
WALDHAUSEN’S THEOREM

SAUL SCHLEIMER

Abstract. This note is an exposition of Waldhausen’s proof of
Waldhausen’s Theorem: the three-sphere has a single Heegaard
splitting, up to isotopy, in every genus. As a necessary step we
also give a sketch of the Reidemeister-Singer Theorem.

1. Introduction

Waldhausen’s Theorem [Wal68] tells us that Heegaard splittings of
the three-sphere are unique up to isotopy. This is an important tool in
low-dimensional topology and there are several modern proofs [ST94,
RS96, JR06, Rie06]. Additionally, at least two survey articles on Hee-
gaard splittings [Sch02, Joh07] include proofs of Waldhausen’s Theo-
rem.

This note is intended as an exposition of Waldhausen’s original proof,
as his techniques are still of interest. See, for example, Bartolini and
Rubinstein’s [BR06] classification of one-sided splittings of RP

3.
In Section 2 we recall foundational material, set out the necessary

definitions and give a precise statement of Waldhausen’s Theorem. Sec-
tion 3 is devoted to stable equivalence of splittings and a proof of the
Reidemeister-Singer Theorem. In Section 4 we discuss Waldhausen’s
good and great systems of meridian disks. Section 5 gives the proof
of Waldhausen’s Theorem. Finally, Section 6 is a brief account of the
work-to-date on the questions raised by Waldhausen in Section 4 of his
paper.
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2. Foundations

The books by Hempel [Hem76] and Rolfsen [Rol76] and also Hatcher’s
notes [Hat01] are excellent references on three-manifolds. Moise’s book [Moi77]
additionally covers foundational issues in PL topology, as does the book
by Rourke and Sanderson [RS72].

We will use M to represent a connected compact orientable three-
manifold. We say M is closed if the boundary ∂M is empty. A triangu-

lation of M is a simplicial complex K so that the underlying space ||K||
is homeomorphic to M . When no confusion can arise, we will regard
the cells of ||K|| as being subsets of M .

Example 2.1. The three-sphere is given by

S3 = {(z, w) ∈ C
2 | |z|2 + |w|2 = 2}.

The boundary of the four-simplex gives a five-tetrahedron triangulation
of S3.

Requiring that M be given with a triangulation is not a restriction:

Theorem 2.2 (Triangulation). Every compact three-manifold M ad-

mits a triangulation. �

Furthermore, in dimension three there is only one PL structure:

Theorem 2.3 (Hauptvermutung). Any two triangulations of M are

related by a PL homeomorphism that is isotopic to the identity in M .

�

These theorems are due to Moise [Moi52, Moi77]. (See also [Sha84].)
An alternative proof is given by Bing [Bin59]. Our version of the
Hauptvermutung may be found in Hamilton [Ham76].

We now return to notational issues. We will use F to represent a
closed connected orientable surface embedded in M . A simple closed
curve α ⊂ F is essential if α does not bound a disk in F .

For any X ⊂ M we use U(X) to denote a regular open neighborhood
of X, taken in M . This neighborhood is assumed to be small with
respect to everything relevant. If X is a topological space, we use |X|
to denote the number of components of X.

A handlebody, usually denoted by V or W , is a homeomorph of a
closed regular neighborhood of a finite, connected graph embedded in
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R3. The genus of V agrees with the genus of ∂V . Notice that if K is
a triangulation of M then a closed regular neighborhood of the one-
skeleton of ||K|| is a handlebody embedded in M .

A disk v0 is properly embedded in a handlebody V if v0 ∩ ∂V = ∂v0;
this definition generalizes naturally to surfaces and arcs contained in
bounded three-manifolds and also to arcs contained in bounded sur-
faces.

A Heegaard splitting is a pair (M,F ) where M is a closed oriented
three-manifold, F is an oriented closed surface embedded in M , and
MrU(F ) is a disjoint union of handlebodies.

Example 2.4. There is an equatorial two-sphere S2 ⊂ S3:

S2 = {(z, w) ∈ S3 | Im(w) = 0}.

Note that S2 bounds a three-ball on each side. We call (S3, S2) the
standard splitting of genus zero.

The Alexander trick proves that any three-manifold with a splitting
of genus zero is homeomorphic to standard splitting of genus zero.
Furthermore, we have:

Theorem 2.5 (Alexander [Ale24]). Every PL two-sphere in S3 bounds

three-balls on both sides. �

See [Hat01] for a detailed and accessible proof in the differentiable
category. It follows that every PL two-sphere gives a Heegaard splitting
of S3.

Example 2.6. There is a torus T ⊂ S3:

T = {(z, w) ∈ S3 | |z| = |w| = 1}.

It is an exercise to check that T bounds a solid torus (D2×S1) on each
side. We call (S3, T ) the standard splitting of S3 of genus one.

The three-manifolds admitting splittings of genus one are S3, S2×S1

and the lens spaces. As an easy exercise from the definitions we have:

Lemma 2.7. Suppose K is a triangulation of a closed orientable mani-

fold M . Suppose that F is the boundary of a closed regular neighborhood

of the one-skeleton of ||K||. Then (M,F ) is a Heegaard splitting. �

See, for example, page 241 of [Rol76]. The splitting (M,F ) so given
is the splitting associated to the triangulation K. As an immediate con-
sequence of the Triangulation Theorem (2.2) and Lemma 2.7 we find
that every closed three-manifold has infinitely many Heegaard split-
tings. To control this extravagance of examples we make:
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Definition 2.8. A pair of Heegaard splittings (M,F ) and (M,F ′) are
equivalent, written (M,F ) ≈ (M,F ′), if there is a homeomorphism
h : M → M such that

• h is isotopic to the identity and
• h|F is an orientation preserving homeomorphism from F to F ′.

It is an important visualization exercise to show that (S3, T ) is equiv-
alent to (S3,−T ). Here −T is the torus T equipped with the opposite
orientation. In general, (M,F ) is not equivalent to (M,−F ); for ex-
amples see the discussion of lens spaces at the end of Section 6. We
now have another foundational theorem:

Theorem 2.9 (Gugenheim [Gug53]). If B and B′ are PL three-balls

in a three-manifold M then there is an isotopy of M carrying B to

B′. �

See Theorem 3.34 of Rourke and Sanderson [RS72] for a discussion.
They also give as Theorem 4.20 a relative version. In any case, it follows
that all genus zero splittings of S3 are equivalent to the standard one,
so justifying the name.

Exercise 2.10. Show that any genus one splitting of S3 is isotopic to
the standard one. (Corollary 4.16 of [RS72] may be useful.)

Waldhausen’s Theorem generalizes this result to every genus:

Theorem 5.1. If (S3, F ) and (S3, F ′) are Heegaard splittings of equal

genus then (S3, F ) is equivalent to (S3, F ′).

Remark 2.11. Waldhausen’s original statement is even simpler:

Wir zeigen, daß es nur die bekannten gibt.

That is: “We show that only the well-known [splittings of S3] exist.”

3. Stabilization and the Reidemeister-Singer Theorem

A key step in Waldhausen’s proof is the Reidemeister-Singer The-
orem (Theorem 3.6, below). In this section we lay out the necessary
definitions and sketch a proof of the Reidemeister-Singer Theorem.
Most approaches to Reidemeister-Singer, including ours, are via piece-
wise linear topology. Bonahon in an unpublished manuscript has given
a proof relying on Morse theory.

For further details and the history of the problem we refer the reader
to the original papers of Reidemeister and Singer [Rei33, Sin33] as well
as the more modern treatment by Craggs [Cra76]. A version of Craggs’
proof is also given in [FM97, Theorem 5.2]. Note also that Lei [Lei00],
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in an amusing reversal, gives a very short proof of the Reidemeister-
Singer Theorem by assuming Waldhausen’s Theorem.

We begin by stating the basic definitions and then the theorem.

Definition 3.1. Suppose that V is a handlebody. A properly embed-
ded arc α ⊂ V is unknotted if there is an arc β ⊂ ∂V and an embedded
disk B ⊂ V so that ∂α = ∂β and ∂B = α ∪ β.

Definition 3.2. Suppose that (M,F ) is a Heegaard splitting with han-
dlebodies V and W . Let α be an unknotted arc in V . Let F ′ =
∂(V rU(α)) = (V rU(α)) ∩ (W ∪ U(α)). Then the pair (M,F ′) is a
stabilization of F in M . Also, the pair (M,F ) is a destabilization of
(M,F ′).

Observe that (S3, T ) is isotopic to a stabilization of (S3, S2). It is an
exercise to prove, using the relative version of Theorem 2.9 and Exer-
cise 2.10, that if (M,F ′) and (M,F ′′) are stabilizations of (M,F ), then
(M,F ′) ≈ (M,F ′′). On the other hand, as discussed below, destabi-
lization need not be a unique operation.

Recall that the connect sum M#N is obtained by removing the inte-
rior of a ball from each of M and N and then identifying the resulting
boundary components via an orientation reversal.

Definition 3.3. Let (M,F ) be a Heegaard splitting. Let (S3, T ) be the
standard genus one splitting of S3. Pick embedded three-balls meeting
F ⊂ M and T ⊂ S3 in disks. The connect sum of the splittings is the
connect sum of pairs: (M,F )#(S3, T ) = (M#S3, F#T ).

Again, this operation is unique and the proof is similar to that of
uniqueness of stabilization. This is not a surprise, as stabilization and
connect sum with (S3, T ) produce equivalent splittings. Thus we do
not distinguish between them notationally.

Remark 3.4. Fix a manifold M . We may construct a graph Σ(M)
where vertices are equivalence classes of splittings and edges correspond
to stabilizations. From Theorem 2.2 it follows that Σ(M) is nonempty.
The uniqueness of stabilization implies that Σ(M) has no cycles and
so is a forest. Finally, Σ(M) is infinite because splittings of differing
genera cannot be isotopic.

Define (M,F )#n(S3, T ) = ((M,F )#n−1(S
3, T ))#(S3, T ).

Definition 3.5. Two splittings, (M,F ) and (M,F ′), are stably equiva-

lent if there are m,n ∈ N so that (M,F )#m(S3, T ) ≈ (M,F ′)#n(S3, T ).

We now may state:
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Theorem 3.6 (Reidemeister-Singer). Suppose that M is a closed, con-

nected, orientable three-manifold. Then any two Heegaard splittings of

M are stably equivalent.

Remark 3.7. The theorem may be restated as follows: Σ(M) is con-
nected. Since Remark 3.4 shows that Σ(M) is a forest, it is a tree.

We say that (M,F ) is unstabilized if it is not equivalent to a stabi-
lized splitting. Waldhausen calls such splittings “minimal”. However
modern authors reserve “minimal” to mean minimal genus. This is
because there are manifolds containing unstabilized splittings that are
not of minimal genus. For examples, see Sedgwick’s discussion of split-
tings of Seifert fibered spaces [Sed99]. Note that unstabilized splittings
correspond to leaves of the tree Σ(M).

Finally, there are fixed manifolds that contain unstabilized splittings
of arbitrarily large genus. The first such examples are due to Cas-
son and Gordon [CG85]. The papers [Kob92, LM00, MSS06] contain
generalizations.

We now set out the tools necessary for our proof of Theorem 3.6. A
pseudo-triangulation T = {∆i} of a three-manifold M is a collection
of tetrahedra together with face identifications. We require that the
resulting quotient space ||T || be homeomorphic to M and that every
open cell of T embeds. We do not require that T be a simplicial
complex. It is a pleasant exercise to find all pseudo-triangulations of
S3 consisting of a single tetrahedron.

As with triangulations, if T is a pseudo-triangulation of M then
the boundary of a closed regular neighborhood of the one-skeleton of
||T || is a Heegaard splitting of M . Notice that the second barycentric
subdivision of T is a triangulation of M .

Lemma 3.8. For any splitting (M,F ) there is an n ∈ N and a trian-

gulation K of M so that (M,F )#n(S3, T ) is associated to K.

Proof. We may assume, stabilizing if necessary, that F has genus at
least one. Now, F cuts M into a pair of handlebodies V and W , both of
genus g. Choose g disks {vi} properly embedded in V so that the vi cut
V into a ball. Choose {wj} in W similarly. After a proper isotopy of the
vi inside of V , increasing |(∪vi) ∩ (∪wj)| as necessary, we may assume
that all components of FrΓ are disks. Here Γ = F ∩ ((∪vi) ∪ (∪wj))
is the Heegaard diagram of (F, vi, wj).

We build a pseudo-triangulation T of M , with exactly two vertices,
by taking the dual of the two-dimensional CW complex F ∪ (∪vi) ∪
(∪wj). Since every vertex of Γ is a transverse intersection of ∪∂vi and
∪∂wj in F every three-cell of T is a tetrahedron. Since every edge of Γ
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has degree three in F ∪ (∪vi) ∪ (∪wj) every two-cell of T is a triangle.
Finally, we have edges of T for every face of Γ and for each of the 2g
disks. Also there are exactly two vertices.

Let TV be the union of the edges of T dual to the disks vi. Define
TW similarly. Let e be any edge of T connecting the two vertices of T 0.
Notice that F is isotopic to the boundary of a regular neighborhood of
TV . After g stabilizations of F we obtain a surface F ′ that is isotopic
to the boundary of a regular neighborhood of TV ∪ e ∪ TW . Now a
further sequence of stabilizations of F ′ gives the splitting associated to
T . We end with an easy exercise: if a splitting (M,G) is associated to
a pseudo-triangulation T then some stabilization of G is associated to
the second barycentric subdivision of T . �

We now describe the 1/4 and 2/3 bistellar flips in dimension three.
These are also often called Pachner moves. In any triangulation, the
1/4 flip replaces one tetrahedron by four; add a vertex at the center
of the chosen tetrahedron and cone to the faces. Similarly the 2/3 flip
replaces a pair of distinct tetrahedra, adjacent along a face, by three;
remove the face, replace it by a dual edge, and add three faces. The
4/1 and 3/2 flips are the reverses. See Figure 1 for illustrations of the
1/3 and 2/2 flips in dimension two.

Figure 1. The 1/3 and 2/2 bistellar flips.

Suppose that (M,F ) and (M,F ′) are associated to triangulations K
and K′. Now, if K′ is obtained from K via a 2/3 bistellar flip then
(M,F ′) is the stabilization of (M,F ). When a 1/4 flip is used then
(M,F ′) is the third stabilization of (M,F ).
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We may now state an important corollary of the Hauptvermutung
(2.3), due to Pachner [Pac91].

Theorem 3.9. Suppose that M is a closed three-manifold and K,K′

are triangulations of M . Then there is a sequence of isotopies and

bistellar flips that transforms K into K′. �

Lickorish’s article [Lic99] gives a discussion of Pachner’s Theorem
and its application to the construction of three-manifold invariants.
Now we have:

Proof of Theorem 3.6. Suppose that (M,F ) and (M,F ′) are a pair of
splittings. Using Lemma 3.8 stabilize each to obtain splittings, again
called F and F ′, which are associated to triangulations. By Pachner’s
Theorem (3.9) these triangulations are related by a sequence of bistellar
flips and isotopy. Consecutive splittings along the sequence are related
by stabilization or destabilization. The uniqueness of stabilization now
implies that (M,F ) and (M,F ′) are stably equivalent. �

4. Meridian disks

We carefully study meridian disks of handlebodies before diving into
the proof proper of Waldhausen’s Theorem (5.1).

Meridional pairs. If V is a handlebody and v0 ⊂ V is a properly em-
bedded disk, with ∂v0 essential in ∂V , then we call v0 a meridional disk
of V . Fix now a splitting (M,F ). Let V and W be the handlebodies
that are the closures of the components of MrF . So V ∩ W = F .

Definition 4.1. Suppose that v0 and w0 are meridional disks of V and
W . Suppose that ∂v0 and ∂w0 meet exactly once, transversely. Then
we call {v0, w0} a meridional pair for (M,F ).

Note that {v0, w0} is often called a destabilizing pair. To explain this

terminology, one must check that V ′ = V rU(v0) and W ′ = W ∪U(v0)
are both handlebodies. Thus, taking F ′ = ∂V ′ = ∂W ′, we find that
(M,F ′) is a Heegaard splitting and that (M,F ) ≈ (M,F ′)#(S3, T ).

Remark 4.2. If {v1, w1}, . . . , {vn, wn} are pairwise disjoint meridional
pairs then V ′ = V rU(∪ivi) is ambient isotopic to V ′′ = V ∪ U(∪iwi).
When n = 1 this is a pleasant exercise and the general case then follows
from disjointness.

Furthermore, in this situation V ′ = V rU(∪ivi) and W ′ = W ∪

U(∪ivi) are handlebodies. So F ′ = ∂V ′ = ∂W ′ gives a splitting (M,F ′)
and we have (M,F ) = (M,F ′)#n(S3, T ).
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Conversely, fix a splitting equivalent to (M,F )#n(S3, T ). There is a
natural choice of pairwise disjoint meridional pairs {v1, w1}, . . . , {vn, wn}
so that the above construction recovers (M,F ). As we shall see, the
choice of pairs is not unique. This leads to the non-uniqueness of desta-
bilization.

Suppose now that we have two splittings (M,F ) and (M,G) that we
must show are equivalent. By the Reidemeister-Singer Theorem above
we may stabilize to obtain equivalent splittings (M,F ′) ≈ (M,G′). So
(M,F ′) admits two collections of pairwise disjoint meridional pairs.
These record the handles of F ′ that must be cut to recover F or G. If,
under suitable conditions, we can make our collections similar enough
then we can deduce that the original splittings (M,F ) and (M,G)
are equivalent. Unfortunately, our process for modifying collections of
meridional pairs does not preserve pairwise disjointness. To deal with
this Waldhausen introduces the notions of good and great systems of
meridional disks.

Good and great systems. Fix a splitting (M,F ) with handlebod-
ies V and W . Fix an ordered collection v = {v1, . . . , vn} of disjoint
meridian disks of V .

Definition 4.3. We say v is a good system if there is an ordered col-
lection w = {w1, . . . , wn} of disjoint meridian disks of W so that

• {vi, wi} is a meridional pair for all i and
• vi ∩ wj = ∅ whenever i > j.

If the latter condition holds whenever i 6= j then we call v a great

system. In either case we call w a v-determined system.

Both conditions can be understood via the intersection matrix A =
|vi ∩ wj|. For v to be a good system we must find a system w so that
A is upper-triangular, with ones on the diagonal. For v to be great A
must be the identity matrix.

Lemma 4.4 (Waldhausen 2.2, part 1). Every good system is great.

Proof. Suppose that v = {v1, . . . , vn} is good and w = {w1, . . . , wn}
is the given v-determined system. We may assume that w has been
isotoped to minimize |v ∩ w|. If v is also great with respect to w then
we are done.

Supposing otherwise, let k be the smallest index so that vk ∩ w is
not a single point. It follows that v ∩ wk is a single point. Let α be
a subarc of ∂vk so that ∂α is contained in ∂w, one point of ∂α lies in
∂wk, and the interior of α is disjoint from w.
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It follows that the other endpoint of α lies in ∂wl for some l > k. Let
N = U(wk ∪ α ∪ wl) be a closed regular neighborhood of the indicated
union. Then ∂N ∩ W consists of three essential disks, two of which
are parallel to wk and wl. Let w′

l be the remaining disk. Let w′ =
(wr{wl})∪ {w′

l}. It follows that v is still good with respect to w′ and
the total intersection number has been decreased. By induction, we
are done. �

Remark 4.5. The last step of the proof may be phrased as follows: ob-
tain a new disk w′

l via a handle-slide of wl over wk along the arc α. The
hypotheses tell us that the chosen slide does not destroy “goodness.”

Lemma 4.6 (Waldhausen 2.2, part 2). Suppose that v is a good system

with respect to w. Then V rU(v) and V ∪ U(w) are ambient isotopic

in M .

Proof. By Remark 4.2 the lemma holds when w makes v a great system.
Thus, by the proof of Lemma 4.4 all we need check is that V ∪U(w) is

isotopic to V ∪U(w′), where w and w′ are assumed to differ by a single
handle-slide. This verification is an easy exercise. �

Reduction of (M,F ) by v. Let v be a good system with respect to
w. Since v does not separate V the difference V rU(v) is a handlebody,

as is WrU(w). By Lemma 4.6 the unions V ∪U(w) and W ∪U(v) are
also handlebodies. Let F (v) be the boundary of V rU(v). It follows
that (M,F (v)) is a Heegaard splitting. We will call this the reduction

of (M,F ) along v. Taking F (w) equal to the boundary of WrU(w)
we likewise find that (M,F (w)) is a splitting. With the induced orien-
tations, we find that (M,F (v)) ≈ (M,F (w)). We immediately deduce:

Lemma 4.7 (Waldhausen 2.4). If v and v′ are both good systems with

respect to w then (M,F (v)) ≈ (M,F (v′)). �

From the Reidemeister-Singer Theorem and the definitions we have:

Lemma 4.8 (Waldhausen 2.5, part 1). Suppose that (M,F1) and (M,F2)
have a common stabilization (M,F ). Then there is a system v ⊂ V
good with respect to w ⊂ W and a system x ⊂ V good with respect to

y ⊂ W so that (M,F (v)) ≈ (M,F1) and (M,F (x)) ≈ (M,F2). �

Remark 4.9. We now have one decomposition and two sets of in-
structions for reducing (cutting open trivial handles). If we knew, for
example, that y was a v–determined system then we would be done;
but this is more than we actually need.
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Getting along with your neighbors.

Lemma 4.10 (Waldhausen 2.5, part 2). In the preceding lemma, F ,

v, x, w, y can be chosen so that v ∩ x = w ∩ y = ∅.

Proof. We proceed in several steps.

Step 1: Apply a small isotopy to ensure:

• (x ∩ y) ∩ (v ∪ w) = ∅ = (v ∩ w) ∩ (x ∪ y).
• v∩x and w∩ y are collections of pairwise disjoint simple closed

curves and arcs.
• v ∩ x ∩ F = ∂(v ∩ x) and w ∩ y ∩ F = ∂(w ∩ y).

Step 2: Now we eliminate all simple closed curves of intersection be-
tween v and x. Suppose that v ∩ x contains a simple closed curve.
Then there is an innermost disk D ⊂ v so that D ∩ x = ∂D. Use D
to perform a disk surgery on x: since x is a union of disks, ∂D bounds
a disk, say D′ ⊂ x. Let x′ be a copy of (xrD′) ∪ D, after a small
isotopy supported in U(D). Arrange matters so that |v ∩ x′| ≤ |v ∩ x|.
By Lemma 4.7, (M,F (x)) ≈ (M,F (x′)). Proceeding in this fashion,
remove all simple closed curves of v ∩ x. Apply the same procedure to
remove all simple closed curves of w ∩ y.

Step 3: Now we eliminate all arcs of intersection between v and x. To
do this, we will replace F , and the various systems, by highly stabilized
versions. Let k be an arc of vi∩xj. Let v′

i and v′′

i be the two components
of virU(k). These are both disks. Similarly, let x′

j and x′′

j be the
two components of xjrU(k). Choose notation so that |v′

i ∩ wi| = 1,
|v′′

i ∩ wi| = 0, and similarly for x′

j and x′′

j . Let w and y be disjoint
spanning disks of the cylinder U(k) ∩ V . Take F ′ = ∂(V rU(k)).

Observe that

• (M,F ′) is a Heegaard splitting and is a stabilization of (M,F ).
• The system

v′ = {v1, . . . , vi−1, v
′

i, v
′′

i , vi+1, . . . , vn}

is good with respect to the system

w′ = {w1, . . . , wi, w, wi+1, . . . , wn}.

• The same holds for x′ and y′.
• (M,F ′(w′)) ≈ (M,F (w)) and (M,F ′(y′)) ≈ (M,F (y)).
• |v′ ∩ x′| < |v ∩ x| and |w′ ∩ y′| = |w ∩ y|.

Repeated stabilization in this fashion removes all arcs of intersection
and so proves the lemma. �
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5. The proof of Waldhausen’s Theorem

We may now begin the proof of:

Theorem 5.1 (Waldhausen 3.1). Suppose that (S3, G) is an unstabi-

lized Heegaard splitting. Then (S3, G) ≈ (S3, S2).

This, and the uniqueness of stabilization, immediately implies our
earlier version of the theorem: up to isotopy, the three-sphere has a
unique splitting of every genus.

Let (S3, G) be an unstabilized splitting. By Lemmas 4.8 and 4.10
there is a splitting (S3, F ) that is a common stabilization of (S3, G) and
(S3, S2) with several useful properties. First, let V,W denote handle-
bodies so that V ∪ W = S3, V ∩ W = F . Next, note that genus(F ) ≥
genus(G). Letting n = genus(F ) and m = genus(F ) − genus(G) we
assume that;

• There are good systems v = {v1, . . . , vn} and x = {x1, . . . , xm}
in V .

• There is a v–determined system w = {w1, . . . , wn} and an x–
determined system y = {y1, . . . , ym} in W .

• (S3, S2) ≈ (S3, F (v)) and (S3, G) ≈ (S3, F (x)).
• x ∩ v = ∅ = y ∩ w.

Suppose that the surface F is also chosen with minimal possible
genus. We shall show, via contradiction, that genus(F ) = 0. Since F
was a stabilization of G it will follow that genus(G) = 0, as desired. So
assume for the remainder of the proof that n > 0.

Lemma 5.2 (Waldhausen 3.2). Altering y only we can ensure that

|y ∩ vn| ≤ 1.

Proof. There are two possible cases.

Case 1: Suppose some element of y hits vn in at least two points.
Let C = WrU(w). (This is a three-ball with spots.) Note that y is a
collection of disjoint disks in C. Thus the disks y cut C into a collection
of three-balls. Note that w∩∂vn is a single point. Hence γ = ∂vn ∩∂C
is a single arc with interior disjoint from the spots of ∂C. Since some
element of y hits ∂vn twice there is an element yj ∈ y and a subarc
α contained in the interior of γ so that α ∩ U(w) = ∅, ∂α ⊂ yj, and
interior(α) ∩ y = ∅.

Choose an arc β, properly embedded in yj, so that ∂β = ∂α. Then
α∪β bounds a disk D ⊂ C so that D∩∂C = α and D∩y = β. Again,
this is true because Cry is a collection of three-balls. (The disk D is
called a bigon.) Let E be the component of yjrβ that meets xj exactly
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once. Let y′

j = D ∪ E. (The modern language is that y′

j is obtained
from yj via bigon surgery along D.)

Since v ∩ x = ∅ it follows that α ∩ xj = ∅. Thus y′

j meets xj

exactly once, xi ∩ y′

j = ∅ for all i > j, and yi ∩ y′

j = ∅ for all i 6= j.
Thus y′ = (yr{yj}) ∪ {y′

j} is an x–determined system. Furthermore
y′ ∩ w = ∅ and y′ meets vn fewer times than y does.

Case 2: Suppose every disk in y meets vn in at most one point, and
|y ∩ vn| ≥ 2. Define C = WrU(w) as above. There is an arc α ⊂
(∂vn) ∩ ∂C so that α ∩ y = ∂α. We may assume that one point of ∂α
lies in yi while the other lies in yj, for i < j. Let y′

j be the disk obtained
by doing a handle-slide of yj over yi along the arc α. As indicated in
Remark 4.5, the system y′ = (yr{yj}) ∪ {y′

j} has all of the desired
properties, and also reduces intersection with vn.

Finally, iterating Case 1 and then Case 2 proves the lemma. �

Proof of Theorem 5.1. (Waldhausen 3.3)

Case 1: If y ∩ vn 6= ∅ then by the above lemma we can assume that
y ∩ vn is a single point. Suppose that yj meets vn.

Define
x′ = {x1, . . . , xj−1, xj+1, . . . , xm, vn},

y′ = {y1, . . . , yj−1, yj+1, . . . , ym, yj},

and notice that x′ is good with respect to y′. Lemma 4.7 implies that
(S3, F (y′)) ≈ (S3, F (x′)) and (S3, F (y)) ≈ (S3, G). Since y and y′ are
equal as sets (S3, F (y′)) ≈ (S3, F (y)). So (S3, F (x′)) ≈ (S3, G).

Now we replace y′ by another x′–determined system y′′ by replacing
y′

m by wn. That is, define

y′′ = {y′

1, . . . , y
′

m−1, wn}.

The meridional pair (vn, wn) = (x′

m, y′′

m) represents the first trivial han-
dle cut off in the process of transforming (S3, F ) into (S3, F (v)) or
(S3, F (x′)). So the first step in the process of transforming (S3, F )
into (S3, F (x′)) ≈ (S3, G) is the same as the first step in going from
(S3, F ) to (S3, F (v)) ≈ (S3, S2). Let (S3, F ′) be the Heegaard decom-
position obtained from (S3, F ) by cutting off this trivial handle. Then
(S3, F ′) has the same properties as (S3, F ) but F ′ has lower genus than
F . This contradicts the minimality of F .

Case 2: If y ∩ vn = ∅ then we enlarge x and y to x∗ and y∗ by adding
vn and wn. That is, we define

x∗ = {x1, . . . , xm, vn}

and
y∗ = {y1, . . . , ym, wn}.
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Suppose in (S3, F ) we cut off the trivial handles of (x∗, y∗), obtain-
ing (S3, F (x∗)). Then we effectively cut off all the trivial handles of
(x, y), obtaining (S3, F (x)) ≈ (S3, G) and additionally cut off the triv-
ial handle represented by (vn, wn). So (S3, F (x∗)) is obtained from
(S3, G) by removing a trivial handle. That is, (S3, G) ≈ (S3, F (x)) ≈
(S3, F (x∗))#(S3, T ). Thus G is a stabilized splitting. This is a contra-
diction. �

6. Remarks

Doubling a handlebody. Suppose that T ⊂ S2 × S1 is the torus
obtained by taking the product of the equator of the two-sphere and
the S1 factor. Let (Mg, Fg) = #g(S

2×S1, T ). Notice that Mg may also
be obtained by doubling a genus g handlebody across its boundary.

Waldhausen appears to claim the following:

Theorem 6.1 (Waldhausen 4.1). Fg is the unique unstabilized splitting

of Mg, up to isotopy.

His actual sentence is:

Hieraus und aus [Theorem 5.1] folgt, daß auch die Man-
nigfaltigkeiten [Mg] nur die bekannten Heegaard-Zerlegungen
besitzen.

(Brackets added.) This indicates that Theorem 6.1 follows from The-
orem 5.1 and Haken’s Lemma [Hak68]:

Lemma 6.2 (Haken). Suppose that (M,F ) is a Heegaard splitting and

S ⊂ M is a two-sphere which does not bound a three-ball in M . Then

there is another such two-sphere S ′ ⊂ M so that S ∩ F is a single

curve. �

The lemma can be used to prove that Fg is unique up to homeo-
morphism. It is not clear to this writer how to obtain Theorem 6.1 by
following Waldhausen’s remark.

It seems that no proof of Theorem 6.1 appears in the literature until
the recent work of Carvalho and Oertel on automorphisms of handle-
bodies. See Theorem 1.10 of their paper [CO05]. A similar proof
may be given using Hatcher’s normal form for sphere systems (Propo-
sition 1.1 of [Hat95]). Carvalho and Oertel also give an alternative
proof, deducing Theorem 6.1 from work of Laudenbach [Lau73].

Compression bodies.

Definition 6.3 (Waldhausen 4.2). Suppose that V is a handlebody and
D is a (perhaps empty) system of meridional disks properly embedded
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in V . Let N be a closed regular neighborhood of D ∪ ∂V , taken in V .
Then N is a compression body.

Note that ∂N is disconnected and contains ∂V as a component.
This component is called the positive boundary of N and is denoted
by ∂+N . The negative boundary is ∂−N = ∂Nr∂+N . Most modern
authors disallow copies of S2 appearing in ∂−N .

Now suppose M is an orientable three-manifold and F ⊂ M is
a orientable closed surface in the interior of M . If F cuts M into
two pieces V and W , where each of V and W is a handlebody or a
compression body, and where F = ∂+V = ∂+W then we say that
(M,F ) is a Heegaard splitting of M with respect to the partition

(V ∩ ∂M,W ∩ ∂M). Equivalence (up to isotopy), stabilization, and
stable equivalence with respect to a fixed partition may all be defined
as above. The Reidemeister-Singer Theorem can then be extended:
any two Heegaard splittings of M giving the same partition of ∂M are
stably equivalent.

Haken’s Lemma in compression bodies. Haken’s Lemma also ap-
plies to Heegaard splittings respecting a partition. Similarly, suppose
that (M,F ) is a Heegaard splitting respecting a partition and D ⊂ M
is a properly embedded disk so that ∂D is essential in ∂M . Then
there is another such disk meeting F is a single curve. Using this and
Theorem 5.1 we have:

Theorem 6.4 (Waldhausen 4.3). If V is a handlebody and (V, F ) is

an unstabilized splitting then F is parallel to ∂V . �

Lens spaces. As noted above, in addition to equivalence up to iso-
topy, we may define another equivalence relation on splittings (M,F );
namely equivalence up to orientation-preserving homeomorphism of
pairs. If ∂M 6= ∅ then we also require that the partition of ∂M be
respected. Notice that these two equivalence relations do not generally
agree, for example in the presence of incompressible tori. For a modern
discussion, with references, see [BDT06].

Waldhausen notes that connect sum makes either set of equivalence
classes into a commutative and associative monoid. This monoid is not

cancellative. Suppose that (M,F ) is a genus one splitting of a lens
space, not equal to the three-sphere. Then (M,F ) is characterized, up
to homeomorphism, by a pair of relatively prime integers (p, q) with
0 < q < p. Now, letting −F represent F with the opposite orientation,
we find that (M,−F ) is characterized by (p, q′) where

q · q′ = 1 (mod p) .



16 SAUL SCHLEIMER

It follows that (M,F ) and (M,−F ) are generally not equivalent. On
the other hand, (M,F )#(S3, T ) and (M,−F )#(S3, T ) are always equiv-
alent. For suppose that D ⊂ F is a small disk, N is a closed regular
neighborhood of Frinterior(D), and G = ∂N . Then G is the desired
common stabilization.

Waldhausen ends by suggesting that the pairs (M,F ) characterized
by (5, 2) and (7, 2), and their orientation reverses (namely (5, 3) and
(7, 4)), have interesting connect sums. He wonders how many distinct
equivalence classes, up to isotopy or up to homeomorphism, are repre-
sented by the four sums

(5, 2)#(7, 2), (5, 2)#(7, 4), (5, 3)#(7, 2), (5, 3)#(7, 4).

This question was answered by Engmann [Eng70]; no pair of the sug-
gested genus two splittings are homeomorphic.
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[Eng70] Renate Engmann. Nicht-homöomorphe Heegaard-Zerlegungen vom
Geschlecht 2 der zusammenhängenden Summe zweier Linsenräume. Abh.
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