
SECTION A: PROJECT SUMMARY

The study of 3-manifolds has recently become the subject of public attention. For exam-

ple, in a recent issue of Scientific American Jeff Weeks describes how mathematicians and

physicists are using techniques from 3-manifold topology to try to determine the shape of

our universe. Knot theory, a branch of 3-manifold topology, has been in the news for several

years now. It has become one of the many tools used by biochemists to study the actions of

certain enzymes on strands of DNA.

A natural way to decompose a 3-manifold into two simple, identical pieces is called a

Heegaard splitting. The goal of the present proposal is to classify low genus Heegaard split-

tings of 3-manifolds that are constructed via sufficiently complicated surface automorphisms.

Geometrically, these manifolds should be thought of as having a region homeomorphic to

{surface} × I, where the I direction is long. Constructions of 3-manifolds by surface au-

tomorphisms arise naturally throughout 3-manifold topology. Examples include Heegaard

splittings, surface bundles, Dehn fillings, and Haken hierarchies.

The proposed research will be disseminated to the mathematical community through pub-

lication and presentation at professional meetings. By keeping up with current research in

topology the PIs will be better able to direct senior projects, a requirement for graduation

at at least one of the PIs’ institutions.
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SECTION C: PROJECT DESCRIPTION

Heegaard splittings, introduced by Poul Heegaard in [Hee98], are a classical way to study

the topology of 3-manifolds. A 3-manifold that is homeomorphic to the regular neighborhood

of a (finite) connected graph in R3 is called a handlebody. Let M be a closed 3-manifold and

H ⊂M an embedded surface. We say H is a Heegaard splitting of M if it separates M into

two handlebodies (See Figure 1).
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Figure 1

The utility of Heegaard splittings is due to their intimate relationship with other techniques

used to study 3-manifolds:

(1) Given a Heegaard splitting of genus g one can write down a rank g presentation

of π1(M). In most known examples a minimal genus Heegaard splitting gives a

presentation of the fundamental group of minimal rank.

(2) For certain handle decompositions of M , the Heegaard splitting H is the boundary

of the union of the zero and one-handles (and is simultaneously the boundary of the

union of the two and three-handles).

(3) Heegaard splittings arise as level surfaces of height functions on M .

(4) Given a bumpy Riemannian metric onM , a “strongly irreducible” Heegaard splitting

can be realized as an index 1 minimal surface [PR87].

(5) Any “strongly irreducible” Heegaard splitting can be isotoped into a normal form

with respect to a fixed triangulation of M [Rub95].

Hence, we see connections between Heegaard theory and the algebra, topology, and geometry

of 3-manifolds.

Given any Heegaard splitting of a 3-manifold one can always construct a higher genus

splitting by adding a handle in a trivial way. Hence, if a manifold has a genus g Hee-

gaard splitting then it has splittings of all genera higher than g. What is of most interest,

then, are those Heegaard splittings of low genus. The goal of the present proposal is to

classify low genus Heegaard splittings of 3-manifolds that are constructed via sufficiently

complicated surface automorphisms. Geometrically, these manifolds should be thought of as
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having a region homeomorphic to {surface}×I, where the I direction is long. Constructions

of 3-manifolds by surface automorphisms arise naturally throughout 3-manifold topology.

Examples include Heegaard splittings, surface bundles, Dehn fillings, and Haken hierarchies.

Authors who have analyzed low genus Heegaard splittings in the presence of a complicated

surface automorphism include

• Lackenby [Lac02], Rubinstein [Rub], and the PIs [BS] for surface bundles,

• Moriah and Rubinstein [MR97] and Rieck and Sedgwick [RS01] for Dehn fillings

• Lackenby [Lac] (using results of Soma [Som02]) and Souto (in progress) for Haken

manifolds containing an acylindrical surface.

With the exceptions of the work of Rieck and Sedgwick and the PIs, all of the above results

were obtained with geometric techniques. The techniques described here are purely combi-

natorial, and therefore may yield more general results. Our results can often be phrased as

follows: If some surface automorphism used to construct a 3-manifold is “sufficiently com-

plicated” then the low genus Heegaard splittings are standard, i.e. they are constructed in

some canonical way from Heegaard splittings of the “cut-open” manifold.

There are currently no results describing the low genus Heegaard splittings of a manifold, if

the only information given is the existence of a “sufficiently complicated” Heegaard splitting.

See Section 8.1 below.

1. The curve complex

Let H be a closed, connected, orientable surface. We say a curve embedded in H is

essential if it does not bound a disk. We now define a 1-complex Γ(H). For each isotopy

class of essential curve in H there is a vertex of Γ(H). Two such vertices are connected by

an edge if there are representatives of the corresponding equivalence classes that are disjoint.

The complex Γ(H) is the one-skeleton of a complex which is commonly referred to as the

curve complex of H.

The path metric on Γ(H) gives a well-defined distance between any two vertices. If V

and W are sets of vertices in Γ(H) then we define the distance between V and W to be

the smallest distance between a vertex of V and a vertex of W . This definition allows us to

create measures of complexity for various common structures in 3-manifolds. For example,

the following definition is due to J. Hempel:

Definition 1.1. (Hempel [Hem01]) Let H denote a Heegaard splitting of a 3-manifold M .

Then H separates M into handlebodies V and W . Let V and W denote the sets of vertices
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of Γ(H) which correspond to loops bounding disks in V and W , respectively. The distance

d(H) of the Heegaard splitting H is defined to be the distance between V and W .

One nice feature of this definition is that it allows us to quickly recall most of the standard

terms in the theory of Heegaard splittings. A Heegaard splitting H

• is reducible if d(H) = 0, and irreducible otherwise,

• is weakly reducible if d(H) ≤ 1, and strongly irreducible otherwise [CG87],

• has the disjoint curve property if d(H) ≤ 2 [Tho99], and is full otherwise [Sch].

In an irreducible 3-manifold (i.e. one in which every embedded 2-sphere bounds a 3-ball)

those Heegaard splittings that are reducible are precisely the ones that come from adding

trivial handles to lower genus splittings (i.e. from stabilizing). Hence, what is of most interest

are the irreducible Heegaard splittings. One goal of this proposal is to give a classification

of irreducible Heegaard splittings of irreducible, orientable closed 3-manifolds, with respect

to their distance.

The first step in such a classification was taken by S. Schleimer, who showed the following:

Theorem 7.1 (Schleimer). For any closed orientable three-manifold M there is a constant

C(M) as follows: if H ⊂ M is a Heegaard splitting with genus at least C(M) then H has

the disjoint curve property.

This result will be discussed in more detail in Section 7.1.

2. Splittings of Haken 3-manifolds

After a great deal of work (see assorted papers of Bonahon, Otal, Moriah, Lustig, Schul-

tens, Sedgwick, Cooper, Scharlemann) Heegaard splittings of closed orientable geometric

manifolds are very well understood — except for the hyperbolic case. There, relatively little

is known (but see Bachman, Cooper and White [BCW]).

By Thurston’s geometrization theorem [Thu82] any closed, orientable, irreducible, atoroidal

3-manifold which contains an incompressible surface is hyperbolic. A compact, orientable,

irreducible 3-manifold that contains a 2-sided incompressible surface is said to be Haken.

A large part of our program is to classify the distances of all Heegaard splittings of such

3-manifolds. An important part of this program is a result of K. Hartshorn [Har02], who

showed the following:
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Theorem 2.1 (Hartshorn). Let M be a closed, orientable, irreducible 3-manifold with Hee-

gaard splitting H. Suppose M contains a 2-sided, incompressible surface F . Then the dis-

tance of H is bounded above by twice the genus of F .

An important special case of Haken 3-manifolds are those that fiber over the circle S1. Let

M be such a 3-manifold. Then M can be obtained from the product F × I by identifying

F ×{0} with F ×{1} via the map φ : F → F . We define the translation distance d(φ) of the

map φ to be the minimum distance between any essential loop in F and its image under φ,

as measured in the 1-complex Γ(F ). In [BS] the PI’s jointly established the following result:

Theorem 7.3 (Bachman-Schleimer). Suppose H is a Heegaard splitting of a surface bundle.

If −χ(H) is less than the translation distance of the monodromy (i.e. if g(H) ≤ 1
2
d(φ) + 1)

then H is weakly reducible.

This result will be discussed in more detail in Section 7.2.

Combining Theorems 7.1, 2.1 and 7.3 leads to the picture of the Heegaard splittings of

a surface bundle depicted in Figure 2. It is the conjecture of the PIs that this picture is

essentially valid for all Haken 3-manifolds. To establish this the PIs would need to find a

suitable generalization of Theorem 7.3. This is precisely why the present proposal focuses

only on the low genus Heegaard splittings. This is the topic of the next section.

3. Heegaard splittings of amalgamated 3-manifolds

Haken 3-manifolds naturally fall into two categories; those that contain a separating in-

compressible surface and those that do not. Our first goal is to find a replacement for

Theorem 7.3 in the setting where M contains a separating incompressible surface. In this

case M decomposes into two 3-manifolds, X and Y , each of whose boundary is a copy of F .

To recover M these copies of F are glued via some automorphism φ.

Assuming X and Y are acylindrical there are canonical finite collections of curves ∆(X)

and ∆(Y ) in ∂X and ∂Y , respectively. Geometrically, one may think of these curves as

being shortest in the unique hyperbolic metric making the boundary totally geodesic. We

now define the gluing distance d(φ) of the map φ to be the distance between the sets ∆(X)

and φ−1(∆(Y )) in the curve complex of ∂X.

The PIs are currently exploring the following conjecture.

Conjecture 1. Suppose H is a Heegaard splitting of X∪φY , where X and Y are acylindrical.

If −χ(H) is less than the gluing distance (i.e. if g(H) ≤ 1
2
d(φ)+1) then H is weakly reducible.
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Figure 2. In region 1 all irreducible Heegaard splittings have distance exactly

one. In region 3 any such splitting can have distance one or two.

Although this conjecture seems very similar to Theorem 7.3 any possible proof must be

quite different (contrast Section 7.2 with Section 4). If true, Conjecture 1 would have the

following consequence:

Conjecture 2. Suppose H is a Heegaard splitting of X ∪φ Y . If −χ(H) is less than d(φ)

then H is obtained by amalgamating splittings of X and Y .

This conjecture is a strengthening of a recent result of Lackenby [Lac]:

Theorem 3.1 (Lackenby). If φ is a sufficiently high power of a pseudo-Anosov map, then

the minimal genus Heegaard splitting of X ∪φ Y is obtained by amalgamating splittings of X

and Y . Thus the Heegaard genus of X ∪φ Y is exactly

g(X ∪φ Y ) = g(X) + g(Y )− g(∂X).

Here g(X) denotes the minimal genus Heegaard splitting of X and g(∂X) denotes the

genus of its boundary. Note that since X has boundary the definition of Heegaard splitting

must be generalized. See [CG87].

Lackenby’s proof relies on the hyperbolic geometry ofX∪φY investigated by Soma [Som02].

The hyperbolic structure depends sensitively on the map φ. We expect our methods to yield

the more general result because the gluing distance d(φ) is a much coarser invariant.
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4. Proof sketch for Conjecture 1

Our approach to Conjecture 1 is based on a lemma from a forthcoming paper by both PIs

and E. Sedgwick. This lemma is as follows:

Lemma 4.1. Let M be a compact, irreducible, orientable 3-manifold whose boundary, if

non-empty, is incompressible. Suppose M = X ∪F Y = V ∪H W , where F is incompressible,

orientable, connected, closed, and non-boundary parallel and H is a Heegaard surface. Then

either H is an amalgamation of splittings of X and Y or there are properly embedded surfaces

HX ⊂ X and HY ⊂ Y with boundaries on F such that at least one of the following holds:

(1) The surfaces HX and HY are incompressible, non-boundary parallel, and satisfy

∂HX = ∂HY and χ(HX) + χ(HY ) ≥ χ(H).

(2) After possibly exchanging X and Y we may assume HX is incompressible and non-

boundary parallel, HY is strongly irreducible, ∂HX = ∂HY and χ(HX) + χ(HY ) ≥

χ(H).

(3) The surfaces HX and HY are incompressible, non-boundary parallel, and satisfy

∂HX ∩ ∂HY = ∅ and χ(HX) + χ(HY )− 1 ≥ χ(H).

The proof of Lemma 4.1 follows from a careful sweepout argument. To make use of Lemma

4.1 to prove Conjecture 1 we first fix triangulations of X and Y (these triangulations do not

have to agree on F ).

Now, suppose HX is an incompressible, non-boundary parallel surface properly embedded

in X. Then ∂HX defines a set of vertices in the 1-complex Γ(∂X). Let {H
i
X}

n
i=0 denote

a sequence of properly embedded surfaces in X, where H0
X = HX , H

i
X is obtained from

H i−1
X by a ∂-compression, and Hn

X is both incompressible and ∂-incompressible. Note that

it follows that n ≤ −χ(HX).

For each i the curves ∂H i
X are at a distance of at most one from the curves ∂H

i−1
X in Γ(F ).

Hence, the curves {∂H i
X} define a path of length at most n ≤ −χ(HX). The final surface

Hn
X is incompressible and ∂-incompressible, and hence can be made normal with respect to

the triangulation of X by a result of Haken [Hak61]. That is, we can make Hn
X intersect

every tetrahedron in a collection of triangles and quadrilaterals, as in Figure 3.

All normal surfaces can be represented as a sum over a finite generating set, the so called

fundamental surfaces. Furthermore, both boundary length (i.e. the number of intersections

with the 1-skeleton) and Euler characteristic are additive with respect to this sum. Since,

by a result of Jaco and Oertel [JO84], there can be no annular summands for Hn
X we can
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Figure 3

bound the length of ∂Hn
X in terms of its Euler characteristic. Once we have bounded length,

it is not difficult to show that ∂Hn
X is a bounded distance from ∆(X) in Γ(F ).

Summing all this up, we can now show that there is a bound on the distance between the

sets ∂HX and ∆(X) as measured in Γ(F ), in terms of χ(HX).

In Y things are a bit trickier. According to Lemma 4.1 we must now face the possibility

that HY is strongly irreducible, i.e. that every compressing disk on one side must meet every

compressing disk on the other. The relevant theorem that will replace the result of Haken’s

which we used to normalize HX is the following:

Theorem 4.2 (Bachman [Bac01]). If every compressing and boundary compressing disk on

opposite sides of HY intersect then HY can be made almost normal.

Here an almost normal surface is one which intersects every tetrahedron in a collection

of triangles and quadrilaterals, except for exactly one piece. The exceptional piece can be

either two normal disks connected by an unknotted tube (Figure 4 left), two disks connected

by a “half tube” along ∂Y (Figure 4 middle), or an octagon (Figure 4 right).

Figure 4

Although the surface HY given by Lemma 4.1 must have the property that compressing

disks on opposite sides intersect, this may not be true of the ∂-compressing disks. Hence, we
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may have to do a sequence of weak reductions which consist of nothing more than pairs of

simultaneous boundary compressions, on opposite sides, or a simultaneous compression and

∂-compression. Each such weak reduction represents a step of at most two for ∂HY in the

1-complex Γ(F ). But note that the the negative Euler characteristic of the resulting surface

also decreases by a similar amount.

Once we have obtained an almost normal surface H ′
Y by weak reducing HY we would

be able to conclude that its boundary is a bounded distance from ∆(Y ), if we knew there

were no annular summands for H ′
Y . Note that we cannot use the result of Jaco and Oertel

mentioned previously, since H ′
Y is not incompressible. Ignoring this for now, we once again

obtain the result that there is a bound on the distance between the sets ∂HY and ∆(Y ) as

measured in Γ(F ), in terms of χ(HY ).

Finally, Lemma 4.1 shows that ∂HX is distance at most one away from ∂HY in Γ(F ),

and establishes a relationship between χ(HX), χ(HY ) and χ(H). Putting all this together

Conjecture 1 follows.

The missing step then is to gain control over the normal annuli in Y . To handle this we turn

toward Jaco and Rubinstein’s program for finding 1-efficient triangulations of irreducible,

atoroidal 3-manifolds. In this program they find triangulations in which there are serious

restrictions on the toroidal summands of strongly irreducible Heegaard splittings. Both PIs

have studied this program in detail, and hope to be able to mimic it to produce triangulations

of X and Y in which the desired surfaces have restricted annular summands.

5. Non-separating essential surfaces

Haken 3-manifolds that do not contain separating incompressible surfaces necessarily con-

tain non-separating ones. Let M be such a manifold, containing the non-separating surface

F . Let M ′ denote the manifold obtained from M by removing a regular neighborhood of F .

Then M ′ has two boundary components that are each copies of F . The manifold M can be

recovered from M ′ by gluing via a homeomorphism φ.

As above, we make the simplifying assumption that M ′ is acylindrical. In this case there

are canonical collections of curves ∆1 and ∆2 on each boundary component. We now define

the distance d(φ) of φ to be the distance between ∆1 and φ
−1(∆2) in Γ(F ), the curve complex

of F .

We conjecture that Figure 2 is still the correct picture. To prove this we need to show the

following:
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Conjecture 3. Suppose H is a Heegaard splitting ofM = ∪φM
′, whereM ′ is acylindrical. If

−χ(H) is less than the gluing distance (i.e. if g(H) ≤ 1
2
d(φ)+1) then H is weakly reducible.

In this setting we believe we can prove that a suitable counterpart to Lemma 4.1 holds.

Assuming this is the case much of the proof sketch from Section 4 goes through. In partic-

ular, once we have proven Conjecture 1, there should be no problem finding a suitably nice

triangulation of M ′ (i.e. one with restricted normal annuli).

If Conjecture 3 is true, we believe the following holds:

Conjecture 4. Suppose H is a Heegaard splitting of M = ∪φM
′. If −χ(H) is less than

d(φ) then g(H) ≥ g(M ′) + 1.

Here g(M ′) denotes the minimal genus Heegaard splitting of M ′ among all those which

do not separate the boundary components.

6. Heegaard splittings of toroidal 3-manifolds

As mentioned in Section 2, of all geometric 3-manifolds the least is known about Heeegaard

splittings of the hyperbolic ones. But what about Heegaard splittings of toroidal 3-manifolds

that do not admit a geometry without further decomposition? It follows immediately from

Theorem 2.1 that such splittings have distance at most two. But in fact we can say more.

In work in progress the PIs, together with E. Sedgwick, consider the case where there is a

separating essential torus. Our goal is to show the following:

Conjecture 5. Let X and Y be manifolds with toroidal boundary. For “sufficiently compli-

cated” gluings φ : ∂X → ∂Y the manifold X ∪φ Y admits only weakly reducible (i.e. distance

one) Heegaard splittings.

In this context “sufficiently complicated” means that there is no overlap between the set

of boundary slopes in ∂X (a finite set) and the preimage, under φ, of the set of boundary

slopes in ∂Y . The proof will follow quickly from Lemma 4.1 and Theorem 4.2, as follows.

Assume the surface F of Lemma 4.1 is a separating torus. Using Haken’s work [Hak61]

we can normalize the incompressible pieces HX and/or HY . If HY is strongly irreducible

then, using Bachman’s result on “almost-normalizing” Heegaard splittings with boundary (see

Theorem 4.2), we can find an almost normal form for HY . A paper of Jaco and Sedgwick

[JS03] shows that a finite number of slopes on ∂X and ∂Y can be the boundaries of normal or

almost normal surfaces. If we assume the map used to glue X to Y is sufficiently complicated
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then these slopes do not match up. We conclude that H must not have been strongly

irreducible.

What remains is the non-separating case. Any 3-manifold with a non-separating essential

torus can be obtained from a 3-manifold with two torus boundary components by gluing

these components together by some automorphism φ. What we would like to show is the

following:

Conjecture 6. For “sufficiently complicated” such φ the resulting 3-manifold admits only

weakly reducible Heegaard splittings.

To establish this we expect to be able to use many of the same techniques as in the

separating case above, although we will no longer be able to appeal to the Jaco-Sedgwick

result [JS03].

7. Results from prior NSF support

In this section we discuss relevant work performed by Schleimer during his NSF postdoc

at the University of Illinois at Chicago.

7.1. Full Heegaard splittings. Recall our notation: a Heegaard splitting H of a closed

orientable three-manifold M is a surface dividing the manifold into a pair of handlebodies,

V and W . A splitting has the disjoint curve property (as defined by Thompson [Tho99]) if

there is a pair of properly embedded disks D ⊂ V , E ⊂ W and an essential curve γ ⊂ H,

with the boundaries of D and E disjoint from γ. That is to say, H \(∂D∪∂E) has nontrivial

topology. This definition naturally arises when studying the distance of a Heegaard splitting.

As noted above, H has the disjoint curve property (DCP) if and only if its Hempel distance

is two or less. Finally we say H is full if it does not admit such a triple (D,E, γ).

We have proved the following:

Theorem 7.1 (Schleimer). For any closed orientable three-manifold M there is a constant

C(M) as follows: if H ⊂ M is a Heegaard splitting with genus at least C(M) then H has

the disjoint curve property.

Combining this with work of Jaco and Rubinstein, and now-standard techniques of Casson

and Gordon, gives:

Theorem 7.2. Any closed orientable three-manifold M admits only finitely many full Hee-

gaard splittings.
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Note that several false conjectures of the form “M has only finitely many splittings of type

’X’ ” have been made. See [Wal78] or [Ale67]. We believe that Theorem 7.2 gives a serious

restriction on the Heegaard splittings of a generic three-manifold, as desired by [Wal78]

or [Ale67].

Let us now sketch the proof of Theorem 7.1. For full details please consult [Sch]. First

note that if a splitting is weakly reducible then it has the DCP. So we restrict attention

to strongly irreducible splittings. Fix a triangulation of M . We now use the Rubinstein-

Stocking theorem (see [Sto00]) to isotope a given strongly irreducible Heegaard splitting

H to be almost normal. (Geometrically this may be thought of as fixing a metric on M

and then realizing any strongly irreducible splitting as a surface with uniformly bounded

sectional curvatures.)

Now cut the triangulation of M along H. When H has large enough genus we see the

handlebody V (and similarily forW ) divided into two regions: a “I-bundle region” where the

pieces of the triangulation form an I-bundle over a surface and the complementary region,

the “core region”. (The rough geometric idea is that there is an ε, depending only on the

metric, such that the I-bundle is the set of points in V which are within ε of two separated

points of H. Here two points are separated if their distance, in H, is much bigger than 2ε.)

A section of the vertical boundary of the I-bundle for V is a short link in M ; that is a

link where no component is very long in the chosen triangulation (metric) onM . We remove

a regular neighborhood of this link to get an irreducible, boundary-irreducible submanifold

N ⊂ M . Choose a section F of the intersection of N with the I-bundle. This surface F

is incompressible and boundary-incompressible in N . Thus, choosing a triangulation for N

(which does not have many more tetrahedra than that of M), we may normalize F .

Now, since we may take H to have very large genus relative to the triangulation of N , the

same holds of F . It follows from classical work of Haken [Hak61], together with a lemma

of [JO84], that the surface F is annular; there is an essential annulus properly embedded in

(N,F ), which is not parallel into the boundary. This annulus, and a careful combinatorial

argument, will show that H has the DCP. (For a much easier, but related theorem, see

Thompson’s proof [Tho99] that in toroidal manifolds all Heegaard splittings have the DCP.)

7.2. Heegaard splittings of surface bundles. Here we discuss joint work with David

Bachman, which is the beginning of the program outlined in our proposal.

For the remainder of this section we study the Heegaard splittings of a surface bundle

M(φ) which is obtained as follows: Fix a closed orientable surface F and a homeomorphism
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φ : F → F . Taking F × I, glue (x, 1) to (φ(x), 0). We will refer to φ as the monodromy of

the surface bundle M(φ).

As φ acts in a natrual fashion on the curve complex of F (see above) the translation

distance of φ should effect the topology of M(φ). In fact we have:

Theorem 7.3 (Bachman-Schleimer). Suppose H is a Heegaard splitting of a surface bundle.

If −χ(H) is less than the translation distance of the monodromy then H is weakly reducible.

Following the lead of Casson and Gordon this theorem should be read as “if a Heegaard

splitting of M(φ) has low genus then it can be obtained from an even lower genus Heegaard

splitting or essential surface.” In fact we prove:

Corollary 7.4 (Bachman-Schleimer). Suppose H is a Heegaard splitting of a surface bundle.

If −χ(H) is less than the translation distance of the monodromy then H is a stablization of

the standard splitting.

Let us now sketch a proof of the contrapositive of Theorem 7.3. FixH a strongly irreducible

Heegaard splitting of M(φ). Now, there is a natural foliation of the manifold coming from

the surface bundle structure. Label the leaves of the foliation F (s) where s ranges from 0

to 2π and F (0) = F (2π). Similarly there is a singular foliation of M(φ) coming from the

given Heegaard splitting H – choose a height function on M(φ) with spines for V and W at

heights 0 and 1 respectively, and every level set H(t) isotopic to H.

Using Cerf theory (as in the work of Rubinstein-Scharlemann [RS96]) we analyze the

intersection of F (S) and H(t). The strong irreducibility of H, together with combinatorial

work, implies the existence of a level H(t0) which intersects all (except finitely many) of the

fibres F (s) in curves which are essential on both H(t0) and F (s). From these we extract a

sequence of curves which provide a path in the curve complex of the fibre. This path gives

the desired bound.

8. Individual Projects

In this section we discuss projects that the PIs are working on separately, but nonetheless

have relevance for their joint program, as outlined above.

8.1. Bounding distance via Heegaard genus. Saul Schleimer and Marc Lackenby are

currently working on:

Conjecture 7. If H and K are Heegaard splittings of M , and K is not a stabilization of

H, then the distance of H is bounded above by twice the genus of K.
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The idea that the genus of K bounds the distance of H is prompted by the analogy

between strongly irreducible splittings and incompressible surfaces, and by Theorem 2.1.

Our idea here is to mimic the proof technique of Stocking in [Sto00]. Instead of taking a

triangulation we fix spines V0 and W1 for the splitting H. We isotope these until they are in

thin position with respect to the sweepout given by K. We then look for a thick level, Kt,

with the following property: for every level Hs all curves of Kt ∩ Hs are essential in Hs or

are inessential in both surfaces. This should be thought of as making K almost normal with

respect to the sweepout Hs.

Equipped with the above there are standard techniques (as in Lemma 4.2 of [BS]) which

will give the desired result.

8.2. Uniqueness of Heegaard splittings in Amalgamated 3-manifolds. Bachman is

currently exploring the following conjecture:

Conjecture 8. Let X and Y be manifolds with torus boundary which have at most one

Heegaard splitting of each genus. If one glues X to Y with a “sufficiently complicated” map

then the resulting 3-manifold has at most one Heegaard splitting of each genus.

In previous work Bachman has shown that a 3-manifold has non-isotopic Heegaard split-

tings of some genus if and only if it contains a critical surface [Bac02]. Criticality is a

combinatorial condition on the compressing disks for a surface, analogous to the condition

of strong irreducibility.

To establish Conjecture 8 the first step would be to prove a lemma analogous to Lemma 4.1.

Such a lemma should follow from a 2-parameter Cerf-theory type argument, and establish

the following:

Conjecture 9. Assume H is a critical Heegaard splitting, F is essential, and F separates

M into X and Y . Then there are non-∂-parallel incompressible, strongly irreducible, or

critical surfaces HX ⊂ X and HY ⊂ Y with disjoint, non-empty boundaries, such that

χ(HX) + χ(HY ) ≥ χ(H).

Now, assume X∪φY has non-isotopic Heegaard splittings of some genus. Then it contains

a critical surface by [Bac02]. If this surface was not isotopic into X or Y then it would follow

from Conjecture 9 that there are incompressible, strongly irreducible, or critical surfaces

with boundary in X and Y . In the first case we obtain a normal boundary slope by [Hak61].

In the second there is an almost normal boundary slope by [Bac01]. What Bachman must

do, then, is to establish that there is a normal form for critical surfaces with boundary (as
13



he has done for closed critical Heegaard surfaces [Bac] and strongly irreducible Heegaard

surfaces with boundary [Bac01]).

Assuming this works out, and the map gluing X to Y is sufficiently complicated, then the

conclusion would be that X or Y contains a critical surface. It then follows from [Bac02] that

X or Y has non-isotopic Heegaard splittings of some genus, contradicting the hypotheses of

Conjecture 8.

8.3. Dehn Filling. Bachman and E. Sedgwick have noted that finding a normal form for

critical surfaces with non-empty boundary may yield other fruit as well. Suppose X is a

manifold with torus boundary, and H and G are non-isotopic Heegaard splittings of X. If

α is a slope on ∂X then let X(α) denote the manifold obtained by gluing a solid torus to

X in such a way so that α bounds a disk. Now assume α is some slope on ∂X such that H

and G are isotopic in X(α) (or, more generally, the stabilization bound between H and G is

lower in X(α) than in X). Then there appears to be a critical surface with boundary α in

X. We now need to show that this surface has an appropriate normal form in X, and that

there are a finite number of slopes on ∂X that can bound such a surface. The proof of the

latter assertion should be similar to the result of Jaco and Sedgwick, which says that there

are a finite number of normal and almost normal boundary slopes [JS03]. We conclude that

this phenomenon should only happen for a fairly restricted class of fillings. This is analogous

to the result of Rieck and Sedgwick [RS01], which says that a strongly irreducible Heegaard

splitting of X can become weakly reducible only after a restricted class of fillings.

14



Human Resources Impact Statement

David Bachman

Bachman has demonstrated a long history of educational activities at all levels. This

started when Bachman was a second year graduate student and became an instructor for Uri

Triesmann’s Emerging Scholars Program. This program consisted of challenging workshops

designed to improve the retention of underrepresented groups in the sciences.

Later in graduate school Bachman took on a program called Saturday Morning Math

Group. This program offered high school students exposure to topics in advanced mathe-

matics not usually experienced until graduate school. Four mornings each semester students

were invited to come to the university, where they would listen to talks and do activities

related to advanced mathematics. Bachman is hoping to start a similar program at Cal Poly.

As a postdoc at Portland State University Bachman organized the undergraduate math-

ematics club. This featured bi-weekly meetings in which speakers from both in and out

of academia were solicited to talk about their relationship with mathematics. Bachman

also administered the Putnam exam and ran practice sessions for interested students. Also

while at Portland State Bachman was co-organizer for the Cascade Topology Conference, a

semi-annual meeting of in the Pacific Northwest.

Finally, as a post-doc at the University of Illinois at Chicago Bachman organized the

department’s Geometry, Topology, and Dynamical Systems weekly seminar.

Saul Schleimer

Schleimer has, for the last three years, been the organizer of the UIC three-manifold

seminar. Although the seminar is primarily focused on research-level talks on topics of

current interest, it has also had many graduate student speakers who were both local and

from further afield. Other activities directed at graduate education include assisting at two

graduate summer schools and participation in several graduate level seminars during the

school year.

In addition, he has twice served as a referee for the journal Geometriae Dedicata, which

proved to be very instructive.
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SECTION F: BUDGET JUSTIFICATION

A. Salaries and Wages

(1) 4 units of release time per year are requested to give the PI enough time to further

develop his career goals. The normal teaching load at Cal Poly is 12 units (3 classes that

meet 4 hours per week) per quarter. In support of an NSF grant, the PI’s department

will adjust the PI’s teaching load for the Winter and Spring quarters to enable the faculty

to perform support for the project. The requested release time would be used in the Fall

quarter.

(2) The usual two-ninths salary is requested for research activities during the summer.

E. Travel

(1) Domestic. Four domestic trips per year are estimated for conference attendance and

visits to colleagues/coauthors. Expenses per trip are estimated as follows:

$ 500 travel

$ 350 hotel (5 nights @ $ 70 per night)

$ 270 per diem (6 days @ $ 45 per day)

$1120 total per trip

$4480 total per year

(2) Foreign. Two foreign trips per year are estimated for international conference atten-

dance. Expenses per trip are estimated as follows:

$1500 travel

$ 700 hotel (7 nights @ $ 100 per night)

$ 520 per diem (8 days @ $ 65 per day)

$2720 total per trip

$5440 total per year

G. Other Direct Costs

(1) Materials and Supplies. $3500 in the first year for the purchase of a laptop pro-

jector for conference presentations. There is currently no such projector owned by the PI’s

department. $500 per year for general supplies.

(2) Publication Costs. $500 per year to cover costs of reproduction and distribution of

research papers.

(3) Consultant Services. Money to bring colleagues to visit the PI at Cal Poly is

requested. Should such a visitor also give a colloquium talk the department will pay an



honorarium. Four such visits per year are estimated. Expenses per visit are estimated as

follows:
$ 500 travel

$ 280 hotel (4 nights @ $ 70 per night)

$ 225 per diem (5 days @ $ 45 per day)

$1005 total per trip

$4020 total per year


