OBTAINING SLIM TRIANGLES

0.1. Triangles in hyperbolic space are thin. Suppose that X is
a 0—hyperbolic graph, choose x,y, z vertices, and fix geodesics h, k, [
connecting these vertices cyclically. Recall that p,: X — h is the
closest points projection map.

Lemma 0.1. There is a point on k within distance 26 of pp(z). O
Lemma 0.2. The diameter of {pn(2), pr(z), pi(y)} is at most 66. O

Lemma 0.3. Suppose that 2’ is another point in X so that dx(z,z") <
R. Then dx(pn(z), pn(2")) < 2R + 40. O

Lemma 0.4. Suppose that h' is another geodesic in X so that the
endpoints of h' are within distance R of the points x and y. Then
dx(ph(Z),ph/(Z)) S R+ 126. O

0.2. Index in a hole. Fix G(5) a “combinatorial complex.” For the
following definitions, we assume that « and 3 are fixed vertices of G.

For any hole X and for any geodesic h € C(X) connecting a point
of mx(«) to a point of mx () we also define p,: G — h to be the map
mx|G: G — C(X) followed by closest points projection to h. Define
index'}(: G — N to be the index in X:

index’ (o) = dx (a, pu(0)).
Remark 0.5. Suppose that /' is a different geodesic connecting 7x ()
to mx (). Then

lindex (¢) — index’s (0)| < 126 + 2

by Lemma 0.4. Thus, if we are willing to accept a small additive error,
the choice of geodesic h is irrelevant. Accordingly we will supress the
superscript whenever possible.

0.3. Projection control. We say domains X,Y C S overlap if X
and Y intersect but are not nested. The following theorem (see The-
orem 4.2.1 of Behrstock’s thesis [1]) follows from Masur and Minsky’s
idea (see [2]) of time ordered domains in S:

Theorem 0.6. There is a constant My = M(S) with the follow-

ing property. Suppose that X,Y are overlapping non-simple domains.

If v € AC(S) cuts both X and Y then either dx(v,0Y) < My or

dy(aX, ’}/) < M;. U
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We also require a more specialized version of Theorem 0.6 for the
case where X and Y are nested.

Lemma 0.7. There is a constant My = My(S) with the following
property. Suppose that X C Y are nested non-simple domains. Fix
a, B,y € AC(S) which cut both X and Y. Fiz k = [o/,5] C C(Y), a
geodesic connecting a point of my («) to a point of my (3). Assume that
dx (o, 3) > My, the constant given by the Bounded Image Lemma.

If dx(cv,7y) > My then

index? (0X) — 4 < index¥ (7).
Symmetrically, we have
index? () < index% (0X) + 4
if dx(v,53) = Ms. O

0.4. Back and sidetracking. Fix 0,7 € G. We say o precedes T by
at least K in X if

indexx (o) + K < indexx(7).

We say o precedes 7 by at most K if the inequality is reversed. If o
precedes 7 then we say 7 succeeds o.

Now take P = o; to be a path in G connecting « to 3. We assume
that o; and o, are disjoint.

We now formalize a pair of properties enjoyed by unparametrized
quasi-geodesics to the situation at hand. The path P backtracks at
most K if for every X and all indices ¢ < j we find that o; precedes o;
by at most K. The path P sidetracks at most K if for every hole X
and every index ¢ we find that

dx(oi, pn(0:)) < K,

for some geodesic h connecting a point of mx(a) to a point of mx (/).

Remark 0.8. As in Remark 0.5, allowing a small additive error makes
irrelevant the choice of geodesic in the definition of sidetracking. We
note that, if P has bounded sidetracking, one may freely use in calcu-
lation whichever of o; or p,(0;) is more convenient.

We now state our current goal:

Theorem 0.9. Fix G, a combinatorial complex. There is a constant
Ky so that, for every K1 > Ky there is a 6 with the following property:
If T is a triangle in G whose sides backtrack and sidetrack at most K,
then T is d—slim.

We will prove this via a sequence of claims.
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0.5. Finding the midpoint of a side. Let Ky = max{My,4M;, M>,8}+
60. Fix K; > Ky. Let P, Q, R be the sides of a triangle in G with ver-
tices at «, ,7. We may assume that each of P, O, and R back and
sidetracks at most K in every hole.

Claim 0.10. If o; precedes v in X and o; succeeds 7y in Y, both by at
least 2K, then 7 < 7.

Proof. To begin, as X and Y are holes, we need not consider the pos-
sibility that X NY = (. If X =Y we immediately deduce that

indexx(0;) + 2K, < indexx(y) < indexx(o;) — 2K;.

Thus indexy (0;) + 4K, < indexx(0;). Since P backtracks at most K
we have ¢ < j, as desired.

Suppose instead that X C Y. Since o; precedes v in X we immedi-
ately find dx (o, 5) > 2K; > My and dx (o, 7y) > 2K1—20 > Ms. Apply
Lemma 0.7 to deduce indexy (0X) — 4 < indexy (7). Since o, succeeds
v in Y it follows that indexy (0X) — 4 + 2K; < indexy(o;). Again
using the fact that o; precedes v in X we have that dx(o;, 3) > Mo.
We deduce from Lemma 0.7 that indexy (0;) < indexy (0X) + 4. Thus

indexy (0;) — 8 + 2K < indexy (0;).

Since P backtracks at most K; in Y we again deduce that ¢ < j. The
case where Y C X is handled in symmetric fashion.

Suppose now that X and Y overlap. Applying Theorem 0.6 and
breaking symmetry, we may assume that dx(v,0Y) < M;. Since o;
precedes v we have index x () > 2K. Thus, it follows that indexx (9Y") >
2K, — 2M; — 46 and so

dx<Oé,aY> Z 2K1 — 2M1 — 6(5 Z Ml.

Applying Theorem 0.6 again, we find that dy (a, 9X)
since o; succeeds v in Y, we deduce that indexy (o;) >
considerations to the above show that

< M;. Now,
2K;. Similar

dY(@X, O']) 2 2K1 — Ml — 20 Z Ml-

Applying Theorem 0.6 one last time, we find that dx(9Y,0;) < M;.
Thus dx(v,0;) < 2M;. Finally, we deduce that the difference in index
(in X) between o; and o is at least 2K —4M; —46. Since this is again
greater than K7, it follows that 7 < j. O

Let o, € P be the last vertex of P preceding v by at least 2K; in
some hole. If no such vertex of P exists then take o, = a.
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Claim 0.11. There is a constant N; = N(S) with the following prop-
erty. For every hole X and geodesic h connecting mwx(a) to mx(/3):

dx(0a, pu(7)) < N1

Proof. Since o; and o0, are disjoint we have
lindexx (0;11) — indexx (0;)| < 49 + 2.

Since P is a path connecting o to [ the image p,(P) is 46 + 2—dense
in h. Thus, if indexx(0,) + 2K + 46 + 2 < indexx () then we have a
contradiction to the definition of o,,.

On the other hand, if indexx (0,) > indexx(y)+ K; then o, succeeds
~. This directly contradicts Claim 0.10.

We deduce that the difference in index between o, and v in X is at
most 2K + 46 + 2. Finally, as P sidetracks by at most K; we have

dx(0a, pr(7)) < 3Ky +46 + 2
as desired. O

We define o4 to be the first o; to succeed v by at least 2K; — if no
such vertex of P exists take og = 3. If @ = 3 then 0, = 05. Otherwise,
from Claim 0.10, we immediately deduce that o, comes before o3 in
P. A symmetric version of Claim 0.11 applies to og: for every hole X

dx(pn(7),08) < Ni.

0.6. Another side of the triangle. Recall now that we are also given
a path R = {;} connecting o to v in G. As before, R has bounded back
and sidetracking. Thus we again find vertices 7, and 7, the last/first
to precede/succeed [ by at least 2K;. Again, this is defined in terms
the closest points projection of 8 to geodesics geodesics of the form
| = [rx(a),7x(v)]. By Claim 0.11, for every hole X, 7, and 7, are
close to pi(3).

By Lemma 0.2, if h = [rx (), mx(8)], then dx(pn(7), pi(B)) < 66.
We deduce:

Claim 0.12. dx (04, Ta) < 2N; + 60. O
We now prove:

Claim 0.13. There is a constant No = Ny(.S) with the following prop-
erty. For every o; < 0, in P there is a 7; < 7, in R so that

dx(0i, 7)) < Ny

for every hole X.
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Proof. We only sketch the proof, as the details are similar to the discus-
sion above. Fix 0; < 0,. Fix a hole X and geodesics h = [rx (), 7x(0)]
and | = [rx(«a), mx(7)]

Suppose first that no vertex of R precedes o; by more than 2K;.
Then p;(0;) in within distance 2K of mx(a). Since dx (0a, 7o) < 2N;+
66, by Claim 0.12, the initial segments of h and [ fellow travel. Because
of bounded backtracking along P, p,(0;) lies on, or at least near, this
initial segment of h. Thus p;(0;) is close to py(0;) which in turn is
close to o;, because P has bounded sidetracking. Thus we may take
T; = 7o = « and we are done.

Now suppose that some vertex of R precedes o; by at least 2K;. Take
7; to be the last such vertex in R. Following the proof of Claim 0.10
shows that 7; comes before 7, in R. The argument now required to
bound dx (o, 7;) is essentially identical to the proof of Claim 0.11. [

By the distance estimate, we find that there is a uniform neighbor-
hood of [0g,0,] C P, taken in G, which contains [r,7,] C P. The
slimness of PQR follows directly. This completes the proof of Theo-
rem 0.9. U
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