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Abstract
We describe the construction of a number of sculptures. Each is based on a geometric design native to the three-
sphere: the unit sphere in four-dimensional space. Via stereographic projection, we transfer the design to three-
dimensional space. All of the sculptures are then fabricated by the 3D printing service Shapeways.

1 Introduction

The three-sphere, denoted S3, is a three-dimensional analog of the ordinary two-dimensional sphere, S2. In
general, the n–dimensional sphere is a subset of Rn+1 as follows:

Sn = {(x0,x1, . . . ,xn) ∈ Rn+1 | x2
0 + x2

1 + · · ·+ x2
n = 1}.

Thus S2 can be seen as the usual unit sphere in R3. Visualising objects in dimensions higher than three is
non-trivial. However for S3 we can use stereographic projection to reduce the dimension from four to three.
Let N = (0, . . . ,0,1) be the north pole of Sn. We define stereographic projection ρ : Sn−{N}→ Rn by

ρ(x0,x1, . . . ,xn) =

(
x0

1− xn
,

x1

1− xn
, . . . ,

xn−1

1− xn

)
.

See [1, page 27]. Figure 1a displays the one-dimensional case; this is also a cross-section of the n–
dimensional case. For any point (x,y) ∈ S1−{N} draw the straight line L between N and (x,y). Then L
meets R1 at a single point; this is ρ(x,y).

N

x
1−y

(x,y)

(a) Stereographic projection from S1 −
{N} to R1.

(b) Two-dimensional stereographic projection applied to the Earth. Notice
that features near the north pole are very large in the image.

Figure 1: Stereographic projection.

∗This work is in the public domain.
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Stereographic projection is a bijection and, by adding in a point at infinity corresponding to the north
pole, it extends to a homeomorphism from Sn to Rn ∪{∞}. In this way we may think of S3 as R3 plus a
single “point at infinity”. So we may use stereographic projection to represent, in R3, objects that live in S3.
Note that there is nothing special about the choice of N = (0, . . . ,0,1). We can alter the formula so that any
point in S3 becomes the projection point.

2 The geometry of S3

Circles and lines A generic plane in R4, if it meets S3, meets S3 in a circle. The following fact is
fundamental: stereographic projection of any circle in S3 is a circle or line in R3. We will refer to this very
useful property as the circline property: here a circline is either a circle or a line in R3. See [1, Section 3.2]
for a more general discussion. A circle C ⊂ S3 maps to a line if and only if C meets the projection point.

Great circles Any plane in R4 through the origin cuts through S3 in a great circle. The great circles are
the geodesics, or locally shortest paths, in the geometry on S3. Just as for the usual sphere, S2, two distinct
great circles meet at two points: say at x ∈ R4 and also at the antipodal point −x.

Conformality Stereographic projection is conformal: if two circles in S3 intersect at a given angle then
the corresponding circlines in R3 meet at the same angle. So stereographic projection preserves angles [1,
Section 3.2]. Note that lengths are not preserved; as shown in Figure 1b the distortion of length becomes
infinite as we approach the projection point. However, this defect is unavoidable; there is no isometric
embedding of any open subset of the three-sphere into R3.

The quaternionic picture of S3 In order to get a sense of the shape of S3, it is useful to have some
landmarks. A good way to do this is to view S3 in terms of the unit quaternions [2]. The quaternions
are an extension of the complex numbers, from two dimensions to four. A quaternion is a formal sum
a+bi+ c j+dk where a,b,c,d ∈ R and where i, j,k are non-commuting symbols satisfying

i2 = j2 = k2 = i jk =−1.

The set of quaternions is called H in honour of Hamilton, its discoverer. There is a natural bijection between
R4 and H via (a,b,c,d) 7→ a+bi+ c j+dk. So we may view S3 as the set of unit quaternions: those with
length |a+bi+c j+dk|=

√
a2 +b2 + c2 +d2 equal to one. Once this is established the points±1,±i,± j,±k

serve as our landmarks. See Figure 2. All of the circlines shown correspond to great circles in S3 with
particularly nice quaternionic expressions.

The isometries of S3 The isometries of S2 are the rigid motions of R3 that fix the origin. Under compo-
sition these form the orthogonal group O(3). Analogously, the isometries of S3 form the group O(4). The
unit quaternions can be realised as a subgroup of O(4) in the following manner. As above we identify H and
R4. For q ∈H with |q|= 1, the map fq : H→H given by fq(x) = q ·x is an element of O(4). This serves our
purpose to move objects around in S3. For example, if we want to move point a to point b, then an easy way
to achieve this is to apply the isometry corresponding to the quaternion b ·a−1.

One application of this technique is to adjust the stereographic projection of a subset of S3. For example,
if F ⊂ S3 is a surface then as q varies the image of q ·F in R3 becomes more or less symmetric as q ·F moves
with respect to the projection point. Equivalently we can think of moving the projection point to a more
convenient location. We do this several times below.
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Figure 2: The unit quaternions in S3 stereographically projected to R3 from the projection point −1.

3 Objects native to S3

3.1 Radial projections of four dimensional polytopes

Suppose that σ ⊂ Rn is a finite set that does not lie in a hyperplane. Then P(σ), the convex hull of Σ, is a
n–polytope [7, page 4]. Suppose that τ ⊂ σ . If P(τ) lies in the boundary of P(σ) and if for all τ ( µ ⊂ σ

we have dim(P(τ))< dim(P(µ)) then we say P(τ) is a face of P(σ). Any maximal ascending chain of faces

P(τ0)⊂ P(τ1)⊂ . . .⊂ P(τn) = P(σ)

is called a flag. Then P = P(σ) is regular if for any two flags F,G of P there is an isometry of Rn that
preserves P and sends F to G.

In dimensions one, two and three the regular polytopes are known of old. These are the interval, the
regular k–gons and the Platonic solids: the tetrahedron (simplex), the cube, the octahedron (cross-polytope),
the dodecahedron, and the icosahedron. In all higher dimensions there are versions of the simplex, cube, and
cross-polytope. Surprisingly, the only remaining regular polyhedra appear in dimension four! There are only
three of them: the 24–cell, the 120–cell, and the 600–cell [3, page 136].

Suppose P is an regular n–polytope. The extreme symmetry of P implies that we can choose coordinates
for Rn so that all vertices of P lie on the unit sphere, Sn−1. Projecting radially from the origin transfers P
from Rn into Sn−1. Stereographic projection then places P into Rn−1.

Applied to a four-polytope, these projections turn the Euclidean geometry of P first into a design of
arcs of great circles in S3 and then into a design of circline arcs in R3. If P meets the projection point then
the design includes line segments running off to infinity. In order to produce such a design as a physical
object, we need to thicken the circline arcs to have non-zero volume. One possible approach would be to
use the Euclidean geometry of R3: one would thicken all arcs of the design to get tubular neighbourhoods of
constant radius. However, the result is not satisfactory: near the origin in R3, the tubes are much too thick
compared to their separation.

A better solution is to use tubular neighbourhoods in the intermediate S3 geometry. For this we must
parameterise the image of such a tube under stereographic projection. Again, the circline property is very
useful. The boundary of a tubular neighbourhood of a geodesic in S3 can be made as a union of small circles
in R4. (These circles lie in S3, but are not great.) The small circles map to circlines in R3, which can be
directly parameterised. Computer visualisation of stereographic projections of 4-dimensional polytopes, in
this style, have been beautifully implemented in the program Jenn3d [6]. In Figure 3 we show four views of
a 3D printed copy of the 24–cell.



(a) A generic view. (b) A 2-fold symmetry axis. (c) A 3-fold symmetry axis. (d) A 4-fold symmetry axis.

Figure 3: 24–Cell, 2011, 9.0×9.0×9.0 cm.

The sculpture shown in Figure 3 illustrates a problem inherent in 3D printing of stereographic projec-
tions. Depending on the design, parts that began near the projection point can be unboundedly larger (in R3)
than parts that began near the antipodal point. There is a minimal feature size required to make 3D printing
possible; with current technology this minimal size is approximately 1mm. These two properties combine
to force a lower bound for the size of the design. This size is feasible for the 24–cell. However, the 120–cell
would have to be printed on a very large scale. If we rotate the 120–cell so that the projection point lies at
the center of a dodecahedral face, then the furthest point of the projection of the 1-skeleton from the origin
is around 29.4 times further out than the closest point, and a neighbourhood at that point is around the same
number of times thicker than at the closest point. This means that the final design would be very large and
thus too expensive to print.

One solution to this problem, as employed by Hart [5], is use a projective transformation instead of
stereographic projection. This takes a 4–polytope to its Schlegel diagram [7, page 133]. This is typically
much more compact. However, conformality is lost; the resulting figure distorts both lengths and angles.

Our alternative, shown in Figure 4, is to only print half of the object. We cut S3 along the equatorial
S2; the sphere equidistant from the north and south poles. Choosing the north pole as the projection point,
we project the half of the design in the southern hemihypersphere. The image is contained in the unit ball
B3 = {x ∈ R3 : |x| ≤ 1}.

This done, the thinnest and thickest parts differ only by a factor of two, at the most. For stereographic
projection, parts of the design near the projection point are the real problem, in terms of size. Eliminating
the half nearest the projection point eliminates the problem.

(a) A generic viewpoint. (b) A 2-fold symmetry axis. (c) A 3-fold symmetry axis. (d) A 5-fold symmetry axis.

Figure 4: Half of a 120-Cell, 2011, 9.9×9.9×9.9 cm.

Note that half of the 120–cell is still very complicated! However, one can understand the whole of
the 120–cell by imagining reflecting the object across the cutting S2. Note as well, that printing only the
southern half of a design allows us to print objects that pass through the north pole, which ordinarily would
be infinitely expensive. For example, in Figure 5 we show one-half of the stereographic projection of the



vertex centered 600–cell. This version of the 600–cell is positioned so as to be dual to the facet-centered
120-cell shown in Figure 4. The other half of the vertex-centered 600–cell cannot be printed because the
vertex antipodal to the origin meets the projection point.

(a) A generic viewpoint. (b) A 2-fold symmetry axis. (c) A 3-fold symmetry axis. (d) A 5-fold symmetry axis.

Figure 5: Half of a 600-Cell, 2011, 9.9×9.9×9.9 cm.

3.2 Parameterisations of surfaces and torus knots

The geometry of S3 lends itself particularly well to the representation of tori and torus knots. There seem
to be two reasons for this. First, in its natural position certain geodesics in the torus are great circles in S3.
Second, quaternionic multiplication and its relatives directly parametrise torus knots.

When representing a surface as a 3D printed object, it is often a good idea to drill holes in the surface,
both to save on material used and so the viewer can see, partly, through the surface to what is behind. In our
approach, the pattern of holes shows the parameterisation, by realising the surface as a grid with grid lines
in the direction of the parameters.

Clifford torus Recall that eiθ = cos(θ)+ isin(θ) parametrises a great circle S1. The same formula holds
replacing i everywhere by j or by k. A Clifford torus is foremost a torus, and so can be parameterised as a
product [4, page 139] via

T= S1×S1 =

{
1√
2

(
cos(α),sin(α),cos(β ),sin(β )

) ∣∣∣∣ 0≤ α < 2π,0≤ β < 2π

}
=

{
1√
2

(
eiα + eiβ · j

) ∣∣∣∣ 0≤ α < 2π,0≤ β < 2π

}
.

The factor of 1/
√

2 rescales the torus to lie inside of the unit sphere S3 ⊂ R4. Note that if we vary α while
fixing β the point traces out a (1,0) curve on T. Conversely varying β while fixing α yields a (0,1) curve.
Unfortunately none of these curves are great circles in S3.

On the other hand, if we vary α and β simultaneously, at the same (respectively, opposite) velocity the
the point traces out a (1,1) (respectively (1,−1)) curve. As we shall see, these are great circles.

We also want to rotate the torus T to ensure the most symmetric outcome. To arrange this, note that
T divides S3 into a pair of solid tori: copies of S1×D2. Thus the optimal position is when T meets the
projection point; after stereographic projection the two solid tori are interchangeable by an isometry of R3.

We can use quaternions to both fix the parameterisation, giving us the desired (1,1) and (1,−1) curves,
and also to move T as to meet the desired projection point 1 ∈ S3 ⊂ H. Solving the second problem first,
note that 1√

2
(1+ j) lies in T. Suppose that q is a quaternion satisfying 1√

2
(1+ j)q = 1. Thus q = 1√

2
(1− j).

The new parameterisation of the torus is given by post-multiplication by q:

1√
2

(
eiα + eiβ · j

)
· 1√

2
(1− j) =

1
2
(
eiα + eiβ +(eiβ − eiα) · j

)
.



The torus meets the desired projection point when α = β = 0.
We now solve the second problem, by rotating the coordinates through 45◦. Take new coordinates θ ,φ

satisfying θ = (α +β )/2 and φ = (α−β )/2. So α = θ +φ and β = θ −φ . Plugging in and simplifying,
the above parametrisation becomes eiθ e−kφ . Keeping φ fixed and varying θ now gives a (1,1) curve, which
is also a great circle. Note that we only need 0 ≤ θ < 2π,0≤ φ < π to cover the whole torus. We permute
coordinates and change a sign to get a slightly neater form:

eiφ e jθ =
(
cos(θ)cos(φ),cos(θ)sin(φ),sin(θ)cos(φ),sin(θ)sin(φ)

)
for 0≤ θ < 2π,0≤ φ < π . The operations of permuting the coordinates and changing the sign are symme-
tries of S3, so the geometry is unchanged and the surface T still meets the desired projection point, 1.

Finding the normal After stereographic projection, we get a 2-dimensional surface in R3∪{∞}. As in
Section 3.1, for 3D printing we must thicken the torus to have positive volume. Our plan is to additionally
parametrise the normal (that is, perpendicular) to the surface, and then thicken in that direction.

Suppose that F is any surface in S3, with parametrisation p(θ ,φ)∈ S3⊂R4. Compute the tangent vectors
∂

∂θ
p(θ ,φ) and ∂

∂φ
p(θ ,φ) ∈ R4. Since F lies in S3, these vectors are tangent to S3 and so perpendicular to

p(θ ,φ), thought of as a vector from the origin. The desired normal vector n(θ ,φ) is a unit vector that
is perpendicular to the three given vectors p, ∂

∂θ
p, and ∂

∂φ
p. This determines n up to sign. Thus finding

n amounts to computing the kernel of the matrix with rows p, ∂

∂θ
p and ∂

∂φ
p. As these vectors vary with

the parameters θ and φ it is most convenient to compute n via an application of Cramer’s rule: n is the
determinant of the matrix with first three rows p, ∂

∂θ
p, ∂

∂φ
p, and fourth row the vector (1, i, j,k).

For the above parametrisation of the Clifford torus we find:

p(θ ,φ) =
(

cos(θ)cos(φ), cos(θ)sin(φ), sin(θ)cos(φ), sin(θ)sin(φ)
)

∂

∂θ
p(θ ,φ) =

(
−sin(θ)cos(φ), −sin(θ)sin(φ), cos(θ)cos(φ), cos(θ)sin(φ)

)
∂

∂φ
p(θ ,φ) =

(
−cos(θ)sin(φ), cos(θ)cos(φ), −sin(θ)sin(φ), sin(θ)cos(φ)

)
n(θ ,φ) =

(
−sin(θ)sin(φ), sin(θ)cos(φ), cos(θ)sin(φ), −cos(θ)cos(φ)

)
We introduce the parameter ε for the thickness of the surface. To move from p(θ ,φ) in the direction of

n(θ ,φ) we take a “trigonometric average”, namely q(θ ,φ ,ε) = cos(ε)p(θ ,φ)+ sin(ε)n(θ ,φ). Since p and
n are perpendicular unit vectors, q lies in S3.

(a) A 2-fold symmetry axis. (b) A generic viewpoint.

Figure 6: Hopf Fibration Grid, 2011, 10.8×10.8×3.4 cm.

Since the surface T passes through the projection point we would require an infinite amount of plastic to
print the stereographic projection. We therefore puncture T near the projection point, cutting a square hole
in the grid pattern. This square is visible around the outside of the sculpture shown in Figure 6.



Möbius strip and Klein Bottle A slight variant of the torus gives a Möbius strip:{(
cos(θ)cos(φ),cos(θ)sin(φ),sin(θ)cos(2φ),sin(θ)sin(2φ)

)
| 0≤ θ < π,0≤ φ < π

}
The border of the Möbius strip is given by the points for which θ is 0 or π . Since these points form a
geodesic in S3, the boundary is a circline in R3 by the circline property. With the given parameterisation,
stereographic projection from (0,0,−1,0) gives a circular boundary as in Figure 7. The normal vector is
calculated analogously to the torus case:

p(θ ,φ) =
(

cos(θ)cos(φ), cos(θ)sin(φ), sin(θ)cos(2φ), sin(θ)sin(2φ)
)

∂

∂θ
p(θ ,φ) =

(
−sin(θ)cos(φ), −sin(θ)sin(φ), cos(θ)cos(2φ), cos(θ)sin(2φ)

)
∂

∂φ
p(θ ,φ) =

(
−cos(θ)sin(φ), cos(θ)cos(φ), −2sin(θ)sin(2φ), 2sin(θ)cos(2φ)

)
n(θ ,φ) = 1√

1+sin2(θ)

(
−2sin(θ)sin(φ), 2sin(θ)cos(φ), cos(θ)sin(2φ), −cos(θ)cos(2φ)

)
Again the surface is punctured with a square hole in the grid pattern. If we extend the surface beyond its
boundary, taking 0≤ θ < 2π , we get the union of two punctured Möbius strips along their boundaries, which
is a twice punctured Klein bottle as shown in Figure 8.

(a) A 2-fold symmetry axis. (b) A generic viewpoint.

Figure 7: Round Möbius Strip, 2011, 15.2×10.9×6.2 cm.

(a) A generic viewpoint. (b) The 4-fold symmetry axis. (c) One of the 2-fold symme-
try axes.

(d) The other 2-fold symmetry
axis.

Figure 8: Round Klein Bottle, 2011, 15.2×15.2×10.9 cm.

Torus knot A further variant gives a parameterisation of a torus knot, in this case the trefoil knot:{(
cos(θ)cos(φ),cos(θ)sin(φ),sin(θ)cos((3/2)φ),sin(θ)sin((3/2)φ)

)
| 0≤ φ < 4π

}



Here θ has a fixed value, greater than 0 and smaller than π/2. Altering the fraction 3/2 will produce other
torus knots. The normal vector can be defined in an analogous way to previously, although for this model
we used an “alternative” to the normal vector, choosing

n(θ ,φ) =
(
−sin(θ)sin(φ),sin(θ)cos(φ),cos(θ)sin((3/2)φ),−cos(θ)cos((3/2)φ)

)
.

Using the local coordinates (θ ,φ ,ε), we can add small features to the sculpture, using any shape we could
define in ordinary 3-dimensional space. In the case shown in Figure 9, we add cog teeth, which are simply
truncated pyramids in (θ ,φ ,ε) coordinates. The alternative normal vector adds a slight shear slope to the
teeth, which we feel is aesthetically preferable.

Figure 9: Knotted Cog, 2011, 3.8×3.4×1.3 cm.

4 Future directions

Our sculptures are tangible representives of topological and geometric abstractions. In order to do this, we
naturally must construct designs that occur in R3: that is, actual space. In each case we attempted to choose
the most canonical such geometries available and then the most faithful projections.

There is a wild array of further topological and combinatorial objects. For example, there is a rich
theory of knots and surfaces and their interrelations. We have not yet found (or perhaps better, understood)
satisfactory geometric representations, or at least representatives which map to R3 in satisfactory ways. An
example of the latter problem would be surfaces of genus at least two. These have nice hyperbolic structures,
but they cannot be mapped into R3 in a very satisfying way.
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