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Abstract. This is a work-in-progress and should not be
distributed. We prove that the disk complex is Gromov hyper-
bolic. Remarkably, a necessary step in the proof is a similar anal-
ysis of the geometry of the arc complex.

As an application, we find an algorithm which computes the
Hempel distance of a Heegaard splitting, up to an error bounded
by a function of the genus.
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1. Introduction

We use Sg,b,c to denote the compact connected surface of genus g with
b boundary components and c cross-caps. If the surface is orientable
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we omit the subscript c and write Sg,b. If the surface is closed and
orientable we simply write Sg.

A simple closed curve α ⊂ S is essential if α does not bound a disk
in S. The curve α is non-peripheral if α is not isotopic to a component
of ∂S.

1.1. The curve complex.

Definition 1.1 (Harvey [Har81]). The curve complex C(S) is the sim-
plical complex with vertex set being isotopy classes of essential, non-
peripheral curves in S. There is a k–simplex for every collection of
k + 1 distinct isotopy classes having pairwise disjoint representatives.

Definition 1.2. Fix α and β, vertices of C(S). The distance dS(α, β)
is the minimum possible number of edges of a path in the one-skeleton
C1(S) which starts at α and ends at β.

For example, if dS(α, β) ≥ 3 then α and β fill S: every essential
non-peripheral curve in S intersects one of α or β. An important tool
for this paper is the following theorem of the first author and Yair
Minsky [MM99]:

Theorem 1.3. The curve complex of an orientable surface is Gromov
hyperbolic. ¤
We will also need this result for nonorientable surfaces; as an applica-
tion of our techniques we give a proof in Corollary 5.4.

1.2. The disk complex. Let Vg denote the handlebody of genus g: the
three-manifold obtained by taking a closed regular neighborhood of a
polygonal, finite, connected graph in R3. The genus of the boundary
is the genus of the handlebody. A properly embedded disk D ⊂ V is
essential if ∂D ⊂ ∂V is essential.

Definition 1.4 (McCullough [McC91]). The disk complex D(V ) is the
simplicial complex with vertex set being proper isotopy classes of es-
sential disks in V . We have a k–simplex for every collection of k + 1
distinct isotopy classes having pairwise disjoint representatives.

As with the curve complex, define dD(D,E) to be the distance in the
one-skeleton of D(V ) between the disks D and E. Our driving interest
is in the intrinsic metric on D(V ) and how it differs from that of C(∂V ).
In fact, we will necessarily treat much more general complexes. In this
introduction we restrict to statements about the disk complex. An
early motivation for our investigation was:

Theorem 8.3. The natural simplicial inclusion ν : D(V ) → C(∂V ) is
not a quasi-isometric embedding.
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We develop a theory of the metric obstructions, or holes, arising in
Theorem 8.3. The complete classification of holes for D(V ) is given
by Theorems 9.1, 10.7, and 11.1. These theorems require an delicate
analysis of JSJ decompositions of V caused by widely separated disks
in D(V ).

Next, inspired by the distance estimates for the the mapping class
group and the pants complex given in [MM00], we obtain an similar
estimate for the disk complex:

Theorem 18.1. Distance in the disk complex D(V ) between two disks
D and E is quasi-equal to the sum of distances between D and E, as
projected to holes X ⊂ ∂V for D(V ). To be precise, for any handlebody
V there is a constant c0 = c0(V ) so that, for any c ≥ c0 there are
constants a ≥ 1 and b ≥ 0 so that

dD(D,E)
a,b
=
∑

[dX(D,E)]c

independent of the choice of D and E. Here the sum ranges over the
set of holes X ⊂ ∂V for the disk complex.

The paper [MM00] verifies its distance estimates by constructing and
then using the hierarchy machinary. However, hierarchies do not ap-
pear to be flexible enough to deal with the disk complex. Instead we
turn to surgery sequences of essential disks, as developed in [MM], and
to Lee Mosher’s version of train track splitting sequences (Section 16).
In fact, surgery and splitting sequences are too flexible; an inductive
straightening procedure is developed is Section 12.

With the distance estimate in hand we prove:

Theorem 19.3. The intrinsic metric dD on D(V ) is Gromov hyper-
bolic.

The closest precursor to Theorem 19.3 is the paper by Brock and
Farb [BF] proving the hyperbolicity of the pants complex of the five-
holed sphere and twice-holed torus. Another proof may be found in
Behrstock’s thesis [Beh04]. The former uses an area criterion (see
Bowditch [Bow91]) while the latter, following [MM00], proves that cer-
tain projection maps are coarsely contracting. We instead use a version
of quasi-geodesic stability, see Theorem 2.8.

We end this overview with a remark: to understand the geometry
of the disk complex, one is unavoidably forced to consider the corre-
sponding questions in the arc complex of a bounded surface as well as
the curve complex of a nonorientable surface. Thus our preliminary
material is unavoidably somewhat general.
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1.3. Heegaard distance. We now turn to an application. Fix a Hee-
gaard splitting: a triple (S, V,W ) consisting of a surface and two han-
dlebodies where V ∩W = ∂V = ∂W = S. Hempel [Hem01] defines
the quantity dS(V,W ) = dS(D(V ),D(W )) to be the minimal distance
in C(S) between a essential disk of V and of W . Note that a splitting
can be completely determined by giving a pair of pants decompositions
(maximal simplices), say D in D(V ) and E in D(W ). The resulting
triple (S,D,E) is called a Heegaard diagram.

We prove:

Theorem 20.8. There is a constant R2 = R2(S) and an algorithm
which, given a Heegaard diagram (S,D,E), computes a number N so
that

|dS(V,W )−N | ≤ R2.

Here is the context for Theorem 20.8. A long outstanding problem is
to find an algorithm which, given a Heegaard diagram, decides whether
or not the underlying splitting surface is reducible: has distance zero.
Several early ascents of the Poincaré Conjecture fell at essentially this
point.

Acknowledgements. We thank Jason Behrstock, Yair Minsky, Lee
Mosher, Hossein Namazi, and Kasra Rafi for many enlightening con-
versations.

2. Background on coarse geometry

Here we review a few ideas from coarse geometry. See [BH99],
[CDP90], or even [Gro87] for a fuller discussion.

2.1. Quasi-isometry. As a bit of notation, suppose r, s, a, b are non-
negative real numbers, with a ≥ 1. If s ≤ a ·r+b then we write s≤a,b r.
If s≤a,b r and r≤a,b s then we write s

a,b
= r and call r and s quasi-equal

with constants (a, b). We also define the cut-off function [r]c where
[r]c = 0 if r < c and [r]c = r if r ≥ c.

Suppose that (X , dX ) and (Y , dY) are metric spaces. A map f : X →
Y is an (a, b) quasi-isometric embedding for a ≥ 1, b ≥ 0 if, for every
x, y ∈ X ,

dX (x, y)
a,b
= dY(f(x), f(y)).

The map f is a quasi-isometry, and X is quasi-isometric to Y , if f
is an (a, b) quasi-isometric embedding and the image of f is b–dense:
the b–neighborhood of the image equals all of Y .

We also allow set-valued maps: f : X → P(Y) where P(Y) is the
power set of Y . If Z ⊂ X we adopt the convention f(Z) =

⋃
z∈Z f(z).
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The map f is an (a, b) quasi-isometric embedding if dX (x, y)
a,b
=dY(x′, y′)

for all x′ ∈ f(x) and all y′ ∈ f(y). It necessarily follows that the
diameter of f(x) is at most b for any x ∈ X . Again, f is a quasi-
isometry if f(X ) is b–dense in Y .

2.2. Geodesics. Fix an interval [u, v] ⊂ R. A geodesic, connecting x
to y in X , is a (1, 0) quasi-isometric embedding f : [u, v] → X with
f(u) = x and f(v) = y. Often the exact choice of f is unimportant
and all that matters are the endpoints x and y. We then denote the
image of f by [x, y] ⊂ X .

Fix now intervals [m,n], [p, q] ⊂ Z. An (a, b) quasi-isometric embed-
ding g : [m,n] → X is called an (a, b) quasi-geodesic in X . A function
g : [m,n]→ X is an (a, b, c) unparametrized quasi-geodesic in X if

• there is an increasing function h : [p, q] → [m,n] so that g ◦
h : [p, q]→ X is an (a, b) quasi-geodesic in X and
• for all i ∈ [p, q − 1], diamX (g [h(i), h(i+ 1)]) ≤ c.

(Compare to the definition of (K, δ, s) quasi-geodesics found in [MM99].)

2.3. Hyperbolicity. Suppose that X is a geodesic metric space. For
convenience we now assume that X is a graph with metric induced by
giving all edges length one.

Definition 2.1. The space X is δ–hyperbolic if, for any three points
x, y, z in X and for any geodesics k = [x, y], g = [y, z], h = [z, x], the
triangle ghk is δ–slim: the δ–neighborhood of h ∪ k contains g.

For the remainder of this section we assume that X is hyperbolic,
x, y, z ∈ X are points, and k, g, h are geodesics as in Definition 2.1.

Definition 2.2. We take ρk(z) to be the closest points projection of z
to k:

ρk(z) = {w ∈ k | dX (z, w) = dX (z, k)}.
We now list several lemmas useful in the sequel.

Lemma 2.3. The closest points projection ρk(z) has diameter at most
4δ. ¤
Lemma 2.4. There is a point on g within distance 2δ of ρk(z). The
same holds for h. ¤
Lemma 2.5. The diameter of ρg(x)∪ ρh(y)∪ ρk(z) is at most 6δ. ¤
Lemma 2.6. Suppose that z′ is another point in X so that dX (z, z′) ≤
R. Then dX (ρk(z), ρk(z

′)) ≤ 2R + 4δ. ¤
Lemma 2.7. Suppose that k′ is another geodesic in X so that the
endpoints of k′ are within distance R of the points x and y. Then
dX(ρk(z), ρk′(z)) ≤ R + 12δ. ¤
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2.4. A hyperbolicity criterion. Here we give a criterion for a metric
space to be Gromov hyperbolic. Again, [BH99] discusses in depth
related issues and definitions.

Theorem 2.8. The graph X is Gromov hyperbolic if and only if there
are constants M ≥ 0, δ ≥ 0 and, for all x, y ∈ X 0, a collection G(x, y)
of edge paths from x to y with the following properties:

• For all x, y ∈ X 0 and for all k ∈ G(x, y) if dX(x, y) ≤ 1 then
the path k has length at most M .
• For all x, y, z ∈ X 0 and for all k ∈ G(x, y), g ∈ G(y, z), h ∈
G(z, x) the triangle ghk is δ–slim.

Proof. It is enough to prove stability of geodesics: There is a constant
R = R(M, δ) so that any geodesic c in X , connecting x to y, and any
path k ∈ G(x, y) satisfy dHaus(c, k) ≤ R. It then follows that geodesic
triangles are R + δ slim.

To prove stability, simply follow the plan of Proposition III.H.1.6 and
Theorem III.H.1.7 in [BH99] replacing geodesic triangles by triangles
of paths from G, as necessary. The details are left as an exercise for
the interested reader. ¤

3. Background on subsurface projection

This section recalls some of the theory of subsurface projections fol-
lowing [MM00].

3.1. More complexes. Suppose that S is a compact connected sur-
face with boundary. A properly embedded arc β ⊂ S is essential if β
is not properly isotopic into ∂S.

Definition 3.1. The arc complex A(S) is the simplical complex with
vertex set being proper isotopy classes of essential arcs in S. We have
a k–simplex for every collection of k + 1 distinct classes which have
pairwise disjoint representatives.

In identical fashion define AC(S), the arc and curve complex of S,
which contains all essential arcs and all essential non-peripheral curves.

Given essential curves or arcs α, β in a surface X the geometric inter-
section number, ι(α, β), is the minimum intersection possible between
α and any β ′ properly isotopic to β. If α and β realize their geomet-
ric intersection number then α is tight with respect to β. If they do
not realize their geometric intersection then we may tighten (properly
isotope) β until they do.

Note that the curve complexes C(S1,1) and C(S0,4), with the current
definition, are nonempty but have no edges. It is useful to alter the
definition in these cases as follows:
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Definition 3.2. Suppose that X is one of S1,1 or S0,4. Add edges to
C(X) between all vertices with geometric intersection exactly one if X
S1,1 or two if X = S0,4. In both cases the result is the Farey graph.

Notice also that, with current definitions, the curve complex of an
annulus S0,2 is empty while the arc complex is finite. Following [MM00]:

Definition 3.3. Fix X ∼= S0,2. We redefine C(X) to be the complex
with vertices being proper isotopy classes of essential arcs where all
isotopies fix the boundary of X pointwise. Also, place an edge between
two distinct classes if they have representatives with disjoint interiors.

As above, given α and β vertices in C(S) define dS(α, β) to be the
minimal number of edges required for any path from α to β in the
one-skeleton of C(S). Recall that the geometric intersection of a pair
of curves gives an upper bound for their distance, as follows:

Lemma 3.4. Suppose that S is a compact connected surface which is
not an annulus. If α, β ⊂ S are essential and non-peripheral curves
with ι(α, β) > 0 then dS(α, β) ≤ 2 log2(ι(α, β)) + 2. ¤
This form of the inequality, stated for closed orientable surfaces, may
be found in [Hem01]. A careful proof in the bounded orientable case
is given in [Sch]. The nonorientable case is then an exercise. In the
case of an annulus, no bound is required: If X ∼= S0,2 then an easy
induction proves that

(3.5) dX(α, β) = 1 + ι(α, β)

(see [MM00, Equation 2.3]) for distinct vertices α, β ∈ C(X).

3.2. Surfaces and subsurfaces. If X ⊂ S is a connected compact
subsurface we call X essential exactly when all boundary components
of X are essential in Z.

Definition 3.6. An essential subsurface X ⊂ S is cleanly embedded
when a component δ ⊂ ∂X is isotopic into ∂S if and only if δ is equal
to a component of ∂S.

As a particular case: if X ⊂ S is a cleanly embedded annulus and S is
not an annulus then ∂X is not parallel into ∂S.

Definition 3.7. Suppose X,Y ⊂ S are essential subsurfaces. If X is
cleanly embedded in Y then we say that X is nested in Y . If ∂X cuts
Y and reversely then we say that X and Y overlap.

Definition 3.8. A compact connected surface S is simple if AC(S) has
finite diameter.

Here we address the question of exactly which surfaces are simple.
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Lemma 3.9. Suppose S is a connected compact surface. The following
are equivalent:

• S is not simple.
• The diameter of AC(S) is at least five.
• S admits a filling lamination.
• S admits a pseudo-Anosov map or S is an annulus.

Lemma 4.6 of [MM99] shows that pseudo-Anosov maps have quasi-
geodesic orbits, when acting on the associated curve complex. A Dehn
twist acting on C(S0,2) has geodesic orbits.

Note that Lemma 3.9 is only used in this paper when ∂S is nonempty.
The closed case is included for completeness. We find Figure 1 to be a
highly convenient reference.

PSfrag replacements
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012
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S1,2 S1,3 S1,4

S2 S2,1 S2,2 S2,3 S2,4

031

022 032

111 121 131

112 122 132

211 221 231

212 222 232

Figure 1. The notation gbc stands for Sg,b,c. Surfaces in
boxes are simple. Euler characteristic is constant along
lines of slope 1/2.

Proof of Lemma 3.9. We only sketch the proof. If S admits a pseudo-
Anosov map then the stable lamination is filling. If S admits a filling
lamination then, by an argument of Kobayashi [Kob88], AC(S) has
infinite diameter. (This argument is also sketched in [MM99], page
124, after the statement of Proposition 4.6.)

Clearly, if the diameter of AC is infinite then the diameter is at least
equal to five. To finish, one may check directly that all the boxed
surfaces in Figure 1 have AC(S) with diameter at most four. (The
difficult cases, 012 and 3P, are discussed by Scharlemann [Sch82].) All
surfaces not in boxes, other than A, admit pseudo-Anosov maps. The
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orientable cases follow from Thurston’s construction [Thu88]. Penner’s
generalization [Pen88] covers the nonorientable cases. ¤

3.3. Natural maps. We now define several maps between our com-
plexes. Remember that our main concern is with coarse geometric
properties. Thus our definitions are allowed to take certain liberties;
in particular we are not interested in the exact location of image val-
ues but only in their location up to bounded error. To avoid making
choices we often use set-valued maps.

Begin by fixing attention on a non-annular, non-simple surface S.
Choose a hyperbolic metric on S so that all components of ∂S are

totally geodesic. Fix also a cleanly embedded X ⊂ S. Let Ŝ be the

cover of S where X lifts homeomorphically and where Ŝ ∼= interior(X).

Compactify Ŝ via points in its Gromov boundary. In particular, any
simple closed curve in S now lifts to a simple closed curve or to a

collection of properly embedded arcs. Identify AC(X) with AC(Ŝ).

Definition 3.10. Fix α ∈ AC(S). We define the cutting map κX : AC(S)→
P(AC(X)) as follows: the set κX(α) contains all isotopy classes of lifts

of α to Ŝ which are essential and non-peripheral.

Note that κS is the identity map. If α can be isotoped out of X then
κX(α) = ∅.
Definition 3.11. Suppose that X is not an annulus. Fix α ∈ AC(S).
We define the surgery map σX : AC(X) → P(C(X)) as follows: Let U
be a closed regular neighborhood of α ∪ ∂X. Let σX(α) be the set
of isotopy classes of components of ∂U which are essential and non-
peripheral in X.

Recall that f(A) =
⋃
a∈A f(a).

Definition 3.12. If X is not an annulus define the subsurface projec-
tion πX : AC(S) → P(C(X)) to be the composition πX = σX ◦ κX . If
X is an annulus then set πX = κX

Fix α ∈ AC(S). If πX(α) = ∅ then α misses the surface X. If πX(α)
is nonempty then α cuts the surface X. If α, β ∈ AC(S) both cut X
we write dX(α, β) = diamX(πX(α) ∪ πX(β)). This is the projection
distance between α and β in X. As a simple observation we have:

Lemma 3.13. Suppose α, β ∈ AC(S) are disjoint and cut X. Then
diamX(πX(α)) and dX(α, β) are at most two. ¤

This follows because for any δ, ε ∈ πX(α)∪πX(β) we find ι(δ, ε) ≤ 4.
See Lemma 2.3 of [MM00] for a very similar statement. As a conse-
quence we have:
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Corollary 3.14. Fix X ⊂ S. Suppose that {βi}ni=0 is a path in AC(S).
Suppose that βi cuts X for all i. Then dX(β0, βn) ≤ 2n. ¤

If some vertex of {βi} does not cut X then the conclusion need
not hold: the projection distance dX(β0, βn) may be arbitarily large
compared to n.

A kind of converse to Lemma 3.13 is:

Lemma 3.15. For every a ∈ N there is a number b ∈ N with the
following property: for any α, β ∈ AC(S) if dX(α, β) ≤ a for all X ⊂ S
then ι(α, β) ≤ b.

Corollary D of [CR05] gives a more precise relation between projec-
tion distances and intersection number.

Proof of Lemma 3.15. We only sketch the contrapositive: Suppose we
are given a sequence of curves αn, βn so that ι(αn, βn) tends to infinity.
Passing to subsequences and applying elements of the mapping class
group we may assume that αn = α0 for all n. Setting cn = ι(α0, βn) and
passing to subsequences again we may assume that βn/cn converges to
λ ∈ PML(S). Let Y be any connected component of the subsurface
filled by λ, choosen so that α0 cuts Y . Note that πY (βn) converges
to λ|Y . Again applying Kobayashi’s argument [Kob88], the distance
dY (α0, βn) tends to infinity. ¤

4. Holes in general and the lower bound on distance

Suppose that S is a compact connected surface. A multi-curve is
a collection of disjoint non-parallel essential non-peripheral curves or
arcs in S.

In this paper a combinatorial complex G(S) will always have isotopy
classes of certain multi-curves is S as vertices. Vertices will be con-
nected by edges only if there are representatives which are disjoint.
We also always assume that G is connected. There is a natural map
ν : G → AC(S) taking a vertex of G to the isotopy classes of the com-
ponents.

One may also entertain complexes where edges are placed between
multi-curves with bounded intersection, perhaps of a specified kind.
Examples in the literature include the pants complex [Bro03] [BDM],
the Hatcher-Thurston complex [HT80], and the complex of separating
curves [BM04].

It almost always will suffice to study subcomplexes G ⊂ AC(S).
However, the more general case arises when dealing with the curve
complex or the arc complex of a nonorientable surface. This allows
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us to avoid dealing with the Teichmüller space of the nonorientable
surface. It also illustrates the generality of our techniques.

For any combinatorial complex G defined in this paper other than
the curve complex we will denote distance in the one-skeleton of G by
dG(·, ·). Distance in C(S) will always be denoted by dS(·, ·).

4.1. Holes, defined. We now develop a technique to measure the fail-
ure of the natural map ν : G → AC(S) to be a quasi-isometric embed-
ding. Suppose that S is non-simple. Suppose that G(S) is connected
combinatorial complex of multi-curves in S. Suppose that X ⊂ S
is an cleanly embedded subsurface. A vertex α ∈ G cuts X if some
component of α cuts X.

Definition 4.1. We say X ⊂ S is a hole for G if every vertex of G cuts
X.

Almost equivalently, if X is a hole then the subsurface projection
πX : G(S) → C(X) never takes the empty set as a value. Note that
the entire surface S is always a hole, regardless of our choice of G.
Boundary parallel annuli cannot be cleanly embedded (unless S is also
an annulus) and so cannot be holes. A hole X ⊂ S is a strict hole if X
is not homeomorphic to S.

Example 4.2. Suppose that S = Sg,b with b > 0 and consider the
arc complex A(S). The holes, up to isotopy, are exactly the cleanly
embedded surfaces which contain all of ∂S. So, for example, if S is
planar then only S is a hole for A(S). The same holds if S = S1,1. In
all other cases the arc complex admits infinitely many holes.

Definition 4.3. If X is a hole and if πX(G) ⊂ C(X) has diameter at
least R we say that the hole X has diameter at least R.

Example 4.4. Continuing the example above: Since the mapping class
group acts on the arc complex, all non-simple holes for A(S) have
infinite diameter.

Suppose now that X,Y ⊂ S are disjoint holes for G. In the presence
of symmetry there can be a relationship between πX |G and πY |G as
follows:

Definition 4.5. Suppose that X,Y are holes for G of infinite diameter.
Then X and Y are paired if there is a homeomophism τ : X → Y and
a constant K so that

dY (πY (γ), τ(πX(γ)) ≤ K

for every γ ∈ G.
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4.2. Projection to holes is Lipschitz. The following lemma is used
repeatedly throughout the paper:

Lemma 4.6. Suppose that G(S) is a combinatorial complex. Suppose
that X is a hole for G. Then for any α, β ∈ G we have

dX(α, β) ≤ 2 + 2 · dG(α, β).

The additive error is required only when α = β.

Proof. This follows directly from Corollary 3.14 and our assumption
that vertices of G connected by an edge represent disjoint multi-curves.

¤

We deduce the well-known:

Lemma 4.7. The inclusion ν : C(S) → AC(S) is a quasi-isometry.
The surgery map σS : AC(S)→ P(C(S)) is a quasi-inverse for ν.

Proof. Fix a pair of essential, non-peripheral curves α and β inside of
S. Since ν is an inclusion we have dAC(α, β) ≤ dS(α, β). As S is a hole
for AC(S) by Lemma 4.6 we have dS(α, β) ≤ 2 + 2 · dAC(α, β).

Note that the composition σS ◦ ν = Id |C(S). Also, for any arc
α ∈ A(S) we have dAC(α, ν(σS(α))) = 1. Finally, C(S) is 1–dense in
AC(S), as any arc γ ⊂ S is disjoint from the one or two curves of
σS(γ). ¤

4.3. Infinite diameter holes. Brian Bowditch posed several ques-
tions (Newton Institute, August 2003) regarding the geometry of A(S):
in particular, is the inclusion ν : A(S)→ AC(S) a quasi-isometry? The
absence of a natural quasi-inverse is one hint; the presence of holes for
A is another. In fact, we have:

Lemma 4.8. Suppose that G(S) is a combinatorial complex, and X ⊂
S is a strict hole of infinite diameter. Then ν : G → AC(S) is not a
quasi-isometric embedding. ¤

This lemma and Example 4.2 completely determines when the in-
clusion of A(S) into AC(S) is a quasi-isometric embedding and so an-
swers Bowditch’s initial question. It quickly becomes clear that the
set of holes tightly constrains the intrinsic geometry of a combinatorial
complex.

Lemma 4.9. Suppose that G(S) is a combinatorial complex invariant
under the natural action of MCG(S). Then every non-simple hole for
G has infinite diameter. Furthermore, if X,Y ⊂ S are disjoint non-
simple holes for G then there is a quasi-isometric embedding of Z2 into
G. ¤
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We will not use Lemmas 4.8 or 4.9 in an essential way and accordingly
omit proofs. Instead our interest lies in proving the far more powerful
distance estimate for G(S).

4.4. A lower bound on distance. Here we see that the sum of pro-
jection distances in holes gives a lower bound for distance.

Theorem 4.10. Fix S, a compact connected non-simple surface. Sup-
pose that G(S) is a combinatorial complex. Then there is a constant c0

so that for all c ≥ c0 there are constants a ≥ 1, b ≥ 0 satisfying
∑

[dX(α, β)]c ≤a,b dG(α, β).

Here α, β ∈ G and the sum is taken over all holes X for the complex
G. ¤

The proof follows the proof of Theorems 6.10 and 6.12 of [MM00],
practially word for word. The only changes necessary are to

• replace the sum over all subsurfaces by the sum over all holes,
• replace Lemma 2.5 of [MM00], which records how markings dif-

fering by an elementary move project to an essential subsurface,
by Lemma 4.6 of this paper, which records how G projects to a
hole.This brief discus-

sion is not really
satisfying. Per-
haps we should
sketch the proof...

One major goal of this paper is to give criteria sufficent obtain the
reverse inequality; Theorem 12.1.

5. Holes for the nonorientable surface

Fix F a compact, connected, and nonorientable surface. Let S be the
orientation double cover with covering map ρF : S → F . Let τ : S → S
be the associated involution; so for all x ∈ S, ρF (x) = ρF (τ(x)).

Definition 5.1. A multi-curve or multi-arc γ ⊂ S is symmetric if
τ(γ) ∩ γ = ∅ or τ(γ) = γ. A multi-curve or multi-arc γ is invariant if
there is a curve or arc γ ′ ⊂ F so that γ = ρ−1

F (γ′). The same definitions
holds for subsurfaces X ⊂ S.

Definition 5.2. The invariant complex Cτ (S) is the simplical complex
with vertex set being isotopy classes of invariant multi-curves. There is
a k–simplex for every collection of k+ 1 distinct isotopy classes having
pairwise disjoint representatives.

Notice that Cτ (S) is simplicially isomorphic to C(F ). There is also
a natural map ν : Cτ (S)→ C(S). We will prove:

Lemma 5.3. ν : Cτ (S)→ C(S) is a quasi-isometric embedding.

It thus follows from the hyperbolicity of C(S) that:

Corollary 5.4. C(F ) is Gromov hyperbolic. ¤
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One half of the proof of Lemma 5.3 is straight-forward: since ν sends
adjacent vertices to adjacent edges we have

(5.5) dS(α, β) ≤ dCτ (α, β),

as long as α and β are distinct in Cτ (S). In fact, since the surface S
itself is a hole for Cτ (S) we may deduce a slightly weaker lower bound
from Lemma 4.6 or indeed from Theorem 4.10.

The other half of the proof consists of showing that S is the only hole
for Cτ (S) with large diameter. After a discussion of Teichmüller geodesics
we will prove:

Lemma 14.1. There is a constant K with the following property: Sup-
pose that α, β are invariant multi-curves or arcs in S and X ⊂ S so
that dX(α, β) > K. Then X is symmetric.

From this it follows that:

Corollary 5.6. With K as in Lemma 14.1: If X ⊂ S is a hole for
Cτ (S) with diameter greater than K then X = S.

Proof. Suppose that X ⊂ S is a strict subsurface, cleanly embedded.
Suppose that diamX(Cτ (S)) > K. Thus X is symmetric. It follows
that ∂Xr∂S is also symmetric. Since ∂X does not cut X deduce that
X is not a hole for Cτ (S). ¤

This, together with the upper bound (Theorem 12.1), proves Lemma 5.3.

6. Holes for the arc complex

Here we generalize the definition of the arc complex and classify its
holes.

Definition 6.1. Suppose that S is a non-simple surface with boundary.
Let ∆ be a nonempty collection of components of ∂S. The arc complex
A(S,∆) is the full subcomplex of A(S) containing all essential arcs
α ⊂ S with ∂α ⊂ ∆.

Note that A(S, ∂S) and A(S) are identical. If X is non-simple,
cleanly embedded in S, and ∆ ⊂ X then the meaning of A(X,∆) is
clear.

Lemma 6.2. Suppose X ⊂ S is cleanly embedded. If ∆ ⊂ ∂X then X
is a hole for A(S,∆). ¤

This follows directly from the definition of a hole. We now have an
straight-forward observation:

Lemma 6.3. If X,Y ⊂ S are holes for A(S,∆) then X ∩ Y 6= ∅. ¤
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The proof follows immediately from Lemma 6.2. Lemma 4.9 indi-
cates that Lemma 6.3 is essential to proving that A(S,∆) is Gromov
hyperbolic.

In order to prove the upper bound theorem for A we will use pants
decompositions of the surface S. In an attempt to avoid complications
in the nonorientable case we must carefully lift to the orientation cover.
We require the following definitions.

Suppose that F is non-simple, nonorientable, and has nonempty
boundary. Let ρF : S → F be the orientation double cover and let
τ : S → S be the induced involution. Fix ∆′ ⊂ ∂F and let ∆ = ρ−1

F (∆′).

Definition 6.4. We define Aτ (S,∆) to be the invariant arc complex:
vertices are invariant multi-arcs and simplices arise from disjointness.

Again, Aτ (S,∆) is simplically isomorphic to A(F,∆′). Now, it fol-
lows from Lemma 14.1 that all holes forAτ (S,∆), with sufficiently large
diameter, are symmetric subsurfaces X ⊂ S so that ∆ ⊂ X ∪ τ(X). If
X ∩ τ(X) = ∅ then the subsurfaces X and τ(X) are paired holes, as
in Definition 4.5. Notice as well that all non-simple symmetric holes
X ⊂ S for Aτ (S,∆) have infinite diameter.

UnlikeA(F,∆′) the complexAτ (S,∆) may have disjoint holes. Nonethe-
less, all infinite diameter holes for the invariant arc complex interfere:
any such hole Z intersects any other such hole X or intersects a hole
paired with X.

Lemma 6.5. Suppose that X,Z ⊂ S are holes for Aτ (S,∆), both of
infinite diameter. Then Z intersects X or τ(X).

Proof. Notice that ∆ ⊂ ∂X∪∂Y . Since ∆ is also contained in Z∪τ(Z),
the subsurface Z meets either X or Y . ¤

7. Background on three-manifolds

Before discussing the holes in the disk complex, we record a few facts
about handlebodies and I–bundles needed in the sequel.

Fix M a compact connected irreducible three-manifold. Recall that
M is irreducible if every embedded two-sphere in M bounds a three-
ball. Recall that if N is a closed submanifold of M then fr(N) is the
closure of ∂Nr∂M .

7.1. Compressions. Suppose that F is a surface embedded in M .
Then F is compressible if there is a disk B embedded in M with
interior(B) ∩ ∂M = ∅, B ∩ F = ∂B, and ∂B essential in F . Any
such disk B is called a compression of F .

In this situation form a new surface F ′ as follows: Let N be a closed
regular neighborhood of B. First remove from F the annulus N ∩ F .
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Now form F ′ by gluing on both disk components of ∂NrF . We say
that F ′ is obtained by compressing F along B. If no such disk exists
we say F is incompressible.

Definition 7.1. An embedded surface F is boundary compressible if
there is a disk B embedded in M with

• interior(B) ∩ ∂M = ∅,
• ∂B is a union of connected arcs α and β,
• α ∩ β = ∂α = ∂β,
• B ∩ F = α and α is properly embedded in F ,
• B ∩ ∂M = β, and
• β is essential in ∂Mr∂F .

A disk, like B, with boundary partitioned into two arcs is called
a bigon. Note that this definition of boundary compression is slightly
weaker than others found in the literature; the arc α is often required to
be essential in F . We do not require this additional property because,
for us, F will usually be a properly embedded disk in a handlebody.

Just as for compressing disks we may boundary compress F along B
to obtain a new surface F ′: Let N be a closed regular neighborhood of
B. First remove from F the rectangle N∩F . Now form F ′ by gluing on
both bigon components of frNrF . Again, F ′ is obtained by boundary
compressing F along B. If no such bigon exists then F is boundary
incompressible.

Remark 7.2. Recall that any surface F properly embedded in a han-
dlebody Vg, g ≥ 2, is either compressible or boundary compressible.

Suppose now that F is properly embedded inM and Γ is a multicurve
in ∂M .

Remark 7.3. Suppose that F ′ is obtained by a boundary compression
of F performed in the complement of Γ. Suppose that F ′ = F1 ∩ F2 is
disconnected and, after tightening, each Fi meets Γ. Then ι(∂Fi,Γ) <
ι(∂F,Γ) for i = 1, 2.

It is often useful to restrict our attention to boundary compressions
meeting a single subsurface of ∂M . So suppose that X ⊂ ∂M is an
essential subsurface. Suppose that ∂F is tight with respect to ∂X.
Suppose B is a boundary compression of F . If B ∩ ∂M ⊂ X we say
that F is boundary compressible into X.

Lemma 7.4. Suppose that M is irreducible. Fix X an essential sub-
surface of ∂M . Let F ⊂ M be a properly embedded, incompressible
surface. Suppose that ∂X and ∂F are tight and that X compresses in
M . Then either:

• F ∩X = ∅,
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• F is boundary compressible into X, or
• F is a disk with ∂F ⊂ X.

Proof. Suppose that X is compressible via a disk E. Isotope E to
make ∂E tight with respect to ∂F . This can be done while maintaining
∂E ⊂ X because ∂F and ∂X are tight. Since M is irreducible and F
is incompressible we may isotope E, rel ∂, to remove all simple closed
curves of F ∩ E. If F ∩ E is nonempty then an outermost bigon of E
gives the desired boundary compression lying in X.

Suppose instead that F ∩ E = ∅ but F does meet X. Let δ ⊂ X
be a simple arc meeting each of F and E in exactly one endpoint. Let
N be a closed regular neighborhood of δ ∪ E. Note that fr(N)rF has
three components. One is a properly embedded disk parallel to E and
the other two B,B ′ are bigons attached to F . At least one of these,
say B′ is trivial in the sense that B ′ ∩ ∂M is a trivial arc embedded
in ∂Mr∂F . If B is non-trivial then B provides the desired boundary
compression.

Suppose that B is also trivial. It follows that ∂E and one compo-
nent γ ⊂ ∂F cobound an annulus A ⊂ X. So D = A ∪ E is a disk
with (D, ∂D) ⊂ (M,F ). As ∂D = γ, F is incompressible, and M is
irreducible deduce that F is isotopic to E. ¤

7.2. Band sums. Band sum is the inverse operation to boundary com-
pression: Fix a pair of disjoint properly embedded surfaces F1, F2 ⊂M .
Let F ′ = F1 ∪ F2. Fix a simple arc δ ⊂ ∂M so that δ meets each of
F1 and F2 in exactly one point of ∂δ. Let N ⊂ M be a closed regular
neighborhood of δ. Form a new surface by adding to F ′rN the rec-
tangle component of fr(N)rF ′. The surface F obtained is the result
of band summing F1 to F2 along δ. It is straight-forward to show that
F has a boundary compression dual to δ yielding F ′: that is, there is
a boundary compression B for F so that δ ∩ B is a single point and
compressing F along B gives F ′.

Remark 7.5. Note that, if F is a band sum of F ′ then every component
of ∂F in ∂M is disjoint from, or parallel to, every curve of ∂F ′.

7.3. Handlebodies and I-bundles. Recall that handlebodies are ir-
reducible.

Suppose that F is a compact connected surface with at least one
boundary component. Let T be the orientation I–bundle over F . If F
is orientable then T ∼= F×I. If F is not orientable then T is the unique
I–bundle over F with orientable total space. We call T the I–bundle
and F the base space. Let ρF : T → F be the associated bundle map.
Note that T is homeomorphic to a handlebody.
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If A ⊂ T is a union of fibres of the map ρF then A is vertical with
respect to T . In particular take ∂vT = ρ−1

F (∂F ) to be the vertical
boundary of T . Take ∂hT to be the union of the boundaries of all of the
fibres: this is the horizontal boundary of T . Note that ∂hT is always
incompressible in T while ∂vT is incompressible in T as long as F is
not homeomorphic to a disk.

Note that, as |∂vT | ≥ 1, any vertical surface in T can be bound-
ary compressed. However no vertical surface in T may be boundary
compressed into ∂hT .

We end this section with:

Lemma 7.6. Suppose that F is a compact, connected surface with
∂F 6= ∅. Let ρF : T → F be the orientation I–bundle over F . Let X be
a component of ∂hT . Let D ⊂ T be a properly embedded disk. If

• ∂D is essential in ∂T ,
• ∂D and ∂X are tight, and
• D cannot be boundary compressed into X

then D may be properly isotoped to be vertical with respect to T . ¤

8. Holes for the disk complex

Here we begin to classify the holes for the disk complex, a more
difficult analysis than that of the arc complex. To fix notation let V
be a handlebody. Let S = Sg = ∂V . Recall that there is a natural
inclusion ν : D(V )→ C(S).

Remark 8.1. The notion of a hole X ⊂ ∂V for D(V ) may be phrased
in several different ways:

• every essential disk D ⊂ V cuts the surface X,
• SrX = ∂VrX is incompressible in V , or
• X is disk busting in V .

The classification of holes X ⊂ S for D(V ) breaks roughly into three
cases: either X is an annulus, is compressible in V , or is incompressible
in V . In each case we obtain a result:

Theorem 9.1. Suppose X is a hole for D(V ) and X is an annulus.
Then the diameter of X is at most 3.

Theorem 10.7. Suppose X is a compressible hole for D(V ) with di-
ameter at least 15. Then there are a pair of essential disks D,E ⊂ V
so that

• ∂D, ∂E ⊂ X and
• ∂D and ∂E fill X.

Thus X supports a pseudo-Anosov map.
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Theorem 11.1. Suppose X is an incompressible hole for D(V ) with
diameter at least 4 log2(g) + 60. Then there is an I–bundle ρF : T → F
embedded in V so that

• ∂hT ⊂ ∂V ,
• X is isotopic in S to a component of ∂hT ,
• some component of ∂vT is boundary parallel into ∂V ,
• F supports a pseudo-Anosov map.

As a corollary of these theorems we have:

Corollary 8.2. If X is hole for D(V ) with diameter at least 4 log2(g)+
60 then X has infinite diameter.

Proof. We only give a sketch. If X is a hole with diameter at least
4 log2(g) + 60 then either Theorem 10.7 or 11.1 applies.

If X is compressible then Dehn twists, in opposite directions, about
the given disks D and E yields a automorphisms f : V → V so that f |X
is pseudo-Anosov. This follows from Thurston’s construction [Thu88].
By Lemma 3.9 the hole X has infinite diameter.

If X is incompressible then X ⊂ ∂hT where ρF : T → F is the given
I–bundle. Let f : F → F be the given pseudo-Anosov map. So g, the
suspension of f , gives a automorphism of V . Again it follows that the
hole X has infinite diameter. ¤

Applying Lemma 4.8 we find another corollary:

Theorem 8.3. If ∂V contains a strict hole with diameter at least
4 log2(g) + 60 then the inclusion ν : D(V ) → C(∂V ) is not a quasi-
isometric embedding. ¤

9. Holes for the disk complex – annuli

The proof of Theorem 9.1 occupies the rest of this section. This proof
shares many features with the proofs of Theorems 10.7 and 11.1. How-
ever, the exceptional definition of C(S0,2) prevents a unified approach.
Fix V , a handlebody.

Theorem 9.1. Suppose X is a hole for D(V ) and X is an annulus.
Then the diameter of X is at most 3.

Assume, to obtain a contradiction, that X has diameter at least 4.
Suppose that D ∈ D(V ) is a disk choosen to minimize D ∩X. Among
all disks E ∈ D(V ) with dX(D,E) ≥ 2 choose one which minimizes
|D ∩ E|. Isotope D and E to make the boundaries tight and also
tight with respect to ∂X. Tightening triples of curves is not canonical;
nonetheless there is a tightening so that Sr(∂D ∪ ∂E ∪ X) contains
no triangles. See Figure 2.
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Figure 2. Triangles outside of X (see the left side) can
be moved in (see the right side). This decreases the num-
ber of points of D ∩ E ∩ (SrX).

After this tightening we have:

Claim. Every arc of ∂D ∩X meets every arc of ∂E ∩X at least once.

Proof. This follows from two observations. First, after the tightening
we find that the arcs D ∩X and E ∩X lie inside of X just as πX(D)

and πX(E) lie inside of X̂, the annular cover of ∂V . Second, by Equa-
tion 3.5, dX(D ∩X,E ∩X) = 1 + ι(D ∩X,E ∩X). ¤

Claim. There is an outermost bigon B ⊂ ErD with the following
properties:

• ∂B = α ∪ β where α = B ∩D, β = ∂Brα ⊂ ∂E,
• ∂α = ∂β ⊂ X, and
• |β ∩X| = 2.

Furthermore, |D ∩X| = 2.

See the lower right of Figure 3 for a picture.

Proof. Consider the intersection of D and E, thought of as a collection
of arcs and curves in E. Any simple closed curve component of D ∩E
can be removed by an isotopy of E, fixed on the boundary. (This
follows from the irreducibility of V and an innermost disk argument.)
Since we have assumed that |D ∩ E| is minimal it follows that there
are no simple closed curves in D ∩ E.

So consider any outermost bigon B ⊂ ErD: a subdisk where B∩D
is a single arc lying in the boundary of B. Let α = B ∩ D. Let
β = ∂Brα = B ∩ ∂V . Note that β cannot completely contain a
component of E ∩ X as this would contradict either the fact that B
is outermost or the fact that every arc of E ∩ X meets some arc of
D ∩X. Using this observation, Figure 3 lists the possible ways for B
to lie inside of E.
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Figure 3. The arc α cuts B off of E. The darker part
of ∂E are the arcs of E∩X. Either β is disjoint from X,
β is contained in X, β meets X in a single subarc, or β
meets X in two subarcs.

Let D′ and D′′ be the two essential disks obtained by boundary
compressing D along the bigon B. Suppose α is as shown in one of the
first three pictures of Figure 3. It follows that either D′ or D′′ has, after
tightening, smaller intersection with X than D does, a contradiction.
We deduce that α is as pictured in lower right of Figure 3.

Boundary compressingD along B still gives disksD′, D′′ ∈ D(V ). As
these cannot have smaller intersection with X we deduce that |D∩X| =
2 and the claim holds. ¤

Using the same notation as in the proof above, let B be an outermost
bigon of ErD. We now study how α ⊂ ∂B lies inside of D.

Claim. The arc α ⊂ D connects distinct components of D ∩X.

Proof. Suppose not. Then there is a bigon C ⊂ Drα with ∂C = α∪ γ
and γ ⊂ ∂D ∩ X. The disk C ∪ B is essential and meets X at most
once after tightening. If C ∪B is disjoint from X then X is not a hole,
a contradiction. If C ∪ B meets X exactly once then we may form a
new disk C ′ by boundary compressing X along C ∪B. Then this disk
C ′ is disjoint from X, a contradiction. ¤

We finish the proof of Theorem 9.1 by noting that D∪B is a tripod:
D ∪ B is homeomorphic to Υ×I where Υ is the simplicial graph with
three edges and four vertices, three of valence one. We may choose the
homeomorphism so that (D∪B)∩X = Υ×∂I. It follows that we may
properly isotope D∪B until (D∪B)∩X is a pair of arcs. Recall that
D′ and D′′ are the disks obtained by boundary compressing D along
B. It follows that one of D′ or D′′ (or both) meets X in at most a
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single arc. As in the previous paragraph we find that X is not a hole,
a contradiction. ¤

10. Holes for the disk complex – compressible

The proof of Theorem 10.7 occupies the second half of this section.

10.1. Compression sequences of essential disks. Fix a nonempty,
pairwise disjoint collection of essential curves Γ ⊂ ∂V . Fix also a
essential disk D ⊂ V . Properly isotope D to make ∂D tight with
respect to Γ.

Assume for the moment that D meets some component of Γ.

Definition 10.1. Define a compression sequence of essential disks as
follows: {(∆k, Bk)}nk=1 where ∆1 = {D}, Bk is a boundary compres-
sion of ∆k, Bk is disjoint from Γ, and ∆k+1 is obtained by boundary
compressing ∆k along Bk and tightening with respect to Γ. Note that
∆k is a collection of exactly k pairwise disjoint disks properly embed-
ded in V . We further require, for k ≤ n that every disk of every ∆k

meets some component of Γ. We call a compression sequence maximal
if either

• no disk of ∆n can be boundary compressed into SrΓ or
• there is a component Z ⊂ SrΓ and a boundary compression of

∆n into SrΓ yielding an essential disk D′ with ∂D′ ⊂ Z.

We say that such maximal sequences end essentially or end in Z, re-
spectively.

Note that all compression sequences must end by Remark 7.3. Given
a maximal sequence we may relate the various disks in the sequence as
follows:

Definition 10.2. Fix X, a component of SrΓ. Fix Dk ∈ ∆k. A
disjointness pair for Dk is an ordered pair (α, β) of essential arcs in X
where

• α ⊂ Dk ∩X,
• β ⊂ ∆n ∩X, and
• dA(α, β) ≤ 1.

If α 6= α′ then the two disjointness pairs (α, β) and (α′, β) are dis-
tinct, even if α is properly isotopic to α′. A similar remark holds for
the second coordinate.

We require the following somewhat technical lemma:

Lemma 10.3. Fix Γ ⊂ ∂V a nonempty collection of pairwise disjoint
essential curves. Suppose that D meets Γ and choose a maximal se-
quence starting at D. Fix any component X ⊂ ∂VrΓ so that ∆n cuts
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X. Fix any disk Dk ∈ ∆k which also cuts X. Then either Dk ∈ ∆n or
there are four distinct disjointness pairs {(αi, βi)}4

i=1 for Dk where each
of the arcs {αi} appears as the first coordinate of at most two pairs.

Proof. We induct on n − k. If Dk is contained in ∆n there is nothing
to prove. If Dk is contained in ∆k+1 we are done by induction. If not,
then Dk is the unique disk of ∆k which is boundary compressed at level
k. Let Dk+1, D

′
k+1 ∈ ∆k+1 be the two disks obtained after boundary

compressing Dk along the bigon Bk.
Let δ be the band sum arc dual to Bk. We may assume that |Γ∩δ| is

minimal over all arcs dual to Bk. It follows that the band sum of Dk+1

with D′k+1 along δ is tight, without any isotopy. (This is where we use
the fact that Bk is a boundary compression in the complement of Γ, as
opposed to being a general boundary compression of Dk in V .) There
are now three possibilities: |X ∩ ∂δ| equals zero, one, or two. We deal
with each in turn.

First suppose that X∩∂δ = ∅. Then Dk∩X contains (Dk+1∪D′k+1)∩
X. If Dk+1 and D′k+1 are both components of ∆n then choose any arc
β ⊂ Dk+1 ∩X and any arc β ′ ⊂ D′k+1 ∩X. The four disjointness pairs
are then all ordered combinations of β and β ′. Suppose instead that
Dk+1, say, is not a component of Dn. Then as Dk+1 ∩X ⊂ Dk ∩X the
disk Dk inherits four disjointness pairs from Dk+1.

Second suppose that X ∩ ∂δ is a single point of Dk+1, contained in
γ ⊂ Dk+1 ∩ X. Let α, α′ be the arcs of Dk ∩ X meeting a regular
neighborhood of δ ∪ γ. Both of these are disjoint from γ in X, by
Remark 7.5. Let β be any arc of D′k+1 ∩X.

If Dk+1 /∈∆n and γ is not the first coordinate of one of Dk+1’s four
pairs then Dk inherits disjointness pairs from Dk+1. If D′k+1 /∈∆n then
Dk inherits disjointness pairs from D′k+1.

Thus we may assume that both Dk+1 and D′k+1 are in ∆n or that
only D′k+1 ∈ ∆n while γ appears as the first arc of disjointness pair for
Dk+1. In case of the former the required disjointness pairs are (β, β),
(α, β), (α, γ), and (α′, γ). In case of the latter we do not know if γ is
allowed to appear as the second coordinate of a pair. However we are
given four disjointness pairs for Dk+1 and are told that γ appears as
the first coordinate of at most two of these pairs. Hence the other two
pairs are inherited by Dk. The pairs (β, β) and (α, β), say, give the
desired conclusion.

Third suppose that X ∩ ∂δ meets γ ⊂ Dk+1 and γ′ ⊂ D′k+1. Let
α and α′ be two arcs of Dk ∩X meeting the regular neighborhood of
(δ ∪ γ ∪ γ ′)∩X. These are disjoint from all arcs of (Dk+1 ∪D′k+1)∩X
again by Remark 7.5. Suppose both Dk+1 or D′k+1 lie in ∆n. Then
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the desired pairs are (α, γ), (α′, γ), (α, γ ′), and (α′, γ′). If D′k+1 ∈ ∆n

while Dk+1 is not then Dk inherits two pairs from Dk+1. We add to
these the pairs (α, γ ′), and (α′, γ′). If neither disk lies in ∆n then Dk

inherits two pairs from each and the proof is complete. ¤
Lemma 10.3 allows us to relate a disk D to another disk D′ obtained

from D by repeated boundary compressions in the complement of Γ.

Lemma 10.4. Fix X ⊂ ∂V , a hole for D(V ). For any disk D ∈ D(V )
there is a disk D′ with the following properties:

• ∂X and ∂D′ are tight.
• If X is incompressible then D′ is not boundary compressible into
X and dA(D,D′) ≤ 3.
• If X is compressible then ∂D′ ⊂ X and dAC(D,D′) ≤ 3.

Here A = A(X) and AC = AC(X).

Proof. If ∂D ⊂ X then the lemma is trivial. So assume, by Remark 8.1,
that D cuts ∂X. Choose a maximal sequence starting at D.

Assume first that the sequence is non-trivial (n > 1). By Lemma 10.3
there is a disk E ∈ ∆n so that D ∩X and E ∩X contain disjoint arcs.

If the sequence ends essentially then choose D′ = E and the lemma is
proved. If the sequence ends in X then there is a boundary compression
of ∆n, disjoint from ∂X, yielding the desired disk D′ with ∂D′ ⊂ X.
Since E ∩D′ = ∅ we again obtain the desired bound.

Assume now that the sequence is trivial (n = 1). Then take E = D ∈
∆n and the proof is identical to that of the previous paragraph. ¤
Remark 10.5. At first sight Lemma 10.4 appears surprising; after all,
any pair of curves in C(X) can be connected by a sequence of band
sums. However, the sequences of band sums arising in Lemma 10.4 are
quite special due to the fact that D has bounded genus.

When V has the structure of an I bundle an important special case
of Lemma 10.4 appears: Let T ∼= F×I, X ∪ Y = ∂hT , and ρF : T → F
be the natural projection. If α, β are arcs in ∂hT define dA(F )(α, β) =
dA(F )(ρF (α), ρF (β)).

Lemma 10.6. Suppose that D is an essential disk in T ∼= F×I.
Tighten ∂D with respect to ∂∂hT . Then dA(F )(D ∩X,D ∩ Y ) ≤ 6.

Proof. As in Lemma 10.4 obtain a disk D′ which cannot be boundary
compressed into X or Y . As D′ is ∂X incompressible Lemma 7.6 proves
D′ may be isotoped to be vertical with respect to T (that is, D′ is
a union of fibres). Thus D′ ∩ X is a single arc as is D′ ∩ Y . We
find that with dA(X)(D,D

′) ≤ 3 and dA(Y )(D,D
′) ≤ 3 and the lemma

follows. ¤
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10.2. Proving the theorem. It is now trival to prove Theorem 10.7.
We first recall the statement:

Theorem 10.7. Suppose X is a compressible hole for D(V ) with di-
ameter at least 15. Then there are a pair of essential disks D,E ⊂ V
so that

• ∂D, ∂E ⊂ X and
• ∂D and ∂E fill X.

Thus X supports a pseudo-Anosov map.

Proof. Choose disks D′ and E ′ in D(V ) so that dX(D′, E ′) ≥ 15. By
Lemma 10.4 there are disks D and E so that ∂D, ∂E ⊂ X, dX(D′, D) ≤
6, and dX(E ′, E) ≤ 6. It follows from the triangle inequality that
dX(D,E) ≥ 3 and the theorem is proved. ¤

11. Holes for the disk complex – incompressible

This section classifies incompressible holes for the disk complex.

Theorem 11.1. Suppose X is an incompressible hole for D(V ) with
diameter at least 4 log2(g) + 60. Then there is an I–bundle ρF : T → F
embedded in V so that

• ∂hT ⊂ ∂V ,
• X is a component of ∂hT ,
• some component of ∂vT is boundary parallel into ∂V ,
• F supports a pseudo-Anosov map.

Here is a short plan of the proof: We are given X, an incompressible
hole for D(V ). Following Lemma 10.4 we may assume that D,E are
essential disks, without boundary compressions into X or SrX, with
dX(D,E) > 4 log2(g) + 48. Examine the intersection pattern of D
and E to find rectangles R and Q. The intersection of these rectangle
in V will determine the desired I–bundle T . The third and fourth
conclusions of the theorem follow from standard facts about primitive
annuli. The fifth requires another application of Lemma 10.4 as well
as Lemma 3.9.

11.1. Diagonals of polygons. Before beginning the proof of Theo-
rem 11.1 we must briefly discuss diagonals of polygons.

Let D be a 2n sided regular polygon. Label the sides of D with the
letters X and Y in an alternating fashion. Any side labeled X (or Y )
will be called an X side (or Y side).

Definition 11.2. An arc γ properly embedded in D is a diagonal if
the points of ∂γ lie in the interiors of distinct sides of D. If γ and γ ′
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are diagonals for D which together meet three different sides then we
say that γ and γ ′ are non-parallel.

Lemma 11.3. Suppose that Γ ⊂ D is a collection of pairwise disjoint
non-parallel diagonals. Then there is an X side of D meeting at most
eight diagonals of Γ.

Proof. First, an easy counting argument shows that |Γ| ≤ 4n − 3.
Now, if every X side meets at least nine non-parallel diagonals then
|Γ| ≥ 9

2
n > 4n− 3, a contradiction. ¤

11.2. Improving disks. Suppose now that X is an incompressible
hole for D(V ) with diameter at least 4 log2(g)+60. (From Theorem 9.1
it follows that X is not an annulus.) Let Y = SrX.

Choose disks D′ and E ′ in V so that dX(D′, E ′) ≥ 4 log2(g) + 60. By
Lemma 10.4 there are a pair of disks D and E so that both are essential
in V , cannot be boundary compressed into X or into SrX, and so
that dA(X)(D

′, D) ≤ 3 and dA(X)(E
′, E) ≤ 3. Thus dX(D′, D) ≤ 6 and

dX(E ′, E) ≤ 6 (Lemma 4.6). By the triangle inequality dX(D,E) ≥
4 log2(g) + 60− 12 = 4 log2(g) + 48.

Recall, as well, that ∂D and ∂E are tight with respect to ∂X. We
may further assume that ∂D and ∂E are tight with respect to each
other. Also, minimize the quantities |X ∩ (∂D ∩ ∂E)| and |D ∩ E|
while keeping everything tight. Now consider D and E to be even-
sided polygons, with vertices being the points ∂D ∩ ∂X and ∂E ∩ ∂X
respectively. Now let Γ = D∩E. See Figure 4 for one a priori possible
collection Γ ⊂ D.

Figure 4. Can Γ ⊂ D contain simple closed curves and
non-diagonal arcs?

From our assumptions and the irreducibility of V it follows that Γ
contains no simple closed curves. Suppose now that there is an γ ⊂ Γ
so that, in D, both endpoints of γ lie in the same side of D – so γ
is not a diagonal for D. Then there is an outermost such arc, say
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γ′ ⊂ Γ, cutting a bigon B out of D. It follows that B is a boundary
compression of E which is disjoint from ∂X. But this contradicts the
construction of E. We deduce that all arcs of Γ are diagonals for D
and, via a similar argument, for E.

Let α ⊂ D ∩ X be an X side of D meeting at most eight distinct
types of diagonal of Γ. Choose β ⊂ E ∩ X similarly. As dX(D,E) ≥
4 log2(g)+48 we have that dX(α, β) ≥ 4 log2(g)+48−4 = 4 log2(g)+44.
As dX(α, β) = dX(σX(α), σX(β)) and ι(σX(α), σX(β)) ≤ 4ι(α, β) + 4 it

follows from Lemma 3.4 that ι(α, β) ≥ 2
4 log2(g)+44−6

2 − 1 > 213

Now break α and β into subarcs, each subarc meeting all of the
diagonals of fixed type and only meeting the diagonals of that type.
There is a pair of such subarcs α′ ⊂ α and β ′ ⊂ β with the following
property:

|α′ ∩ β′| ≥ ι(α, β)

64
.

Note that it follows that |α′ ∩ β′| ≥ 128.

Claim 11.4. The graph Θ′ = α′ ∪ β′ fills X.

Proof. Suppose not. Let W ⊂ X be the surface obtained by tak-
ing a regular neighborhood of Θ′ union with all disks and boundary
parallel annuli (in X) of XrΘ′. Thus W is an essential subsurface
strictly contained in X. We now assume, breaking symmetry, that

dX(α, ∂W ) ≥ 4 log2(g)+44
2

= 2 log2(g) + 22.
As α and β are tight in X it follows that both α and β are tight with

respect to ∂W . Let A = {αi}ni=0 = α ∩W be the collection of subarcs
of α meeting W , with α′ ⊂ α0. Partition A into subsets Ak so that

• α0 ∈ A0 and
• αi ∈ Ah, αj ∈ Ak are properly isotopic if and only if h = k.

Let A be the collection of partitions Ak so that |Ak| ≥ 65}.
Subclaim. Cutting the surface W along A gives a collection of disks.

Suppose, for a contradiction, that W ′ ⊂ WrA is not a disk. Deduce
that if W is not an annulus there is an essential curve γ ⊂ W ′ with
|γ∩α| ≤ 64 ·(−3χ(W )). This is because α∩W yields at most −3χ(W )
different proper isotopy classes of arcs. If W is an annulus (and so
W ′ = W ) then |γ ∩ α| ≤ 64.

In either case |γ ∩ α| ≤ 64 · 6g ≤ 512g where g is the genus of the
handlebody V . By Lemma 3.4 deduce that dX(γ, α) ≤ 2(9+log2(g))+
2 = 2 log2(g) + 20. As γ ⊂ W ′ ⊂ W it follows that dX(γ, ∂W ) ≤ 1 and
so dX(α, ∂W ) ≤ 2 log2(g) + 21. This contradicts our assumption that
dX(α, ∂W ) ≥ 2 log2(g) + 22. ¤
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On the other hand:

Subclaim. A0 contains at most 64 arcs.

If A0 contains 65 arcs or more then |α ∩ β| > 64 · |α′ ∩ β′| ≥ ι(α, β),
a contradiction. ¤

So let W0 be the disk component of WrA containing α0 = α′. Note
that α0 separates W0. Thus every time β ′ crosses α0, except for the
last, β ′ must also cross some partition Ak ∈ A. We deduce that:

ι(α, β) ≥ |α ∩ β ′| ≥ 65(|α′ ∩ β′| − 1) > 64 · |α′ ∩ β′| ≥ ι(α, β).

(The strict inequality follows from the fact that |α′ ∩ β′| ≥ 128.) As
this is a contradiction, Claim 11.4 is proven. ¤

Let R ⊂ D be the rectangle with top side equal to α′, left and right
sides equal to diagonals D ∩ E of D, and bottom side in ∂Dr∂X
parallel (along the diagonals) to α′. Denote this bottom side of R by
α′′. See Figure 5. We define Q ⊂ E and β ′′ ⊂ ∂Q similarly.
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Figure 5. The rectangle R ⊂ D is surrounded by the
dotted line. The arc α′ in ∂D∩X is indicated. In general
the arc α′′ may lie in X or in Y .

As above we have Θ′ = α′ ∪ β′. Let Θ′′ = α′′ ∪ β′′. There are now
two possibilities: either Θ′ and Θ′′ are disjoint or they are not. In the
first case let Θ = Θ′. In the second case let Θ = Θ′ ∪ Θ′′. In either
case notice that, by Claim 11.4, the graph Θ is connected and fills X.

The following claim will be useful in the next section:

Claim 11.5. The graph Θ′ is not contained in any disk C embedded
in ∂V . The same holds for Θ′′.

Proof. This is clear for Θ′ because Θ′ fills X, an essential subsurface of
∂V . Now suppose that Θ′′ ⊂ C, a disk. Note that |α′′∩β′′| = |α′∩β′| >
1. We are supposing that all intersections of α′′ and β′′ occur in C. It
follows that ∂D and ∂E are not tight on ∂V , a contradiction. ¤



30 HOWARD MASUR AND SAUL SCHLEIMER

11.3. Building the I-bundle. As in the previous section we are given
a pair of rectangles R ⊂ D and Q ⊂ E so that R ∩ ∂V = α′ ∪ α′′ and
Q ∩ ∂V = β ′ ∪ β′′. We also have a connected graph Θ which fills X.
Note that R∪Q is an I–bundle and Θ is the component of its horizontal
boundary meeting X. See Figure 6.
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Figure 6. R ∪ Q is an I–bundle because all arcs of
intersection are parallel.

Let T0 be a regular neighborhood of R ∪ Q, taken in V . This has
the structure of an I–bundle. Note that ∂hT0 ⊂ ∂V , ∂hT0 ∩ X is a
component of ∂hT0, and this component fills X due to Claim 11.4. We
wish to enlarge T0 to obtain the correct I–bundle in V .

Begin by enumerating all annuli {Ai} ⊂ ∂vT0 with the property that
some component of ∂Ai is inessential in ∂V . Suppose that we have
built the I–bundle Ti and are now considering the annulus A = Ai.
Let γ ∪ γ′ = ∂A ⊂ ∂V with γ inessential in ∂V . Let B ⊂ ∂V be the
disk which γ bounds. By induction we assume that no component of
∂hTi is contained in a disk embedded in ∂V (the base case holds by
Claim 11.5). It follows that B ∩ Ti = ∂B = γ. Thus B ∪A is isotopic,
rel γ′, to be a properly embedded disk B ′ ⊂ V . As γ ′ lies in X or
∂VrX, both incompressible, γ ′ must bound a disk C ⊂ ∂V . Note
that C ∩ Ti = ∂C = γ′, again using the induction hypothesis.

It follows that B∪A∪C is an embedded two-sphere in V . As V is a
handlebody V is irreducible. Thus B∪A∪C bounds a three-ball Ui in
V . Choose a homeomorphism Ui ∼= B×I so that B is identified with
B×{0}, C is identified with B×{1}, and A is identified with ∂B×I.
We form Ti+1 = Ti ∪ Ui and note that Ti+1 still has the structure of
an I–bundle. Recalling that A = Ai we have ∂vTi+1 = ∂vTirAi. Also
∂hTi+1 = ∂hTi ∪ (B ∪C) ⊂ ∂V . It follows that no component of ∂hTi+1
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is contained in a disk embedded in ∂V . Similarly, ∂hTi+1 ∩ X is a
component of ∂hTi+1 and this component fills X.

After dealing with all of the annuli {Ai} in this fashion we are left
with an I–bundle T . Now all components of ∂∂vT [sic] are essential in
∂V . All of these lying in X are peripheral in X. This is because they
are disjoint from Θ ⊂ ∂hT , which fills X, by induction. It follows that
the component of ∂hT containing Θ is isotopic to X.

This finishes the construction of the promised I–bundle T and demon-
strates the first two conclusions of Theorem 11.1. For future use we
record:

Remark 11.6. Every curve of ∂∂vT = ∂∂hT is essential in S = ∂V .

11.4. A vertical annulus parallel into the boundary. Here we
obtain the third conclusion of Theorem 11.1: at least one component
of ∂vT is boundary parallel in ∂V .

Fix T an I–bundle with the incompressible hole X a component of
∂hT .

Claim 11.7. All components of ∂vT are incompressible in V .

Proof. Suppose that A ⊂ ∂vT was compressible. By Remark 11.6 we
may compress A to obtain a pair of essential disks B and C. Note that
∂B is isotopic into the complement of ∂hT . So SrX is compressible,
contradicting Remark 8.1. ¤

Claim 11.8. Some component of ∂vT is boundary parallel.

Proof. Since ∂vT is incompressible (Claim 11.7) by Remark 7.2, we
find that ∂vT is boundary compressible in V . Let B be a boundary
compression for ∂vT . Let A be the component of ∂vT meeting B. Let
α denote the arc A ∩B.

The arc α is either essential or inessential in A. Suppose α is inessen-
tial in A. Then α cuts a bigon, C, out of A. Since B was a boundary
compression the disk D = B ∪ C is essential in V . Since B meets ∂vT
in a single arc, either D ⊂ T or D ⊂ VrT . The former implies that
∂hT is compressible and the latter that X is not a hole. Either gives a
contradiction.

It follows that α is essential in A. Now carefully boundary compress
A: Let N be the closure of a regular neighborhood of B, taken in VrA.
Let A′ be the closure of ArN (so A′ is a rectangle). Let B ′∪B′′ be the
closure of fr(N)rA. Both B ′ and B′′ are bigons, parallel to B. Form
D = A′ ∪ B′ ∪ B′′: a properly embedded disk in V . If D is essential
then, as above, either D ⊂ T or D ⊂ VrT . Again, either gives a
contradiction.
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It follows that D is inessential in V . Thus D cuts a closed three-ball
U out of V . There are two final cases: either N ⊂ U or N∩U = B ′∪B′′.
If U contains N then U contains A. Thus ∂A is contained in the disk
U∩∂V . This contradicts Remark 11.6. Deduce instead thatW = U∪N
is a solid torus with meridional disk B. Thus W gives a parallelism
between A and the annulus ∂V ∩ ∂W , as desired. ¤

Remark 11.9. Similar considerations prove that the multicurve

{∂A | A is a boundary parallel component of ∂vT}
is disk busting for V .

11.5. Finding a pseudo-Anosov map. Here we prove that the base
surface F of the I–bundle T admits a pseudo-Anosov map.

As in Section 11.2, pick essential disks D′ and E ′ essential disks in V
so that dX(D′, E ′) ≥ 4 log2(g) + 60. Lemma 10.4 provides disks D and
E which cannot be boundary compressed into X or into SrX – thus
D and E cannot be boundary compressed into ∂hT . Also, as above,
dX(D,E) ≥ 4 log2(g) + 60− 12 = 4 log2(g) + 48.

After isotoping D to minimize intersection with ∂vT it must be the
case that all components of D ∩ ∂vT are essential arcs in ∂vT . By
Lemma 7.6 we conclude that D may be isotoped in V so that D ∩ T is
vertical in T . The same holds of E. Choose A and B, components of
D∩T and E ∩T . Each are vertical rectangles. Note that we still have
dX(A,B) ≥ 4 log2(g) + 48.

We now begin to work in the base surface F . Recall that ρF : T → F
is an I–bundle. Take α = ρF (A) and β = ρF (B). Note that the natural
map C(F ) → C(X), defined by taking a curve to its lift, is distance
non-increasing (see Equation 5.5). Thus dF (α, β) ≥ 4 log2(g) + 48. By
Theorem 9.1 the surface F cannot be an annulus. Thus, by Lemma 3.9
the subsurface F supports a pseudo-Anosov map and we are done.

11.6. Corollaries. We now deal with the possibility of disjoint holes
for the disk complex.

Lemma 11.10. Suppose that X is incompressible hole for D(V ) sup-
ported by the I–bundle ρF : T → F . Suppose that D ⊂ V is an essential
disk.

• If F is orientable then set X∪Y = ∂hT . Then dA(F )(D∩X,D∩
Y ) ≤ 5.
• If F is nonorientable then set X = ∂hT . Let τ : X → X be the

associated involution. Then dX(D, Cτ (X)) ≤ 6.
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Proof. By Lemma 10.4 there is a disk D′ ⊂ V which is tight with
respect to ∂hT and which cannot be boundary compressed into ∂hT
(or into the complement). Also, for any component X ⊂ ∂hT we have
dA(X)(D,D

′) ≤ 3.
Properly isotope D′ to minimize D′∩∂vT . Then D′∩∂vT is properly

isotopic, in ∂vT , to a collection of vertical arcs. Let E = D′∩T . Deduce
that the components of E are, after a proper isotopy in T , vertical with
respect to T .

Pick any component E ′ of E and let α ⊂ F be the arc of intersection
between E ′ and F . Let α′ = E ′ ∩ ∂hT . This is, after a proper isotopy
of D′, a subarc of D′ ∩ ∂hT . Note that α′ is symmetric under the
involution τ : ∂hT → ∂hT . The conclusion follows. ¤

Recall Lemma 6.3: all holes for the arc complex intersect. This
cannot hold for the disk complex. For example if ρF : T → F is an
I bundle over an orientable surface then take V = T and notice that
both components of ∂hT are holes for D(V ). However, by the first
conclusion of Lemma 11.10, X and Y are paired holes, in the sense of
Definition 4.5. So, as with the invariant arc complex (Lemma 6.5), all
holes for the disk complex interfere:

Lemma 11.11. Suppose that X,Z ⊂ ∂V are holes for D(V ), both of
infinite diameter. If X ∩Z = ∅ then there is an I–bundle T ∼= F×I in
V so that ∂hT = X ∪ Y and Y ∩ Z 6= ∅.

Proof. Suppose that X ∩ Z = ∅. It follows from Remark 8.1 that
both X and Z are incompressible. Let ρF : T → F be the I–bundle
in V with X ⊂ ∂hT , as provided by Theorem 11.1. We also have a
component A ⊂ ∂vT so that A is boundary parallel. Let U be the solid
torus component of VrA.

Let α = ρF (A). Choose any essential arc δ ⊂ F with both endpoints
in α ⊂ ∂F . It follows that ρ−1

F (δ), together with two meridional disks
of U , forms an essential disk D in V .

Now, if F is nonorientable then ∂D ⊂ X ∪ (∂UrA). Also, Z can-
not meet U (because Z ∩ X = ∅) and it follows that D ∩ Z = ∅, a
contradiction.

Deduce that F is orientable. Let X ∪ Y = ∂hT . So ∂D ⊂ (X ∪
(∂UrA)∪ Y ). Now, if Z misses Y then Z ⊂ ∂UrA. In this case, Z is
itself an annulus, contradicting Theorem 9.1. It follows that Z cuts Y
and we are done. ¤
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12. Paths in general and the upper bound on distance
Needs work.

Suppose that G = G(S) is a combinatorial complex. The goal of the
section is to give conditions on G, the path requirements, which imply
that the distance dG is bounded above by the sum of projections to
holes. We begin by stating the target theorem.

Theorem 12.1. Fix S a compact connected non-simple surface. Sup-
pose that G(S) is a combinatorial complex satisfying the path require-
ments. Then there is a constant c0 = c0(S) so that for all c ≥ c0 there
are constants a ≥ 1, b ≥ 0 satisfying

dG(α, β)≤a,b
∑

[dX(α, β)]c.

Here α, β ∈ G and the sum is taken over all holes X for G.

The proof is more difficult than that of the lower bound, Theo-
rem 4.10. Essentially, we must build a path in G which is not too
long. We will be given a path Λ = {µn} of markings (defined below)
which is locally an unparametrized quasi-geodesic: when X is a hole
for G the path πX(Λ) will be an unparametrized quasi-geodesic.

We will also be given a combinatorial path Γ = {γi} lying in G. A
reindexing function ties Γ to Λ. It will follow that Γ is also locally an
unparametrized quasi-geodesic, with respect to the holes for G. Unfor-
tunately Γ is almost surely too long to give the upper bound; it may
spend time traveling through C(Y ) where Y is not a hole.

Our goal is to partition Γ into basic intervals where the path Γ makes
definite progress through C(S), shortcut intervals where Γ wastes time
in C(Y ) for some non-hole Y ⊂ S, and inductive intervals where Γ
enters and exits C(X) for some strict hole X ⊂ S. We do not alter
Γ inside of the basic intervals, we shorten Γ so that it only spends a
constant amount of time in non-holes, and we call on induction to cope
with strict holes. A similar scheme then gives an upper bound on the
length of the shortened Γ. Theorem 12.1 then follows. We begin by
setting out the path requirements.

12.1. The requirements. We are given the following data: G = G(S),
a combinatorial complex, as well as vertices α, β ∈ G. We are also given
Λ = {µn}Nn=0 a collection of markings. There is also a sufficiently large
constant c0, depending only on the topology of S.

Definition 12.2. Recall that a marking µ = {νi} is a set of curves in
S with the following properties:

• ι(νi, νj) ≤ c0 and
• the νi fill S.
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Requirements for the marking path.

(1) ι(α, µ0), ι(β, µN) ≤ c0.
(2) For any holeX for G, the map n 7→ πX(µn) is an unparametrized

quasi-geodesic with uniform constants.
(3) Λ locally satisfies the reverse triangle inequality: For any sub-

surface X, and for any m < n < p, we have

dX(µm, µp) ≥ dX(µm, µn) + dX(µn, µp)− c0.

From the marking path {µn} we will extract a combinatorial path
Γ = {γi}Ki=0 consisting of vertices in G. We also will have a reindexing
function r : [0, K] → [0, N ]. There is a uniform constant c1 ∈ R with
the following properties:

Requirements for the combinatorial path.

(1) α = γ0 and β = γK .
(2) The reindexing map is strictly increasing.
(3) ι(γi, µr(i)) ≤ c1, for every i ∈ [0, K].
(4) ι(γi, γi+1) ≤ c1, for every i ∈ [0, K].

Finally we will be given, for every essential subsurface X ⊂ S, a
(possibly empty) interval JX ⊂ [0, N ]. For every n ∈ JX we say that
X is accessible from the marking µn. There are uniform constants
c2, c3 ∈ R with the following properties:

Requirements for accessibility.

(1) If dX(α, β) > c2 then JX is nonempty.
(2) If m,n ≤ min JX or if m,n ≥ max JX then dX(µm, µn) ≤ c3.
(3) IfX is nested in Y then for anym,n ∈ JX we have dY (µm, µn) ≤

c3.
(4) If X and Y overlap then for any m,n ∈ JX ∩ JY we have

dX(µm, µn), dY (µm, µn) ≤ c3.

12.2. Basic, inductive, and shortcut intervals. Our goal is to par-
tition the indices of Γ = {γi}Ki=0 into basic, inductive, and shortcut
intervals. We first identify the relevant surfaces. Take L0 ≥ c3 and
sufficiently large. We are given α, β ∈ G and a combinatorial path
Γ = {γi}Ki=0. Set αS = α and βS = β. Define

BS = {Y ( S | dY (αS, βS) ≥ 3L0}.
In general we are given a hole X ⊂ S, an interval IX = [h, k] ⊂ [0, K],
and a set of subsurfaces BX . Set αX = γh and βX = γk. We are told
that:

• If X 6= S, dX(αX , βX) ≥ L0.
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• For all Y ∈ BX , Y ( X and dY (αX , βX) ≥ 3L0.
• For all Y /∈BX , if Y ( X and Y is a hole then dY (αX , βX) ≤ 5L0.

For any subinterval [i, j] ⊂ IX we define

BX(i, j) = {Y ∈ BX | dY (γi, γj) ≥ 3L0}.
We may now define basic, shortcut, and inductive subintervals of IX .

Definition 12.3. If BX(i, j) is empty then [i, j] is a basic interval. We
require:

(12.4) dG(γi, γj)≤a,b dX(γi, γj).

Definition 12.5. Suppose Y ∈ BX is a non-hole. If r([i, j]) ⊂ JY
then [i, j] is a shortcut interval associated to Y . We require a constant
L1 = L1(X) so that:

(12.6) dG(γi, γj)≤a,b L1.

Definition 12.7. Suppose Y ∈ BX is a hole. If r([i, j]) ⊂ JY and
dY (γi, γj) ≥ L0 then [i, j] is an inductive interval associated to Y . The
induction hypothesis is:

(12.8) dG(γi, γj)≤a,b
∑

[dZ(γi, γj)]c

where the sum is over all holes Z for G(S).

If [i, j] is inductive and associated to Y then we may write IY = [i, j]
and set αY = γi, βY = γj. In addition we may define the set of
subsurfaces:

BY = {Z ∈ BX(i, j) | Z ( Y }.
Lemma 12.9. For L0 sufficiently large, the following holds. Suppose
IY = [i, j] is inductive. If Z ( Y , Z is a hole, and Z /∈ BY then
dZ(αY , βY ) ≤ 5L0.

Proof. If dZ(αY , βY ) < 3L0 then there is nothing to prove. Supposing
the contrary, since Z ( Y ( X and Z /∈BY , we have dZ(αX , βX) < 3L0.
As the path πZ(µn) is an unparametrized quasi-geodesic in C(Z), the
same holds for the path πZ(γk), because Z is a hole. Thus for L0

sufficiently large, πZ(αY ) and πZ(βY ) lie within L0 of the geodesic
between πZ(αX) and πZ(βX). The conclusion follows from the triangle
inequality. ¤

12.3. The partition. We now partition the interval IX . In general,
we are given a subinterval [i, j] ⊂ IX . (To begin with, [i, j] = IX .)

If BX(i, j) is empty then [i, j] is basic and we are done. Suppose
then that BX(i, j) is nonempty. If there is a hole Y ∈ BX(i, j) then
choose that hole Y ∈ BX(i, j) so that
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• Y is maximal with respect to the partial order (by inclusion)
on BX(i, j)
• JY ∩ r([i, j]) is as large as possible. (Subject to the first condi-

tion.)

If there are no holes in BX(i, j) then instead take Y to be a non-hole
satisfying these same two conditions as above.

In either case let i′, j′ ∈ [i, j] be the first and last indices, respectively,
so that r(i′), r(j ′) ∈ JY . Partition [i, j] = [i, i′ − 1] ∪ [i′, j′] ∪ [j ′ + 1, j].
(The first or third parts, or both, may be empty). Take IY = [i′, j′]
and set αY = γi′ , βY = γj′ .

We will show later that if Y is a non-hole then IY is a shortcut
interval. If Y is a hole, then set

BY = {Z ∈ BX(i′, j′) | Z ( Y }.
We must check that IY is an inductive interval – the only nontrivial

point is that dY (γi′ , γj′) ≥ L0. But this follows immediately from (2)
of accessibility requirements and the triangle inequality.

Now partition [i, i′ − 1] and [j ′ + 1, j] in similar fashion. This com-
pletes our recursive description to the partition of IX .

We establish preliminary results about the partition.

Lemma 12.10. If Y, Z are holes that either overlap or are nested, then
IZ ⊂ JY implies Z ⊂ Y .

Proof. This follows immediately from the definition of the intervals IZ ,
the assumption M0 ≥ C3, and the accessibility requirement (2) for
nested subsurfaces and requirement (3) for overlapping surfaces. ¤

Proposition 12.11. For L0 large enough, the partition of [m,n] has
the properties that

(1) For any hole Y there is at most 1 inductive interval IY associ-
ated to Y .

(2) For any hole Y there are at most 2 inductive intervals IZ such
that JY ∩ IZ 6= ∅, such that Y ( Z, or Z and Y overlap. There
is at most one interval IZ for Z paired with Y .

(3) Suppose there exists l ≥ N1, intervals IYi that are shortcut inter-
vals associated to a nonholes Yi or inductive intervals associated
to holes Yi. Then {∂Yi} fill X, and dX(∂Y1, ∂Yl) ≥ l/N1−2. In
particular, there are at most N1 shortcut intervals IY associated
to any fixed Y .

Proof. We prove the first conclusion. If there were two intervals I1 =
[p1, q1] and I2 = [p2, q2] associated to the same hole Y with q1 ≤ p2,
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then we claim that

dY (µq2 , µp1) ≥ L0.

If that is the case, then we would have a contradiction, for then an
interval, either [p1, q2] or an interval containing it, would have been
chosen as the inductive interval rather than either [pi, qi]. We need to
prove the claim. Let αY = πY (γp1) and βY = πY (γq2). We notice that
since the path πY (µn) is an unparametrized quasi-geodesic, and C(Y ) is
a hyperbolic space, there is a constant D depending on these constants
such that for any two points on the path, any point between them is
within D of the geodesic joining the endpoints. If q1 = p2 we apply it
to the endpoints αY and βY with πY (γq1) between them to conclude
that

dY (βY , αY )) ≥ 2L0 − 2D ≥ L0,

for L0 large enough, proving the claim. If p2 > q1, then dividing
the interval [p1, q2] into [p1, p2] with interior point q1, and [p2, q2], we
conclude that

dY (µq2 , µp1) ≥ 2L0 − 3D ≥ L0,

again for L0 big enough, proving the claim.
We prove the second conclusion. The interval JY may be contained

in a single IW for W paired with Y . If JY intersected three or more IZ
such that either Y and Z overlap, or Y ⊂ Z, then JY would contain
one of them. This is impossible by Lemma 12.10. Thus it intersects at
most 2 such IZ .

We prove the third statement. If there were more than N1 such
IYi , then Lemma ?? says that some hole or nonhole Z containing a
collection of these Yi would satisfy dZ(µm1 , µnk) ≥ 3M0, where µm1 is
the furthest point to the left, and µnk the furthest to the right. Suppose
Z is a proper subsurface of X. If Z is a hole, then either Z or some W
containing Z would have been chosen to define an inductive interval I
rather than any of the IYi . This is a contradiction. If Z is a nonhole,
then since it contains no holes, either it or some W containing it would
have been chosen rather than IYi , and again we have a contradiction.

Thus Z = X and so the {∂Yi} fill X. Again let gX be a geodesic in
C(X) joining γi and γj. For each Yi there is a curve ωi ∈ m such that
dX(ωi, ∂Yi) ≤ 1. For any ω, the set of ∂Yi within distance 1 of ω do not
fill X. There are at most N1 of these Yi. This forces the total number
of ω ∈ gX that are within distance 1 of some ∂Yi to be at least l/N1,
giving the desired estimate. ¤

12.4. The upper bound. We are now equipped to prove Theorem 12.1.
Recall we are given curves γh, γk and a hole X. We construct a path l
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in G joining γh and γk. For each basic interval [r(i), r(j)] with corre-
sponding curves γi, γj we take the given subpath joining γi and γj. For
each shortcut interval [r(i), r(j)] we take the shortcut path of length
at most N0 joining γi, γj, guaranteed to exist by assumption (??). For
each inductive interval we take the path defined inductively through
that interval, guaranteed to exist by (??).

Proposition 12.12. For some fixed a, b, c the path l satisfies

|l| ≤a,b
∑

[dY (α, β)]c,

the sum over holes Y ⊂ X.

Proof. Let NS be the number of shortcut intervals. The path though
each shortcut interval is bounded by N0. Therefore we need to prove
that NS is bounded in terms of dX(γh, γk). By Proposition 12.11 1),
and 2) any hole Y is associated to at most 1 inductive interval IY =
[r(i), r(j)] and any JY overlaps at most 2 other IZ1 = [r(p1), r(q1)], IZ2 =
[r(p2), r(q2)] and we can assume r(q1) ≤ r(i) < r(j) ≤ r(p2). The path
in C(Y ) is an unparametrized quasi-geodesic. Therefore

dY (γp1 , γq1) + dY (γi, γj) + dY (γp2 , γq2)≤a,b dY (γp1 , γq2).

Thus the path length of l through each hole Y inductively is bounded
by K1dY (γh, γl) + K2, for fixed K1, K2. Thus if we let NI denote the
number of inductive intervals it follows that it is enough to prove that
there are constants a, b such that

(12.13)
∑

IB

|IB|+NS +NI ≤a,b dX(γh, γk),

where the sum is over all basic intervals IB. We prove this bound.
Let δ be the hyperbolicity constant for the space C(X). The fact

that the sequence {γi} is an unparametrized quasi-geodesic in C(X)
says that there are constants a, b and D > δ such that for any partition
of the {γi},
(12.14) P = γi = β1, β2 . . . , βM = γj

with the property that for all p, dX(βp, βp+1) ≥ D, then

(12.15)
M−1∑

p=1

dX(γp, γp+1)≤a,b dX(γi, γj).

We partition the entire interval [r(h), r(l)] as

I1 ∪ J1 ∪ I2 ∪ J2 ∪ . . . ∪ Ik ∪ Jk,
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where the intervals Ii are basic and satisfy

|Ii| ≥ 4D.

Each interval Ji is a connected union of basic, shortcut, and inductive
intervals with the following properties. Each Ji begins with either a
shortcut or inductive interval associated with some proper subsurface
Y 1
i . It is followed by a possibly empty basic interval with length at

most 4D, followed by a shortcut or inductive interval associated to
some Y 2

i , then a basic interval again with length at most 4D, and so
forth ending with a shortcut or inductive interval associated to some

subsurface Y
l(i)
i . (We may have I1 = ∅ or Jk = ∅.)

We wish to form a partition P of the entire interval [r(h), r(k)].
Suppose the shortcut and inductive intervals in Ji are associated to
Y 1
i , . . . Y

ni
i . Let ωi, ω

′
i the initial and terminal curves. Let

K1 = K0 + C2.

By (??)

dX(ωi, ω
′
i) ≥ dX(∂Y 1

i , ∂Y
ni
i )− 2K1.

The contribution to the left side of (12.13) from Ji is

(12.16) ni +
∑

IB∩J
|IB| ≤ ni(4D + 1).

By 3) of Proposition 12.11,

dX(∂Y1, ∂Y
ni
i )) ≥ ni/N1 − 2

and therefore

(12.17) dX(ωi, ω
′
i) ≥ ni/N1 − 2− 2K1.

We group the set of Ji into two types. The first possibility is that

dX(ωi, ω
′
i) ≤ D

so

ni/N1 − 2− 2K1 ≤ D.

Then

ni +
∑

IB∩Ji
|IB| ≤ ni(4D + 1) ≤ (4D + 1)(D + 2 + 2K1)N1.

This quantity then can by incorporated into the length through a basic
interval of length at least 4D bordering Ji by multiplying by a fixed
factor (depending on D) and so can be ignored in terms of (12.13). In
our partition P we include the midpoints αi, τi of the basic intervals I, I ′

on each side of Ji. Let I1/2 ⊂ I, I ′1/2 ⊂ I ′ the half intervals bordering
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Ji. Then a simple thin triangle argument in the hyperbolic space C(X),
and the fact that D > δ, shows that

dX(αi, τi) ≥ D,

and furthermore

|I1/2|+ |I ′1/2| ≤a,b dX(αi, τi).

The second possibility for Ji is that the endpoints satisfy

dX(ωi, ω
′
i) ≥ D.

In this case we include the endpoints ωi, ω
′
i in the partition. Combining

(12.16) and (12.17) we get a bound

(12.18) ni +
∑

IB∩Ji
|IB| ≤ (4D + 1)N1(2 + 2K1 + dX(ωi, ω

′
i)).

We now have a partition of the sequence of curves such that two
consecutive curves are at least D apart. The points of the partition
include the endpoints of intervals Ji, if Ji is of the second type, and
the midpoints of intervals I surrounding Ji if it is of the first type.

Let Ip = [r(p), r(p′)] be a basic interval of length at least 4D or half
of a basic interval of length at least 2D with endpoints γp, γp′ . By (??)
there exists C4 such that

(12.19) dX(γp, γp′) ≥
|Ip|
C4

.

Combining (12.18) and (12.19) and applying (12.15), we conclude

that the left side of (12.13) which can be expressed as
∑k

p=1 |Ip| +∑k
p=1 np +

∑
IB∩Ji |IB| satisfies

∑

p

|Ip|+
∑

p

np+
∑

IB∩Jp
|IB| ≤ C4

∑

p

dX(γp, γ
′
p)+(4D+1)N1(2+2K1+

∑

p

dX(ωp, ω
′
p))

≤a,bdX(γh, γk).

¤

13. Background on Teichmüller space

Fix now a surface S = Sg,n of genus g with n punctures. Let M =
M(S) be the Teichmüller space of S. This is slightly non-standard
notation; however this fits with our general framework where M is a
marking space.

Recall thatM(S) is the set of equivalence classes of conformal struc-
tures µ on S. Here µ1 ∼ µ2 if there is a conformal map f : µ1 → µ2



42 HOWARD MASUR AND SAUL SCHLEIMER

which is isotopic to the identity. We equip Teichmüller space with the
Teichmüller metric. That is,

dM(µ1, µ2) = inf
f

{
1

2
logK(f)

}
.

Here K(f) is the maximal dilatation of f . The infimum ranges over
all maps f : µ1 → µ2 isotopic to the identity and it is realized by a
Teichmüller map. This, in turn, may be defined in terms of a quadratic
differential.

Definition 13.1. A holomorphic quadratic differential q(z)dz2 on a
Riemann surface µ0, possibly with punctures, is an assignment of a
holomorphic function qz(z) to each local holomorphic coordinate chart.
If z and ζ are overlapping charts then we require the equality

qz(z) = qζ(ζ)

(
dζ

dz

)2

to hold in the intersection of the charts.

The sum of the orders of the zeroes and poles of q totals 4g − 4. At
any point away from the zeroes and poles there is a natural coordinate
z = x+iy with the property that qz ≡ 1. In this natural coordinate the
foliation by lines y = c is called the horizontal foliation. The foliation
by lines x = c is called the vertical foliation.

Now fix a quadratic differential q. For every t ∈ R there is a new
Riemann surface µt and associated quadratic differential gt(q) on µt.
We are also given a map ft : µ0 → µt, called a Teichmüller map. The
Teichmüller map is defined by the property that in the natural coordi-
nates z = x+ iy of q and zt = xt + iyt of gt(q) we have

xt = etx, yt = e−ty.

The Teichmüller map is the unique map realizing the infimum in the
definition of the Teichmüller distance.

Let σt be the unique hyperbolic metric in the conformal class of µt.
Let Pt be a Bers pants decomposition of S;
Pt of shortest length curves, called a Bers pants decomposition and

also a shortest marking, again denoted µt. For any subsurface X there
is a projection πX : M → C(X) which first associates to µ ∈ M its
minimal length marking and then projects that marking into X. This
map is Lipschitz. Let ε1 a Margulis constant so that intersecting curvesI don’t think that

is true. Consider
an annulus.

cannot both be of Poincare length smaller than ε1.
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14. Paths for the nonorientable surface

Again fix F a compact, connected, and nonorientable surface. Let
S be the orientation double cover with covering map ρF : S → F . Let
τ : S → S be the associated involution. Let ν : Cτ (S) → C(S) be the
natural map from the complex of τ–invariant curves to C(S). As noted
above, the inclusion is Lipschitz.

Our goal here is to obtain a reverse inequality:

dCτ (α, β)≥a,b dS(α, β).

We begin by giving the promised proof of:

Lemma 14.1. There is a constant K with the following property: Sup-
pose that α, β are invariant multi-curves or arcs in S and X ⊂ S so
that dX(α, β) > K. Then X is symmetric.

Proof. Let Y = τ(X). Since α and β are invariant deduce dY (α, β) =
dX(α, β). We can assume dC(α, β) ≥ 3. This implies that α, β fill
the surface S, and so there exists a quadratic differential q on some
Riemann surface X0 which has as its horizontal leaves, closed curves
homotopic to α and vertical leaves homotopic to β. If α has two com-
ponents then we require that the moduli of the corresponding cylinders
coincide. The same is true for β. Since τ preserves α and β, τ ∗q is
another quadratic differential on X0 all of whose horizontal leaves are
homotopic to α and vertical leaves homotopic to β. But then τ ∗q = q
and so q is symmetric.

Let gt(q),−∞ ≤ t ≤ ∞ the corresponding path of quadratic differ-
entials. Each is τ symmetric. For each time t, let σt be the hyper-
bolic metric on the surface of gt(q) and µt the shortest marking. The
hyperbolic metric is τ invariant. Let ε1 a Margulis constant so that
intersecting curves cannot both be of Poincare length smaller than ε1.

By Theorem ( ) of Rafi there is a constant K such that if dX(α, β) ≥
3K, there are t1 < t2 so that

(14.2) dX(µt1 , µt2) ≥ K

and such that for all t1 ≤ t ≤ t2

σt(∂X) < ε1.

Since σt is symmetric, we have σt(τ(∂X)) = σt(∂X). This implies
i(∂X, τ(∂X) = ∅. We cannot have any component of τ(∂X) contained
in X for this would violate (14.2). Thus either τ(X) = X or τ(X)∩X =
∅.

¤
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As t → −∞, ρt(α) → 0 and no other curve has hyperbolic length
going to 0 and as t We can let We have a sequence γn of shortest curves
on these surfaces. The function

i : AC ×M→ R+

is given by the length of the shortest geodesic in the homotopy class.
We need to define sequences α = γ1, . . . , γI = β of curves, a corre-

sponding sequence µn of points in Teichmuller space that satisfy the
path requirements. We also have to define the accessible intervals so
as to satisfy the Accessible requirements. We also need then to check
(??), (??) and (??).

We check the marking requirements on our sequences in Teichmuller
space and curves. We already have Condition 1). Condition 2) is
exactly Theorem ( ) of [?] for the whole surface, and Theorem 1 of
[?] in the case of subsurfaces. Condition 3) holds since intersection
number is always a bound for distance. shortest curves can intersect a
bounded number of times.

We check the combinatorial path requirements. In all cases there
was no reindexing so 2) holds. Condition 3) holds since bounded length
curves can intersect only a bound number of times. A bounded length
surgery path produces curves that connect them. Condition 4) follows
for example from the distance formula given in Theorem 1.1 of [?]. We
are given

dT (µi, µi+1) = 1,

where dT (·, ·) is Teichmuller distance. On the other hand

dT (µi, µi+1)
a,b
= dY (µi, µi=1.

This implies there is a bound for any subsurface projection which im-
plies there is a bound for i(γi, γi+1)

15. Paths for the arc complex

Here we build the pair of paths required to obtain the upper bound
on distance for the arc complex A(S,∆).

16. Background on train tracks

Here we give the necessary definitions and theorems regarding train
tracks. This treatment is essentially due to Lee Mosher.

Recall that a generic train track τ ⊂ S is a smooth (C2) embedded
trivalent graph. As usual we call the vertices switches and the edges
branches. At every switch the tangents of the three branches agree.
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Also, there are exactly two incoming branches and one outgoing branch
at each switch. See Figure 7 for the local model of a switch.

PSfrag replacements

incoming

incoming

outgoing

Figure 7. The local model of a train track

Let N = N(τ) be an closed I–bundle neighborhood of τ . Note that
∂N splits into two collections of arcs: the vertical boundary ∂vN and
the horizontal boundary ∂hN . (If τ has no switches then ∂vN is empty.)
See Figure 8. Conversely, given a foliated neighborhood N , taking the
quotient of the I–fibres recovers τ , up to isotopy.

PSfrag replacements

Figure 8. A vertically foliated neighborhood of τ .

A simple closed curve α is carried by τ , written α ≺ τ , if α lies in
the interior of N(τ), transverse to the vertical fibres. If α is an arc
then we additionally require that ∂α ⊂ ∂vN . The weights of α on τ
are then a non-negative integer for each branch of τ : the number of
times α meets any fibre in the neighborhood of that branch. The set
of all allowable weights on τ , denoted P (τ) is a cone over Z. A simple
closed curve carried by τ , with weights lying on an extremal ray of
P (τ), is called a vertex of τ . Denote the set of vertices of τ by Vert(τ).
If τ and σ are tracks, and Y ⊂ S is an essential surface, then define
dY (τ, σ) = dY (Vert(τ),Vert(σ)).

If α ≺ τ then we may split the track τ along α: Form N = N(τ),
let n(α) be an open neighborhood of α, let N ′ = N − n(α), and set
τ ′ = N ′/I. If all weights of α on τ are two or less then we call τ ′ a
central splitting of τ . Notice that there are only finitely many central
splittings possible of any given track.

A train track σ is a subtrack of τ if σ is obtained by deleting branches
of τ . In this situation we write σ ⊂ τ . We now have a crucial definition:



46 HOWARD MASUR AND SAUL SCHLEIMER

Definition 16.1. An essential surface Y ⊂ S is accessible from τ if
Y can be realized as follows: there is a subtrack σ ⊂ τ and a central
splitting σ′ of σ so that a regular neighborhood N of σ′, plus any disk
components of SrN to N , is isotopic to Y . We will denote σ ′ by τ |Y .

Actually, I’m
pretty sure that
τ |Y is only de-
fined up to some
fuzzyness...

There is a bound, depending only on S, on the number of surfaces
accessible from any one given train track.

We say that a train track σ is obtained from τ by sliding if σ and
τ are related as in Figure 9. We say that a train track σ is obtained
from τ by splitting if σ and τ are related as in Figure 10.

PSfrag replacements PSfrag replacements

Figure 9. All slides take place in a small regular neig-
borhood of the affected branch.
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Figure 10. There are three kinds of splitting: right,
left, and central.

If σ is a train track obtained from τ by a sequence of slides and
exactly one splitting then we say that σ is obtained via a wide splitting.
In this case we write σ ≺ τ . We remark that if there is a wide splitting
from τ to σ then there is one using an a priori bounded number of
slides. We shall always use these parsimonious wide splittings. For an
in-depth discussion see Section 3.13 of Mosher’s monograph [Mos].

Definition 16.2. A splitting sequence is a collection {τi} of train tracks
so that τ0 Â τ1 Â . . . Â τn.
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We may now state the first of Mosher’s results:

Theorem 16.3 (Mosher). Fix a surface S. There are constants (a, b, c)
with the following property: Suppose that {τi} is a splitting sequence in
S and Y ⊂ S is an essential surface. Then the map i 7→ πY (Vert(τi))
is an (a, b, c) unparametrized quasi-geodesic. ¤

Note that, when Y = S, Theorem 16.3 is essentially due to the
first author and Minsky; see Theorem 1.3 of [MM]. To see why Theo-
rem 16.3 holds when Y a strict subsurface we define:

Definition 16.4. For any essential subsurface Y ⊂ S and any splitting
sequence {τi} define the accessible region JY to be set of indices so that
Y is accessible from τi.

Lemma 16.5 (Mosher). The accessible region JY is a (possibly empty)
interval. ¤

We now have:

Theorem 16.6 (Mosher). Fix a surface S. There is a constant K
with the following property: Suppose that {τi} is a splitting sequence
and Y is an essential subsurface. There is a splitting sequence {σk} in
Y , parametrized by JY = [i, j], so that

• If k ≤ i (respectively, j ≤ k), then

dY (τk, τi) ≤ K (resp. dY (τj, τk) ≤ K).

• For k ∈ JY , the tracks τk|Y and σk have splitting distance at
most K. ¤

Note that Theorem 16.3 follows from the cited result of [MM] and
Theorem 16.6.

17. Paths for the disk complex
Needs work.

18. The distance estimate
Needs work.

Theorem 18.1. For any handlebody V there is a constant c0 = c0(V )
so that, for any c ≥ c0 there are constants a ≥ 1 and b ≥ 0 satisfying

dD(D,E)
a,b
=
∑

[dX(D,E)]c,

independent of the choice of D and E. The sum ranges over subsurfaces
X ⊂ ∂V which are holes for D(V ).

19. Hyperbolicity

We remark that some of the ideas in this section are similar to the
heirarchy machine of [MM00] (see also Chapters 4 and 5 of Behrstock’s
thesis [Beh04]). Our discussion has a different focus; we avoid the
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heirarchy machine as it appears to be too rigid to deal with the disk
complex. As another difference from [MM00] and [Beh04] we rely on
Theorem 2.8 instead of proving that projection maps are coarsely con-
tracting.

We wish to prove:

Theorem 19.1. Suppose that G(S) satisfies the distance estimate and
the path requirements. Suppose also that all holes for G interfere. Then
G is Gromov hyperbolic.

As corollaries we have

Theorem 19.2. The arc complex is Gromov hyperbolic. ¤
Theorem 19.3. The disk complex is Gromov hyperbolic. ¤

In fact, Theorem 19.1 follows quickly from:

Theorem 19.4. Fix G, a combinatorial complex. Suppose that G sat-
isfies the distance estimate. Suppose that all holes for G interfere. For
any constants (a, b, c) there is a δ so that for any triangle of paths
T ⊂ G we have: if the projection of any side of T into into any hole is
an (a, b, c) unparametrized quasi-geodesic, then T is δ–slim.

Proof of Theorem 19.1. Suppose that G(S) satisfies the distance esti-
mate and the path requirements. Suppose also that all holes for G
interfere. Then, by Theorem ???, there are uniform constants (a, b, c)
so that for any pair α, β ∈ G there is a path P = {γi} ⊂ G with

• for any hole X for G, the projection πX(P) is an (a, b, c) un-
parametrized quasi-geodesic and

• |P| a,b= dG(α, β).

So if α ∩ β = ∅ then |P| is uniformly short. Also, by Theorem 19.4,
triangles made of such paths are uniformly slim. Thus, by Theorem 2.8,
G is Gromov hyperbolic. ¤

The rest of this section is devoted to proving Theorem 19.4.

19.1. Index in a hole. For the following definitions, we assume that
α and β are fixed vertices of G.

For any hole X and for any geodesic h ∈ C(X) connecting a point
of πX(α) to a point of πX(β) we also define ρh : G → h to be the map
πX |G : G → C(X) followed by closest points projection to h. Define
indexX : G → N to be the index in X:

indexX(σ) = dX(α, ρh(σ)).
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Remark 19.5. Suppose that h′ is a different geodesic connecting πX(α)
to πX(β) and index′X is defined with respect to h′. Then

| indexX(σ)− index′X(σ)| ≤ 12δ + 2

by Lemma 2.7. Thus, if we are willing to accept a small additive error,
the choice of geodesic h is irrelevant. Accordingly we will supress the
superscript whenever possible.

19.2. Back and sidetracking. Fix σ, τ ∈ G. We say σ precedes τ by
at least K in X if

indexX(σ) +K ≤ indexX(τ).

We say σ precedes τ by at most K if the inequality is reversed. If σ
precedes τ then we say τ succeeds σ.

Now take P = σi to be a path in G connecting α to β. We assume
that σi and σi+1 are disjoint.

We now formalize a pair of properties enjoyed by unparametrized
quasi-geodesics to the situation at hand. The path P backtracks at
most K if for every hole X and all indices i < j we find that σj
precedes σi by at most K. The path P sidetracks at most K if for
every hole X and every index i we find that

dX(σi, ρh(σi)) ≤ K,

for some geodesic h connecting a point of πX(α) to a point of πX(β).

Remark 19.6. As in Remark 19.5, allowing a small additive error
makes irrelevant the choice of geodesic in the definition of sidetracking.
We note that, if P has bounded sidetracking, one may freely use in
calculation whichever of σi or ρh(σi) is more convenient.

19.3. Projection control. We say domains X,Y ⊂ S overlap if X
and Y intersect but are not nested. The following theorem (see Theo-
rem 4.2.1 of Behrstock’s thesis [Beh04]) follows from Masur and Min-
sky’s idea (see [MM00]) of time ordered domains in S:

Theorem 19.7. There is a constant M1 = M1(S) with the follow-
ing property. Suppose that X,Y are overlapping non-simple domains.
If γ ∈ AC(S) cuts both X and Y then either dX(γ, ∂Y ) < M1 or
dY (∂X, γ) < M1. ¤

We also require a more specialized version of Theorem 19.7 for the
case where X and Y are nested.

Lemma 19.8. There is a constant M2 = M2(S) with the following
property. Suppose that X ⊂ Y are nested non-simple domains. Fix
α, β, γ ∈ AC(S) which cut both X and Y . Fix k = [α′, β′] ⊂ C(Y ),
a geodesic connecting a point of πY (α) to a point of πY (β). Assume
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that dX(α, β) ≥M0, the constant given by the Bounded Geodesic Image
Theorem [MM00]. If dX(α, γ) ≥M2 then

indexY (∂X)− 4 ≤ indexY (γ).

Symmetrically, we have

indexY (γ) ≤ indexY (∂X) + 4

if dX(γ, β) ≥M2. ¤

19.4. Finding the midpoint of a side. Let (a, b, c) be arbitrary.
Let P ,Q,R be the sides of a triangle in G with vertices at α, β, γ. We
assume that each of P , Q, and R are (a, b, c) unparametrized quasi-
geodesics when projected to any hole.

Recall that M0 = M0(S), M1 = M1(S), and M2 = M2(S) are func-
tions depending only on the topology of S. We may assume that if
T ⊂ S is an essential subsurface, then M0(S) > M0(T ).

Now choose K1 ≥ max{M0, 4M1,M2, 8}+6δ sufficently large so that
any (a, b, c) unparametrized quasi-geodesic in any hole back and side
tracks at most K1.

Claim 19.9. If σi precedes γ in X and σj succeeds γ in Y , both by at
least 2K1, then i < j.

Proof. To begin, as X and Y are holes and all holes interfere, we need
not consider the possibility that X ∩Y = ∅. If X = Y we immediately
deduce that

indexX(σi) + 2K1 ≤ indexX(γ) ≤ indexX(σj)− 2K1.

Thus indexX(σi) + 4K1 ≤ indexX(σj). Since P backtracks at most K1

we have i < j, as desired.
Suppose instead that X ⊂ Y . Since σi precedes γ in X we immedi-

ately find dX(α, β) ≥ 2K1 ≥M0 and dX(α, γ) ≥ 2K1−2δ ≥M2. Apply
Lemma 19.8 to deduce indexY (∂X)−4 ≤ indexY (γ). Since σj succeeds
γ in Y it follows that indexY (∂X)− 4 + 2K1 ≤ indexY (σj). Again us-
ing the fact that σi precedes γ in X we have that dX(σi, β) ≥M2. We
deduce from Lemma 19.8 that indexY (σi) ≤ indexY (∂X) + 4. Thus

indexY (σi)− 8 + 2K1 ≤ indexY (σj).

Since P backtracks at most K1 in Y we again deduce that i < j. The
case where Y ⊂ X is handled in symmetric fashion.

Suppose now that X and Y overlap. Applying Theorem 19.7 and
breaking symmetry, we may assume that dX(γ, ∂Y ) < M1. Since σi
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precedes γ we have indexX(γ) ≥ 2K1. Thus, it follows that indexX(∂Y ) ≥
2K1 − 2M1 − 4δ and so

dX(α, ∂Y ) ≥ 2K1 − 2M1 − 6δ ≥M1.

Applying Theorem 19.7 again, we find that dY (α, ∂X) < M1. Now,
since σj succeeds γ in Y , we deduce that indexY (σj) ≥ 2K1. Similar
considerations to the above show that

dY (∂X, σj) ≥ 2K1 −M1 − 2δ ≥M1.

Applying Theorem 19.7 one last time, we find that dX(∂Y, σj) < M1.
Thus dX(γ, σj) ≤ 2M1. Finally, we deduce that the difference in index
(in X) between σi and σj is at least 2K1−4M1−4δ. Since this is again
greater than K1, it follows that i < j. ¤

Let σα ∈ P be the last vertex of P preceding γ by at least 2K1 in
some hole. If no such vertex of P exists then take σα = α.

Claim 19.10. There is a constant N1 = N1(S) with the following
property. For every hole X and geodesic h connecting πX(α) to πX(β):

dX(σα, ρh(γ)) ≤ N1.

Proof. Since σi and σi+1 are disjoint we have

| indexX(σi+1)− indexX(σi)| ≤ 4δ + 2.

Since P is a path connecting α to β the image ρh(P) is 4δ + 2–dense
in h. Thus, if indexX(σα) + 2K1 + 4δ + 2 < indexX(γ) then we have a
contradiction to the definition of σα.

On the other hand, if indexX(σα) ≥ indexX(γ)+K1 then σα succeeds
γ. This directly contradicts Claim 19.9.

We deduce that the difference in index between σα and γ in X is at
most 2K1 + 4δ + 2. Finally, as P sidetracks by at most K1 we have

dX(σα, ρh(γ)) ≤ 3K1 + 4δ + 2

as desired. ¤

We define σβ to be the first σi to succeed γ by at least 2K1 — if no
such vertex of P exists take σβ = β. If α = β then σα = σβ. Otherwise,
from Claim 19.9, we immediately deduce that σα comes before σβ in
P . A symmetric version of Claim 19.10 applies to σβ: for every hole X

dX(ρh(γ), σβ) ≤ N1.
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19.5. Another side of the triangle. Recall now that we are also
given a path R = {τi} connecting α to γ in G. As before, R has
bounded back and sidetracking. Thus we again find vertices τα and
τγ the last/first to precede/succeed β by at least 2K1. Again, this is
defined in terms the closest points projection of β to geodesics of the
form l = [πX(α), πX(γ)]. By Claim 19.10, for every hole X, τα and τγ
are close to ρl(β).

By Lemma 2.5, if h = [πX(α), πX(β)], then dX(ρh(γ), ρl(β)) ≤ 6δ.
We deduce:

Claim 19.11. dX(σα, τα) ≤ 2N1 + 6δ. ¤
We now prove:

Claim 19.12. There is a constant N2 = N2(S) with the following
property. For every σi ≤ σα in P there is a τj ≤ τα in R so that

dX(σi, τj) ≤ N2

for every hole X.

Proof. We only sketch the proof, as the details are similar to the dis-
cussion above. Fix σi ≤ σα.

Suppose first that no vertex of R precedes σi by more than 2K1.
Fix a hole X and geodesics h = [πX(α), πX(β)] and l = [πX(α), πX(γ)].
Then ρl(σi) is within distance 2K1 of πX(α). Appealing to Claim 19.11,
bounded sidetracking, and hyperbolicity of C(X) we find that the initial
segments

[πX(α), ρh(σα)], [πX(α), ρl(τα)]

of h and l respectively must fellow travel. Because of bounded back-
tracking along P , ρh(σi) lies on, or at least near, this initial segment of
h. Thus by Lemma 2.7 ρl(σi) is close to ρh(σi) which in turn is close
to πX(σi), because P has bounded sidetracking. In short, dX(α, σi) is
bounded for all holes X. Thus we may take τj = τ0 = α and we are
done.

Now suppose that some vertex of R precedes σi by at least 2K1 in
some hole X. Take τj to be the last such vertex in R. Following the
proof of Claim 19.9 shows that τj comes before τα in R. The argument
now required to bound dX(σi, τj) is essentially identical to the proof of
Claim 19.10. ¤

By the distance estimate, we find that there is a uniform neighbor-
hood of [σ0, σα] ⊂ P , taken in G, which contains [τ0, τα] ⊂ P . The
slimness of PQR follows directly. This completes the proof of Theo-
rem 19.4. ¤
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20. An algorithm to coarsely compute Hempel distance
Clean up.

Definition 20.1. Let ρV : C(S) → P(D(V )) be the closest points
projection map: for every γ ∈ C(S) take ρV (γ) equal to the set of
D ∈ D(V ) so that dS(γ,D) = min{dS(γ,E) | E ∈ D(V )}.

Recall that a maximal simplex D in D(V ) is a pants decomposition of
V . The first application of our ideas is the “projection to handlebodies”
theorem:

Theorem 20.6. There is a constant R1 = R1(V ) and an algorithm
which, given an essential curve γ ⊂ S and a pants decomposition D ⊂
D(V ), finds a disk E ∈ D(V ) so that

dS(E, ρV (γ)) ≤ R1.

Recall the definition of the closest points projection map ρV : C(S)→
P(D(V )). For every γ ∈ C(S) we take ρV (γ) equal to the set of D ∈
D(V ) so that dS(γ,D) = min{dS(γ,E) | E ∈ D(V )}.

Recall that a maximal simplex D in D(V ) is a pants decomposition
of V . The goal of this section is to prove Theorem 20.6: there is an
algorithm which finds a point of ρV (γ), up to bounded error.

Fix a handlebody V with ∂V = S. Fix γ an essential curve in S and
D a pants decomposition of V . Let D be any element of ρV (γ).

Let H be a hierarchy connecting D to γ. Let σ be the last slice of
H preceding D on H. Note that dS(σ,D) is bounded by 2δ + R, the
latter being the quasi-convexity constant of D(V ).

Claim 20.2. There is a multicurve µ so that dX(σ, µ) is uniformly
bounded for all essential subsurfaces X and either

• µ is the boundary of a disk,
• µ is the boundary of a non-hole, or
• µ is the boundary of a hole of large diameter.

Proof. Connect σ toD by a hierarchy L. ConnectD to D by a hierarchy
K. If |L| is small then we may take µ = ∂D. Otherwise, as dS(σ,D)
is bounded, we may assume that the hierarchy L contains at least one
large projection in a strict subsurface. Let X be the first such, under
time-order. We may assume that dX(σ,D) is large.

We now claim that µ = ∂X satisfies the conclusion of the claim.
This is clear if X is not a hole. If X is a hole then, as σ is the last slice
preceding D along H, we deduce that dX(D, D) is also large. We are
done. ¤

We immediately deduce:
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Claim 20.3. There is a disk E ∈ D(V ) so that E and µ meet at most
twice and so that dS(E, ρV (γ)) ≤ R1. ¤

Also, by Lemma 3.15 we have:

Claim 20.4. The multi-curve µ and the slice σ have bounded inter-
section. ¤

Let R3 = R3(S) be the given bound on intersection number. We
may now describe the algorithm:

Algorithm 20.5. We are given γ ∈ C(S) and D ⊂ D(V ). Build H
a hierarchy between γ and D; see Leasure [Lea]. Find a resolution
into slices {σi} of H. For each slice σi list all multicurves µ so that
ι(µ, σi) ≤ R3.

For every multicurve µ so produced determine whether

• a component of µ bounds a disk in V (using the solution of the
word problem in the free group π1(V )),
• a component of Srµ compresses in V (using Haken’s algo-

rithm), or
• a component of Srµ cobounds an I–bundle in V (using the

Jaco-Tollefson algorithm for detecting the JSJ decomposition).

For every µ falling into one of the three categories above the algo-
rithm also produces a disk Eµ with ι(Eµ, µ) ≤ 2. For every disk Eµ so
produced compute dS(γ,Eµ) (again, see [Lea]). Finally take E equal to
any of the Eµ which minimized dS(γ,Eµ), among all disks considered.

By Claim 20.3 the disk E satisfies dS(E, ρV (γ)) ≤ R1. This proves:

Theorem 20.6. There is a constant R1 = R1(V ) and an algorithm
which, given an essential curve γ ⊂ S and a pants decomposition D ⊂
D(V ), finds a disk E ∈ D(V ) so that

dS(E, ρV (γ)) ≤ R1.

Remark 20.7. We obviously make no claims as to the efficiency of
this algorithm.

Theorem 20.8. There is a constant R2 = R2(S) and an algorithm
which, given a Heegaard diagram (S,D,E), computes a number N so
that

|dS(V,W )−N | ≤ R2.

Proof. Using Theorem 20.6 we find a disk D close to πV (E). Similarly,
we find a disk E close to πW (D).

Recall that computing distance between fixed vertices in the curve
complex is algorithmic [Lea]. So, we may compute the distance dS(D,E).
By the quasi-convexity of D(V ) and of D(W ) (see [MM]) this is the
desired number. ¤



THE GEOMETRY OF THE DISK COMPLEX 55

Appendix A. Teichmüller geodesics do not backtrack

kasra rafi needs to be fixed

Let G : R → T (S) be a Teichmüller geodesic, and let ν± be the
corresponding vertical and horizontal foliations. Let Y be a subsurface
of S that is not an annulus or a pair of pants. To be more precise,
for t ∈ R, let µt be a shortest marking of S in G(t). We call the map
ρY : R→ C(Y ) a shadow of G to C(Y ) if ρY (t) is a curve in πY (µt). In
these notes, we prove the following theorem.

Theorem A.1. Every shadow of a Teichmüller geodesic G to C(Y ) is
an un-parametrized quasi-geodesic in C(Y ).

We remark that this contrasts with the way geodesics behave in
the Lipschitz metric on T (S), studied by Thurston in [Thu98], where
the projection of a geodesic to a subsurface can be move back and
forth for arbitrarily long periods. (Examples can easily be produced
using Thurston’s construction of minimal stretch maps [Thu98] and the
results in [CR05]).

To begin, note that if Y = S, the above is a theorem of Masur and
Minsky [MM00, Theorem 3.3], that is, we already know that the shadow
of G to C(S) does not backtrack. To prove Theorem A.1 in general, in
addition to the Masur-Minsky result we require the following theorem:
Let FNY : T (S)→ T (Y ) be the map defined by restriction of Fenchel-
Nielsen coordinates to Y ; that is, choose a pants decomposition of
S that contains the boundary of Y . The forgetful map sends Fenchel-
Nielsen coordinates on T (S), with respect to this pants decomposition,
to Fenchel-Nielsen coordinates on T (Y ) (see [Min96]).

Theorem A.2. For every Teichmüller geodesic G and every subsurface
Y , there exists an interval JY = [a, b] and a geodesic GY : JY → T (Y )
such that

• If t < a (resp. b < t), then

dY (µt, µa) = O(1) (resp. dY (µb, µt) = O(1)).

• For t ∈ JY ,

dT
(
(FNY ◦G)(t), GY (t)

)
= O(1).

From the result of Masur and Minsky, we know that any shadow of GY

is an un-parametrized quasi-geodesic. The first conclusion of the above
theorem implies that the image a shadow of G|(−∞, a] and G|[b,∞) is a
bounded set in C(Y ) and its second conclusion implies that any shadow
of G|[a, b] fellow travels any shadow of GY . That is, Theorem A.1
follows from Theorem A.2.
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T (Y )

FNY ◦G

GY O(1)

Figure 11. (FNY ◦G) and GY are bounded away in T (Y )

Theorem A.2 is essentially follows from results contained in [Min96],
[Raf05], [Raf06] and [Raf07]. We sketch the arguments below.

Let qt be the quadratic differential given by the geodesic G at time
t. We call the flat metric |qt| the qt–metric. For a curve α in S, let
qt(α) be the qt–length of α: the length of a geodesic representative of
α in the qt–metric. Let α be a boundary component of Y , and let ω be
an arc in Y with both endpoints in α. By the qt–length of ω, we mean
the length of the shortest arc representing ω that starts and ends on a
geodesic representative of α – all considered in the qt–metric. Again,
denote this length by qt(ω). Define

Mt(α, Y ) = min
ω

qt(ω)

qt(α)
,

where ω ranges over all arcs in Y with both endpoints on α, as above.
Let tα be the time when α is balanced (its intersections with the hor-
izontal and the vertical foliations are equal). The following lemma is
contained in the proof of Theorem 3.1 of [Raf06].

Lemma A.3. There is a uniform constant c ≥ 0 so that

Ms(α, Y ) ≤Mt(α, Y ) + c

for all s ≤ t ≤ tα and for all tα ≤ t ≤ s. ¤
Choose a large enoughM0 (see Theorem A.4 below). Define Jα,Y ⊂ R

to be empty when Mtα(α, Y ) < M0. On the other hand, if Mtα(α, Y ) ≥
M0, then take Jα,Y to be the largest interval containing tα so that
Mt(α, Y ) ≥M0 for all t ∈ Jα,Y . We now define

JY =
⋂

α⊂∂Y
Jα,Y .

Note that, by Lemma A.3, for every t /∈ JY , there is a boundary com-
ponent α such that Mt(α, Y ) ≤ M0 + c. Immediately from the proof
of Theorem 5.5 of [Raf05] we now have:
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Theorem A.4. There are constants M0 and C so that, if Mt(α, Y ) ≤
M0 + c for some boundary component α, then either

dY (µt, ν−) ≤ C or dY (µt, ν+) ≤ C.

This proves the first conclusion of Theorem A.2. In fact, for t < a,

dY (µt, ν−) ≤ C and dY (µa, ν−) ≤ C =⇒ dY (µt, µa) ≤ 2C,

and, for t > b,

dY (µt, ν+) ≤ C and dY (µb, ν+) ≤ C =⇒ dY (µt, µb) ≤ 2C.

To obtain the second conclusion of Theorem A.2, we must first con-
struct the candidate geodesic arc GY in T (Y ). Our plan, as in [Raf07],
is to fill all components of ∂Y with locally flat punctured disks. The
quadratic differential qt|Y will extend over these disks, giving an ex-
tension qt. The map GY : JY → T (Y ), where GY (t) is the conformal
structure of qt, will be a Teichmüller geodesic. We will then use a the-
orem of Minsky [Min96] to show that the distance in T (Y ) between
FNY (t) and GY (t) is uniformly bounded, depending only on M0. We
begin by examining the boundary of Y .

For every curve α, the qt–geodesic representatives of α form a (pos-
sibly degenerate) flat annulus Ft(α). Let Yt be a representative of the
isotopy class of Y that has qt–geodesic boundaries and that is disjoint
from the interior of Ft(α) for every curve α ⊂ ∂Y . For t ∈ JY and
r = Mt(α, Y )/2, the r–regular neighborhood of a boundary component
of Y inside Yt is an annulus A = At(α). We call the boundary compo-
nent of A that is a qt–geodesic representative of α the inner boundary.
Along the inner boundary we attach a foliated locally flat punctured
disk as follows (the construction is identical to the one given in [Raf07]
and is repeated here for completeness):

Let A′ be the double cover of A, and let q′t be the lift of qt. Let
x1, . . . , xn be the points on the inner boundary of A which have angle
θi > π in Yt. Note that this set is nonempty: if not, Yt meets the
interior of the flat annulus Ft(α), a contradiction. Denote the lifts of
xi by yi and zi. We now fill the inner boundary of A′ by symmetrically
adding 2 (n − 1) Euclidean triangles to obtain a disk, D′, equipped
with a singular flat structure such that the total angle at each point is
a multiple of π and is at least 2π.

We start by attaching a Euclidean triangle to vertices y1, y2, y3, which
we denote by 4(y1, y2, y3) (see Figure 12). We choose the angle at ver-
tex y2, ∠y2, so that the total angle at y2, θ2 + ∠y2, is a multiple of π.
Assuming 0 ≤ ∠y2 < π, there is a unique such triangle. Attach an iso-
metric triangle to z1, z2, z3. Now consider points y1, y3, y4. Again, there
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Figure 12. The filling of the annulus A′

exists a Euclidean triangle with one edge equal to the newly introduced
segment [y1, y3], another edge equal to the segment [y3, y4] and an angle
at y3 that makes the total angle at y3, including the contribution from
the triangle 4(y1, y2, y3), a multiple of π. Attach this triangle to ver-
tices y1, y3, y4 and an identical triangle to vertices z1, z3, z4. Continue in
this fashion until finally adding triangles4(y1, yn, z1) and4(z1, zn, y1).
Because of the symmetry, the two edges connecting y1 and z1 have equal
length, and we can glue these together. We call the union of the added
triangles D′. Notice that the involution on A′ extends to D′. Let D
be the quotient of D′, and note that D is a punctured disk attached to
the inner boundary of A.

For i 6= 1, the total angles at yi and at zi are multiples of π and
are larger than θi > π; therefore, they are at least 2π. We have added
2 (n− 1) triangles. Hence, the sum of the total angles of all vertices is
2
∑

i θi + 2 (n − 1)π, which is a multiple of 2π. Therefore, the sum of
the angles at y1 and z1 is also a multiple of 2π. But they are equal to
each other, and each one is larger than π. This implies that they are
both at least 2π.

It follows that the quadratic differential q′t extends over D′ symmet-
rically with quotient qt, an extension of qt to D. Then qt is a quadratic
differential on Y . Denote the Riemann surface obtained after capping
off all boundaries of Yt by Y t. This completes the construction.

It remains to show that the distance in T (Y ) between FNY (G((t))
and GY (t) is uniformly bounded. For this, we examine the extremal
lengths of curves in two metrics. We say two quantities P and Q
are comparable if they are the same up to up a multiplicative error
depending on the topology of S only and we write P

.³ Q.
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We know from [Min96] that, for any essential curve γ in Y , the
extremal lengths of γ in G(t) and in FNY (G(t)) are comparable:

(A.5) Ext(γ,G(t))
.³ Ext

(
γ,FNY (G(t))

)
,

(See the proof of Theorem 6.1 in [Min96], page 283, line 19.) We
need to show that the extremal lengths of γ in G(t) and in GY (t) are
comparable as well. For this, we need the following lemma (see [Min96,
Lemma 4.2]).

Lemma A.6 (Minsky). Let Σ be any Riemann surface. There exists
a constant m, depending only on the topological type of Σ, such that if
Y ⊂ Σ is a subsurface of S with negative Euler characteristic for which
each component α of ∂Y bounds an annulus Aα in Y , with modulus
Mod(Aα) ≥ m, then for any essential γ in Y ,

Ext(γ, Y )
.³ Ext(γ,Σ).

After choosing M0 large enough, Yt satisfies the condition of the
above lemma, for every t ∈ JY . In fact, for α ⊂ ∂Y and r =
qt(α)Mt(α, Y ), the r–neighborhood of α in Yt is an annulus and has a
modulus logMt(α, Y ) [Raf05, Lemma 3.6]. Choosing M0 large enough,
we can assume that, for t ∈ JY , logMt(α, Y ) ≥ m0.

Now, considering Yt as a subsurface of G(t) and as a subsurface of
Yt = GY (t), Lemma A.6 implies that

Ext(γ,G(t))
.³ Ext(γ,Yt)

.³ Ext(γ,GY (t)).

This and (A.5) finishes the proof of Theorem A.2.
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