$\mathsf{T}_1 \ge d_{\Psi}(\alpha,\beta) \ge d_{\Psi}(\alpha',\beta') - C \ge |\mathcal{J}_{\Psi}|/\mathsf{A}_{\Psi} - C$$

and so

$$\mathsf{T}_1 + C \ge |\mathcal{J}_\Psi| / \mathsf{A}_\Psi.$$

3. Teichmüller space

We also need several definitions involving $\mathcal{T}(\Sigma)$, the Teichmüller space of interior(Σ). Suppose that α, β are vertices of $\mathcal{C}(\Sigma)$. Fix σ, τ points of $\mathcal{T}(\Sigma)$ so that α and β have bounded length at σ and τ respectively. Let $\Gamma: [t_{\sigma}, t_{\tau}] \to \mathcal{T}(S)$ be a geodesic connecting σ to τ . For any curve γ let $l_t(\gamma)$ be the length of the geodesic representative of γ in the surface Γ_t .

By the work of the first author, there are constants $\epsilon_1 \geq \epsilon_2$, both smaller than the Margulis constant and depending only on Σ , so that for any subsurface Ω there is a (possibly empty) *accessible* interval $I_{\Omega} \subset \text{domain}(\Gamma)$ with the following properties:

- For all $t \in I_{\Omega}$, every component $\gamma \subset \partial \Omega \setminus \partial \Sigma$ satisfies $l_t(\gamma) \leq \epsilon_2$.
- For all $t \notin I_{\Omega}$ there is a component $\gamma \subset \partial \Omega \setminus \partial \Sigma$ which satisfies $l_t(\gamma) \geq \epsilon_1$.
- If γ is essential and non-peripheral in Ω then there is a $t \in I_{\Omega}$ so that $l_t(\gamma) \geq \epsilon_1$.
- Furthermore, there is a constant D depending only on Σ so that if $d_{\Omega}(\alpha, \beta) \geq D$ then I_{Ω} is non-empty.

4

We say that Γ_t is ϵ -thick if the shortest closed geodesic γ in Γ_t has length at least ϵ .

Theorem 3.1. Fix Σ . For any $\epsilon > 0$ there is a constant D > 0 so that for any α , β and $\Gamma : [t_{\sigma}, t_{\tau}] \to \mathcal{T}(S)$ as above, if Γ_t is ϵ -thick at every time t then

$$\mathsf{D}(t_{\tau} - t_{\sigma}) + \mathsf{D} \ge d_{\Sigma}(\alpha, \beta) \ge \frac{1}{\mathsf{D}}(t_{\tau} - t_{\sigma}) - \mathsf{D}.$$

In general Γ may stray into the thin part of $\mathcal{T}(S)$. We take $\Gamma^{\geq \epsilon}$ to be the set of times in the domain of Γ which are ϵ -thick. Notice that $\Gamma^{\geq \epsilon}$ is a union of closed intervals. Let $\Gamma(\epsilon, L)$ be the union of intervals of $\Gamma^{\geq \epsilon}$ which have length at least L. We use $|\Gamma(\epsilon, L)|$ to denote the sum of the lengths of the components of $\Gamma(\epsilon, L)$.

Theorem 3.2.

$$d_{\Sigma}(\alpha,\beta) \succ |\Gamma(\epsilon,L)|.$$

Proof. Sketch: Pick an interval $[s,t] \in \Gamma(\epsilon,L)$. Let γ_s, γ_t be a pair of bounded length curves in Γ_s and Γ_t . Note that $d_{\Sigma}(\gamma_s, \gamma_t) \simeq t - s$, by Theorem 3.1. Also, by Masur-Minsky [3], the bounded length curves of Γ_t , as t varies, forms a unparametrized quasi-geodesic in $\mathcal{C}(\Sigma)$. In particular, these curves do not backtrack. It follow that

$$d_{\Sigma}(\alpha,\beta) \succ \sum_{[s,t]\in\Gamma(\epsilon,L)} t-s.$$

4. An estimate of distance

Theorem 4.1. For any surface Σ , $\exists \mathsf{T}_0 > 0 \ \forall \mathsf{T} \geq \mathsf{T}_0 \ \exists \epsilon_0 > 0 \ \forall \epsilon \in (0, \epsilon_0] \ \exists L_0 > 0 \ \forall L \geq L_0 \ so \ that \ for \ any \ \alpha, \ \beta, \ and \ Teichmüller \ geodesic \ \Gamma \ as \ above \ we \ have$

$$d_{\Sigma}(\alpha,\beta) \asymp |\mathcal{J}| + |\Gamma(\epsilon,L)|.$$

Here \mathcal{J} is the antichain of maxima with both thresholds equal to T.

Proof. The inequality

$$d_{\Sigma}(\alpha,\beta) \succ |\mathcal{J}| + |\Gamma(\epsilon,L)|$$

follows Theorems 2.2 and 3.2. This completes the proof in one direction. It remains to show that

$$d_{\Sigma}(\alpha,\beta) \prec |\mathcal{J}| + |\Gamma(\epsilon,L)|.$$

Let \mathcal{E} be the set of endpoints of all intervals in $\Gamma(\epsilon, L)$ and of all intervals I_{Ω} where $\Omega \in \mathcal{J}$. Write $\mathcal{E} = \{t_0, \ldots, t_n\}$, indexed so that $t_i < t_{i+1}$. Note that $|\mathcal{E}| \prec |\mathcal{J}|$.

Remark 4.2. To see this: we choose ϵ_0 sufficiently small so that if $l_t(\gamma) \leq \epsilon_0$ then there exists a subsurface Ψ disjoint from γ where $d_{\Psi}(\alpha, \beta) \geq \mathsf{T}_0$. This Ψ is contained in some element $\Omega \in \mathcal{J}$. We then choose L_0 large enough so that any $\Omega \in \mathcal{J}$ is so associated to at most two endpoints of intervals in $\Gamma(\epsilon, L)$.

Let γ_i be a curve of bounded length in Γ_{t_i} .

Claim 4.3.

$$d_{\Sigma}(\gamma_i, \gamma_{i+1}) \asymp \begin{cases} t_{i+1} - t_i, & \text{if } [t_i, t_{i+1}] \subset I \in \Gamma(\epsilon, L) \\ 1, & \text{otherwise.} \end{cases}$$

Proof of Claim. Sketch: The first case follows from Theorem 3.1. So suppose that the interior of $I = [t_i, t_{i+1}]$ is disjoint from the interior of $\Gamma(\epsilon, L)$. If I is contained in an interval I_{Ω} , for $\Omega \in \mathcal{J}$ then $d_{\Sigma}(\gamma_i, \gamma_{i+1}) \leq 2$ and we are done. So suppose that I is also disjoint from the interior of all $I_{\Omega}, \Omega \in \mathcal{J}$.

Then I is a union of intervals

$$I_1 \cup I_{\Psi_1} \cup \ldots \cup I_{\Psi_{n-1}} \cup I_n$$

where the I_k lie in the ϵ -thick part of $\mathcal{T}(\Sigma)$ and the I_{Ψ_k} are accessible intervals for the subsurface Ψ_k . These intervals may overlap (and some of the I_k may be empty) but they do cover I. This is essentially due to Remark 4.2. Let δ_k be a boundary component of Ψ_k .

By assumption $\Psi_k \notin \mathcal{J}$ for all k. Since \mathcal{J} is an antichain of maxima, every Ψ_k is a subsurface of some $\Omega_k \in \mathcal{J}$. Let k be the last index so that $\sup I_{\Omega_k} \leq t_i$. Since $\pi_{\Sigma}(\Gamma)$ does not backtrack, it follows that γ_i lies close to the geodesic (in $\mathcal{C}(\Sigma)$) between $\partial \Omega_k$ and δ_k . But these are disjoint and we conclude that $d_{\Sigma}(\gamma_i, \delta_k) = O(1)$. Now, the same reasoning applies to δ_{k+1} , a boundary component of Ψ_{k+1} , except this time we find that $\inf I_{\Omega_{k+1}} \geq t_{i+1}$. Thus $d_{\Sigma}(\delta_{k+1}, \gamma_{i+1}) = O(1)$.

Finally, either I_{Ψ_k} and I_{Ψ_k} overlap, and so $d_{\Sigma}(\delta_k, \delta_{k+1}) = 1$, or the two intervals are separated by I_{k+1} lying in the ϵ -thick part of $\mathcal{T}(\Sigma)$. However, we have assumed that I_k does not lie in $\Gamma(\epsilon, L)$ and so $|I_k| \leq L$. Thus $d_{\Sigma}(\delta_k, \delta_{k+1}) = O(1)$ by Theorem 3.1. This completes the proof of the claim. It follows that

$$d_{\Sigma}(\alpha,\beta) \leq d_{\Sigma}(\gamma_{0},\gamma_{1}) + \ldots + d_{\Sigma}(\gamma_{n-1},\gamma_{n})$$
$$\prec 2n + |\Gamma(\epsilon,L)|$$
$$\prec |\mathcal{J}| + |\Gamma(\epsilon,L)|$$

This completes the proof of Theorem 4.1.

5. Symmetric curves and surfaces

Definition 5.1. A curve $\alpha \subset \Sigma$ is *symmetric* if there is a curve $a \subset S$ so that $p(\alpha) = a$. We make the same definition for a subsurface $\Omega \subset \Sigma$ lying over a subsurface $Z \subset S$.

For the rest of the paper, fix symmetric curves α and β . Let $x, y \in \mathcal{T}(S)$ be points in the Teichmüller space of S such that a has bounded length in x and b is bounded in y. Let σ and τ be the lifts of x and yrespectively. Let G be the Teichmüller geodesic connecting x to y and Γ be the lift.

Theorem 5.2. There is a constant K such that, for any subsurface $\Omega \subset \Sigma$, if $d_{\Omega}(\alpha, \beta) \geq K$, then Ω is symmetric.

Proof. Consider the interval $I = I_{\Omega}$ given above. Since the boundary of Ω is short, so is its image $p(\partial \Omega)$ in S during the corresponding interval. Therefore, all components of the image are simple. (This is a version of the "Collar Lemma". See Theorem 4.2.2 of [1].) It follows that the boundary of Ω is symmetric. Curves in $p^{-1}(p(\Omega))$ can not intersect Ω , because of the third property of I_{Ω} . Thus, the subsurface Ω is symmetric. \Box

6. The quasi-isometric embedding

We are now equipped to prove:

Theorem 6.1. The relation $p^* \colon \mathcal{C}(S) \to \mathcal{C}(\Sigma)$ is a quasi-isometric embedding. That is, if $p(\alpha) = a$ and $p(\beta) = b$, for $\alpha, \beta \in \mathcal{C}(\Sigma)$ and $a, b \in \mathcal{C}(S)$, then

$$d_{\Sigma}(\alpha,\beta) \asymp d_S(a,b).$$

Proof. Here is a rough sketch.

Suppose that D is the degree of the covering. $d_S(a, b)$ is less than $|\mathcal{J}| + |G(\epsilon, L)|$ where \mathcal{J} is the antichain of maxima with a large enough threshold. Let \mathcal{J}' be the set of components of covers of elements of \mathcal{J} . (So \mathcal{J}' is at most D times larger that \mathcal{J} .) The projection distance of an element $\Omega \in \mathcal{J}'$ may be smaller than that of the surface, Z, which Ω covers, but applying the theorem inductively to Z there is a

multiplicative bound on how much the projection distance drops. So, we may take the lower and upper thresholds for \mathcal{J} to be at least this multiplicative constant times the lower bound for all thresholds for Σ . Taking the upper and lower thresholds of \mathcal{J}' to be equal, we find that \mathcal{J}' is an antichain for Σ and so $d_{\Sigma}(\alpha, \beta) \succ |\mathcal{J}'|$.

Notive that Γ_t is at least as thick as G_t . It follows that $|\Gamma(\epsilon, L)| \ge |G(\epsilon, L)|$. Applying the theorems above completes the proof. \Box

References

- Peter Buser. Geometry and spectra of compact Riemann surfaces, volume 106 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1992.
- [2] Willam J. Harvey. Boundary structure of the modular group. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pages 245–251, Princeton, N.J., 1981. Princeton Univ. Press.
- [3] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity. *Invent. Math.*, 138(1):103–149, 1999. arXiv:math.GT/9804098.
- [4] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal., 10(4):902–974, 2000. arXiv:math.GT/9807150.
- [5] Howard A. Masur and Saul Schleimer. The geometry of the disk complex. E-mail address: rafi@math.uconn.edu
 URL: http://www.math.uconn.edu/~rafi

E-mail address: saulsch@math.rutgers.edu *URL*: http://www.math.rutgers.edu/~saulsch