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KASRA RAFI AND SAUL SCHLEIMER

Abstract. We propose a program of studying the coarse geom-
etry of combinatorial moduli spaces of surfaces by classifying the
quasi-isometric embeddings between them. We provide the first
non-trivial examples of quasi-isometric embeddings between curve
complexes. These are induced either via orbifold coverings or by
puncturing a closed surface. As a corollary, we give new quasi-
isometric embeddings between mapping class groups.

1. Introduction

The coarse structure of the complex of curves was first studied in [MM99].
It is central in low-dimensional topology, shedding light on the algebra
of the mapping class group, the global topology of Teichmüller space
and the fine structure of hyperbolic three-manifolds. It is also closely
related to the geometric study of other moduli spaces of a surface: for
example the pants complex, the Hatcher-Thurston complex and the
disk complex.

Little is known about the subspace structure of these combinatorial
moduli spaces. Thus, we propose the following:

Problem 1.1. Classify quasi-isometric embeddings between combina-
torial moduli spaces of surfaces.

The most important of these moduli spaces are the complex of curves
and the mapping class group itself. In this paper we produce quasi-
isometric embeddings of lower into higher complexity curve complexes
and similarly for the mapping class group. These arise from two topo-
logical operations on surfaces: covering and puncturing. The case of
taking subsurfaces is studied elsewhere. (See below.)

Coverings. Suppose that S is a compact connected orientable orb-
ifold, of dimension two, with non-positive orbifold Euler characteristic.
Let S◦ denote the surface with boundary obtained by removing an open
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neighborhood of the orbifold points from S. Define C(S) to be the curve
complex of S◦ (see Definition 2.1). We also define the complexity

ξ(S) = 3 genus(S◦) + |∂S◦| − 3.

Let P : Σ→ S be an orbifold covering map. The covering P defines
a relation Π: C(S) → C(Σ); the curve b ∈ C(S) is related to β ∈ C(Σ)
if P (β) = b. That this relation is well-defined is proved in Lemma 4.1.

Theorem 10.1. The covering relation Π: C(S)→ C(Σ) is a Q–quasi-
isometric embedding. The constant Q depends only on ξ(S) and the
degree of the covering map P .

Theorem 10.1 is surprising in light the fact that the commonly dis-
cussed subspaces of the curve complex, such as the complex of sepa-
rating curves, the disk complex of a handlebody and so on, are not
quasi-isometrically embedded. We remark that the orbifold covering
map cannot be replaced by a branched cover. The orbifold structure
keeps track of which boundary components of the cover of S◦ must be
capped off to obtain Σ◦. Also, geometric structure lifts via orbifold
covering; this is used, in an essential way, in the proof that the relation
Π is well-defined.

LetMCG(S) be the orbifold mapping class group. We prove:

Theorem 11.1. The covering P induces a quasi-isometric embedding

Π∗ : MCG(S)→MCG(Σ).

When the cover is regular, a stronger statement holds:

Theorem 11.10. Suppose that ∆ ⊂ MCG(Σ) is a finite subgroup.
Then the normalizer of ∆ in undistorted in MCG(Σ).

Note that many algebraically defined subgroups of the mapping class
group, such as the Torelli group, are distorted [BFP].

Puncturing. Suppose that S is a closed orientable surface of genus
g ≥ 2 and Σ is the surface of genus g with one puncture. The following
theorem is inspired by Harer’s paper [Har86, Lemma 3.6].

Theorem 3.1. Lifting geodesics gives an isometric embedding of C(S)
into C(Σ).

There are an uncountable number of such isometric embeddings. A
similar construction induces an uncountable family of quasi-isometric
embeddings of the mapping class group of S into that of Σ. How-
ever, this was previously obtained by Mosher via a different tech-
nique [Mos96, quasi-isometric section lemma]. We therefore omit our
construction for the mapping class group.
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Subsurfaces. For completeness, we briefly mention another topolog-
ical construction. Suppose that Σ is a compact orientable surface,
S ⊂ Σ is a cleanly embedded subsurface, and ΣrS has no annular
components. The inclusion S → Σ induces an obvious, but impor-
tant, simplicial injection of curve complexes. This injection is far from
being a quasi-isometric embedding; the image has diameter two. How-
ever the inclusion does induce a quasi-isometric embedding of map-
ping class groups. That is, these subgroups are undistorted. This
follows directly from the summation formula of Masur and Minsky
(see [MM00], Theorems 7.1, 6.10, and 6.12) and was independently
obtained by Hamenstädt [Hama, Theorem B, Corollary 4.6].

Quasi-isometry group. A special, but quite deep, instance of Prob-
lem 1.1 is the computation of the quasi-isometry group of a combina-
torial moduli space. This has recently been obtained for the mapping
class group by Behrstock, Kleiner, Minsky, and Mosher [BKMM] and
also by Hamenstädt [Hamb]. They show that the quasi-isometry group
is virtually equal to the isometry group; that is, the mapping class
group is rigid.

Using the rigidity of the mapping class group, the structure of the
boundary of the curve complex and an understanding of cobounded
laminations we show in [RS08] that the quasi-isometry group of the
curve complex is again the mapping class goup.

Outline of the proof of Theorem 10.1. Suppose that P : Σ → S
is a covering map. In this outline we assume that ξ(S) > 1. We deal
with special cases in the body of the proof.

To prove that Π: C(S) → C(Σ) is a quasi-isometric embedding we
must show, for a, b ∈ C(S) and lifts α, β ∈ C(Σ), that dS(a, b) is com-
parable to dΣ(α, β). The inequality dS(a, b) ≥ dΣ(α, β) is clear; the
relation Π is simplicial when ξ(S) > 1.

The content of the paper lies in obtaining the other direction. There
are two steps: we first give a new estimate of distance in the complex of
curves (Theorem 8.1). We then analyze of the behavior of our estimate
under lifting.

In more detail: choose x, y ∈ T (S), the Teichmüller space of S, so
that a is has bounded length in x and the same holds for b in y. Let G
be the Teichmüller geodesic connecting x and y. The part of G lying in
the thick part of Teichmüller space contributes linearly to the distance
in C(S) between a and b (Lemma 6.4).

Next, we introduce (T0, T1)–antichains in the poset of subsurfaces of
S (Section 7). The size of the antichain linearly estimates the number
of vertices appearing in a C(S)–geodesic while G travels through the
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thin part of Teichmüller space. The sum of the estimates in the thick
and thin parts is then comparable to the distance in the curve complex
(Theorem 8.1).

Let Γ be the lift of G, which is again a Teichmüller geodesic with iden-
tical parametrization. This follows from the well-known fact that cover-
ings induce isometric embeddings of the associated Teichmüller spaces
(Section 6). The curves α and β have bounded lengths at the endpoints
of Γ. We now estimate dΣ(α, β) as above. When G is in the thick part,
the same holds for Γ. Thus the thick part of Γ contributes at least as
much to dΣ(α, β) as the thick part of G contributes to dS(a, b).

We next prove that the lift of an antichain is again an antichain,
with perhaps weaker thresholds. A key fact here is Lemma 9.3, stating
that any subsurface Ω of Σ where dΩ(α, β) is large is symmetric. In
fact, it is a lift of a subsurface Z where dZ(a, b) is large. Therefore, the
estimate for dS(a, b) and dΣ(α, β) are comparable (Theorem 10.1).

Our use of Teichmüller geodesics appears unavoidable: for example,
Masur-Minsky heirarchies do not a priori have good properties vis-à-
vis covers. The main geodesic does lift to a quasi-geodesic, but this
only becomes clear a posteriori. The antichains we use are, in fact, a
subset of the domains mentioned in a hierarchy. However, the antichain
chooses the correct subset.

Acknowledgments. We thank the referee for useful comments on an
early version of this paper.

2. Background

Suppose that Σ is a compact orientable orbifold, of dimension two,
with non-positive orbifold Euler characteristic. For definitions and
discussion of orbifolds we refer the reader to Scott’s excellent arti-
cle [Sco83]. Recall that Σ◦ is the surface obtained by removing an open
neighborhood of the orbifold points from Σ. In many respects there is
no difference between Σ and Σ◦; we will use whichever is convenient
and remark on the few subtle points as they arise.

A simple closed curve α ⊂ Σ, avoiding the orbifold points, is inessen-
tial if α bounds a disk in Σ containing one or zero orbifold points. The
curve α is peripheral if α is isotopic to a boundary component. Note
that isotopies of curves are not allowed to cross orbifold points.

Definition 2.1. When ξ(Σ) > 1 the complex of curves C(Σ◦) has as its
vertices isotopy classes of essential, non-peripheral curves. A collection
of k + 1 distinct vertices spans a k–simplex if every pair of vertices has
disjoint representatives.
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There is a different definition when ξ(Σ) ≤ 1. When Σ◦ is a torus,
once-holed torus or a four-holed sphere the curve complex of Σ◦ is the
well-known Farey graph; since all curves intersect, edges are instead
placed between curves that intersect exactly once or exactly twice,
respectively. The curve complex of the three-holed sphere is empty.

If Σ◦ is an annulus, then vertices of C(Σ◦) are essential arcs in Σ◦,
considered up to isotopy relative to their boundary. Edges are placed
between vertices with representatives having disjoint interiors. The
result will be quasi-isometric to Z. The assumption on the Euler char-
acteristic of Σ prevents Σ◦ from being a disk or a sphere.

To obtain a metric, give all edges of C(Σ) length one and denote
distance between vertices by dΣ(·, ·). It will be enough to study only
the one-skeleton of C(Σ), for which we use the same notation. This is
because the one-skeleton and the entire complex are quasi-isometric.

We now turn to convenient piece of notation: if A,B, c are non-
negative real numbers with c > 0 and if A ≤ cB + c, then we write
A ≺c B. If A ≺c B and B ≺c A, then we write A ≍c B. Suppose
X and Y are metric spaces and f : X → Y is a relation. We say
that f is a c–quasi-isometric embedding if for all x, x′ ∈ X and for all
y ∈ f(x), y′ ∈ f(x′) we have dX (x, x′) ≍c dY(y, y′). We say that f is a
c–quasi-isometry if additionally a c–neighborhood of f(X ) equals Y .

3. Puncturing

Before dealing with orbifold covers we discuss puncturing closed sur-
faces. Let S be a closed surface of genus g ≥ 2 and Σ be the surface of
genus g with one puncture.

Theorem 3.1. C(S) embeds isometrically into C(Σ).

As we shall see, there are uncountably many such embeddings.

Proof of Theorem 3.1. Pick a hyperbolic metric on S. By the Baire cat-
egory theorem, the union of geodesic representatives of simple closed
curves does not cover S. (In fact, this union has Hausdorff dimension
one. See Birman and Series [BS85].) Let ∗ be a point in the comple-
ment and identify Σ with Sr{∗}. For a vertex of C(S), consider its
geodesic representative in the given hyperbolic metric. This is an essen-
tial curve in Sr{∗}. So it is identified with an essential curve in Σ and
gives a vertex of C(Σ). This defines an embedding Π: C(S) → C(Σ)
that depends on the choice of metric, point and identification. Let
P : C(Σ)→ C(S) be the map obtained by filling the point ∗. Note that
P ◦ Π is the identity map.
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We observe, for a, b ∈ C(S), α = Π(a) and β = Π(b), that

dS(a, b) = dΣ(α, β).

This is because P and Π send disjoint curves to disjoint curves. There-
fore, if L ⊂ C(S) is a geodesic connecting a and b, then Π(L) is a path
in C(Σ) of the same length connecting α to β. Conversely, if Λ ⊂ C(Σ)
is a geodesic connecting α to β, then P (Λ) is a path in C(S) of the
same length connecting a to b. �

4. Covering

We now turn to the main topic of the paper. Suppose that S is
a compact connected orientable orbifold, of dimension two, with non-
positive orbifold Euler characteristic. Let P : Σ → S be an orbifold
covering map. At a first reading it is simplest to assume that Σ and S
are both surfaces.

Recall that the covering P defines a relation Π: C(S) → C(Σ): a
curve b ∈ C(S) is related to β ∈ C(Σ) if P (β) = b.

Lemma 4.1. The covering relation Π is well-defined.

Proof. We will show that if a is an essential non-peripheral curve then
every component of P−1(a) is essential and non-peripheral. Since S
has non-positive orbifold Euler characteristic, choose a Euclidean or a
hyperbolic metric on S with totally geodesic boundary. Replace a by
its geodesic representative, a∗. Since a is simple, a∗ misses all cone
points of order greater than two. In fact, the only way a∗ meets a cone
point is when a bounds a disk with exactly two orbifold points of order
two; here a∗ is a geodesic arc connecting these two points. In any case,
the lift of a is an essential non-peripheral simple closed curve that is
homotopic to the lift of a∗. The conclusion follows. �

5. Subsurface projection

Suppose that Σ is a compact connected orientable orbifold. A strict
suborbifold Ψ is cleanly embedded if every component of ∂Ψ is either a
boundary component of Σ or is an essential non-peripheral curve in Σ.
All suborbifolds considered will be cleanly embedded.

From [MM99], recall the definition of the subsurface projection rela-
tion

πΨ : C(Σ)→ C(Ψ),

When C(Ψ) is empty, the projection is not defined. Thus assume that
C(Ψ) is non-empty.
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Suppose that Σ has negative orbifold Euler characteristic. Choose a
complete finite volume hyperbolic metric on the interior of Σ. Let Σ′

be the Gromov compactification of the cover of Σ corresponding to the
inclusion πorb

1 (Ψ) → πorb
1 (Σ) (defined up to conjugation). Thus Σ′ is

homeomorphic to Ψ; this gives a canonical identification of C(Ψ) with
C(Σ′). For any α ∈ C(Σ) let α′ be the closure of the preimage of α in Σ′.
If every component of α′ is properly isotopic into the boundary then α
is not related to any vertex of C(Ψ); in this case we write πΨ(α) = ∅.
Otherwise, let α′′ be a component of α′ that is not properly isotopic
into the boundary. Let N be a closed regular neighborhood of α′′∪∂Σ′.
As C(Ψ) 6= ∅, the suborbifold Ψ◦ is not a thrice-holed sphere; so there is
a boundary component α′′′ of N which is essential and non-peripheral.
We then write πΨ(α) = α′′′.

If Ψ is an annulus the projection map is defined as above, n omitting
the final steps involving the regular neighborhood N .

It remains to deal with the case where χ(Σ) = 0 and Ψ is a cleanly
embedded annulus. Here Σ is either a flat torus or a pillowcase. The
torus is a double cover of the pillowcase and the cover induces an iso-
morphisms of curve complexes. In this case C(Ψ) is quasi-isometric to
Z. We take the projection of α to Ψ to be the integer part of the slope
of α with respect to Ψ.

Generally, the curve α ∈ C(Σ) cuts the suborbifold Ψ if πΨ(α) 6= ∅.
Otherwise, α misses Ψ. Suppose now that α, β ∈ C(Σ) both cut Ψ.
Define the projection distance to be

dΨ(α, β) = dΨ(πΨ(α), πΨ(β)).

The Bounded Geodesic Image Theorem states:

Theorem 5.1 (Masur-Minsky [MM00]). Fix a surface Σ. There is a
constant M = M(Σ) with the following property. Suppose that α, β ∈
C(Σ) are vertices, Λ ⊂ C(Σ) is a geodesic connecting α to β and Ω ( Σ
is a subsurface. If dΩ(α, β) ≥ M then there is a vertex of Λ which
misses Ω. �

6. Teichmüller space

For this section, we take Σ to be a surface. Let T (Σ) denote the
Teichmüller space of Σ: the space of complete hyperbolic metrics on
the interior of Σ, up to isotopy. For background, see [Ber60, Gar87].

There is a uniform upper bound on the length of the shortest closed
curve in any hyperbolic metric on Σ. For any metric σ on Σ, a curve
γ has bounded length in σ if the length of γ in σ is less than this
constant. Let e0 > 0 be a constant such that, for curves γ and δ, if γ
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has bounded length in σ and δ has a length less than e0 then γ and δ
have intersection number zero.

Suppose that α and β are vertices of C(Σ). Fix metrics σ and τ in
T (Σ) so that α and β have bounded length at σ and τ respectively.
Let Γ: [tσ, tτ ]→ T (S) be a geodesic connecting σ to τ . For any curve
γ let lt(γ) be the length of its geodesic representative in the hyperbolic
metric Γ(t). The following theorems are consequences of Theorem 6.2
and Lemma 7.3 in [Raf05].

Theorem 6.1 ([Raf05]). For e0 as above there exists a threshold Tmin

such that, for a strict subsurface Ω of Σ, if dΩ(α, β) ≥ Tmin then there
is a time tΩ so that the length of each boundary component of Ω in
Γ(tΩ) is less than e0. �

Theorem 6.2 ([Raf05]). For every threshold T1, there is a constant e1

such that if lt(γ) ≤ e1, for some curve γ and for some time t, then there
exists a subsurface Ψ disjoint from γ such that dΨ(α, β) ≥ T1. �

The shadow of the Teichmüller geodesic Γ inside of C(Σ) is the set of
curves γ so that γ has bounded length in Γ(t) for some t ∈ [tσ, tτ ]. The
following is a consequence of the fact that the shadow is an unparame-
terized quasi-geodesic. (See Theorem 2.6 and then apply Theorem 2.3
in [MM99].)

Theorem 6.3 ([MM99]). The shadow of a Teichmüller geodesic inside
of C(Σ) does not backtrack and so satisfies the reverse triangle inequal-
ity. That is, there exists a backtracking constant B = B(Σ) such that if
tσ ≤ t0 ≤ t1 ≤ t2 ≤ tτ and if γi has bounded length in Γ(ti), i = 0, 1, 2
then

dΣ(γ0, γ2) ≥ dΣ(γ0, γ1) + dΣ(γ1, γ2)− B.

We say that Γ(t) is e–thick if the shortest closed geodesic γ in Γ(t)
has a length of at least e.

Lemma 6.4. For every e > 0 there is a progress constant P > 0 so
that if tσ ≤ t0 ≤ t1 ≤ tτ , if Γ(t) is e–thick at every time t ∈ [t0, t1], and
if γi has bounded length in Γ(ti) (i = 0, 1) then

dΣ(γ0, γ1) ≍P t1 − t0.

Proof. As above, using Theorem 6.2 and Lemma 7.3 in [Raf05] and
the fact that Γ(t) is e–thick at every time t ∈ [t0, t1], we can conclude
that dΩ(γ0, γ1) is uniformly bounded for any strict subsurface of Ω of
Σ. The lemma is then a consequence of Theorem 1.1 and Remark 5.5
in [Raf07]. (Referring to the statement and notation of [Raf07, Theo-
rem 1.1]: Extend γi to a short marking µi. Take k large enough such
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that the only non-zero term in the right hand side of [Raf07, Equation
(1)] is dΣ(µ0, µ1).) �

In general the geodesic Γ may stray into the thin part of T (S). We
take Γ≥e to be the set of times in the domain of Γ which are e–thick.
Notice that Γ≥e is a union of closed intervals. Let Γ(e, L) be the union
of intervals of Γ≥e which have length at least L. We use |Γ(e, L)| to
denote the sum of the lengths of the components of Γ(e, L).

Lemma 6.5. For every e there exists L0 such that if L ≥ L0, then

dΣ(α, β) ≥ |Γ(e, L)|/2P.

Proof. Pick L0 large enough so that, for L ≥ L0,

(L/2P) ≥ P + 2B.

Realize Γ(e, L) as the union of intervals [ti, si], i = 1, . . . ,m. Let γi

be a curve of bounded length in Γ(ti) and δi be a curve of bounded
length in Γ(si).

By Theorem 6.3 we have

dΣ(α, β) ≥

(

∑

i

dΣ(γi, δi)

)

− 2mB.

From Lemma 6.4 we deduce

dΣ(α, β) ≥

(

∑

i

1

P
(si − ti)− P

)

− 2mB.

Rearranging, we find

dΣ(α, β) ≥
1

P
|Γ(e, L)| −m(P + 2B).

Thus, as desired:

dΣ(α, β) ≥
1

2P
|Γ(e, L)|. �

7. Antichains

Consider two curves α, β ∈ C(Σ). As discussed in the introduction,
we would like to estimate the length of the geodesic [α, β] in C(Σ) cor-
responding to the times when the Teichmüller geodesic Γ = [σ, τ ] is in
the thin part of T (Σ). At such time, Theorem 6.2 gives a suborbifolds
Ω where dΩ(α, β) is large. However, the number of these suborbifolds
is not a good estimate for the distance in the complex of curves; many
subsurfaces with high projection distance may be disjoint from a sin-
gle curve in the geodesic [α, β]. Nonetheless, by carefully choosing a
subcollection of such suborbifolds, we can find a suitable estimate.
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Fix α and β in C(Σ) and thresholds T1 ≥ T0 > 0. We say that a
set J of suborbifolds Ω ( Σ, is a (T0, T1)–antichain for (Σ, α, β) if J
satisfies the following properties.

• J is an antichain in the poset of suborbifolds ordered by inclu-
sion: if Ω, Ω′ ∈ J then Ω is not a strict suborbifold of Ω′.
• If Ω ∈ J then dΩ(α, β) ≥ T0.
• For any Ψ ( Σ, if dΨ(α, β) ≥ T1 then Ψ is a suborbifold of

some element of J .

Notice that there may be many different antichains for the given data
(Σ, α, β, T0, T1). One particularly nice example is when T0 = T1 = T

and J is defined to be the maxima of the set

{Ω ( Σ | dΩ(α, β) ≥ T}

as ordered by inclusion. We call this the T–antichain of maxima for
(Σ, α, β). By |J | we mean the number of elements of J . We may now
prove:

Lemma 7.1. For every orbifold Σ and for every pair of sufficiently
large thresholds T0, T1, there is an accumulation constant AΣ = A(Σ, T0, T1)
so that if J is an (T0, T1)–antichain for (Σ, α, β) then

dΣ(α, β) ≥ |J |/AΣ.

Proof. We proceed via induction on the complexity of Σ. In the base
case, when C(Σ◦) is the Farey graph, J is the set of annuli whose core
curves γ have the property that dγ(α, β) ≥ T0. In this case, assuming
T0 > 3, every such curve γ is a vertex of every geodesic connecting α
to β (see [Min99, §4]). Therefore the lemma holds for Farey graphs
with AΣ = 1.

Now assume the lemma is true for all surfaces with lower complexity
than Σ. Let C be a constant so that: if Ω ⊂ Ψ ⊂ Σ and α′, β′ are the
projections of α, β to Ψ then

|dΩ(α, β)− dΩ(α′, β′)| ≤ C.

We take thresholds T0 and T1 for Σ large enough so that for the
(T0, T1)–antichain J we have:

• the lemma applies to any strict suborbifold Ψ with thresholds
T0 − C, T1 + C and
• T0 ≥ M(Σ); thus by Theorem 5.1 for any orbifold in Ω ∈ J and

for any geodesic Λ = [α, β] in C(Σ) there is a curve γ in Λ so
that γ misses Ω.

For Ψ ( Σ, define

AΨ = A(Ψ, T0 − C, T1 + C) and JΨ = {Ω ∈ J | Ω ( Ψ}.
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Claim. Suppose that γ be a vertex in Λ = [α, β] and let Ψ be a
component of Σrγ. Then

|JΨ| ≤ AΨ · (T1 + C).

Proof of claim. If Ψ is a suborbifold of an element of J then JΨ is the
empty set and the claim holds vacuously. Thus we may assume that

dΨ(α, β) < T1.

Let α′ and β′ be the projections of α and β to Ψ. From the definition
of C, JΨ is a (T0 − C, T1 + C)–antichain for Ψ, α′ and β′. Thus,

T1 > dΨ(α, β) ≥ dΨ(α′, β′)− C ≥ |JΨ|/AΨ − C,

with the last inequality being the induction hypothesis. Hence,

T1 + C ≥ |JΨ|/AΨ. �

Now consider a vertex γ ∈ Λ. Note that Σrγ has at most two
components, say Ψ and Ψ′. Any element of J not cut by γ is either
a strict suborbifold of Ψ or Ψ′, an annular neighborhood of γ, or Ψ
or Ψ′ itself. Therefore, by the above claim, the maximum number of
orbifolds in J that are disjoint from γ is

(AΨ + AΨ′)(T1 + C) + 3.

Since every orbifold in J is disjoint from some vertex of Λ, the lemma
holds for A(Σ, T0, T1) equal to

2 ·max{AΨ |Ψ ( Σ} · (T1 + C) + 3. �

8. An estimate of distance

Again, take Σ to be a surface. In this section we provide the main
estimate for dΣ(α, β). Let e0 be as before. We choose thresholds T0 ≥
Tmin (see Theorem 6.1) and T1 so that Lemma 7.1 holds. Let e1 be the
constant provided in Lemma 6.4 and let e > 0 be any constant smaller
than min{e0, e1}. Finally, we pick L0 such that Lemma 6.5 holds and
that L0/2P > 4. Let L be any length larger than L0.

Theorem 8.1. Let T0, T1, e and L be constants chosen as above. There
is a constant K = K(Σ, T0, T1, e, L) such that for any curves α and β,
any (T0, T1)–antichain J and any Teichmüller geodesic Γ, chosen as
above, we have:

dΣ(α, β) ≍K |J |+ |Γ(e, L)|.
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Proof. For K ≥ 2 ·max(A, 2P), the inequality

dΣ(α, β) ≻K |J |+ |Γ(e, L)|

follows from Lemmas 7.1 and 6.5. It remains to show that

dΣ(α, β) ≺K |J |+ |Γ(e, L)|.

For each Ω ∈ J fix a time tΩ ∈ [tσ, tτ ] so that all boundary com-
ponents of Ω are e0–short in Γ(tΩ) (see Theorem 6.1). Let E be the
union:
{

tΩ

∣

∣

∣
Ω ∈ J , tΩ 6∈ Γ(e, L)

}

∪
{

∂I
∣

∣

∣
I a component of Γ(e, L)

}

.

We write E = {t0, . . . , tn}, indexed so that ti < ti+1.

Claim. The number of intervals in Γ(e, L) is at most |J | + 1. Hence,
|E| ≤ 3|J |+ 1.

Proof. There is at least one moment s between any two consecutive
intervals I, J ⊂ Γ(e, L) when some curve γ becomes e–short (and hence
e1–short). Therefore, by Theorem 6.2, γ is disjoint from a subsurface
Ψ where dΨ(α, β) ≥ T1. Since J is an (T0, T1)–antichain, Ψ is a
subsurface of some element Ω ∈ J . It follows that dΣ(γ, ∂Ω) ≤ 2.
This defines a one-to-many relation from pairs of consecutive intervals
to J . To see the injectivity consider another such pair of consecutive
intervals I ′ and J ′, a moment s′ between them and a corresponding
curve γ′ and subsurface Ω′. Let Γ′ = Γ|[s,s′]. Applying Lemma 6.5 to
Γ′, we find

dΣ(γ, γ′) ≥ L/2P > 4

and therefore Ω is not equal to Ω′. �

Let γi be a curve of bounded length in Γ(ti).

Claim.

dΣ(γi, γi+1) ≤

{

P(ti+1 − ti) + P, if [ti, ti+1] ⊂ Γ(e, L)

2B + PL + P + 2, otherwise.

Proof. The first case follows from Lemma 6.4. So suppose that the
interior of [ti, ti+1] is disjoint from the interior of Γ(e, L).

We define sets I+, I− ⊂ [ti, ti+1] as follows: A point t ∈ [ti, ti+1] lies
in I− if

• there is a curve γ which is e–short in Γ(t) and
• for some Ω ∈ J , so that dΣ(∂Ω, γ) ≤ 2, we have tΩ ≤ ti.
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If instead tΩ ≥ ti+1 then we place t in I+. Finally, we place ti in I−
and ti+1 in I+.

Notice that if Ω ∈ J then tΩ does not lie in the open interval (ti, ti+1).
It follows that every e–thin point of [ti, ti+1] lies in I−, I+, or both. If
t ∈ I− and γ is the corresponding e–short curve then dΣ(γi, γ) ≤ B+2.
This is because either t = ti and so γ and γi are in fact disjoint, or
there is a surface Ω ∈ J as above with

2 ≥ dΣ(∂Ω, γ) ≥ dΣ(γi, γ)− B,

Similarly if t ∈ I+ then dΣ(γi+1, γ) ≤ B + 2.
If I+ and I− have non-empty intersection then dΣ(γi, γi+1) ≤ 2B + 4

by the triangle inequality.
Otherwise, there is an interval [s, s′] that is e–thick, has length less

than L such that s ∈ I− and s′ ∈ I+. Let γ and γ′ be the corresponding
short curves in Γ(s) and Γ(s′). Thus

dΣ(γi, γ) ≤ B + 2 and dΣ(γ′, γi+1) ≤ B + 2.

We also know from Lemma 6.4 that

dΣ(γ, γ′) ≤ PL + P.

This finishes the proof of our claim. �

It follows that

dΣ(α, β) ≤ dΣ(γ0, γ1) + . . . + dΣ(γn−1, γn)

≤ |E|(2B + PL + P + 2) + P|Γ(e, L)|+ |E|P

≺K |J |+ |Γ(e, L)|,

for an appropriate choice of K. This proves the theorem. �

9. Symmetric curves and surfaces

Let P : Σ→ S be an orbifold covering map.

Definition 9.1. A curve α ∈ C(Σ) is symmetric if there is a curve a ∈
C(S) so that P (α) = a. We make the same definition for a suborbifold
Ω ⊂ Σ lying over a suborbifold Z ⊂ S.

As is well-known, coverings of surfaces induce isometric embeddings
of the associated Teichmüller spaces. For completeness and to establish
notation we include a proof below.

For the rest of this section, fix symmetric curves α and β. Pick
x, y ∈ T (S◦) so that a = P (α) has bounded length in x and b = P (β)
is bounded in y. Let G : [tx, ty] → T (S◦) be the Teichmüller geodesic
connecting x to y. For every t ∈ [tx, ty] let qt be the terminal quadratic
differential of the Teichmüller map from G(tx) to G(t). We lift qt to
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the surface P−1(S◦), fill the punctures not corresponding to orbifold
points and so obtain a parameterized family θt of quadratic differentials
on Σ◦. Notice that θt is indeed a quadratic differential: suppose that
p ∈ S is a orbifold point and qt has a once-pronged singularity at p.
For every regular point π in the preimage of p the differential θt has at
least a twice-pronged singularity at π.

Uniformize the associated flat structures to obtain hyperbolic metrics
on Σ◦. This gives a path Γ: [tx, ty]→ T (Σ◦). The path Γ is a geodesic
in T (Σ◦). This is because, for t, s ∈ [tx, ty], the Teichmüller map from
G(t) to G(s) has Beltrami coefficient k |q|/q where q is an integrable
holomorphic quadratic differential in G(t). This map lifts to a map
from Γ(t) to Γ(s) with Beltrami coefficient k |θ|/θ, where the quadratic
differential θ is the pullback of q to Γ(t). That is, the lift of the Te-
ichmüller map from from G(t) to G(s) is the Teichmüller map from
Γ(t) to Γ(s) with the same quasi-conformal constant. Therefore, the
distance in T (S◦) between G(t) and G(s) equals the distance in T (Σ◦)
between Γ(t) and Γ(s).

Proposition 9.2 (Proposition 3.7 [Raf07]). For any e, there is a con-
stant N such that the following holds. Assume that, for all t ∈ [r, s],
there is a component of ∂Ω whose length in Γ(t) is larger than e. Sup-
pose γ has bounded length in Γ(r) and δ has bounded length in Γ(s).
Then

dΩ(γ, δ) ≤ N.

Lemma 9.3. For e small enough, N as above and any suborbifold Ω ⊂
Σ, if dΩ(α, β) ≥ 2N + 1, then Ω is symmetric.

Proof. Consider the first time t− and last time t+ that the boundary
of Ω is e–short. Since every component of ∂Ω is short in Γ(t±), so is
the image P (∂Ω) in G(t±). Therefore, all components of the image
are simple. (This is a version of the Collar Lemma. For example,
see [Bus92, Theorem 4.2.2].) It follows that the boundary of Ω is
symmetric. This is because choosing e small enough will ensure that
curves in P−1(P (Ω)) have bounded length at both t− and t+. (The
length of each is at most the degree of the covering map times e.) If
any such curve γ intersects Ω we have dΩ(γ, α) ≤ N and dΩ(γ, β) ≤ N,
contradicting the assumption dΩ(α, β) ≥ 2N+1. Thus, the suborbifold
Ω is symmetric. �

10. The quasi-isometric embedding

Theorem 10.1. The covering relation Π: C(S)→ C(Σ), corresponding
to the covering map P : Σ→ S, is a Q–quasi-isometric embedding. The
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constant Q depends only on ξ(S) and the degree of the covering map
P .

Remark 10.2. Note that Q does not depend directly on the topology
of Σ. When S is an annulus, the degree of covering is not determined by
the topology of Σ. Conversely, when S is not an annulus, the topology
of Σ can be bounded in terms of the topology of S and the degree of
the covering.

Remark 10.3. The constant Q may go to infinity with the degree of
the covering. For example, any pair of distinct curves a, b in a surface
S may be made disjoint in some cover. In fact a cover of degree at
most 2d−1, where d = dS(a, b), will suffice [Hem01, Lemma 2.3].

Remark 10.4. When Σ is the orientation double cover of a nonori-
entable surface S, Theorem 10.1 is due to Masur-Schleimer [MS07].

Proof of Theorem 10.1. We first show that

dΣ(α, β) ≺ dS(a, b).

When ξ(S) > 1 and when S is an annulus, two vertices of C(S) have
distance one when they have intersection number zero. But disjoint
curves in S have disjoint preimages in Σ. Therefore, a path connecting
a to b lifts to a path of equal length connecting α to β . This implies
the desired inequality in this case. In all other cases, two curves are at
distance one when they intersect once or twice, depending on S. The
lifts of these curves then intersect at most 2d times, where d is the
degree of the covering. Thus, the distance between the lifts is at most
2 log2(2d) + 2. (See [Sch, Lemma 1.21].) Therefore

dΣ(α, β) ≤ (2 log2(2d) + 2) · dS(a, b).

Now we must prove the opposite inequality:

dΣ(α, β) ≻Q dS(a, b).

Suppose that d is the degree of the covering. We prove the theorem by
induction on the complexity of S. In the case where S is an annulus
without orbifold points, the cover Σ is also an annulus and the distances
in C(Σ) and C(S) are equal to the intersection number plus one. But,
in this case,

i(α, β) ≥ i(a, b)/d.

Therefore, the theorem is true with Q = d.
Now assume the theorem is true for all strict suborbifolds of S.

Let Q′ be the largest constant of quasi-isometry necessary for such
suborbifolds. Choose the threshold T, constant e and length L such
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that Theorem 8.1 holds for both the data (S, T, T, e, L) as well as
(Σ, (T/Q′) − Q′, T, e, L). We also assume that T ≥ 2N + 1 (Propo-
sition 9.2). All of the constants depend only on the topology of S and
the degree d, because these last two bound the topology of Σ.

Let JS be the T–antichain of maxima for S, a and b and let JΣ be
the set of components of preimages of elements of JS.

Claim. The set JΣ is a ((T/Q′)− Q′, T)–antichain for (Σ, α, β).

We check the conditions of being an antichain. Since elements of JS

are not subsets of each other, the same holds for their preimages. The
condition dΩ(α, β) ≥ (T/Q′) − Q′ is the induction hypothesis. Now
suppose Ψ ⊂ Σ with dΨ(α, β) ≥ T. By Lemma 9.3, Ψ is symmetric.
That is, it is a component of the preimage of an orbifold Y ⊂ S and

dY (a, b) ≥ dΨ(α, β) ≥ T.

This implies that Y ⊂ Z for some Z ∈ JS. Therefore, taking Ω to be
the preimage of Z, we have Ψ ⊂ Ω ∈ JΣ. This proves the claim.

Hence, there are constants K and K′ such that

dS(a, b) ≍K |JS|+ |G(e, L)|,

and

dΣ(α, β) ≍K′ |JΣ|+ |Γ(e, L)|.

Note that |JS| ≤ d|JΣ| as a suborbifold of S has at most d preimages.
Note also that |G(e, L)| ≤ |Γ(e, L)| because Γ(t) is at least as thick as
G(t). Therefore

dS(a, b) ≺Q dΣ(α, β),

for Q = d K K′. This finishes the proof. �

11. An application to mapping class groups

Suppose that P : Σ → S is an orbifold covering map. Let MCG(Σ)
be the orbifold mapping class group of Σ: isotopy classes of homeo-
morphisms of Σ restricting to the identity on ∂S and respecting the
set of orbifold points and their orders. Here all isotopies must fix all
boundary components and all orbifold points. As an application of
Theorem 10.1 we prove the following theorem:

Theorem 11.1. The covering P induces a quasi-isometric embedding

Π∗ : MCG(S)→MCG(Σ).
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We will use the language of markings from [MM00]. Recall that a
marking m of S is a collection of curves which fill S. That is, cutting S◦

along m results in a collection of disks and boundary parallel annuli. If
m, n are both markings then we define i(m,n) to be their intersection
number: the sum of intersection numbers of pairs of curves coming
from m and n. Notice for any marking m that there are only finitely
many mapping classes x ∈MCG(S) with x(m) = m.

Here we establish a few properties of markings.

Lemma 11.2. For every N there are finitely many markings of self-
intersection number less than N up to the action of the mapping class
group.

Proof. The bound on intersection number provides an upper bound on
the number of disk and annuli in S◦rm. These are glued along edges
whose number is also bounded. �

Lemma 11.3. For every marking m and any N > 0 there are only
finitely many markings n with i(m,n) ≤ N.

Proof. The restriction of n to a component of S◦rm is a union of
arcs. The number of these arcs is bounded by i(m,n). Therefore, the
combinatorial type of the collection of arcs is bounded depending on
m and i(m,n). �

Lemma 11.4. For every N1 > 0 there is N2 > 0 such that if m and n
are two markings with self-intersection numbers less than N1 then there
is a mapping class x ∈MCG(S) such that i

(

x(m), n
)

≤ N2.

Proof. Let [m1], . . . , [mk] be the homeomorphism classes of markings
that have self-intersection number less than N1; by Lemma 11.2 there
are finitely many such classes. Define i

(

[mi], [mj]
)

to be the minimum
intersection number between a marking in [mi] and a marking in [mj].
The the lemma now holds for

N2 = max
i,j

i
(

[mi], [mj]
)

. �

Lemma 11.5. Let Θ be a generating set of MCG(Σ) and let µ be a
marking of Σ. For every N > 0 there is W > 0 with the following
property: for any ζ ∈MCG(Σ),

i
(

µ, ζ(µ)
)

≤ N =⇒ ||ζ||Θ ≤ W.

Here, W depends on ξ(Σ), Θ, µ and N but is independent of ζ.

Proof. Lemma 11.3 implies that there are only finitely many marking
µ′ so that µ′ is a homeomorphic image of µ and i(µ, µ′) ≤ N. For each
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such µ′ there are only finitely many mapping classes taking µ to µ′

(the marking µ may have symmetries). Let W be the maximum word
length of all these mapping classes. �

Proof of Theorem 11.1. Fix, for the remainder of the proof, a marking
m of S. Let µ = Π(m) be the lift of m to Σ. Note that µ fills Σ and
so is a marking.

We construct Π⋆ as follows: Let x be an element of MCG(S) and
let µ′ be the lift of x(m). The markings m and x(m) have equal self-
intersection. Therefore, the same holds for µ and µ′. By Lemma 11.4,
there is an N2 depending only on the self-intersection number of µ such
that one can always find ξ ∈ MCG(Σ) where i(µ′, ξ(µ)) ≤ N2. Also,
it follows from Lemma 11.3 that there are only finitely many such
mapping classes. We define Π⋆(x) to be any such mapping class ξ.

Let T be a finite generating set forMCG(S) and Θ be a finite gener-
ating set forMCG(Σ). Let ||x||T and ||ξ||Θ denote the word lengths of
x and ξ with respect to T and Θ respectively. To prove the proposition
it suffices to show that, for ξ = Π⋆(x),

(11.6) ||x||T ≍W ||ξ||Θ,

where W is a constant that does not depend on x.
By [MM00], Theorems 7.1, 6.10, and 6.12, we have

(11.7) ||x||T ≍W1

∑

[

dZ

(

m,x(m)
)

]

k1

.

Here the sum ranges over all sub-orbifolds Z ⊂ S. The constant W1

depends on k1 which in turn depends on our choice of the marking m
and the generating set T . However, all of the choices are independent
of the group element x. Finally, [r]k = r if r ≥ k and [r]k = 0 if r < k.

As above, after fixing a large enough constant k2 (see below) and an
appropriate W2, we have

(11.8) ||ξ||Θ ≍W2

∑

[

dΩ

(

µ, ξ(µ)
)

]

k2

.

But ξ(µ) and Π(x(m)) have bounded intersection. Therefore, their
projection distance in every subsurface Ω is a priori bounded. Hence
we can write

(11.9) ||ξ||Θ ≍W3

∑

[

dΩ

(

µ, Π(x(m))
)

]

k2

,

for a slightly larger constant W3.
We prove equation (11.6) by comparing the terms of the the right

hand side of (11.7) with those on the right hand side of (11.9). Note
that µ = Π(m) is a union of symmetric orbits and the same holds
for Π(x(m)). Therefore, we can choose k2 large enough such that if
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dΩ(µ, g(µ)) is larger than k2 then Ω is itself symmetric (see Lemma 9.3).
Taking Z = P (Ω), it follows from Theorem 10.1 that

dZ(m,x(m)) ≍ dΩ(µ, Π(x(µ))).

On the other hand, Theorem 10.1 also tells us that large projection
distance in any Z ⊂ S implies large projection distance in all the com-
ponents of the pre-image of Z. Therefore, there is a finite-to-one corre-
spondence between the surfaces that appear in (11.9) and in (11.7) and
the corresponding projection distances are comparable. We conclude
that ||x||T ≍W ||ξ||Θ for some W. This finishes the proof. �

Assume now ∆ < MCG(Σ) is a finite subgroup. Applying Nielsen
Realization [Ker83] the group ∆ can be realized as a group of home-
omorphisms of Σ. Let S be the quotient and let P : Σ → S be the
regular covering with deck group ∆. Let N(∆) be the normalizer of
∆ inside of MCG(Σ) and let M < MCG(S) be the finite index sub-
group of mapping classes that lift. MacLachlan and Harvey [MH75,
Theorem 10] give a short exact sequence:

1→ ∆→ N(∆)
p
→M → 1.

Theorem 11.10. Suppose that ∆ ⊂MCG(Σ) is a finite group. Then
the normalizer of ∆ in undistorted in MCG(Σ).

Proof of Theorem 11.10. Choose finite generating sets Θ forMCG(Σ)
and Θ′ for N(∆). Equip the groups with the word metric. For ζ ∈
N(∆), we must show that the word length of ζ with respect to Θ is
comparable to its word length with respect to Θ′.

Let M be as in the MacLachlan-Harvey short exact sequence. Choose
finite generating sets T forMCG(S) and T ′ for M . Again, equip these
groups with the word metric.

MCG(Σ)
Π⋆←−−− MCG(S)

x





ι

x





ι

1 −−−→ ∆ −−−→ N(∆)
p

−−−→ M −−−→ 1

The map p : N(∆) → M is a quasi-isometry because ∆ is finite.
Therefore,

||ζ||Θ′ ≍ ||p(ζ)||T ′ .

Also, since M is a finite index subgroup of MCG(S), the word metric
in M and the metric it inherits fromMCG(S) are comparable. Hence,

||p(ζ)||T ′ ≍ ||p(ζ)||T .
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Let ξ = Π⋆p(ζ), where Π⋆ is an in the proof of Theorem 11.1. Theo-
rem 11.1 states that Π⋆ is a quasi-isometric embedding. That is,

||p(ζ)||T ≍ ||Π⋆ p(ζ)||Θ.

Also, by the definition of Π⋆, the intersection number of ξ(µ) and ζ(µ)
is bounded. It follows that the intersection number of µ and ξ−1 ζ(µ)
is also bounded. Lemma 11.5 implies that ξ and ζ are close in the
mapping class group. That is

||Π⋆ p(ζ)||Θ ≍ ||ζ||Θ.

The theorem follows from the last four equations. �

As a a special case, let Σ be the closed orientable surface of genus g
and let φ : Σ → Σ be a hyperelliptic involution. Let S = Σ/φ and let
P : Σ → S be the induced orbifold cover. Birman and Hilden [BH73]
provide a short exact sequence:

1→ 〈φ〉 → N(φ)→MCG(S)→ 1

which has a group-theoretic section. Notice thatMCG(S) is the spher-
ical braid group on 2g + 2 strands. Theorem 11.10 now answers a
question of Luis Paris:

Corollary 11.11. The section of the Birman-Hilden map induces a
quasi-isometric embedding of the spherical braid group on 2g+2 strands
into the mapping class group of the closed surface of genus g. �
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