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Abstract. When the boundary of the curve complex is connected
any quasi-isometry is bounded distance from a simplicial automor-
phism. As a consequence, when the boundary is connected the
quasi-isometry type of the curve complex determines the homeo-
morphism type of the surface.

1. Introduction

The curve complex of a surface was introduced into the study of
Teichmüller space by Harvey [5] as an analogue of the Tits building of
a symmetric space. Since then the curve complex has played a key role
in both the study of the cohomology of the mapping class group and
also the classification of infinite volume hyperbolic three-manifolds.

Our motivation is the work of Masur and Minsky [11, 12], which
focuses on the coarse geometric structure of the curve complex, the
mapping class group, and other combinatorial moduli spaces. It is a
sign of the richness of low-dimensional topology that the geometric
structure of such objects is not well understood.

Suppose that S = Sg,n is an orientable, connected, compact surface
with genus g and n boundary components. Let C(S) denote the curve
complex of S. When S is a sphere, disk or pants then C(S) is empty
and we disregard these cases. Here is the main theorem:

Theorem 6.1. Suppose that ∂C(S) is connected. Then every quasi-
isometry of C(S) is bounded distance from a simplical automorphism.

Remark 1.1. Leininger and the second author [10] have shown that
the boundary of curve complex is connected if S has genus at least
four, or if the genus is at least two and ∂S is non-empty.

Recall that QI(X ) is the group of quasi-isometries of a geodesic met-
ric space X , modulo the following equivalence relation: quasi-isometries
f and g are equivalent if and only if there is a constant C so that for
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every x ∈ X we have dX (f(x), g(x)) ≤ C. There is a homomorphism
from the isometry group to the quasi-isometry group.

Corollary 1.2. Suppose that ∂C(S) is connected. Then QI(C(S)) is
isomorphic to Aut(C(S)), the group of simplical automorphisms.

Proof. Recall that all elements of Aut(C(S)) are isometries. So we have
a homomorphism Aut(C(S))→ QI(C(S)).

This map is an injection: Suppose that φ ∈ Aut(C(S)) is not the
identity element. It follows that φ(α) 6= α, for some curve α.

Now, by Ivanov’s Theorem [6], this φ is induced by some homeomor-
phism, again called φ. Consider the action of φ on PMF(S). Then
there is a small neighborhood U ⊂ PMF(S) of α so that φ(U)∩U = ∅.
Thus φ moves some ending lamination. By Klarreich’s Theorem (see
Theorem 2.3 below) we deduce that φ moves some point of ∂C(S). Fi-
nally, any isometry of a Gromov hyperbolic space moving a point of
the boundary is nontrival in the quasi-isometry group.

On the other hand, when ∂C(S) is connected, Theorem 6.1 implies
that the homomorphism Aut(C(S))→ QI(C(S)) is a surjection. ¤

Remark 1.3. If ∂C(S) is not connected then the conclusion of Corol-
lary 1.2 may fail. For example, when S is a four-holed sphere or once-
holed torus the curve complex is a copy of the Farey graph. Thus C(S)
is quasi-isometric to T∞, the countably infinite valence tree [1]. Hence
QI(C(S)) is uncountable while Aut(C(S)) = PGL(2,Z) is countable.

Theorem 1.4. Suppose that S and Σ are surfaces with C(S) quasi-
isometric to C(Σ). Suppose that ∂C(S) is connected. Suppose that
neither S nor Σ is homeomorphic to S2 or S1,2. Then S and Σ are
homeomorphic.

Proof. By Corollary 1.2 the automorphism groups of C(S) and C(Σ)
are isomorphic. Ivanov’s Theorem [6] tells us that, for these surfaces,
the simplicial automorphism group is isomorphic to the mapping class
group. Finally, it is well-known that surfaces are characterized, up to
homeomorphism, by their mapping class groups [7]. ¤

The proof of Theorem 6.1 has the following ingredients: We begin
by examining pairs of ending laminations. Such a pair is cobounded
if all subsurface projections to strict subsurfaces of S are uniformly
bounded. We prove:

Theorem 4.2. Suppose that ∂C(S) is connected and φ : C(S)→ C(Σ)
is a quasi-isometric embedding. Then the induced map on boundaries
preserves the coboundedness of ending laminations.
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This result is where the connectedness of the boundary is used in an
essential fashion. Now recall that M(S) denotes the marking complex
of the surface S. There is a natural projection map p : M(S) → C(S)
which is mapping class group equivarient. We show:

Theorem 5.1. Suppose that ∂C(S) is connected and φ : C(S)→ C(Σ)
is a q–quasi-isometric embedding. Then φ induces a map Φ: M(S)→
M(Σ) so that the diagram

M(S)
Φ−−−→ M(Σ)yp

yπ

C(S)
φ−−−→ C(Σ)

commutes up to an additive error. Furthermore, the map Φ is coarsely
distance non-increasing: there is a constant Q so that for all markings
m,m′ ∈M(S) we have

dM(µ, µ′) ≤ Q · dM(m,m′) + Q.

where µ = Φ(m) and µ′ = Φ(m′).

When φ : C(S)→ C(S) is a quasi-isometry we apply Theorem 5.1 in
both directions. It follows that the induced map Φ is a quasi-isometry
of marking complexes. We now turn to a recent claim of Behrstock,
Kleiner, Minsky and Mosher as well as Hamenstädt [4]:

Theorem 1.5. Every quasi-isometry of M(S) is bounded distance
from the action of a homeomorphism of S. ¤

Our result, Theorem 6.1, now immediately follows from Theorem 5.1.

Acknowledgements. This paper was sparked by a question of Slava
Matveyev, asking whether the intrinsic metric on the complement of a
ball in the complex of curves is Gromov hyperbolic.

2. Background

Hyperbolic spaces. Suppose that r, s, q ∈ R≥0. If r ≤ qs + q we
write r ≺q s. If r ≺q s and s ≺q r we write r ³q s, omitting the
subscript when clear from context.

A geodesic metric space X is Gromov hyperbolic if there is a hyper-
bolicity constant, δX , so that every triangle is δX–slim. For every triple
of vertices x, y, z ∈ X and every triple of geodesics [x, y], [y, z], [z, x]
the δX neighborhood of [x, y] ∪ [y, z] contains [z, x].

Suppose that (X , dX ) and (Y , dY) are geodesic metric spaces and
f : X → Y is a map. Then f is a q–quasi-isometric embedding if for all
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x, y ∈ X we have

dX (x, y) ³q dY(f(x), f(y)).

Two maps f, g : X → Y are C–close if for all x ∈ X we find

dY(f(x), g(x)) ≤ C.

If f : X → Y and g : Y → X are q–quasi-isometric embeddings so
that f ◦ g and g ◦ f are q–close to identity maps then f and g are
q–quasi-isometries.

A quasi-isometric embedding of an interval [s, t] ⊂ Z, with the usual
metric, is called a quasi-geodesic. In hyperbolic spaces quasi-geodesics
are stable:

Lemma 2.1. Suppose that (X , dX ) is δX–hyperbolic. Suppose that
f : [s, t] → X is a q–quasi-geodesic. Then there is a constant M =
M(δX , q) so that for any [p, q] ⊂ [s, t] the image f([p, q]) and any geo-
desic [f(p), f(q)] have Hausdorff distance at most M in X . ¤

See [2] for further background on hyperbolic spaces.

Curve Complexes. Let S = Sg,n be a surface, as before. Define the
vertex set of the curve complex, C(S), to be the set of simple closed
curves in S that are essential and non-peripherial, considered up to
isotopy.

When the complexity ξ(S) = 3g − 3 + n is at least two, distinct
vertices a, b ∈ C(S) are connected by an edge if they have disjoint
representatives.

When ξ(S) = 1 vertices are connected by an edge if there are rep-
resentatives with geometric intersection exactly one for the once-holed
torus or exactly two for the four-holed sphere. This gives the Farey
graph. When S is an annulus the vertices are essential embedded arcs,
considered up to isotopy fixing the boundry pointwise. Vertices are
connected by an edge if there are representatives with disjoint interi-
ors.

For any vertices a, b ∈ C(S) define the distance dS(a, b) to be the
minimal number of edges appearing in an edge path between a and b.

Theorem 2.2 (Masur-Minsky [11]). The complex of curves C(S) is
Gromov hyperbolic. ¤

We use δS to denote the hyperbolicity constant of C(S).

Boundary of the curve complex. Let ∂C(S) be the Gromov bound-
ary of C(S). This is the space of quasi-geodesic rays in C(S) modulo the
following equivalence relation: rays f, g : [0,∞)→ C(S) are equivalent
if and only if there is a constant C so that f and g are C–close.
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Recall that PML(S) is the projectivized space of measured lamina-
tions in (S). A measured lamination ` is filling if every component Sr`.
Take FL(S) ⊂ PML(S) to be the set of filling laminations with the
subspace topology. Define EL(S), the space of ending laminations, to
be the quotient of FL(S) obtained by forgetting the measures. See [8]
for an expansive discussion of laminations.

Theorem 2.3 (Klarrich [9]). There is a mapping class group equivari-
ant homeomorphism between ∂C(S) and EL(S). ¤

We define C(S) = C(S) ∪ ∂C(S). Note that ∂C(S) is not connected
when S is an annulus, once-holed torus or four-holed sphere. On the
other hand, Remark 1.1 gives many examples where ∂C(S) is connected.

Subsurface projection. Suppose that Z ⊂ S is an essential subsur-
face: Z is embedded, every component of ∂Z is essential in S and Z
is not a boundary parallel annulus. An essential subsurface Z ⊂ S is
strict if Z is not homeomorphic to S.

We say that a curve or lamination cuts the subsurface Z if every
representative intersects Z. If a curve b does not cut Z we say that b
misses Z.

Suppose now that a, b ∈ C(S) both cut a strict subsurface Z. Define
the subsurface projection distance dZ(a, b) as follows: tighten a and b
with respect to ∂Z to realize the intersection number. Surger the arcs
of a ∩ Z to obtain πZ(a), a finite set of vertices in C(Z). Notice that
πZ(a) has uniformly bounded diameter in C(Z), independent of a, Z
and S. Define

dZ(a, b) = max{dZ(a′, b′) | a′ ∈ πZ(a), b′ ∈ πZ(b)}.
We now recall the Lipschitz Projection Lemma [12, Lemma 2.3]:

Lemma 2.4 (Masur-Minsky). Suppose that {ai}Ni=0 ⊂ C(S) is a path
where every vertex cuts Z ⊂ S. Then dZ(a0, aN) ≤ 2N . ¤

For geodesics, more is true [12, Bounded Geodesic Image Theorem]:

Theorem 2.5 (Masur-Minsky). There is a constant C0 = C0(S) with
the following property. For any strict subsurface Z and any points
a, b ∈ C(S), if every vertex of the geodesic [a, b] cuts Z then dZ(a, b) ≤
C0(S). ¤

Marking complex. We now discuss the marking complex: A marking
m is a pants decomposition base(m) of S together with a transversal
ta for each element a ∈ base(m). To define ta, let Xa be the non-pants
component of Sr(base(m)r{a}). Then any vertex of C(Xa) not equal
to a and meeting a minimally can serve as the transversal ta.
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In [12], Masur and Minsky define elementary moves on markings.
The set of markings and these moves define a locally finite graph, the
marking complex, M(S). We recall that if m and m′ differ by an ele-
mentary move then the total intersection number ι(m,m′) is uniformly
bounded. It follows that there is a constant J so that for any sub-
surface Z of S, we have dZ(m,m′) ≤ J. A converse also holds: for
every constant C there is a bound B with the following property. If
dZ(m,m′) ≤ C for all Z ⊆ S then dM(m,m′) ≤ B; the markings m,m′

differ by at most B elementary moves.

2.1. Cobounded. A pair of curves, markings or laminations a, b are
C–cobounded if dZ(a, b) ≤ C for all strict subsurfaces Z ⊂ S cut by
both a and b.

Lemma 2.6. Suppose that m is a marking and a ∈ base(m). Suppose
that ` is an ending lamination where (a, `) is C–cobounded, for suffi-
ciently large C. Then there is a mapping class φ, supported in Sra, so
that (m,φ(k)) are 2C–cobounded.

Proof. Here. ¤

Lemma 2.7. Suppose that a ∈ C(S) and b ∈ C(S). Then there is a
point ` ∈ ∂C(S) so that the vertex a lies in the one-neighborhood of
[b, `].

Furthermore, if the pair (a, b) is C–cobounded, for C sufficently larger
than C0, then there is such an ` where the pairs (b, `) and (a, `) are 3C–
cobounded.

Proof. Both claims are easy to obtain if S is a once-holed torus or four-
holed sphere. Likewise, if a = b then the conclusion is clear. For the
remainder of the proof we assume that ξ(S) > 1 and a 6= b.

Let be Y be a component of Sra which is not a pants and which
meets b. Take c to be a curve in Y which is either non-separating or
which cuts a pair of pants off of S. We may assume that b and c meet.

Now pick k ∈ ∂C(S). We now rotate [c, k]: let Z be the component
of Src which is not a pants. Apply a homeomorphism of S with
support in Z. Let ` be the image of k. We may arrange matters so
that dZ(b, `) > C0. It follows from Theorem 2.5 that c ∈ [b, `]. Thus
dS(a, [b, `]) ≤ 1 and we are done.

Now suppose that (a, b) is C–cobounded. We follow the above con-
struction, with more careful choices. Choose c ⊂ Y as above so that

dY (b, c) ≥ 3(2.8)
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and

for all W ⊆ Y , dW (b, c) ≤ C.(2.9)

For k we further assume that (c, k) is C–cobounded. This is possible,
for example, by choosing a subray of a quasi-axis for a pseudo-Anosov
map and then moving the ray so that the initial point is c.

As above we rotate [c, k] inside of Z, letting ` be the image of k.
Thus (c, `) is also C–cobounded. We may arrange matters so that

C0 < dZ(b, `) ≤ C(2.10)

and

for all W ( Z, dW (b, `) ≤ C(2.11)

To show that (b, `) is cobounded, we must estimate dW (b, `) for every
strict subsurface W meeting b. If W is disjoint from c then W ⊆ Z
and we are done by Equation 2.10 or Equation 2.11. If c cuts W then

dW (b, `) ≤ dW (b, c) + dW (c, `) ≤ C + C = 2C,

by Equation 2.9 and the fact that [c, `] is C–cobounded. To show that
(a, `) is cobounded consider any W cutting a. Thus W meets Y . By
Equation 2.8 one of b or c cuts W . If W is cut by b then

dW (a, `) ≤ dW (a, b) + dW (b, `) ≤ C + 2C = 3C,

because (a, b) is C–cobounded and, as shown above, (b, `) is 2C–cobounded.
Now, if W is cut by c then

dW (a, `) ≤ dW (a, c) + dW (c, `) ≤ 2 + C,

since a and c are disjoint and (c, `) is C–cobounded. ¤
2.2. Tight geodesics. We will need [13, Lemma 5.14]:

Lemma 2.12 (Minsky). If a, b ∈ C(S) then there is a tight geodesic
[a, b] ⊂ C(S) connecting them. ¤

Here, tight is technical hypothesis which provides a certain kind of
local finiteness. The only property of tight geodesics used in this paper
is:

Lemma 2.13 (Minsky). If (a, b) is a C–cobounded pair of points in

C(S) and c is a vertex of a tight geodesic connecting a to b then (a, c)
and (c, b) are C–cobounded. ¤

All geodesics from here on are assumed to be tight. We will need:

Lemma 2.14. Suppose that a ∈ C(S) and ` ∈ ∂C(S). Suppose that
(a, `) is C–cobounded, where C is sufficiently large. Then there is a
marking µ so that a ∈ base(µ) and (b, µ) are 2C–cobounded. ¤

See [REF] for a proof.
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3. The shell is connected

Let B(z,R) be the ball of radius R about z ∈ C(S). The difference
of concentric balls is called a shell.

Proposition 3.1. Suppose that ∂C(S) is connected and D ≥ max{δS, 1}.
Then for any R ≥ 0 the shell

B(z,R + 2D)rB(z,R− 1)

is connected.

One difficulty in the proof lies in pushing points of the inner bound-
ary into the interior of the shell. To deal with this we use the fact that
C(S) has no dead ends.

Lemma 3.2. Fix vertices z, a ∈ C(S). Suppose dS(z, a) = R. Then
there is a vertex a′ ∈ C(S) with dS(a, a′) ≤ 2 and dS(z, a′) = R+1. ¤

Note that this implies that any geodesic [a, a′] lies outside of B(z, R−
1). For a proof of Lemma 3.2, see Proposition 3.1 of [14].

Proof of Proposition 3.1. Fix z ∈ C(S). Define a norm on C(S) by:

〈a, b〉z = inf
{
dS(z, [a, b])

}

where the infimum ranges over all geodesics [a, b]. For every k ∈ ∂C(S)
let

U(k) = {` ∈ ∂C(S) | 〈k, `〉z > R + 2D}.
The set U(k) is a neighborhood of k, by the definition of the topology
on the boundary [3]. Notice that if ` ∈ U(k) then k ∈ U(`).

Consider the set V (k) of all ` ∈ ∂C(S) so that there is a finite
sequence k = k0, k1, . . . , kN = ` with ki+1 ∈ U(ki) for all i. Now, if
` ∈ V (k) then U(`) ⊂ V (k); thus V (k) is open. If ` is a limit point of
V (k) then there is a sequence `i ∈ V (k) entering every neighborhood of
`. So there is some i where `i ∈ U(`). Thus ` ∈ U(`i) ⊂ V (k) and we
find that V (k) is closed. Finally, as ∂C(S) is connected, V (k) = ∂C(S).

Let a′, b′ be any vertices in the shell B(z,R + 2D)rB(z,R − 1). We
connect a′, via a path in the shell, to a vertex a so that dS(z, a) = R+D.
We do the same for b′ and b. This is always possible: points far from
z may be pushed inward along geodesics and points near z may be
pushed outward by Lemma 3.2.

By Lemma 2.7 there are points k, ` ∈ ∂C(S) so that there are geodesic
rays [z, k] and [z, `] within distance one of a and b respectively. Connect
k to ` by a chain of points {ki} in V (k), as above. Define ai ∈ [z, ki] so
that dS(z, ai) = R+ D. Connect a to a0 via a path of length at most 2.
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Notice that dS(ai, [ki, ki+1]) > D ≥ δ. By hyperbolicity, the vertiex
ai is δ–close to [z, ki+1]. Thus ai and ai+1 may be connected inside of
the shell via a path of length at most 2δ. ¤

4. Image of a cobounded geodesic is cobounded

We begin with a simple lemma:

Lemma 4.1. For every C and R there is a constant K with the following
property: Let [a, b] ⊂ C(S) be a geodesic segment of length 2R with (a, b)
being C–cobounded. Let z be the midpoint. Then there is a path P of
length at most K connecting a to b outside of B(z,R− 1).

Proof. There are only finitely many such triples (a, z, b), up the ac-
tion of the mapping class group. The conclusion now follows from the
connectedness of the shell (Proposition 3.1). ¤

Let φ : C(S) → C(Σ) be a q–quasi-isometric embedding. Note that
φ extends to a one-to-one continuous map from ∂C(S) to ∂C(Σ).

Theorem 4.2. Let k and ` be a pair of C–cobounded laminations in
∂C(S). Then κ = φ(k) and λ = φ(`) are C′–cobounded, where C′

depends on C, q, ξ(S) and ξ(Σ) only.

Proof. For every strict subsurface Ω ⊂ Σ we must bound dΩ(κ, λ) from
above. Now, if dΣ(∂Ω, [κ, λ]) ≥ 2, then by Bounded Geodesic Image
Theorem (2.5) we find dΩ(κ, λ) ≤ C0(Σ) and we are done.

z

λ`

k

b

a

κC(S) C(Σ)

α

β

φ(z)

∂Ω

Figure 1. The ball around z has radius R while the ball
around ∂Ω has radius ???

Now suppose dΣ(∂Ω, [κ, λ]) ≤ 1. Note that [κ, λ] lies in the M–
neighborhood of φ([k, `]) by Lemma 2.1. So we can find a vertex z ∈
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[k, `] so that dΣ(φ(z), ∂Ω) ≤ M + 1. Set R = q(q + 2M + 3) + q. Thus

dS(y, z) ≥ R =⇒ dΣ(φ(y), φ(z)) ≥ q + 2M + 3

=⇒ dΣ(φ(y), ∂Ω) ≥ q + M + 2

Let a and b be the intersections of [k, `] with ∂B(z,R), chosen so that
[k, a] and [b, `] meet B(z,R) at the vertices a and b only. Connect a to
b via a path P of length K as provided by Lemma 4.1.

Let α = φ(a) and β = φ(b). Now, any consecutive vertices of P
are mapped by φ to vertices of C(σ) that are at distance at most 2q.
Connecting these by geodesic segments gives a path Π from α to β.

Note that Π has length at most qK. Since every vertex of φ(P ) is
q+M+2–far from ∂Ω every vertex of Π is M+2–far from ∂Ω. So every
vertex of Π cuts Ω. It follows that dΩ(α, β) ≤ 2qK, by Lemma 2.4.

All that remains is to bound dΩ(κ, α) and dΩ(β, λ). It suffices, by
the Bounded Geodesic Image Theorem, to show that every vertex of
[κ, α] cuts Ω. The same will hold for [β, λ].

Every vertex of [κ, α] is M–close to a vertex of φ([k, a]). But each of
these is q + M + 2–far from ∂Ω. This completes the proof. ¤

5. The induced map on markings

In this section, for every a quasi-isometric embedding of curve com-
plexes we construct a quasi-isometric embedding of marking complexes.

LetM(S) andM(Σ) be the marking complexes of S and Σ respec-
tively. Let p : M(S)→ C(S) and π : M(Σ)→ C(Σ) be maps that sends
a marking to some curve in that marking.

Theorem 5.1. Suppose that ∂C(S) is connected and φ : C(S)→ C(Σ)
is a q–quasi-isometric embedding. Then φ induces a map Φ: M(S)→
M(Σ) so that the diagram

M(S)
Φ−−−→ M(Σ)yp

yπ

C(S)
φ−−−→ C(Σ)

commutes up to an additive error. Furthermore, the map Φ is coarsely
distance non-increasing: there is a constant Q so that for all markings
m,m′ ∈M(S) we have

dM(µ, µ′) ≤ Q · dM(m,m′) + Q.

where µ = Φ(m) and µ′ = Φ(m′).
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Proof. Let m be a marking on S. We construct Φ(m), a marking on
Σ, as follows. Pick a curve a ∈ base(m)

ack
and let (k, `) be a C–cobounded pair of laminations such that a lies

in a one-neighborhood of the geodesic [k, `]. Let κ = φ(k), λ = φ(`)
and α = φ(a). Note that α is at most (2q + M)–away from [κ, λ] and
(κ, λ) is a C′–cobounded pair, by Theorem 4.2.

Let β be a closest point projection of α to the geodesic [κ, λ]. Using
Lemma 2.14, there is a marking µ so that β ∈ base(µ) and (µ, λ) are
2C′–cobounded. We say µ is a marking obtained from the triple (a, k, `)
and we set Φ(m) = µ.

Let µ be the marking constructed in (??) from the initial data α, κ
and λ. We recall that dΣ(µ, α) ≤ P and for every proper subsurface
Ω ( Σ,

dΩ(µ, κ) ≤ P.

We need to show that the map φ is well defined. That is, if a′ is a
different curve in m, (k′, l′) is another C–cobounded pair of laminations
whose D–neighborhood contains a′, then µ′′′, the marking obtained
from (a′, k′, l′), is bounded apart from µ in M(Σ).

Since C(S) is δ–hyperbolic, a is in a (δ + D)–neighborhood of either
[k, l′] or [l, l′]. Without loss of generality we can assume that a is in
a bounded neighborhood [k, l′]. Let µ′ be the marking obtained from
(a, k, l′) and µ′′ be the marking obtained from (a, k′, l′). We will show
that pairs (µ, µ)′, (µ′, µ′′) and (µ′′, µ′′′) are at most bounded apart in
the marking complex by showing that the projections of each pair of
markings to any subsurface is uniformly bounded above.

Consider the pair (µ, µ′). When Ω = Σ, we have

dΣ(µ, µ′) ≤ dΣ(µ, α) + dΣ(α, µ′) ≤ 2P.

If Ω is a proper subsurface of Σ we have

dΩ(µ, µ′) ≤ dΩ(µ, κ′) + dΩ(κ′, µ′) ≤ 2P.

The proof for othe pairs is similar (each pair shares a lamination in the
boundary) except for the pair (µ′′, µ′′) we estimates theire distance in
C(Σ) as

dΣ(µ′′, µ′′′) ≤ dΣ(µ′′, α) + dΣ(α, α′) + dΣ(α′, µ′′′) ≤ 2(P + q).

This finishes the proof. ¤

6. Rigidity of the curve complex

Theorem 6.1. Suppose that ∂C(S) is connected. Then every quasi-
isometry of C(S) is bounded distance from a simplical automorphism.
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C(Σ)λ

µ′′′ µ′′

µ

λ′

κ

µ′

α′ α κ′

Figure 2. Markings µ and µ′′′ are bounded apart.

Proof. Let f : C(S) → C(S) be a q-quasi-isometry. We need to find
G ∈MCG(S) such that

???
Using Theorem 5.1 we can construct a map F : M(S)→M(S) such

that for every marking m ∈M(S),

dC(p(F (m)), f(p(m)) = O(1).

By the rigidity of the marking complex, F is is within an additive error
of the action of a mapping class onM(S) that is, there is G ∈MCG(S)
such that

dM(F (m), G.m)) = O(1).

¤
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