OBTAINING SLIM TRIANGLES

0.1. Triangles in hyperbolic space are thin. Suppose that X is a δ-hyperbolic graph, choose x, y, z vertices, and fix geodesics h, k, l connecting these vertices cyclically. Recall that $\rho_{h}: X \rightarrow h$ is the closest points projection map.
Lemma 0.1. There is a point on k within distance 2δ of $\rho_{h}(z)$.
Lemma 0.2. The diameter of $\left\{\rho_{h}(z), \rho_{k}(x), \rho_{l}(y)\right\}$ is at most 6δ.
Lemma 0.3. Suppose that z^{\prime} is another point in X so that $d_{X}\left(z, z^{\prime}\right) \leq$ R. Then $d_{X}\left(\rho_{h}(z), \rho_{h}\left(z^{\prime}\right)\right) \leq 2 R+4 \delta$.
Lemma 0.4. Suppose that h^{\prime} is another geodesic in X so that the endpoints of h^{\prime} are within distance R of the points x and y. Then $d_{X}\left(\rho_{h}(z), \rho_{h^{\prime}}(z)\right) \leq R+12 \delta$.
0.2. Index in a hole. Fix $\mathcal{G}(S)$ a "combinatorial complex." For the following definitions, we assume that α and β are fixed vertices of \mathcal{G}.

For any hole X and for any geodesic $h \in \mathcal{C}(X)$ connecting a point of $\pi_{X}(\alpha)$ to a point of $\pi_{X}(\beta)$ we also define $\rho_{h}: \mathcal{G} \rightarrow h$ to be the map $\pi_{X} \mid \mathcal{G}: \mathcal{G} \rightarrow \mathcal{C}(X)$ followed by closest points projection to h. Define index ${ }_{X}^{h}: \mathcal{G} \rightarrow \mathbb{N}$ to be the index in X :

$$
\operatorname{index}_{X}^{h}(\sigma)=d_{X}\left(\alpha, \rho_{h}(\sigma)\right)
$$

Remark 0.5. Suppose that h^{\prime} is a different geodesic connecting $\pi_{X}(\alpha)$ to $\pi_{X}(\beta)$. Then

$$
\left|\operatorname{index}_{X}^{h}(\sigma)-\operatorname{index}_{X}^{h^{\prime}}(\sigma)\right| \leq 12 \delta+2
$$

by Lemma 0.4. Thus, if we are willing to accept a small additive error, the choice of geodesic h is irrelevant. Accordingly we will supress the superscript whenever possible.
0.3. Projection control. We say domains $X, Y \subset S$ overlap if X and Y intersect but are not nested. The following theorem (see Theorem 4.2.1 of Behrstock's thesis [1]) follows from Masur and Minsky's idea (see [2]) of time ordered domains in S :
Theorem 0.6. There is a constant $M_{1}=M_{1}(S)$ with the following property. Suppose that X, Y are overlapping non-simple domains. If $\gamma \in \mathcal{A C}(S)$ cuts both X and Y then either $d_{X}(\gamma, \partial Y)<M_{1}$ or $d_{Y}(\partial X, \gamma)<M_{1}$.

We also require a more specialized version of Theorem 0.6 for the case where X and Y are nested.
Lemma 0.7. There is a constant $M_{2}=M_{2}(S)$ with the following property. Suppose that $X \subset Y$ are nested non-simple domains. Fix $\alpha, \beta, \gamma \in \mathcal{A C}(S)$ which cut both X and Y. Fix $k=\left[\alpha^{\prime}, \beta^{\prime}\right] \subset \mathcal{C}(Y)$, a geodesic connecting a point of $\pi_{Y}(\alpha)$ to a point of $\pi_{Y}(\beta)$. Assume that $d_{X}(\alpha, \beta) \geq M_{0}$, the constant given by the Bounded Image Lemma.

If $d_{X}(\alpha, \gamma) \geq M_{2}$ then

$$
\operatorname{index}_{Y}^{k}(\partial X)-4 \leq \operatorname{index}_{Y}^{k}(\gamma)
$$

Symmetrically, we have

$$
\operatorname{index}_{Y}^{k}(\gamma) \leq \operatorname{index}_{Y}^{k}(\partial X)+4
$$

if $d_{X}(\gamma, \beta) \geq M_{2}$.
0.4. Back and sidetracking. Fix $\sigma, \tau \in \mathcal{G}$. We say σ precedes τ by at least K in X if

$$
\operatorname{index}_{X}(\sigma)+K \leq \operatorname{index}_{X}(\tau)
$$

We say σ precedes τ by at most K if the inequality is reversed. If σ precedes τ then we say τ succeeds σ.

Now take $\mathcal{P}=\sigma_{i}$ to be a path in \mathcal{G} connecting α to β. We assume that σ_{i} and σ_{i+1} are disjoint.

We now formalize a pair of properties enjoyed by unparametrized quasi-geodesics to the situation at hand. The path \mathcal{P} backtracks at most K if for every X and all indices $i<j$ we find that σ_{j} precedes σ_{i} by at most K. The path \mathcal{P} sidetracks at most K if for every hole X and every index i we find that

$$
d_{X}\left(\sigma_{i}, \rho_{h}\left(\sigma_{i}\right)\right) \leq K,
$$

for some geodesic h connecting a point of $\pi_{X}(\alpha)$ to a point of $\pi_{X}(\beta)$.
Remark 0.8. As in Remark 0.5, allowing a small additive error makes irrelevant the choice of geodesic in the definition of sidetracking. We note that, if \mathcal{P} has bounded sidetracking, one may freely use in calculation whichever of σ_{i} or $\rho_{h}\left(\sigma_{i}\right)$ is more convenient.

We now state our current goal:
Theorem 0.9. Fix \mathcal{G}, a combinatorial complex. There is a constant K_{0} so that, for every $K_{1} \geq K_{0}$ there is a δ with the following property: If T is a triangle in \mathcal{G} whose sides backtrack and sidetrack at most K_{1}, then T is δ-slim.

We will prove this via a sequence of claims.
0.5. Finding the midpoint of a side. Let $K_{0}=\max \left\{M_{0}, 4 M_{1}, M_{2}, 8\right\}+$ 6δ. Fix $K_{1} \geq K_{0}$. Let $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ be the sides of a triangle in \mathcal{G} with vertices at α, β, γ. We may assume that each of \mathcal{P}, \mathcal{Q}, and \mathcal{R} back and sidetracks at most K_{1} in every hole.
Claim 0.10. If σ_{i} precedes γ in X and σ_{j} succeeds γ in Y, both by at least $2 K_{1}$, then $i<j$.

Proof. To begin, as X and Y are holes, we need not consider the possibility that $X \cap Y=\emptyset$. If $X=Y$ we immediately deduce that

$$
\operatorname{index}_{X}\left(\sigma_{i}\right)+2 K_{1} \leq \operatorname{index}_{X}(\gamma) \leq \operatorname{index}_{X}\left(\sigma_{j}\right)-2 K_{1}
$$

Thus index ${ }_{X}\left(\sigma_{i}\right)+4 K_{1} \leq \operatorname{index}_{X}\left(\sigma_{j}\right)$. Since \mathcal{P} backtracks at most K_{1} we have $i<j$, as desired.

Suppose instead that $X \subset Y$. Since σ_{i} precedes γ in X we immediately find $d_{X}(\alpha, \beta) \geq 2 K_{1} \geq M_{0}$ and $d_{X}(\alpha, \gamma) \geq 2 K_{1}-2 \delta \geq M_{2}$. Apply Lemma 0.7 to deduce index ${ }_{Y}(\partial X)-4 \leq \operatorname{index}_{Y}(\gamma)$. Since σ_{j} succeeds γ in Y it follows that $\operatorname{index}_{Y}(\partial X)-4+2 K_{1} \leq \operatorname{index}_{Y}\left(\sigma_{j}\right)$. Again using the fact that σ_{i} precedes γ in X we have that $d_{X}\left(\sigma_{i}, \beta\right) \geq M_{2}$. We deduce from Lemma 0.7 that index ${ }_{Y}\left(\sigma_{i}\right) \leq \operatorname{index}_{Y}(\partial X)+4$. Thus

$$
\operatorname{index}_{Y}\left(\sigma_{i}\right)-8+2 K_{1} \leq \operatorname{index}_{Y}\left(\sigma_{j}\right)
$$

Since \mathcal{P} backtracks at most K_{1} in Y we again deduce that $i<j$. The case where $Y \subset X$ is handled in symmetric fashion.

Suppose now that X and Y overlap. Applying Theorem 0.6 and breaking symmetry, we may assume that $d_{X}(\gamma, \partial Y)<M_{1}$. Since σ_{i} precedes γ we have index ${ }_{X}(\gamma) \geq 2 K_{1}$. Thus, it follows that index ${ }_{X}(\partial Y) \geq$ $2 K_{1}-2 M_{1}-4 \delta$ and so

$$
d_{X}(\alpha, \partial Y) \geq 2 K_{1}-2 M_{1}-6 \delta \geq M_{1} .
$$

Applying Theorem 0.6 again, we find that $d_{Y}(\alpha, \partial X)<M_{1}$. Now, since σ_{j} succeeds γ in Y, we deduce that index ${ }_{Y}\left(\sigma_{j}\right) \geq 2 K_{1}$. Similar considerations to the above show that

$$
d_{Y}\left(\partial X, \sigma_{j}\right) \geq 2 K_{1}-M_{1}-2 \delta \geq M_{1}
$$

Applying Theorem 0.6 one last time, we find that $d_{X}\left(\partial Y, \sigma_{j}\right)<M_{1}$. Thus $d_{X}\left(\gamma, \sigma_{j}\right) \leq 2 M_{1}$. Finally, we deduce that the difference in index (in X) between σ_{i} and σ_{j} is at least $2 K_{1}-4 M_{1}-4 \delta$. Since this is again greater than K_{1}, it follows that $i<j$.

Let $\sigma_{\alpha} \in \mathcal{P}$ be the last vertex of \mathcal{P} preceding γ by at least $2 K_{1}$ in some hole. If no such vertex of \mathcal{P} exists then take $\sigma_{\alpha}=\alpha$.

Claim 0.11. There is a constant $N_{1}=N_{1}(S)$ with the following property. For every hole X and geodesic h connecting $\pi_{X}(\alpha)$ to $\pi_{X}(\beta)$:

$$
d_{X}\left(\sigma_{\alpha}, \rho_{h}(\gamma)\right) \leq N_{1}
$$

Proof. Since σ_{i} and σ_{i+1} are disjoint we have

$$
\left|\operatorname{index}_{X}\left(\sigma_{i+1}\right)-\operatorname{index}_{X}\left(\sigma_{i}\right)\right| \leq 4 \delta+2
$$

Since \mathcal{P} is a path connecting α to β the image $\rho_{h}(\mathcal{P})$ is $4 \delta+2-$ dense in h. Thus, if index ${ }_{X}\left(\sigma_{\alpha}\right)+2 K_{1}+4 \delta+2<\operatorname{index}_{X}(\gamma)$ then we have a contradiction to the definition of σ_{α}.

On the other hand, if index ${ }_{X}\left(\sigma_{\alpha}\right) \geq \operatorname{index}_{X}(\gamma)+K_{1}$ then σ_{α} succeeds γ. This directly contradicts Claim 0.10.

We deduce that the difference in index between σ_{α} and γ in X is at most $2 K_{1}+4 \delta+2$. Finally, as \mathcal{P} sidetracks by at most K_{1} we have

$$
d_{X}\left(\sigma_{\alpha}, \rho_{h}(\gamma)\right) \leq 3 K_{1}+4 \delta+2
$$

as desired.
We define σ_{β} to be the first σ_{i} to succeed γ by at least $2 K_{1}$ - if no such vertex of \mathcal{P} exists take $\sigma_{\beta}=\beta$. If $\alpha=\beta$ then $\sigma_{\alpha}=\sigma_{\beta}$. Otherwise, from Claim 0.10, we immediately deduce that σ_{α} comes before σ_{β} in \mathcal{P}. A symmetric version of Claim 0.11 applies to σ_{β} : for every hole X

$$
d_{X}\left(\rho_{h}(\gamma), \sigma_{\beta}\right) \leq N_{1}
$$

0.6. Another side of the triangle. Recall now that we are also given a path $\mathcal{R}=\left\{\tau_{i}\right\}$ connecting α to γ in \mathcal{G}. As before, \mathcal{R} has bounded back and sidetracking. Thus we again find vertices τ_{α} and τ_{γ} the last/first to precede/succeed β by at least $2 K_{1}$. Again, this is defined in terms the closest points projection of β to geodesics geodesics of the form $l=\left[\pi_{X}(\alpha), \pi_{X}(\gamma)\right]$. By Claim 0.11, for every hole X, τ_{α} and τ_{γ} are close to $\rho_{l}(\beta)$.

By Lemma 0.2 , if $h=\left[\pi_{X}(\alpha), \pi_{X}(\beta)\right]$, then $d_{X}\left(\rho_{h}(\gamma), \rho_{l}(\beta)\right) \leq 6 \delta$. We deduce:
Claim 0.12. $d_{X}\left(\sigma_{\alpha}, \tau_{\alpha}\right) \leq 2 N_{1}+6 \delta$.
We now prove:
Claim 0.13. There is a constant $N_{2}=N_{2}(S)$ with the following property. For every $\sigma_{i} \leq \sigma_{\alpha}$ in \mathcal{P} there is a $\tau_{j} \leq \tau_{\alpha}$ in \mathcal{R} so that

$$
d_{X}\left(\sigma_{i}, \tau_{j}\right) \leq N_{2}
$$

for every hole X.

Proof. We only sketch the proof, as the details are similar to the discussion above. Fix $\sigma_{i} \leq \sigma_{\alpha}$. Fix a hole X and geodesics $h=\left[\pi_{X}(\alpha), \pi_{X}(\beta)\right]$ and $l=\left[\pi_{X}(\alpha), \pi_{X}(\gamma)\right]$.

Suppose first that no vertex of \mathcal{R} precedes σ_{i} by more than $2 K_{1}$. Then $\rho_{l}\left(\sigma_{i}\right)$ in within distance $2 K_{1}$ of $\pi_{X}(\alpha)$. Since $d_{X}\left(\sigma_{\alpha}, \tau_{\alpha}\right) \leq 2 N_{1}+$ 6δ, by Claim 0.12, the initial segments of h and l fellow travel. Because of bounded backtracking along $\mathcal{P}, \rho_{h}\left(\sigma_{i}\right)$ lies on, or at least near, this initial segment of h. Thus $\rho_{l}\left(\sigma_{i}\right)$ is close to $\rho_{h}\left(\sigma_{i}\right)$ which in turn is close to σ_{i}, because \mathcal{P} has bounded sidetracking. Thus we may take $\tau_{j}=\tau_{0}=\alpha$ and we are done.

Now suppose that some vertex of \mathcal{R} precedes σ_{i} by at least $2 K_{1}$. Take τ_{j} to be the last such vertex in \mathcal{R}. Following the proof of Claim 0.10 shows that τ_{j} comes before τ_{α} in \mathcal{R}. The argument now required to bound $d_{X}\left(\sigma_{i}, \tau_{j}\right)$ is essentially identical to the proof of Claim 0.11.

By the distance estimate, we find that there is a uniform neighborhood of $\left[\sigma_{0}, \sigma_{\alpha}\right] \subset \mathcal{P}$, taken in \mathcal{G}, which contains $\left[\tau_{0}, \tau_{\alpha}\right] \subset \mathcal{P}$. The slimness of $\mathcal{P Q R}$ follows directly. This completes the proof of Theorem 0.9.

References

[1] Jason Behrstock. Asymptotic geometry of the mapping class group and Teichmüller space. PhD thesis, SUNY Stony Brook, 2004. http://www.math.columbia.edu/~jason/thesis.pdf.
[2] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal., 10(4):902-974, 2000. arXiv:math.GT/9807150.

