
OBTAINING SLIM TRIANGLES

0.1. Triangles in hyperbolic space are thin. Suppose that X is
a δ–hyperbolic graph, choose x, y, z vertices, and fix geodesics h, k, l
connecting these vertices cyclically. Recall that ρh : X → h is the
closest points projection map.

Lemma 0.1. There is a point on k within distance 2δ of ρh(z). ¤
Lemma 0.2. The diameter of {ρh(z), ρk(x), ρl(y)} is at most 6δ. ¤
Lemma 0.3. Suppose that z′ is another point in X so that dX(z, z′) ≤
R. Then dX(ρh(z), ρh(z

′)) ≤ 2R + 4δ. ¤
Lemma 0.4. Suppose that h′ is another geodesic in X so that the
endpoints of h′ are within distance R of the points x and y. Then
dX(ρh(z), ρh′(z)) ≤ R + 12δ. ¤

0.2. Index in a hole. Fix G(S) a “combinatorial complex.” For the
following definitions, we assume that α and β are fixed vertices of G.

For any hole X and for any geodesic h ∈ C(X) connecting a point
of πX(α) to a point of πX(β) we also define ρh : G → h to be the map
πX |G : G → C(X) followed by closest points projection to h. Define
indexhX : G → N to be the index in X:

indexhX(σ) = dX(α, ρh(σ)).

Remark 0.5. Suppose that h′ is a different geodesic connecting πX(α)
to πX(β). Then

|indexhX(σ)− indexh
′
X(σ)| ≤ 12δ + 2

by Lemma 0.4. Thus, if we are willing to accept a small additive error,
the choice of geodesic h is irrelevant. Accordingly we will supress the
superscript whenever possible.

0.3. Projection control. We say domains X,Y ⊂ S overlap if X
and Y intersect but are not nested. The following theorem (see The-
orem 4.2.1 of Behrstock’s thesis [1]) follows from Masur and Minsky’s
idea (see [2]) of time ordered domains in S:

Theorem 0.6. There is a constant M1 = M1(S) with the follow-
ing property. Suppose that X,Y are overlapping non-simple domains.
If γ ∈ AC(S) cuts both X and Y then either dX(γ, ∂Y ) < M1 or
dY (∂X, γ) < M1. ¤
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We also require a more specialized version of Theorem 0.6 for the
case where X and Y are nested.

Lemma 0.7. There is a constant M2 = M2(S) with the following
property. Suppose that X ⊂ Y are nested non-simple domains. Fix
α, β, γ ∈ AC(S) which cut both X and Y . Fix k = [α′, β′] ⊂ C(Y ), a
geodesic connecting a point of πY (α) to a point of πY (β). Assume that
dX(α, β) ≥M0, the constant given by the Bounded Image Lemma.

If dX(α, γ) ≥M2 then

indexkY (∂X)− 4 ≤ indexkY (γ).

Symmetrically, we have

indexkY (γ) ≤ indexkY (∂X) + 4

if dX(γ, β) ≥M2. ¤

0.4. Back and sidetracking. Fix σ, τ ∈ G. We say σ precedes τ by
at least K in X if

indexX(σ) +K ≤ indexX(τ).

We say σ precedes τ by at most K if the inequality is reversed. If σ
precedes τ then we say τ succeeds σ.

Now take P = σi to be a path in G connecting α to β. We assume
that σi and σi+1 are disjoint.

We now formalize a pair of properties enjoyed by unparametrized
quasi-geodesics to the situation at hand. The path P backtracks at
most K if for every X and all indices i < j we find that σj precedes σi
by at most K. The path P sidetracks at most K if for every hole X
and every index i we find that

dX(σi, ρh(σi)) ≤ K,

for some geodesic h connecting a point of πX(α) to a point of πX(β).

Remark 0.8. As in Remark 0.5, allowing a small additive error makes
irrelevant the choice of geodesic in the definition of sidetracking. We
note that, if P has bounded sidetracking, one may freely use in calcu-
lation whichever of σi or ρh(σi) is more convenient.

We now state our current goal:

Theorem 0.9. Fix G, a combinatorial complex. There is a constant
K0 so that, for every K1 ≥ K0 there is a δ with the following property:
If T is a triangle in G whose sides backtrack and sidetrack at most K1,
then T is δ–slim.

We will prove this via a sequence of claims.
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0.5. Finding the midpoint of a side. LetK0 = max{M0, 4M1,M2, 8}+
6δ. Fix K1 ≥ K0. Let P ,Q,R be the sides of a triangle in G with ver-
tices at α, β, γ. We may assume that each of P , Q, and R back and
sidetracks at most K1 in every hole.

Claim 0.10. If σi precedes γ in X and σj succeeds γ in Y , both by at
least 2K1, then i < j.

Proof. To begin, as X and Y are holes, we need not consider the pos-
sibility that X ∩ Y = ∅. If X = Y we immediately deduce that

indexX(σi) + 2K1 ≤ indexX(γ) ≤ indexX(σj)− 2K1.

Thus indexX(σi) + 4K1 ≤ indexX(σj). Since P backtracks at most K1

we have i < j, as desired.
Suppose instead that X ⊂ Y . Since σi precedes γ in X we immedi-

ately find dX(α, β) ≥ 2K1 ≥M0 and dX(α, γ) ≥ 2K1−2δ ≥M2. Apply
Lemma 0.7 to deduce indexY (∂X)− 4 ≤ indexY (γ). Since σj succeeds
γ in Y it follows that indexY (∂X) − 4 + 2K1 ≤ indexY (σj). Again
using the fact that σi precedes γ in X we have that dX(σi, β) ≥ M2.
We deduce from Lemma 0.7 that indexY (σi) ≤ indexY (∂X) + 4. Thus

indexY (σi)− 8 + 2K1 ≤ indexY (σj).

Since P backtracks at most K1 in Y we again deduce that i < j. The
case where Y ⊂ X is handled in symmetric fashion.

Suppose now that X and Y overlap. Applying Theorem 0.6 and
breaking symmetry, we may assume that dX(γ, ∂Y ) < M1. Since σi
precedes γ we have indexX(γ) ≥ 2K1. Thus, it follows that indexX(∂Y ) ≥
2K1 − 2M1 − 4δ and so

dX(α, ∂Y ) ≥ 2K1 − 2M1 − 6δ ≥M1.

Applying Theorem 0.6 again, we find that dY (α, ∂X) < M1. Now,
since σj succeeds γ in Y , we deduce that indexY (σj) ≥ 2K1. Similar
considerations to the above show that

dY (∂X, σj) ≥ 2K1 −M1 − 2δ ≥M1.

Applying Theorem 0.6 one last time, we find that dX(∂Y, σj) < M1.
Thus dX(γ, σj) ≤ 2M1. Finally, we deduce that the difference in index
(in X) between σi and σj is at least 2K1−4M1−4δ. Since this is again
greater than K1, it follows that i < j. ¤

Let σα ∈ P be the last vertex of P preceding γ by at least 2K1 in
some hole. If no such vertex of P exists then take σα = α.
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Claim 0.11. There is a constant N1 = N1(S) with the following prop-
erty. For every hole X and geodesic h connecting πX(α) to πX(β):

dX(σα, ρh(γ)) ≤ N1.

Proof. Since σi and σi+1 are disjoint we have

|indexX(σi+1)− indexX(σi)| ≤ 4δ + 2.

Since P is a path connecting α to β the image ρh(P) is 4δ + 2–dense
in h. Thus, if indexX(σα) + 2K1 + 4δ + 2 < indexX(γ) then we have a
contradiction to the definition of σα.

On the other hand, if indexX(σα) ≥ indexX(γ)+K1 then σα succeeds
γ. This directly contradicts Claim 0.10.

We deduce that the difference in index between σα and γ in X is at
most 2K1 + 4δ + 2. Finally, as P sidetracks by at most K1 we have

dX(σα, ρh(γ)) ≤ 3K1 + 4δ + 2

as desired. ¤

We define σβ to be the first σi to succeed γ by at least 2K1 — if no
such vertex of P exists take σβ = β. If α = β then σα = σβ. Otherwise,
from Claim 0.10, we immediately deduce that σα comes before σβ in
P . A symmetric version of Claim 0.11 applies to σβ: for every hole X

dX(ρh(γ), σβ) ≤ N1.

0.6. Another side of the triangle. Recall now that we are also given
a pathR = {τi} connecting α to γ in G. As before,R has bounded back
and sidetracking. Thus we again find vertices τα and τγ the last/first
to precede/succeed β by at least 2K1. Again, this is defined in terms
the closest points projection of β to geodesics geodesics of the form
l = [πX(α), πX(γ)]. By Claim 0.11, for every hole X, τα and τγ are
close to ρl(β).

By Lemma 0.2, if h = [πX(α), πX(β)], then dX(ρh(γ), ρl(β)) ≤ 6δ.
We deduce:

Claim 0.12. dX(σα, τα) ≤ 2N1 + 6δ. ¤
We now prove:

Claim 0.13. There is a constant N2 = N2(S) with the following prop-
erty. For every σi ≤ σα in P there is a τj ≤ τα in R so that

dX(σi, τj) ≤ N2

for every hole X.
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Proof. We only sketch the proof, as the details are similar to the discus-
sion above. Fix σi ≤ σα. Fix a holeX and geodesics h = [πX(α), πX(β)]
and l = [πX(α), πX(γ)].

Suppose first that no vertex of R precedes σi by more than 2K1.
Then ρl(σi) in within distance 2K1 of πX(α). Since dX(σα, τα) ≤ 2N1 +
6δ, by Claim 0.12, the initial segments of h and l fellow travel. Because
of bounded backtracking along P , ρh(σi) lies on, or at least near, this
initial segment of h. Thus ρl(σi) is close to ρh(σi) which in turn is
close to σi, because P has bounded sidetracking. Thus we may take
τj = τ0 = α and we are done.

Now suppose that some vertex ofR precedes σi by at least 2K1. Take
τj to be the last such vertex in R. Following the proof of Claim 0.10
shows that τj comes before τα in R. The argument now required to
bound dX(σi, τj) is essentially identical to the proof of Claim 0.11. ¤

By the distance estimate, we find that there is a uniform neighbor-
hood of [σ0, σα] ⊂ P , taken in G, which contains [τ0, τα] ⊂ P . The
slimness of PQR follows directly. This completes the proof of Theo-
rem 0.9. ¤
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