
SEP(S2) IS HYPERBOLIC

Abstract. We prove that the complex of of separating curves in
the closed genus two surface is Gromov hyperbolic. We indicate
how the techniques generalize to other complexes.

1. Notation and outline

We assume that the reader is familar with the papers of Masur and
Minsky [2] and [1]. If not, the following will not make a lot of sense.

Let S = Sg,n be the compact orientable connected surface with genus
g and n boundary components. The subscript n is omitted if S is closed.
In any case, define the complexity of S to be ζ(S) = 3g − 3 + n. For
any separating curve α ⊂ S define the complexity of α to be ζ(α) =
min{ζ(S ′), ζ(S ′′)} where S ′ and S ′′ are the components of Srα.

Remark 1.1. If S is closed then α is sometimes called a genus k curve,
where k = min{g(S ′), g(S ′′)}.

Now to define the graph Sep(S2): vertices are isotopy classes of sepa-
rating curves in S2, edges connect vertices α, β if and only if ι(α, β) = 4.
Define dSep(·, ·) to be the edge metric in Sep(S2).

Suppose that X ⊂ S is an essential subsurface. Recall the subsurface
projection map πX : Sep(S2)→ C(X). Define dX(α, β) = dX(πX(α, β))
to be the projection distance in C(X) between α and β. We say that X
is a hole for Sep(S2) if every vertex of Sep(S2) cuts X, or, equivalently,
πX(α) is defined for every α ∈ Sep(S2).

Our main goal is to show:

Theorem 1.2. Sep(S2) is Gromov hyperbolic.

To prove this we produce a family of uniform quasi-geodesics in
Sep(S2), one for each pair of vertices. As a corollary we obtain the
distance estimate:

Theorem 1.3. There is a constant C0 ≥ 0 so that, for any C ≥ C0

there are constants K ≥ 1, E ≥ 0 where

dSep(α, β)
K,E
=
∑

[dX(α, β)]C .
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This holds for any separating curves α and β. The right-hand sum is
over all holes for Sep(S2).

We use this to prove that any triangle, made of three quasi-geodesics
of the family, is δ-slim for a uniform δ. This implies hyperbolicity.

2. Basics

Lemma 2.1. Sep(S2) is connected. ¤
Lemma 2.2. The surface X ⊂ S is a hole for Sep(S2) if and only if
X is homeomorphic to S2, S1,2, or S0,4. ¤
Lemma 2.3. All holes for Sep(S2) intersect. ¤
Lemma 2.4. There is a constant K1 so that, for any hole X and for
any pair of separating curves α and β we find

dX(α, β) ≤ K1 · dSep(α, β).

¤

3. Lower bound

4. Innermost holes

Suppose that X ⊂ S is homeomorphic to S0,4. Write ∂X = A∪A′ ∪
B ∪B′ where A and A′ cobound an annulus in S as do B and B ′.

The curve complex of X is F(X): a copy of the Farey graph. The
vertices of F(X) fall into three types depending on how they partition
the components of ∂X. Curves giving the partition AA′|BB′ are of
type one. The partition AB|A′B′ gives type two curves. The partition
AB′|A′B gives type three curves. Every triangle of F(X) contains one
curve of each type. Curves of type one are separating in S2 and thus
give vertices of Sep(S2).

Lemma 4.1. The curves of type one in F(X) span an infinite valence
tree T∞ in Sep(S2).

Proof. Fix an edge e in F(X) with endpoints γ and δ of type two and
three respectively. Let f and f ′ be the two triangles adjacent to e. Let
α and α′ be the remaining two vertices of f and f ′. Both α and α′ are
separating in S. Also, ι(α, α′) = 4 so α and α′ are connected by an
edge E in Sep(S2). The action of the mapping class group MCG(X)
moves E around, giving a tree T∞ ⊂ Sep(S2) of infinite valence.

Now let Γ be the subgraph of Sep(S2) spanned by all of the type one
vertices of F(X). Note that T∞ is contained in Γ. Suppose that β and
β′ are vertices of T∞, separated in F(X) by the edge e. Suppose that
{α, α′} 6= {β, β ′}. It follows that ι(β, β ′) > 4 and so β and β ′ are not
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connected by an edge in Sep(S2). Thus the edge E is not contained in
any cycle in Γ. Thus Γ is a tree, and so equals T∞. ¤

We note that the tree T∞ is a very inefficient way to move around
in F(X): Suppose that α and γ are adjacent vertices of F(X) of types
one and two. Let αn = Dn

γ (α) be the separating curve obtained by
Dehn twisting α exactly n times about γ. Then the distance between
αi and αj is exactly |j− i| in T∞, but is only two in F(X). To remedy
this problem we will add a vertex γ̄ to T∞. Note that Srγ ∼= S1,2.
The remains of α in Srγ are a pair of arcs, as shown on the right of
Figure 1.
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Figure 1. On the left we see X containing α and γ. On
the right we have Srγ. Note that γ̄ is separating in S
and meets αn four times, regardless of n.

To be precise, γ̄ is a separating curve in S, is disjoint from B ⊂ ∂X,
meets A ⊂ ∂X twice, and meets αn four times, regardless of n. (These
properties determine the curve γ̄ up to Dehn twists about A.) It follows
that dSep(αi, αj) ≤ 2 independent of i and j.

In a similar fashion, for every type two and three vertex of F(X)
we further augment T∞. Denote the resulting subgraph of Sep(S2) by
T (X). We shall see below that T (X) is quasi-isometric to the Farey
graph F(X).

Fix α and β a pair of type one vertices in F(X). Let k = dX(α, β),
the distance between α and β measured in F(X).

Lemma 4.2. There is a path g = {αj} in Sep(S2) from α to β of
length at most 2k. Furthermore, for all j we have ι(αj, ∂X) ≤ 4.

Proof. Let h = {γj} be a path of length k connecting α to β, in the
Farey graph F(X). For indices j where γj is of type one, let αj = γj.
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For all other indices let αj be the vertex γ̄j in the augmented graph
T (X).

If γj is of type one and γj+1 is of type two or three then αj is con-
nected to αj+1 via an edge in Sep(S2). This follows from the construc-
tion of T (X).

If γj is of type two and γj+1 is of type three then αj may not be
connected to αj+1 via an edge in Sep(S2). However, γj and γj+1 are
adjacent via an edge in F(X). It follows that there are two type one
vertices adjacent to γj and γj+1 in F(X). Let α′j be either of these.
Again, by the construction of T (X) the separating curve α′j is adjacent
to both of αj and αj+1 in Sep(S2).

The situation is similar if γj is of type three and γj+1 is of type two.
It follows that {αj} ∪ {α′j} is a path in Sep(S2) of length at most 2k.
Every vertex of this path is either inside of X or meets ∂X at most
twice. ¤
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