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Abstract
We propose Möbius transformations as the natural rotation and scaling tools to use when editing spherical images.
As applications we show how to obtain Droste and other interesting visual effects using Möbius, and other conformal
transformations.

1 Introduction

Interest in spherical imagery has grown in recent years, driven by increased accessibility of both viewing
devices and cameras. The YouTube application on smartphones now plays spherical video, using the phone’s
accelerometer. Many virtual reality headsets are expected to be released in the near future. On the camera
side, numerous consumer-focused spherical cameras are available, as well as high-end professional offerings.

Almost universally, spherical images and video are stored and transmitted via equirectangular projection:
points on the sphere are given by their latitude and longitude. Thus the whole image is stored as a rectangular
image with a two-to-one aspect ratio, corresponding to angles (0,2π)× (−π/2,π/2). This data format
fits conveniently into the infrastructure already in-place for ordinary images. However, there is a problem
in editing spherical images; software developed for ordinary rectangular images does not know about the
equirectangular projection. For example, one cannot rotate a spherical image about an axis other than the
vertical axis using standard rectangular editing tools.

Future editing tools for spherical images will no doubt include the ability to rotate images around any
axis, giving analogues of both translation and rotation of flat images. However, we can also ask what zooming
might mean for spherical images, and what other transformations would be useful in spherical image editing.
In the next section, we discuss Möbius transformations. These include ordinary rotations of the sphere,
natural zoom-like transformations, and other interesting effects. In the sections after, we explore visual
effects derived from other conformal transformations of the sphere.

Figure 1: Stereographic projection from
the sphere to the plane.
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2 Möbius transformations

Möbius transformations act on the Riemann sphere, Ĉ=C∪{∞}. This is the result of adding a single point,
∞, to the complex plane C. We map from the unit sphere S2 in R3 to the Riemann sphere using stereographic

This work is in the public domain.
1http://elevr.com/spherical-video-editing-effects-with-mobius-transformations/
2https://github.com/henryseg/spherical_image_editing
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projection [5, page 57]:

ρ(u,v,w) =
u+ iv
1−w

We set ρ(0,0,1) = ∞. Every other point of the unit sphere maps to a point of C. Figure 1 shows a 3D printed
visualisation of stereographic projection.

The Möbius transformation M = (a,b;c,d) is the map from the Riemann sphere to itself given by

M(z) =
az+b
cz+d

, where a,b,c,d ∈ C and ad−bc 6= 0.

There are various special cases involving the point at infinity. If cz+ d = 0 then M(z) = ∞. If c 6= 0 then
M(∞) = a/c. If c = 0 then M(∞) = ∞. There is a cleaner definition, avoiding these special cases, which uses
the one-dimensional complex projective space, CP1. However, here we will stick with Ĉ.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: A test pattern (a and e), and the results of rotating by π/8 (b and f), scaling by a factor of two (c and g)
and applying the parabolic translation M(z) = z+ 1/2 (d and h). Above: the textures on the sphere. Below: their
equirectangular projections. Note that we generally view a spherical photograph from inside the sphere. From this
perspective the equirectangular projections have the same orientation as the textures on the spheres.

We can rotate the complex plane about 0 by multiplying by a unit complex number, say eiθ . We can
scale the plane, again centered on 0, by multiplying by a real number, say λ ∈ R. Finally, we can translate
the plane by adding a complex number, say w. These give the Möbius transformations M = (eiθ ,0;0,1),
M = (λ ,0;0,1), and M = (1,w;0,1), respectively. These three kinds of transformations, called elliptic,
hyperbolic, and parabolic respectively, are in some sense universal.

Figure 2 (top row) shows an initial test pattern, and the results of applying a rotation by θ = π/8, of
scaling by a factor of λ = 2, and of adding w = 1/2. The parabolic case is included for completeness; it
is not clear how this might be used in image editing. Here we have placed zero, the origin of the complex
plane, at the “front pole” of the sphere: the front intersection of the blue equator and red longitude. Note
how the hyperbolic transformation scales up distance by a factor of two at zero but scales down by a factor
of two at the antipodal point, ∞. In fact, Möbius transformations allow us to rotate or scale fixing any two
points of the sphere. As an example, see Figure 3; we show a frame of raw footage and the transformed
frame from a video3 exploring many of the effects in this paper.

3https://www.youtube.com/watch?v=oVwmF_vrZh0
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Every Möbius transformation distorts spherical distances to a greater or lesser degree; however in every
case the right angles of the test pattern always remain right angles. Möbius transformations are conformal:
they preserve all angles. Thus images are not sheared or non-uniformly stretched; features remain essentially
recognisable. All of the transformations in this paper mapping the sphere to itself are conformal, apart from
at a discrete set of points. Note that the equirectangular projection is not conformal; both distances and
angles are distorted.

(a) The input image. (b) The result of rotating by an angle of π/12.

Figure 3: Rotating a spherical photograph of Vi Hart and Henry Segerman, about Vi’s eyes.

3 Other transformations

If we want to apply a “forward transformation” T to a pixel-based input image, we need to find the inverse
transformation S = T−1. This is because the algorithm to generate the output image from the input runs in
reverse: for each pixel p of the output, we take its position z, compute S(z), and assign p the same color
as that at position S(z) of the input. (In fact we take a weighted average of colors of input pixels nearest
to S(z).) We call this procedure pulling back via S or, equivalently, applying T . Thus the transformation
S = T−1 must be single-valued, but T need not be.

For Figure 4b we used T (z) = ±√z and S(z) = z2; the resulting image is a “branched double-cover”
of the room shown in Figure 4a. There is a new feature in this image, the branch points, around which
nearby imagery is repeated. The number of repetitions is the order of a branch point. Here the branch
points, of order two, are at zero and infinity and thus are on the floor and the ceiling; Figure 4c shows the
spherical image in Figure 4b, rotated to show the branch point at zero in the center. These new features, the
branch points, are unavoidable: any conformal transformation of Ĉ either has branch points or is a Möbius
transformation [1, Section 4.3.2].

Figure 4d shows the result of pulling back via a variant of the complex exponential map, specifically
S(z) =−e−λ( 1+z

1−z). Here λ is a scaling parameter and the Möbius transformation M(z) = 1+z
1−z is a rotation by

π/2 about±i; this ensures that the image repeats horizontally rather than vertically. In this case, the forward
transformation T (z) is a variant of the complex logarithm, so is infinitely valued. Thus the output contains
infinitely many copies of the input image. The branch points are again on the floor and the ceiling, but are
of infinite order.

The same techniques can be used to combine different spherical images into a single spherical image.
This provides a spherical analogue of the familiar “split screen” trope in rectangular video: compositing
multiple video clips into a single screen. We, however, can stitch the different images seamlessly, if they
match along suitable arcs between the branch points. We created a spherical video along these lines, in
which the second author appears to be in a two-fold branched cover of his apartment4. The footage is

4http://www.youtube.com/watch?v=UUW_ZU3_TQM
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(a) The input image. (b) Pulling back by S(z) = z2.

(c) Figure 4b, rotated to show an order two branch point at
the center.

(d) Pulling back via S(z) =−e−4( 1+z
1−z ).

Figure 4: Transformations applied to a spherical photograph featuring Emily Eifler, Vi Hart, Andrea Hawksley, and
Henry Segerman, all shown twice. In these images the origin 0 ∈ C corresponds to the top of the equirectangular
projection while infinity corresponds to the bottom, other than for Figure 4c.

stitched together with a video of the empty apartment, so that only one copy of the author appears in the
combined video.

4 The Droste effect

A common artistic and mathematical motif is that of “self-similarity”; this is often called the Droste effect in
commercial and computer graphics. A “straight Droste effect”, as found on the packaging of the eponymous
Dutch cocoa, is obtained when the entire picture is included, under a shrinking transformation, inside of
itself. The “twisted Droste effect” was first introduced by M.C. Escher in his Print Gallery lithograph. The
mathematics behind Escher’s image was explained by Bart de Smit and Hendrik Lenstra [2].

It is possible to obtain both the straight and twisted Droste effect in spherical images using Möbius
transformations, the complex exponential map, and the complex logarithm (see also [6, page 223]). We
simplify the discussion here by suppressing all mention of equirectangular and stereographic projections.
We begin with a spherical image, say Figure 4a. We remove everything inside a small disk (here the inside
of the frame on the wall) and everything outside a larger disk, to obtain a Droste annulus; see Figure 5a.
We arrange matters so that there is a scaling transformation M(z) = λ z that takes the outer boundary of the
annulus to the inner boundary. Thus we may tile the sphere (minus two points) by copies of the annulus,
obtaining a straight Droste image; see Figure 5b.

If we apply the logarithm to the Droste annulus then the annulus unwraps to give an infinite vertical strip
in C with width logλ ; see Figure 5c. Another way to now obtain the straight Droste effect is to tile the plane
by horizontal translations of the strip and apply the exponential map. Following De Smit and Lenstra [2,
Figure 10], we may instead scale and rotate so that the rectangle shown in Figure 5d is vertical and has



(a) A Droste annulus. (b) A straight Droste image. (c) Log Droste
annulus.

(d) A different fun-
damental rectangle.

(e) A twisted Droste image. (f) Different images can be used for different
zooms.

Figure 5: Droste effect images. These images answer the question of what it looks like from the inside of a Droste
effect image: there is a flower-shaped portal floating in the middle of the room.

height 2π . Applying the exponential map yields Figure 5e.
Figure 5f shows a still image from a straight Droste video5 in which the translated images are also offset

in time. The duration of the time offset matches the flight time of the camera; thus the video loops.
All constructions of Droste effect images seem to involve “cut-and-paste” techniques; here we had the

choice of frame and the choice of scaling. In contrast, the pull-back techniques of Section 3 can be applied
to any spherical image whatsoever. The output is seamless; the only blemishes are the branch points.

5 Weierstrass and Schwarz-Christoffel

The complex exponential and logarithm are just two of the many beautiful flowers in the field of complex
analysis. More exotic “elliptic” or even “modular” functions will give interesting visual effects when applied
to spherical images. Here we will restrict ourselves to the Weierstrass ℘–function for the square lattice; we
refer to [1, Chapter 7] for an excellent and short introduction. As a series the function is:

℘(z) =
1
z2 +∑

(
1

(z−ω)2 −
1

ω2

)
.

5https://www.youtube.com/watch?v=qvh-EAipIUk
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(a) The two-fold branched covering maps from the torus to
the sphere by “folding” the torus around the red “skewer”.
The four skewered points of the torus become the four red
dots on the sphere.

(b) Cutting open the torus yields a
square.

(c) The square tiles the complex plane; here viewed after applying
inverse stereographic and equirectangular projection maps.

(d) Pull back the tiling in C via the
map z 7→ (1+ i) · z.

(e) Map down to the sphere again via Schwarz-Christoffel. (f) The result if we pull back by z 7→ 2 · z.

(g) The result if we pull back by z 7→ (2+ i) · z. (h) The result if we pull back by z 7→ (3+ i) · z.

Figure 6: Images produced using Weierstrass and Schwarz-Christoffel maps.



The sum ranges over the non-zero Gaussian integers ω ∈ Z[i]. It is a non-trivial exercise to check that
℘(z+ 1) =℘(z+ i) =℘(z). So the Weierstrass function is doubly periodic – the exponential function is
only singly periodic: exp(z+2πi) = exp(z). The above series development for ℘ converges too slowly to be
computationally useful. A version of ℘ using theta-functions should instead be used [4, page 132].

Since ℘ is doubly periodic, we can think of it as first mapping the plane C to the square torus T, which
then maps to the Riemann sphere Ĉ via a branched double-cover. So, we start with our standard spherical
image (Figure 6a, left). We pull back to T and obtain a toroidal image (Figure 6a, right). Note that the
toroidal image contains two copies of the original, and has four branch points. Cutting T open we obtain
Figure 6b; a square containing two copies of the original, spherical, image. This is the unit cell of a tiling of
C, obtained by pulling back via ℘. This is shown in equirectangular form in Figure 6c.

Just as the exponential function has its logarithm, the Weierstrass ℘–function has a conformal inverse,
which we denote by sc4. For reasons of symmetry the inverse sc4 is a map from the disk to the square. This,
then, is a Schwarz-Christoffel function [1, Section 6.2.2]. In general, these functions are given by difficult
integrals, but for regular n–gons there is a very pretty expression in terms of the hypergeometric function [3,
Exercise 5.19]:

scn(z) = z · 2F1

(
2
n
,
1
n

;1+
1
n

;zn
)
.

We are now ready to “twist”, in similar spirit to the twisted Droste effect. We pull back the tiling in C
via the map z 7→ (1+ i) · z. A unit cell for this finer tiling is shown in Figure 6d. We pull this back to Ĉ using
the map sc4 and obtain Figure 6e. Since the overall map from Ĉ to Ĉ is conformal, apart from at a finite set
of points, it is in fact rational [1, Section 4.3.2]: in this case it is the function f (z) = i

2(−z+ 1/z). Pulling
back (in C) by other Gaussian integers gives other interesting effects; see Figures 6f, 6g, and 6h.

6 Schottky groups

Suppose that a and b are hyperbolic (that is, zoom-like) Möbius transformations. Suppose that Da, DA, Db,
DB are four closed disjoint disks in Ĉ so that a maps the interior of DA onto the exterior of Da, and similarly
for b. Then the group generated by a and b is called a two-generator Schottky group [5, page 98].

Schottky groups can be used to generate impressive images; for a richly illustrated introduction to the
underlying mathematics please see [5]. David Gu has also experimented with applying Schottky reflection
groups to photographs6. We now discuss how to apply these ideas to spherical images.

We begin with an input image Figure 7a. We must choose the positions of the disks Da, DA, Db, and
DA. In the final image these will contain zoomed copies of (part of) the input image. For Da we choose the
window; for Db we choose the large round mirror lying below the camera, on which the tripod is standing.
We trace over Da and Db in Photoshop to make a mask image in which the window is red and the mirror
green, as shown in Figure 7b. We now choose two hyperbolic Möbius transformations, A and B, and set
DA = A(Ĉ−Da), in white, and DB = B(Ĉ−Db), in blue. We choose A and B so that the all of the disks are
disjoint, and no disk covers an important part of the input image. Let a = A−1 and define b similarly.

To generate the image7 shown in Figure 7c, for each pixel p, we perform the following routine.

1. Set q = p.

2. If q lies in the black region of the mask, color p the same as the color of q and stop the routine.

3. If q lies in DX then replace q by x(q) and go to step 2.

In general, a Schottky group can have taken more than two generators, or indeed fewer. Using just one
generator recovers the straight Droste effect; Ĉ− (Da∪DA) is the Droste annulus.

6See http://www3.cs.stonybrook.edu/~gu/lectures/lecture_1_Escher_Droste_Effect.pdf.
7Also see an animated version: https://www.youtube.com/watch?v=vtWtmTzGxd4.
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(a) The input image.

Da
DA

Db

DB

(b) The disks Da, DA, Db, DB in the Riemann sphere.

(c) A spherical Schottky image.

Figure 7: A spherical double Droste effect, using a Schottky group.

It is interesting to ponder how one might apply the twisted Droste effect throughout a Schottky image,
but that is a task for another day.
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