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Abstract. We give a distance estimate for the disk complex. We
use the distance estimate to prove that the disk complex is Gromov
hyperbolic. As another application of our techniques, we find an
algorithm which computes the Hempel distance of a Heegaard
splitting, up to an error depending only on the genus.
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1. Introduction

Suppose M is a compact, connected, orientable, irreducible three-
manifold. Suppose S is a compact, connected subsurface of ∂M so that
no component of ∂S bounds a disk in M . In this paper we study the
intrinsic geometry of the disk complex D(M,S). The disk complex has
a natural simplicial inclusion into the curve complex C(S). Surprisingly,
this inclusion is generally not a quasi-isometric embedding; there are
disks which are close in the curve complex yet far apart in the disk
complex. As we show, any obstruction to joining such disks via a short
path is a subsurface X ⊂ S that is topologically meaningful for M . We
call such subsurfaces holes. A path in the disk complex must travel into
and then out of these holes; paths in the curve complex may skip over
a hole by using the vertex representing the boundary of the subsurface.
We classify holes for D(M,S).

Theorem 1.1. Suppose X is a hole for the disk complex D(M,S) of
diameter at least 57.

• X is not an annulus.
• If X is compressible then there are disks D,E with boundaries

contained in and filling X.
• If X is incompressible then there is an I-bundle ρF : T → F

embedded in M so that X ⊂ ∂hT ⊂ S.

See Theorems 10.1, 11.7 and 12.1 for more precise statements. The I–
bundles appearing in the classification lead us to study the arc complex
A(F ) of the base surface F . Since the bundle T may be twisted the
surface F may be non-orientable.

Thus, as a necessary warm-up to the difficult case of the disk complex,
we analyze the holes for the curve complex of an non-orientable surface,
as well as the holes for the arc complex.

Topological application. It is a long-standing open problem to de-
cide, given a Heegaard diagram, whether the underlying splitting surface
is reducible. For example see [19, Section 2B], [48, Section 4], [49, Prob-
lem 1.11(c)] and [17, page 462]. This problem has deep connections to
the geometry, topology, and algebra of three-manifolds; its resolution
would give new solutions to both the three-sphere recognition problem
and the triviality problem for three-manifold groups. The difficulty of
deciding reducibility is underlined by its connection to the Poincaré con-
jecture: several approaches to the Poincaré Conjecture fell at essentially
this point. See [12] for a survey of the literature on this topic.

One generalization of deciding reducibility is to find an algorithm
that, given a Heegaard diagram, computes the Hempel distance of the
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Heegaard splitting [25]. See [5, Section 2]. The classification of holes
for the disk complex leads to a coarse answer to this question.

Theorem 21.1. In every genus g there is a constant K = K(g) and
an algorithm that, given a Heegaard diagram, computes the distance of
the Heegaard splitting with error at most K.

In addition to the classification of holes, the algorithm relies on the
Gromov hyperbolicity of the curve complex [30] and the quasi-convexity
of the disk set inside of the curve complex [32]. However the algorithm
does not depend on our geometric application of Theorem 1.1, which
we now discuss.

Geometric application. The hyperbolicity of the curve complex and
the classification of holes are needed in the proof of the following.

Theorem 20.3. The disk complex is Gromov hyperbolic.

Again, as a warm-up to the proof of Theorem 20.3 we prove, for a
non-orientable surface F and for an orientable surface S, that C(F )
and A(S) are hyperbolic. See Corollary 6.4 and Theorem 20.2. Note
Bestvina and Fujiwara [4] have previously dealt with the curve complex
of a non-orientable surface, following Bowditch [8].

These results cannot be deduced from knowing that C(F ), A(S)
and D(M,S) can be realized as quasi-convex subsets of C(S). This is
because the curve complex is locally infinite. For a very similar example
to these, consider the inclusion of the three-valent tree T3 into the dual
of the Farey triangulation. Thus T3 is quasi-convex inside of a Gromov
hyperbolic space; also T3 is Gromov hyperbolic. However, the second
fact cannot be deduced from the first. To see this take the Cayley graph
of Z2 with the standard generating set. Then the cone C(Z2) of height
one-half is a Gromov hyperbolic space and Z2 is a quasi-convex subset.

The proof of Theorem 20.3 requires a distance estimate theorem
(19.4): the distance in C(F ), A(S) and D(M,S) is coarsely equal to
the sum of subsurface projection distances in holes. Our theorem is
modelled on the estimates for the marking graph and pants graph [31,
Theorem 6.12 and Section 8] obtained by the first author and Minsky.
However, we cannot use that paper’s hierarchy machine; this is because
hierarchies are too floppy to respect a symmetry and, at the same
time, too rigid to deal with disks. For C(F ) we use the extremely rigid
Teichmüller geodesic machine, due to Rafi [41]. For D(M,S) we use
the highly flexible train-track machine, developed by ourselves with
Mosher [33].
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Theorems 19.4 and 20.3 are part of a more general framework. Given
a combinatorial complex G we classify the holes: the geometric obstruc-
tions lying between G and the curve complex. In Sections 13 and 14 we
give axioms for G that imply a distance estimate. Hyperbolicity also
follows from the axioms; this is proven in Section 20.

The axioms are stated in terms of a path of markings, a sequence in
the combinatorial complex, and their relationship. For the disk complex
the combinatorial sequence is a surgery sequence of essential disks while
the marking path is provided by a train-track splitting sequence; both
constructions are due to the first author and Minsky [32] (Section 18).
The verification of the axioms (Section 19) relies on our work with
Mosher: analyzing train-track splitting sequences in terms of subsurface
projections [33].

We do not study non-orientable surfaces directly; instead we focus on
symmetric multicurves in the double cover. This time the marking path
is provided by a Teichmüller geodesic, using the fact that the symmetric
Riemann surfaces form a totally geodesic subset of Teichmüller space.
The combinatorial sequence is given by the systole map. We use re-
sults of Rafi [41] to verify the axioms for the complex of symmetric
curves. (See Section 16.) Section 17 verifies the axioms for the arc
complex again using Teichmüller geodesics and the systole map. Inter-
estingly, for the arc complex our axioms can be verified using any one
of Teichmüller geodesics, hierarchies or train-track sequences.

The distance estimates for the marking graph and the pants graph [31]
partly inspired this paper but do not fit our framework. Indeed, neither
the marking graph nor the pants graph are Gromov hyperbolic. It is
crucial here that all holes interfere; this leads to hyperbolicity. When
there are non-interfering holes, it is unclear how to partition the marking
path to obtain the distance estimate.

Acknowledgments. We thank Jason Behrstock, Brian Bowditch, Yair
Minsky, Lee Mosher, Hossein Namazi and Kasra Rafi for many enlight-
ening conversations.

We thank Tao Li for pointing out that our original bound, inside of
Theorem 12.1, can be reduced to a constant.

2. Background on complexes

We use Sg,b,c to denote the compact, connected surface of genus g with
b boundary components and c cross-caps. If the surface is orientable
we omit the subscript c and write Sg,b. The complexity of S = Sg,b is
ξ(S) = 3g − 3 + b. If the surface is closed and orientable we simply
write Sg.



THE GEOMETRY OF THE DISK COMPLEX 5

2.1. Arcs and curves. Suppose α ⊂ S is a properly embedded simple
closed curve or simple arc; that is, α∩∂S = ∂α. Then α is inessential if
α cuts a disk off of S. When α is an essential curve then α is peripheral
if it cuts an annulus off of S.

Define C(S) to be the set of ambient isotopy classes of essential, non-
peripheral curves in S. Define A(S) to be the set of ambient isotopy
classes of essential arcs. When S = S0,2 is an annulus define A(S) to
be the set of essential arcs, up to ambient isotopies fixing the boundary
pointwise. For any surface define AC(S) = A(S) ∪ C(S).

For α, β ∈ AC(S) the geometric intersection number ι(α, β) is the
minimum intersection possible between ambient isotopy representatives
of α and β. When S = S0,2 we do not count intersection points
occurring on the boundary. When two representatives α and β realize
their geometric intersection number we say α is tight with respect to β.
If they do not realize their geometric intersection then we may tighten
α until they do. In the rest of the paper we use the same notation for
isotopy classes and for their representatives.

A subset ∆ ⊂ AC(S) is a multicurve if for all α, β ∈ ∆ we have
ι(α, β) = 0. Following Harvey [22] we may impose the structure of a
simplicial complex on AC(S): the simplices are exactly the multicurves.
Also, C(S) and A(S) naturally span sub-complexes.

Note the curve complexes C(S0,4), C(S1) and C(S1,1) have no edges.
In these cases it is useful to alter the definition. Place edges between all
vertices with geometric intersection exactly two, if S = S0,4, or exactly
one, if S = S1 or S1,1. The result is the Farey graph F = F(S). Two
vertices α, β spanning an edge of F are called Farey neighbors.

With the current definition C(S) is empty if S = S0,2. Thus for the
annulus we alter the definition, taking AC(S) = C(S) = A(S).

Definition 2.1. For vertices α, β ∈ C(S) define the distance dS(α, β) to
be the minimum possible number of edges of a path in the one-skeleton
C1(S) which starts at α and ends at β.

Note that if dS(α, β) ≥ 3 then α and β fill the surface S. We denote
distance in the one-skeleton of A(S) and of AC(S) by dA and dAC
respectively. Recall that the geometric intersection of two curves gives
an upper bound for their distance.

Lemma 2.2. Suppose S is a compact, connected surface which is not
an annulus. For any α, β ∈ C0(S) with ι(α, β) > 0 we have dS(α, β) ≤
2 log2(ι(α, β)) + 2. �

For closed orientable surfaces a proof of Lemma 2.2 is given in [25]. A
proof in the bounded orientable case is given in [45]. The non-orientable
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case is then an exercise. When S = S0,2 an induction proves

(2.3) dS(α, β) = 1 + ι(α, β)

for distinct vertices α, β ∈ C(S). See [31, Equation 2.3].

Lemma 2.4. Suppose S is a connected compact surface. The following
are equivalent.

• S admits a pseudo-Anosov map or S ∈ {S0,2, S1}.
• S admits an ending lamination or S ∈ {S0,2, S1}.
• AC(S) has infinite diameter.
• AC(S) has diameter at least five.
• χ(S) < −1 or S ∈ {S0,2, S1, S1,1}.

Lemma 4.6 of [30] shows that pseudo-Anosov maps have quasi-geodesic
orbits when acting on the associated curve complex. A Dehn twist
acting on C(S0,2) has geodesic orbits.

Note Lemma 2.4 is only used in this paper when ∂S is non-empty.
The closed case is included for completeness.

Proof sketch of Lemma 2.4. If S admits a pseudo-Anosov map then
the stable lamination is an ending lamination. If S admits an ending
lamination then, by an argument of Kobayashi [27], AC(S) has infinite
diameter. (This argument is also sketched in [30], page 124, after the
statement of Proposition 4.6.)

If the diameter of AC is infinite then the diameter is at least five.
One may check directly that all surfaces with χ(S) > −2, other than
S0,2, S1 and S1,1, have AC(S) with diameter at most four. (The difficult
cases, S012 and S003, are discussed by Scharlemann [44].) To finish, all
surfaces with χ(S) < −1, and also S1,1, admit pseudo-Anosov maps.
The orientable cases follow from Thurston’s construction [47]. Penner’s
generalization [39] covers the non-orientable cases. �

We call a surface S non-simple if it satisfies any one of, hence all of,
the conditions in Lemma 2.4.

2.2. Subsurfaces. Suppose X is a connected compact subsurface of S.
If X is an annulus with peripheral core curve then we call X a peripheral
annulus. If X is not a peripheral annulus, and if every component of
∂X is essential in S, then we call X essential.

Definition 2.5. An essential subsurface X is cleanly embedded in S
if the following property holds. For every component δ of ∂X, if δ is
peripheral in S then δ is a component of ∂S.

We say that α ∈ AC(S) cuts X if all representatives of α intersect
X. If some representative is disjoint then we say α misses X.
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Definition 2.6. Suppose X and Y are essential subsurfaces of S. If
X is cleanly embedded in Y then we say that X is nested in Y . If ∂X
cuts Y and also ∂Y cuts X then we say that X and Y overlap.

2.3. Markings. A finite set of vertices µ ⊂ AC(S) is called a marking.
A marking µ fills S if for all β ∈ C(S) there is some α ∈ µ so that
ι(α, β) > 0. For a marking µ ⊂ AC(S) define

ι(µ) =
1

2

∑
α,β∈µ

ι(α, β).

A marking µ is a K–marking if ι(µ) ≤ K. Two markings µ, ν are L–close
if ι(µ, ν) := ι(µ ∪ ν) ≤ L. For any K,L we define the marking graph
MK,L(S) to be the graph where vertices are filling K–markings and
edges are given by L–closeness. As an example, considerM =M1,3(S1).
Vertices of M are 1–markings and correspond to Farey neighbors.
Two vertices of M are 3–close if and only if their union is a Farey
triangle. It follows that M is quasi-isometric to a Cayley graph for
SL(2,Z) =MCG(S1). This is true more generally.

Definition 2.7. [31] A complete clean marking µ = {(αi, βi)} consists
of

• base curves base(µ) = {αi}: a maximal simplex in C(S) and
• transversals {βi}: for each i define Xi = S −

⋃
j 6=i αj and let

βi ∈ C(Xi) be a Farey neighbor of αi.

If µ is a complete clean marking then ι(µ) ≤ 2ξ(S) + 6|χ(S)|. As
discussed in [31] any two complete clean markings are connected by a
sequence of elementary moves. Twisting about αi replaces the transver-
sal βi by a new transversal β′i which is a Farey neighbor of both αi and
βi. Flipping swaps the roles of αi and βi. (After flipping, some of the
other transversals must be cleaned.)

Following [31, Section 7.1] for any surface S there are choices of K,L
so that M(S) is non-empty, connected and quasi-isometric to the word
metric on MCG(S). We use dM to denote distance in the marking
graph.

2.4. Three-manifolds and disks. Suppose M is a compact, con-
nected, orientable three-manifold. Recall M is irreducible if every
embedded two-sphere in M bounds a three-ball. Suppose S is a com-
pact, connected subsurface of ∂M . We make the following standing
assumption.

Definition 2.8. The pair (M,S) is spotless. That is, M is irreducible
and no component of ∂S bounds a disk in M .
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A properly embedded disk (D, ∂D) ⊂ (M,S) is essential if ∂D is
essential in S. Let D(M,S) be the set of essential disks up to ambient
isotopy preserving S. A subset ∆ ⊂ D(M,S) is a multidisk if for all
D,E ∈ ∆ we have ι(∂D, ∂E) = 0. Following McCullough [34] we
place a simplicial structure on D(M,S) by taking multidisks to be
simplices. As with the curve complex, define dD to be the distance in
the one-skeleton of D(M,S). When S = ∂M we simply write D(M).

3. Background on coarse geometry

We review a few ideas from coarse geometry. See [10, 14, 18] for a
fuller discussion.

3.1. Quasi-isometry. Suppose r, s, A are non-negative real numbers,
with A ≥ 1. If s ≤ A · r + A then we write s ≤A r. If s ≤A r and
r ≤A s then we write s=A r and call r and s quasi-equal with constant
A. Define the cut-off function [r]c by [r]c = 0 if r < c and [r]c = r if
r ≥ c.

Suppose (X , dX ) and (Y , dY) are metric spaces. For subsets U, V ⊂ X
define

dX (U, V ) = diamX (U ∪ V ).

Suppose f ⊂ X × Y is a relation. In a slight abuse of notation, we
write f : X → Y and, for x ∈ X , we write f(x) = {y ∈ Y | xfy}. For
examples of usage, see Definitions 3.3, 4.1 and 4.2.

Fix A ≥ 1. Any relation f : X → Y is an A–quasi-isometric embed-
ding if for every x, y ∈ X we have f(x) 6= ∅ and

dX (x, y) =A dY(f(x), f(y)).

The relation f is a quasi-isometry, and X is quasi-isometric to Y , if f
is an A–quasi-isometric embedding and the image of f is A–dense: the
A–neighborhood of f(X ) equals Y .

3.2. Geodesics. Fix an interval [u, v] ⊂ R. A geodesic, connecting x
to y in X , is an isometric embedding f : [u, v]→ X with f(u) = x and
f(v) = y. Denote the image of f by [x, y] ⊂ X .

Fix intervals [m,n], [p, q] ⊂ Z. An A–quasi-isometric embedding
g : [m,n]→ X is called an A–quasi-geodesic. A function g : [m,n]→ X
is an A–unparameterized quasi-geodesic if

• there is an increasing function ρ : [p, q] → [m,n] so that g ◦
ρ : [p, q]→ X is an A–quasi-geodesic in X and
• for all i ∈ [p, q − 1], diamX (g[ρ(i), ρ(i+ 1)]) ≤ A.
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(Compare to the definition of a (K, δ, s)–quasi-geodesic found in [30].)
A subset Y ⊂ X is Q–quasi-convex if every X–geodesic connecting

two points of Y lies within a Q–neighborhood of Y .

3.3. Hyperbolicity. We now assume that X is a connected graph with
metric where all edges have length one.

Definition 3.1. The graph X is δ–hyperbolic if, for any three points
x, y, z in X , any geodesic triangle connecting them is δ–slim: the δ–
neighborhood of any two sides contains the third. We say that X is
Gromov hyperbolic if X is δ–hyperbolic for some δ ≥ 0.

An important tool for this paper is the following theorem of the first
author and Minsky [30].

Theorem 3.2. The curve complex of an orientable surface is Gromov
hyperbolic. �

For the remainder of this section assume X is δ–hyperbolic, assume
x, y, z ∈ X are points and fix geodesics k = [x, y], g = [y, z] and
h = [z, x].

Definition 3.3. Define ρk : X → k to be the closest points relation
where

ρk(z) =
{
w ∈ k | dX (z, w) ≤ dX (z, v) for all v ∈ k

}
.

The next several lemmas are used in Section 20. The proofs are left as
exercises.

Lemma 3.4. For any w ∈ ρk(z) there is a point of g within distance
2δ of w. �

Lemma 3.5. The diameter of ρk(z) is at most 4δ. �

Lemma 3.6. The diameter of ρg(x) ∪ ρh(y) ∪ ρk(z) is at most 6δ. �

Lemma 3.7. Suppose z′ is another point in X with dX (z, z′) ≤ R.
Then dX (ρk(z), ρk(z

′)) ≤ R + 6δ. �

Lemma 3.8. Suppose k′ is another geodesic in X with the endpoints of
k′ are within distance R of the points x and y. Then dX(ρk(z), ρk′(z)) ≤
R + 11δ. �

Here is a consequence of Morse stability of quasi-geodesics in Gromov
hyperbolic graphs, used in Section 13.3.



10 HOWARD MASUR AND SAUL SCHLEIMER

Lemma 3.9. For every δ and A there is a constant C with the fol-
lowing property. If X is δ–hyperbolic and g : [0, N ] → X is an A–
unparameterized quasi-geodesic then for any m < n < p in [0, N ] we
have

dX (x, y) + dX (y, z) < dX (x, z) + C

where x, y, z = g(m), g(n), g(p). �

3.4. A hyperbolicity criterion. Here we give a hyperbolicity crite-
rion tailored to fit our setting. We thank Brian Bowditch for finding an
error in our first proof of Theorem 3.11 and for informing us of Gilman’s
work [15, 16].

Suppose X is a graph where all edges have length one. Suppose
γ : [0, N ] → X is a loop in X with unit speed. Any pair of points
a, b ∈ [0, N ] gives a chord of γ. If N/4 ≤ |b− a| ≤ 3N/4 then the chord
is 1/4–separated. The length of the chord is dX (γ(a), γ(b)).

Following Gilman [15, Theorem B] we have the following.

Theorem 3.10. Suppose X is a graph where all edges have length one.
Then X is Gromov hyperbolic if and only if there is a constant K so
that every loop γ : [0, N ] → X has a 1/4–separated chord of length at
most N/7 +K. �

Gilman’s proof goes via the subquadratic isoperimetric inequality [18,
Criterion 6.8.M]. See also [7]. We now give our criterion, noting that it
is closely related to another paper of Gilman [16].

Theorem 3.11. Suppose X is a graph where all edges have length one.
Then X is Gromov hyperbolic if and only if there is a constant M ≥ 0
and, for all unordered pairs x, y ∈ X 0 there is a connected subgraph
gx,y ⊂ X containing x and y, with the following properties.

• (Local) If dX (x, y) ≤ 1 then gx,y has diameter at most M .
• (Slim triangles) For all x, y, z ∈ X 0 the subgraph gx,y is contained

in an M–neighborhood of gy,z ∪ gz,x.

Proof. To prove the forward direction suppose that X is δ–hyperbolic.
For every x, y ∈ X 0 take gx,y to be any geodesic connecting x to y.
Setting M = max{δ, 1} gives the two properties.

For the backwards direction suppose that γ : [0, N ] → X is a loop.
Let ε be the empty string and define Iε = [0, N ]. For any binary
string ω let Iω0 and Iω1 be the first and second half of Iω. Note that if
|ω| ≥ dlog2Ne then |Iω| ≤ 1.

Fix a string ω and let [r, s] = Iω. Let gω = gγ(r),γ(s) be the given
connected subgraph of X containing γ(r) and γ(s). Note g0 = g1

because γ(0) = γ(N) and because we use unordered pairs as subscripts.
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Also, for any binary string ω the subgraphs gω, gω0, gω1 form an M–slim
triangle. If |ω| ≤ dlog2Ne then every x ∈ gω has some point b ∈ Iω so
that

dX (x, γ(b)) ≤M(dlog2Ne − |ω|) + 2M.

Since g0 is connected there is a point x ∈ g0 that lies within the
M–neighborhoods both of g00 and of g01. Pick some b ∈ I1 so that
dX (x, γ(b)) is bounded as in the previous paragraph. It follows that
there is a point a ∈ I0 so that a, b are 1/4–separated and so that

dX (γ(a), γ(b)) ≤ 2Mdlog2Ne+ 2M.

Thus there is an additive error K large enough so that X satisfies the
criterion of Theorem 3.10 and we are done. �

4. Natural maps

There are several natural maps between the complexes and graphs
defined in Section 2. Here we review what is known about their geometric
properties and give examples relevant to the rest of the paper.

4.1. Lifting, surgery and subsurface projection. Suppose S is not
simple. Choose a hyperbolic metric on the interior of S so that every
end has infinite area. Fix X, a compact essential subsurface of S, that is
not a peripheral annulus. Let ρX : SX → S be the covering map where
X lifts homeomorphically and SX ∼= interior(X). For any α ∈ AC(S)
let αX = ρ−1

X (α) be the full preimage.
The induced homeomorphism between X and the Gromov compacti-

fication of SX identifies AC(X) with AC(SX).

Definition 4.1. The cutting relation κX : AC(S)→ AC(X) is defined
by β ∈ κX(α) if and only if β is an essential non-peripheral component
of αX .

We also use the notation α|X = κX(α). Note α cuts X if and only if
α|X is non-empty.

Definition 4.2. Suppose S is not an annulus. The surgery relation
σX : AC(S)→ C(S) is defined by β ∈ σS(α) if and only if β ∈ C(S) is a
boundary component of a regular neighborhood of α ∪ ∂S.

Definition 4.3. The subsurface projection relation πX : AC(S)→ C(X)
is defined by πX = σX ◦ κX . When X is an annulus define πX = κX .

If α, β ∈ AC(S) both cut X define

dX(α, β) = diamX(πX(α) ∪ πX(β)).
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This is the subsurface projection distance between α and β in X. If
α, β ⊂ S are disjoint there is a bound on their subsurface projection
distance following [31, Lemma 2.3] and the remarks in the section
Projection Bounds in [35].

Lemma 4.4. Suppose α and β span an edge in AC(S) and both cut
X. Then diamX(πX(α)) is at most two. Also, dX(α, β) is at most two
(unless S = S1,1 and X = S0,2: then the bound is replaced by three). �

Corollary 4.5. Fix X ⊂ S. Suppose {βi}Ni=0 is a path in AC(S), with
N ≥ 1. Suppose βi cuts X, for all i. Then dX(β0, βN) ≤ 2N (unless
S = S1,1 and X = S0,2: then the bound is replaced by 3N). �

It is crucial to note that if some vertex of {βi} misses X then the
projection distance dX(β0, βN) may be arbitrarily large compared to
N . Corollary 4.5 can be greatly strengthened when the path is a
geodesic [31].

Theorem 4.6. [Bounded geodesic image] There is a constant M0 =
M0(S) with the following property. Fix X ⊂ S. Suppose {βi}ni=0 is
a geodesic in C(S). Suppose βi cuts X, for all i. Then dX(β0, βn) ≤
M0. �

Here is a kind of converse to Lemma 4.4.

Lemma 4.7. For every K ∈ N there is a number L ∈ N with the
following property. For any α, β ∈ AC(S) if dX(α, β) ≤ K, for all
X ⊂ S, then ι(α, β) ≤ L.

Corollary D of [13] gives a more precise relation between projection
distance and intersection number.

Proof of Lemma 4.7. We only sketch the contrapositive. Suppose we
are given a sequence of curves αn, βn so that ι(αn, βn) tends to infinity.
Passing to subsequences and applying elements of the mapping class
group we may assume that αn = α0 for all n. Setting cn = ι(α0, βn)
and passing to subsequences again we may assume that βn/cn converges
to λ ∈ PML(S), the projectivization of Thurston’s space of measured
laminations. Let Y be any connected component of the subsurface filled
by λ, chosen so that α0 cuts Y . Note πY (βn) converges to λ|Y . Again
applying Kobayashi’s argument [27], the distance dY (α0, βn) tends to
infinity. �

4.2. Inclusions. We now record a well-known fact.

Lemma 4.8. The inclusion ν : C(S)→ AC(S) is a quasi-isometry. The
surgery map σS : AC(S)→ C(S) is a quasi-inverse for ν.
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Proof. Fix α, β ∈ C(S). Since ν is simplicial we have dAC(α, β) ≤
dS(α, β). In the other direction, let {αi}Ni=0 be a geodesic in AC(S)
connecting α to β. Since every αi cuts S we apply Corollary 4.5 and
deduce dS(α, β) ≤ 2N + 2.

Note the composition σS ◦ ν is the identity on C(S). Also, for any
arc α ∈ A(S) we have dAC(α, ν(σS(α))) = 1. Finally, C(S) is 1–dense
in AC(S), as any arc γ ⊂ S is disjoint from the one or two curves of
σS(γ). �

Brian Bowditch raised the question, at the Newton Institute in August
2003, of the geometric properties of the inclusion ν : A(S) → AC(S).
The natural assumption, that this inclusion is again a quasi-isometric
embedding, is false. In this paper we exactly characterize how the
inclusion distorts distance.

We now move up a dimension. Suppose (M,S) is a spotless pair.
The natural map ν : D(M,S)→ C(S) takes an essential disk D to its
boundary ∂D. Since (M,S) is spotless, the curve ∂D determines the
disk D, up to isotopy; also, ∂D cannot be peripheral in S. Thus ν is
injective and well-defined. We call the image ν(D) the disk set.

The first author and Minsky [32] have shown the following.

Theorem 4.9. The disk set is a quasi-convex subset of the curve com-
plex. �

It is natural to ask if ν : D(M,S) → C(S) is a quasi-isometric em-
bedding, as that would directly imply the hyperbolicity of D(M,S). In
fact, ν again badly distorts distance; we investigate exactly how, below.

4.3. Markings and the mapping class group. As discussed in Sec-
tion 2.3 the marking graph M(S) is quasi-isometric to the word metric
on the mapping class group. Using subsurface projections the first
author and Minsky [31] obtained a distance estimate for the marking
graph and thus for the mapping class group.

Theorem 4.10. [Distance estimate] There is a constant C0 = C0(S)
so that, for any c ≥ C0 there is a constant A with

dM(µ, ν) =A

∑
[dX(µ, ν)]c

independent of the choice of µ and ν. Here the sum ranges over all
essential subsurfaces X ⊂ S. �

This, and their similar estimate for the pants graph, is a model for the
distance estimates given below. Notice that a filling marking µ ∈M(S)
cuts all essential subsurfaces of S. It is not an accident that the sum
ranges over the same set.
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5. Holes in general and the lower bound on distance

Suppose S is a compact, connected surface. In this paper a combi-
natorial complex G = G(S) will have vertices being isotopy classes of
certain multicurves in S. We assume throughout that vertices of G are
connected by edges only if there are representatives which are disjoint.
This assumption is made only to simplify the proofs — all arguments
work in the case where, as with the marking graph, adjacent vertices
are allowed to have uniformly bounded intersection. In all cases G will
be connected. There is a natural map ν : G → AC(S) taking a vertex of
G to the corresponding multicurve. Examples in the literature include
the marking graph [31], the pants graph [11, 2], the Hatcher-Thurston
graph [23], the complex of separating curves [9], the arc complex and
the curve complex.

For any combinatorial complex G defined in this paper other than
the curve complex we denote distance in the one-skeleton of G by dG.
Distance in C(S) will always be denoted by dS.

5.1. Holes, defined. Suppose S is not simple. Suppose G(S) is a
combinatorial complex. Suppose X is a cleanly embedded subsurface
of S. A vertex α ∈ G cuts X if some component of α cuts X.

Definition 5.1. We say X is a hole for G if every vertex of G cuts X.

Almost equivalently, if X is a hole then the subsurface projection
πX : G → C(X) never takes the empty set as a value. Note the entire
surface S is always a hole, regardless of our choice of G. A peripheral
annulus cannot be cleanly embedded (unless S is also an annulus),
so generally cannot be a hole. A hole X ⊂ S is strict if X is not
homeomorphic to S.

Definition 5.2. If X is a hole for G(S) and if πX(G) ⊂ C(X) has
diameter at least R we say that the hole X has diameter at least R.

We now classify holes for the arc complex.

Example 5.3. Suppose S = Sg,b with b > 0 and consider the arc com-
plex A(S). The holes, up to isotopy, are exactly the cleanly embedded
surfaces which contain ∂S. So, for example, if S is planar then only S
is a hole for A(S). The same holds for S = S1,1. In these cases it is an
exercise to show that C(S) and A(S) are quasi-isometric. In all other
cases the arc complex admits infinitely many holes. Since the mapping
class group acts on the arc complex, all non-simple holes for A(S) have
infinite diameter.



THE GEOMETRY OF THE DISK COMPLEX 15

The classification of holes for the disk complex is more difficult and
thus postponed to Sections 9, 10, 11 and 12. We here content ourselves
with the first non-trivial example.

Example 5.4. Suppose F is a non-simple, orientable surface with
boundary. Let M = F × I. Let X = F × {0} and Y = F × {1}. Since
Y is incompressible (Definition 8.1) in M we deduce X is a hole for
D(M); similarly Y is a hole.

This simple example was the genesis of our program to understand
the intrinsic geometry of D(M,S). The occurrence or non-occurrence of
disjoint holes X,X ′ ⊂ S is highly important for the intinsic geometry of
G(S). In the presence of symmetry there can be a relationship between
πX |G and πX′ |G, as follows.

Definition 5.5. Suppose X,X ′ are holes for G, both of infinite diameter.
Then X and X ′ are paired if there is a homeomorphism τ : X → X ′

and a constant L3 so that

dX′(πX′(γ), τ(πX(γ))) ≤ L3

for every γ ∈ G. Furthermore, if Y ⊂ X is a hole then τ pairs Y with
Y ′ = τ(Y ). Lastly, pairing is symmetric; if τ pairs X with X ′ then τ−1

pairs X ′ with X.

Definition 5.6. Two holes X and Y interfere if either

• X ∩ Y 6= ∅,
• X is paired with X ′ and X ′ ∩ Y 6= ∅, or
• Y is paired with Y ′ and X ∩ Y ′ 6= ∅.

Examples arise in the symmetric arc complex and, as in Example 5.4,
in the discussion of I–bundles inside of a three-manifold.

5.2. Projection to holes is coarsely Lipschitz. The following “coarse
Lipschitz projection” lemma is used repeatedly throughout the paper.

Lemma 5.7. Suppose G(S) is a combinatorial complex. Suppose X is
a hole for G. Then for any α, β ∈ G we have

dX(α, β) ≤ 2 + 2 · dG(α, β).

The additive error is required only when α = β.

Proof. This follows from Corollary 4.5 and our assumption that vertices
of G connected by an edge represent disjoint multicurves. �
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5.3. Infinite diameter holes. We may now state a first answer to
Bowditch’s question.

Lemma 5.8. Suppose G(S) is a combinatorial complex. Suppose there
is a strict hole X having infinite diameter. Then ν : G → AC(S) is not
a quasi-isometric embedding. �

This lemma and Example 5.3 completely determines when the in-
clusion of A(S) into AC(S) is a quasi-isometric embedding. It quickly
becomes clear that the set of holes tightly constrains the intrinsic
geometry of a combinatorial complex.

Lemma 5.9. Suppose G(S) is a combinatorial complex invariant under
the natural action of MCG(S). Then every non-simple hole for G has
infinite diameter. Furthermore, if X and Y are disjoint non-simple
holes for G then there is a quasi-isometric embedding of Z2 into G. �

We do not use Lemmas 5.8 or 5.9 and so omit the proofs. Instead
our interest lies in proving the far more powerful distance estimate
(Theorems 5.10 and 13.1) for G(S).

5.4. A lower bound on distance. The sum of projection distances
in holes gives a lower bound for distance.

Theorem 5.10. Fix S, a compact, connected, non-simple surface. Sup-
pose G(S) is a combinatorial complex. Then there is a constant C0 so
that for all c ≥ C0 there is a constant A satisfying∑

[dX(α, β)]c ≤A dG(α, β).

Here α, β ∈ G and the sum is taken over all holes X for the complex
G. �

The proof follows the proofs of Theorems 6.10 and 6.12 of [31],
practically word for word. The only changes necessary are as follows.

• Replace the sum over all subsurfaces by the sum over all holes.
• Replace Lemma 2.5 of [31], which records how markings differing

by an elementary move project to an essential subsurface, by
Lemma 5.7 of this paper, which records how G projects to a
hole.

One major goal of this paper is to give criteria sufficient to obtain
the reverse inequality: Theorem 13.1.
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6. Holes for the non-orientable surface

Fix F a compact, connected, non-orientable surface. We take C2(F ) ⊂
C(F ) to be the subcomplex spanned by vertices representing two-sided
curves. Note the inclusion of C2(F ) into C(F ) is isometric and the image
is 1–dense. Thus these two complexes are quasi-isometric.

Let S be the orientation double cover with covering map ρF : S → F .
Let τ : S → S be the associated involution; so for all x ∈ S, ρF (x) =
ρF (τ(x)).

Definition 6.1. A multicurve γ ⊂ AC(S) is symmetric if τ(γ) ∩ γ = ∅
or τ(γ) = γ. A multicurve γ is invariant if there is a curve or arc δ ⊂ F
so that γ = ρ−1

F (δ). The same definitions hold for subsurfaces X ⊂ S.

Definition 6.2. The invariant complex Cτ (S) is the simplicial complex
with vertex set being isotopy classes of invariant multicurves. There is
a k–simplex for every collection of k + 1 distinct isotopy classes having
pairwise disjoint representatives.

Notice that Cτ (S) is simplicially isomorphic to C2(F ). There is also
a natural relation ν : Cτ (S)→ C(S).

Lemma 6.3. ν : Cτ (S)→ C(S) is a quasi-isometric embedding.

Before giving the proof, note the following.

Corollary 6.4. [4] C(F ) is Gromov hyperbolic. �

Proof of Lemma 6.3. Since ν sends adjacent vertices in Cτ (S) to adja-
cent simplices in C(S) we have

(6.5) dS(α, β) ≤ dCτ (α, β),

as long as α and β are distinct in Cτ (S).
The other half of the proof of Lemma 6.3 consists of showing that

S is the only hole for Cτ (S) with large diameter. After a discussion of
Teichmüller geodesics we prove the following.

Lemma 16.5. There is a constant K with the following property:
Suppose α, β are invariant multicurves in S. Suppose X ⊂ S is an
essential subsurface where dX(α, β) > K. Then X is symmetric.

Corollary 6.6. With K as in Lemma 16.5: If X is a hole for Cτ (S)
with diameter greater than K then X = S.

Proof. Suppose X is a cleanly embedded strict subsurface of S. Suppose
diamX(Cτ (S)) > K. Thus X is symmetric. It follows that ∂X − ∂S is
also symmetric. Since ∂X does not cut X, deduce X is not a hole for
Cτ (S). This proves the corollary. �
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This corollary, together with the upper bound (Theorem 13.1), com-
pletes the proof of Lemma 6.3. �

7. Holes for the arc complex

We generalize the definition of the arc complex and classify its holes.

Definition 7.1. Suppose F is a non-simple surface with boundary. Let
∆ be a non-empty collection of components of ∂F . The arc complex
A(F,∆) is the subcomplex of A(F ) spanned by essential arcs α ⊂ F
with ∂α ⊂ ∆.

Note A(F, ∂F ) and A(F ) are identical.

Lemma 7.2. Suppose X is cleanly embedded in F . Then X is a hole
for A(F,∆) if and only if ∆ ⊂ ∂X. �

This follows from the definition of a hole. We now have a straight-
forward observation.

Lemma 7.3. If X and Y are holes for A(F,∆) then X ∩ Y 6= ∅. �

The proof follows immediately from Lemma 7.2. Lemma 5.9 indi-
cates that Lemma 7.3 is essential to proving that A(F,∆) is Gromov
hyperbolic.

Suppose now that F is non-simple, has non-empty boundary, and is
non-orientable. Let ρF : S → F be the orientation double cover and let
τ : S → S be the induced involution. Fix ∆′ ⊂ ∂F and let ∆ = ρ−1

F (∆′).

Definition 7.4. We define Aτ (S,∆) to be the invariant arc complex:
vertices are invariant multi-arcs and simplices arise from disjointness.

Again, Aτ (S,∆) is simplicially isomorphic to A(F,∆′). If X∩τ(X) =
∅ and ∆ ⊂ X ∪ τ(X) then the subsurfaces X and τ(X) are paired holes,
as in Definition 5.5. Notice as well that all non-simple symmetric holes
X for Aτ (S,∆) have infinite diameter.

Unlike A(F,∆′) the complex Aτ (S,∆) may have disjoint holes. None-
theless, we have the following.

Lemma 7.5. Any two non-simple holes for Aτ (S,∆) interfere.

Proof. Suppose X and Y are non-simple holes for the τ–invariant arc
complex Aτ (S,∆). It follows from Lemma 16.5 that X is symmetric
and ∆ ⊂ X ∪ τ(X). The same holds for Y . Thus Y must cut X, τ(X),
or both. �
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8. Background on three-manifolds

We review the necessary material regarding three-manifolds. See [24,
43] for detailed presentations. Throughout M is a compact, connected,
orientable three-manifold. Recall (M,S) is assumed to be spotless
(Definition 2.8).

If N is a closed submanifold of M then fr(N), the frontier of N in
M , is the closure of ∂N − ∂M .

8.1. Surgery. Suppose F is a surface embedded in M . We consider
two cases. Either F ⊂ ∂M is a subsurface of the boundary or (F, ∂F ) ⊂
(M,∂M) is properly embedded.

Suppose (D, ∂D) ⊂ (M,F ) is an embedded disk. We call D a surgery
disk for F if

• D ∩ ∂F = ∅,
• D ∩ F = ∂D, and
• D ∩ ∂M = ∂D ∩ ∂M .

We may surger F along D to obtain FD, as follows. Let N be a
closed regular neighborhood of D. Remove from F the annulus N ∩ F .
Form FD by gluing on both disk components of fr(N)− F and taking
the closure. When F ⊂ ∂M we must also isotope interior(FD) into
interior(M) to ensure FD is properly embedded.

Definition 8.1. A surgery disk D for F ⊂M is a compressing disk if
∂D ⊂ F is an essential curve. If F admits no compressing disk then F
is incompressible in M .

The triple (B,α, β) is a bigon exactly when B is a disk and α, β
are arcs in ∂B so that α ∪ β = ∂B and α ∩ β = ∂α = ∂β. Suppose
(B,α, β) ⊂ (M,F, ∂M) is an embedded bigon. We call B a surgery
bigon for F if

• B ∩ ∂F = ∂α = ∂β,
• B ∩ F = α, and
• B ∩ ∂M = ∂B if F ⊂ ∂M while
• B ∩ ∂M = β if F is properly embedded.

Again, we may surger F along B. Let N be a closed regular neighbor-
hood of B. Remove the rectangle N ∩ F from F . Form FB by gluing
on the two bigon components of fr(N)− F and taking the closure. If
F lies in ∂M we isotope interior(FB) into interior(M) to ensure FB is
properly embedded.

Definition 8.2. A surgery bigon (B,α, β) for F ⊂ M is a boundary
compression if β is an essential arc in ∂M−∂F . A boundary compression
is essential in F if α is an essential arc in F .
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In other work, boundary compressions B for F are required to have
the latter property. We divide the definition in two because, for us, F
will typically be a properly embedded disk in M .

Suppose now that (F, ∂F ) is properly embedded in (M,S). Suppose
X is a subsurface of S. Properly isotope F , rel ∂S, to make ∂F and
∂X tight. If (B,α, β) is a boundary compression of F so that β ⊂ X
then we say F is boundary compressible into X.

8.2. Boundary compression. We now begin our study of boundary
compressions of disks.

Remark 8.3. Suppose (D, ∂D) ⊂ (M,S) is an essential disk. Suppose
Γ is a multicurve in S, tight with respect to ∂D. Suppose B is a
boundary compression of D into S − n(Γ), where n(Γ) is an open
product neighborhood. Writing DB = D′ ∪D′′ we have

ι(∂D′,Γ) + ι(∂D′′,Γ) ≤ ι(∂D,Γ).

In a slight abuse of notation, in the above definition we allow the
multicurve Γ to have parallel components.

Lemma 8.4. Suppose M is irreducible. Suppose (D, ∂D) ⊂ (M,S) is
an essential disk. Suppose X, a connected essential subsurface of S,
compresses in M . Suppose ∂X and ∂D are tight. Then

• D is boundary compressible into X or
• D is disjoint from some compressing disk (E, ∂E) ⊂ (M,X).

Proof. Suppose (E, ∂E) ⊂ (M,X) is any compressing disk. If ι(∂D, ∂E) =
0 then we are done, using the irreducibility of M . Suppose instead
the geometric intersection number is positive. Ambiently isotope E,
rel ∂X, to make ∂E tight with respect to ∂D. This can be done be-
cause ∂D and ∂X are tight. Since M is irreducible we may further
isotope E, rel ∂E, to remove all simple closed curves of D ∩ E. Since
D ∩ E remains non-empty let B be an outermost bigon of E −D. So
(B,α, β) ⊂ (M,D,X) is a surgery bigon.

If β is inessential in S − n(∂D) then β is parallel, in S, to an arc
γ ⊂ ∂D. Thus there is an ambient isotopy of D pushing γ past β. This
reduces ι(∂D, ∂E), a contradiction. �

8.3. Band sums. A band sum is the inverse operation to boundary
compression. Fix disjoint disks D′, D′′ ⊂ (M,S). Fix a simple arc δ ⊂ S
so that δ meets each of D′ and D′′ in exactly one endpoint. Let N ⊂M
be a closed regular neighborhood of δ. Let D be the disk formed by
adding to (D′ ∪D′′)−N the rectangle component of fr(N)− (D′ ∪D′′).
The disk D is the result of band summing D′ to D′′ along δ. Note D
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has a boundary compression dual to δ yielding D′ ∪D′′: that is, there
is a boundary compression B ⊂ N for D so that B ∩ δ is a single point
and so that DB = D′ ∪D′′.

8.4. Compression bodies. We pause to discuss a few special three-
manifolds.

Definition 8.5. Suppose F is a compact, connected, orientable surface.
Let V be a three-manifold obtained from F×I by attaching two-handles
to F × {0} and capping off any resulting two-spheres (disjoint from
F × {1}) with three-balls. Then V is a compression body with exterior
boundary ∂+V equal to F × {1}, with vertical boundary ∂0V equal
to ∂F × I, and with interior boundary ∂−V equal to the closure of
∂V − (∂+V ∪ ∂0V ).

When ∂−V = ∂0V = ∅ then V is called a handlebody. In this case
the genus of V is the genus of ∂+V .

Disk components of ∂V −∂+V are called spots. When all components
of ∂V − ∂+V are spots then V is homeomorphic to a handlebody
(ignoring the given partition of ∂V ).

Following [6, Theorem 2.1] for any spotless pair (M,S) there is a
characteristic compression body V ⊂ M so that V has no spots, S =
∂+V = V ∩ ∂M , and the inclusion induces an isomorphism D(V, S) ∼=
D(M,S). If X is a subsurface of S then the characteristic compression
body W ⊂ M for X is contained in V . If X is not a hole for D(V, S)
then the image of D(W,X) in D(V, S) has finite diameter. When X is
a hole the geometry of the inclusion D(W,X)→ D(V, S) depends on
how W is contained in V . The inclusion need not be a quasi-isometric
embedding; see Remark 19.5 for a brief discussion.

By the above, to understand disk complexes of spotless pairs (M,S)
it suffices to study D(V, S) where V is a compression body without
spots. However, this does not appear to simplify any of the arguments.

8.5. Interval bundles.

Definition 8.6. Suppose F is a compact, connected surface. Let T
be the orientation I–bundle over F : the unique I–bundle over F with
orientable total space. Let ρF : T → F be the associated bundle map.
Then T has vertical boundary ∂vT equal to ρ−1

F (∂F ) and has horizontal
boundary ∂hT equal to the closure of ∂T − ∂vT .

In general, if A ⊂ T is a union of fibers of the map ρF then A is
vertical. If F is orientable then T ∼= F × I. If F is non-orientable and if
α ⊂ F is an orientation-reversing simple closed curve then ρ−1

F (α) ⊂ T
is vertical one-sided Möbius band.
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Note that if F is not a sphere or projective plane then T is irreducible.
Also ∂hT is always incompressible in T . Note ∂vT is incompressible in
T if F is not homeomorphic to a disk. If ∂vT 6= ∅ then any vertical
surface in T can be boundary compressed. However no vertical surface
in T may be boundary compressed into ∂hT .

Lemma 8.7. Suppose F is a compact, connected surface with ∂F 6= ∅.
Let ρF : T → F be the orientation I–bundle over F . Let X be a
component of ∂hT . Let D ⊂ T be a properly embedded disk. Suppose

• ∂D is essential in ∂T ,
• ∂D and ∂X are tight, and
• D cannot be boundary compressed into X.

Then D may be ambiently isotoped to be vertical with respect to T .

Proof. Since ∂D is tight with respect to ∂X we may ambiently isotope
D to make D ∩ ∂vT vertical.

Choose α ⊂ F , a multi-arc, cutting F into a collection of hexagons.
Let A = ρ−1

F (α). Thus A cuts T into a collection of hexagonal prisms.
We choose α so that A and D are in general position. Thus A ∩ ∂vT is
disjoint from D ∩ ∂vT . (If F is orientable, set Y = ∂hT −X. In this
case choose α with the additional property that D ∩ Y is disjoint from
A ∩ Y .)

We now ambiently isotope D to minimize |D ∩ A|. Suppose B is
a bigon component of ∂T − (∂D ∪ ∂A). Since ∂D and ∂A are both
tight with respect to ∂X it follows either that B ∩ ∂X = ∅ or that
the arcs B ∩ ∂X cut B into two triangles and a parallel collection
of rectangles. Thus there is an ambient isotopy pushing ∂D across
B, reducing |∂D ∩ ∂A|, so the new position of D has the following
properties.

• D ∩ ∂vT is vertical and disjoint from A ∩ ∂vT .
• ∂D is tight with respect to ∂X.
• If F is orientable then D ∩ Y is disjoint from D ∩ A.

Suppose δ is a simple closed curve component of D ∩ A. Since T is
irreducible there there is an ambient isotopy of D in T , fixing ∂T
pointwise, that eliminates δ. This reduces |D ∩ A|, a contradiction.

Suppose δ is a component of D ∩ A. Thus δ is an arc. Let A′ ⊂ A
be the rectangle of A that contains δ. Thus δ is disjoint from ∂vA

′.
Suppose δ cuts a bigon B out of A′. Let β = B ∩ ∂hT . Thus β ⊂ X. If
β is essential in ∂T − ∂D then B is a boundary compression of D into
X, a contradiction. If β is inessential in ∂T − ∂D then we can further
reduce |D ∩ A|, also a contradiction. It follows that δ is isotopic to a
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vertical arc in A′. Thus, a further ambient isotopy of D, retaining the
properties above, makes D ∩ A vertical in A.

Let H be the closure (in the path metric) of a component of T − A.
So H is a hexagonal prism. Suppose D′ is a component of D ∩H. So
D′ is a disk with D′ ∩ ∂vH disjoint from ∂vA (the vertical edges of H).
Let ε be an arc of D′ ∩ ∂hH. (If F is orientable, we choose ε ⊂ D′ ∩ Y .)
Let E = ρ−1(ε) and let N = N(E) be a closed product neighborhood
of E. So N is a rectangular solid. Three consecutive sides of D′ are
contained in ∂N : two vertical sides and ε. See Figure 1. For any arc δ
of D′ ∩ ∂vN either δ can be made vertical by ambient isotopy or there
is a bigon (B, δ, β) with B ⊂ ∂vN and β ⊂ X. By hypothesis B is
not a boundary compression into X. Since T is irreducible there is
an ambient isotopy of D making D′ vertical. Performing all of these
isotopies makes D vertical and the lemma is proved. �

ε

δ

Figure 1. The rectangular solid N contains D′ ∩N .

9. Holes for the disk complex

Here we begin to classify holes for the disk complex, a more difficult
analysis than for the arc complex. Suppose (M,S) is a spotless pair.
Recall there is a natural inclusion ν : D(M,S)→ C(S).

Remark 9.1. Suppose X is cleanly embedded in S. Then X is a
hole for D(M,S) if every essential disk (D, ∂D) ⊂ (M,S) cuts X.
Equivalently, S − n(X) is incompressible in M . Some authors call X
disk-busting for (M,S).

The classification of holes X for D(M,S) breaks into three cases.
Either X is an annulus, X compresses in M , or X is incompressible in
M . For each case we have a theorem.
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Theorem 10.1. Suppose X, an annulus, is a hole for D(M,S). Then
the diameter of X is at most 11.

Theorem 11.7. Suppose X is a compressible hole for D(M,S) with
diameter at least 15. Then there are essential disks D,E ⊂M so that

• ∂D, ∂E ⊂ X and
• ∂D and ∂E fill X.

Theorem 12.1. Suppose X is an incompressible hole for D(M,S) with
diameter at least 57. Then there is an I–bundle ρF : T → F embedded
in M so that

• ∂hT ⊂ S,
• X is a component of ∂hT ,
• some component of ∂vT is boundary parallel into S,
• F supports a pseudo-Anosov map.

These theorems have a corollary.

Corollary 9.2. If X is hole for D(M,S) with diameter at least 57 then
X has infinite diameter.

Proof. If X is a hole with diameter at least 57 then either Theorem 11.7
or Theorem 12.1 applies.

If X is compressible then Dehn twists, in opposite directions, about
the given disks D and E yields an homeomorphism f : M →M so that
f |X is pseudo-Anosov. This follows from Thurston’s construction [47].
By Lemma 2.4 the hole X has infinite diameter.

If X is incompressible then X ⊂ ∂hT where ρF : T → F is the given
I–bundle. Let f : F → F be the given pseudo-Anosov map. So g, the
suspension of f , gives a homeomorphism of M . Again it follows that
the hole X has infinite diameter. �

Applying Lemma 5.8 and Corollary 9.2 we find the following.

Proposition 9.3. If D(M,S) admits a hole X ( S with diameter at
least 57 then the inclusion ν : D(M,S)→ C(S) is not a quasi-isometric
embedding. �

10. Holes for the disk complex – annuli

The proof of Theorem 10.1 occupies the rest of this section. This
proof shares many features with the proofs of Theorems 11.7 and 12.1.
However, the exceptional definition of C(S0,2) prevents a unified ap-
proach. Fix (M,S) a spotless pair. When M is a solid torus, then
D(M,S) is at most a point and there is nothing to prove. Henceforth
we assume that M is not a solid torus.
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Theorem 10.1. Suppose X, an annulus, is a hole for D(M,S). Then
the diameter of X is at most 11.

We begin with the following.

Claim. For all D ∈ D(M,S), we have |D ∩X| ≥ 2.

Proof. Since X is a hole, every disk cuts X. Let α be a core curve for
X. If |α ∩D| = 1 then let N = N(α∪D). Since M is not a solid torus
the disk E = fr(N) is essential. Also E is disjoint from α. Thus E does
not cut X, a contradiction. �

Assume, to obtain a contradiction, that X has diameter at least 12.
Suppose D ∈ D(M,S) is a disk chosen to minimize D ∩X. Pick any
disk E ∈ D(M,S) so that dX(D,E) ≥ 6. Isotope D and E to make
the boundaries tight and also tight with respect to ∂X. Tightening
triples of curves is not canonical; nonetheless there is a tightening so
that S − (∂D ∪ ∂E ∪X) contains no triangles. See Figure 2.

Figure 2. Triangles outside of X (see the left side) can
be moved in (see the right side). This decreases the
number of points of D ∩ E ∩ (S −X).

After tightening ∂D and ∂E in this way with respect to the boundary
of X we have the following.

Claim. Suppose δ ⊂ X ∩ ∂D and ε ⊂ X ∩ ∂E are any connected
components (and hence arcs). Then |δ ∩ ε| ≥ 1.

Proof. Let SX be the annular cover of S corresponding to X. Let
X ′ ⊂ SX be the homeomorphic lift of X to SX . Define ∂D|X = κX(∂D)
and define ∂E|X similarly.

Let δ′ ⊂ X ′ ∩ (∂D|X) be the homeomorphic lift of δ to X ′. Define
ε′ similarly. Since |δ ∩ ε| = |δ′ ∩ ε′| it suffices to bound the latter from
below. Note δ′ is properly embedded in X ′ but not in SX . To cure this,
define δ∗ ⊂ ∂D|X to be the properly embedded arc in SX that contains
δ′. Define ε∗ similarly.
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Since dX(D,E) = diamX(∂D|X∪∂E|X) ≥ 6 we find that dX(δ∗, ε∗) ≥
4. It follows from Equation 2.3 that |δ∗ ∩ ε∗| ≥ 3.

Suppose x, y ∈ δ∗ ∩ ε∗ are consecutive along δ∗. Note x and y are
contained in the preimage of X but are, possibly, not contained in X ′.
See Figure 3. However, if both x and y lie in the same component of
SX − X ′ then either δ∗ or ε∗ shares a bigon with some lift of ∂X, a
contradiction. Again, see Figure 3. This implies

|δ′ ∩ ε′| ≥ |δ∗ ∩ ε∗| − 2

and so |δ′ ∩ ε′| ≥ 1, as desired. �

ε∗δ∗

Figure 3. The central shaded region is X ′ lying inside
of SX . The upper and lower shaded regions are other
lifts of X to SX . These are not annuli but rather are
homeomorphic to R× I.

Claim. There is an outermost bigon (B,α, β) of E − D with the
following properties.

• B ⊂ E, B ∩D = α and B ∩ ∂E = β.
• ∂β ⊂ X.
• |β ∩X| = 2.

It also follows that |D ∩X| = 2.

Proof. Note D ∩ E is a collection of arcs and curves in E. Since M is
irreducible, any simple closed curve component of D∩E can be removed
by an ambient isotopy, rel ∂M , applied to D. Minimality of |D ∩ E|
implies that there are no simple closed curves in D ∩ E.

Consider any outermost bigon B of E−D, with α and β as in the first
bullet. Since D ∩E is minimal, the bigon B is a boundary compression
for D. Note β cannot completely contain a component of E ∩ X as
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every arc of E ∩X meets some arc of D ∩X. Using this observation,
Figure 4 lists the four possible ways α may lie inside of E.

E

α

Figure 4. The figure shows a portion of E. The darker
part of ∂E are the arcs of E ∩X. The four arcs drawn
in the interior of E are the four possibilities for the arc
α. Note α cuts a bigon (B,α, β) off of E. Thus either β
is disjoint from X, or β is contained in X, or β meets X
in a single subarc, or β meets X in two subarcs.

Note that after compression DB is a union of two essential disks,
D′, D′′ ∈ D(M,S). Suppose α is one of the three unlabelled arcs
depicted in Figure 4. It follows that either D′ or D′′ has, after tightening,
smaller intersection with X than D does, a contradiction. We deduce
α is as pictured by the labelled arc in Figure 4.

As D′, D′′ cannot have smaller intersection with X we deduce that
|D ∩X| = 2, proving the claim. �

Using the same notation as in the proof above, let B be an outermost
bigon of E −D. We now study how α ⊂ ∂B lies inside of D.

Claim. The arc α ⊂ D connects distinct components of D ∩X.

Proof. Suppose not. Then there is a bigon (C, α, γ) with C ⊂ D and
γ ⊂ D ∩X. The disk C ∪B is isotopic to D′ or D′′ and so is essential.
Also, C ∪B intersects X at most once after tightening, contradicting
our first claim. �

We finish the proof of Theorem 10.1 by noting that D ∪B is homeo-
morphic to Υ×I where Υ is the simplicial tree with three edges and three
leaves. We may choose the homeomorphism so that (D∪B)∩X = Υ×∂I.
Since X is an annulus there is an ambient isotopy of D ∪ B making
(D ∪B) ∩X just a pair of arcs. Recall DB = D′ ∪D′′. It follows that
one of D′ or D′′ (or both) meets X in at most a single arc, contradicting
our first claim. �
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11. Holes for the disk complex – compressible

The proof of Theorem 11.7 occupies the second half of this section.

11.1. Compression sequences of essential disks. Suppose (M,S)
is a spotless pair. Suppose X is a cleanly embedded subsurface of S.
Suppose D ∈ D(M,S). Choose representatives so that ∂D is tight with
respect to ∂X. Suppose D ∩ ∂X 6= ∅.

Definition 11.1. A compression sequence for the data M,S,X,D is
a sequence {∆k}nk=1 where ∆1 = {D} and where ∆k+1 obtained by
boundary compressing ∆k into S − n(∂X) and then tightening. Note
∆k is a disjoint union of exactly k essential disks. We further require
that every disk of every ∆k cuts ∂X. A compression sequence is maximal
if either

• no disk of ∆n can be boundary compressed into S − n(∂X) or
• there is an essential disk (E, ∂E) ⊂ (M,S − n(∂X)) disjoint

from ∆n.

Such maximal sequences end essentially or end in S − n(∂X), respec-
tively.

Lemma 11.2. For any data M,S,X,D maximal compression sequences
exist. Furthermore, some component of S − n(∂X) is compressible if
and only if some (hence all) compression sequences end in S − n(∂X).

Proof. All compression sequences must end, by Remark 8.3. If Y
is a compressible component of S − n(∂X) then, by Lemma 8.4, all
compression sequences end in S − n(∂X). The backwards direction is
immediate. �

In what follows we assume that X is not an annulus or a pair of
pants. Our next goal is to show that maximal sequences do not move
very far in the arc and curve complex of X.

Definition 11.3. Fix Dk ∈ ∆k. A disjointness pair in X for Dk is an
ordered pair (α, β) of essential arcs in X where

• α ⊂ Dk ∩X,
• β ⊂ ∆n ∩X and
• dA(α, β) ≤ 1.

Here A = A(X).

If α 6= α′ then the two disjointness pairs (α, β) and (α′, β) are
distinct, even if α is ambiently isotopic to α′ in X. We treat the second
coordinate similarly. The following lemma controls how subsurface
projection distance changes in maximal sequences.
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Lemma 11.4. Suppose D ⊂ D(M,S) is an essential disk. Suppose
that X is a cleanly embedded subsurface of S. Suppose X is not an
annulus or pants. Suppose D cuts ∂X. Choose a maximal sequence
{∆k}nk=1 for the data M,S,X,D. For any disk Dk ∈ ∆k either

• Dk ∈ ∆n or
• there are four distinct disjointness pairs {(αi, βi)}4

i=1 for Dk in
X, where each of the arcs αi appears as the first coordinate of
at most two pairs.

Proof. We induct on n− k. If Dk is contained in ∆n there is nothing to
prove. If Dk is contained in ∆k+1 we are done by induction. Thus we
may assume that Dk is the disk of ∆k which is boundary compressed
at stage k. Let Dk+1, D

′
k+1 ∈ ∆k+1 be the two disks obtained by

boundary compressing Dk along the bigon B. By induction, each of
Dk+1 and D′k+1 either lie in ∆n or have disjointness pairs with the
required properties. See Figure 5 for a picture of the pair of pants
P ⊂ S cobounded by ∂Dk and ∂Dk+1 ∪ ∂D′k+1.

δ

Dk

Dk+1 D′k+1

∂X

Figure 5. All arcs shown connecting Dk to itself or to
Dk+1 ∪D′k+1 are arcs of P ∩ ∂X. The arc B ∩ S of the
bigon meets Dk twice and is parallel to the arcs P ∩ ∂X
connecting Dk to itself.

Choose δ (shown as a dotted arc in Figure 5) to be a band sum
arc for Dk+1 ∪D′k+1, dual to B, that minimizes |δ ∩ ∂X|. Since B is
a boundary compression in the complement of ∂X it follows that the
band sum of Dk+1 and D′k+1, along δ, is tight without any isotopy.

There are now three possibilities: neither, one, or both points of ∂δ
are contained in X.

First suppose that X∩∂δ = ∅. Then every arc of Dk+1∩X is parallel
to an arc of Dk ∩X, and similarly for D′k+1. If Dk+1 and D′k+1 are both
components of ∆n then choose any arcs β, β′ of Dk+1∩X and of D′k+1∩X.
Let α, α′ be the parallel components of Dk ∩X. The four disjointness
pairs are then (α, β), (α, β′), (α′, β), (α′, β′). Suppose instead Dk+1 is
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not a component of ∆n. Then Dk inherits four disjointness pairs from
Dk+1.

Second suppose that exactly one endpoint of ∂δ meets X. Breaking
symmetry, suppose γ ⊂ Dk+1 is the component of Dk+1 ∩X meeting δ.
Let X ′ be the component of X ∩ P that contains δ. Let α, α′ be the
two components of Dk ∩X ′. Let β be any arc of D′k+1 ∩X.

If Dk+1 /∈∆n, and if γ is not the first coordinate of one of the four
disjointness pairs for Dk+1, then Dk inherits disjointness pairs from
Dk+1. If D′k+1 /∈∆n then Dk inherits disjointness pairs from D′k+1.

Thus we may assume that both Dk+1 and D′k+1 are in ∆n or that
only D′k+1 ∈ ∆n while γ appears as the first arc of disjointness pair for
Dk+1. In case of the former the required disjointness pairs are (α, β),
(α′, β), (α, γ), and (α′, γ). In case of the latter we do not know if γ is
allowed to appear as the second coordinate of a pair. However we are
given four disjointness pairs for Dk+1 and are told that γ appears as
the first coordinate of at most two of these pairs. Hence the other two
pairs are inherited by Dk. The pairs (α, β) and (α′, β) give the desired
conclusion.

Third suppose that the endpoints of δ meet γ ⊂ Dk+1 and γ′ ⊂ D′k+1.
Let X ′ be a component of X ∩ P containing γ. Let α and α′ be the
two arcs of Dk ∩X ′. Suppose both Dk+1 and D′k+1 lie in ∆n. Then the
desired pairs are (α, γ), (α′, γ), (α, γ′), and (α′, γ′). If D′k+1 ∈ ∆n while
Dk+1 is not then Dk inherits two pairs from Dk+1. We add to these the
pairs (α, γ′), and (α′, γ′). If neither disk lies in ∆n then Dk inherits two
pairs from each disk and the proof is complete. �

Given a disk D ∈ D(M,S) and a hole X ⊂ S our Lemma 11.4 adapts
D to X.

Lemma 11.5. Fix a hole X for D(M,S) that is not an annulus or
pants. For any disk D ∈ D(M,S) there is a disk D′ ∈ D(M,S) with
the following properties.

• ∂X and ∂D′ are tight.
• If X is incompressible then D′ is not boundary compressible into
S − n(∂X) and dA(D,D′) ≤ 3.
• If X is compressible then ∂D′ ⊂ X and dAC(D,D

′) ≤ 3.
• Thus dX(D,D′) ≤ 6.

Here A = A(X) and AC = AC(X).

Proof. If ∂D ⊂ X then take D′ = D and we are done. So we may
assume (Remark 9.1) that D cuts ∂X. By Lemma 11.2 there is a
maximal compression sequence {∆k}nk=1 for the data M,S,X,D.
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Suppose n > 1. Lemma 11.4 implies the disk D = D1 has a dis-
jointness pair. Thus dA(D,∆n) ≤ 3. If X is incompressible then we
may take D′ to be any component of ∆n. If X is compressible then by
Lemma 11.2 there is a disk E compressing X and disjoint from ∆n. It
follows that dAC(D,E) ≤ 3. Taking D′ = E proves the lemma.

If n = 1 then the proof proceeds as in the previous paragraph, without
the need for disjointness pairs.

In all cases dAC(D,D
′) ≤ 3. It follows from Corollary 4.5 that

dX(D,D′) ≤ 6. �

Remark 11.6. Lemma 11.5 is unexpected: after all, any two curves in
C(X) can be connected by a sequence of band sums. Thus arbitrary
band sums can change the subsurface projection to X. However, the
sequences of band sums arising in Lemma 11.5 are very special. Firstly
they do not cross ∂X and secondly they are “tree-like” due to the fact
every arc in D is separating.

When D is replaced by a surface with genus then Lemma 11.5 does not
hold in general; this is a fundamental observation due to Kobayashi [27]
(see also [21]). Namazi points out that even if D is only replaced by a
planar surface Lemma 11.5 does not hold in general.

11.2. Classification of compressible holes. We now prove the the-
orem.

Theorem 11.7. Suppose X is a compressible hole for D(M,S) with
diameter at least 15. Then there are essential disks D,E ∈ D(M,S) so
that

• ∂D, ∂E ⊂ X and
• ∂D and ∂E fill X.

Proof. By Theorem 10.1 the subsurface X is not an annulus. Also, since
C(X) is large, X is not a pants.

Choose disks D′ and E ′ in D(M,S) so that dX(D′, E ′) ≥ 15. By
Lemma 11.5 there are disks D,E with ∂D, ∂E ⊂ X so that dX(D′, D)
and dX(E ′, E) are at most six. It follows from the triangle inequality
that dX(D,E) ≥ 3. �

12. Holes for the disk complex – incompressible

This section classifies incompressible holes for the disk complex.

Theorem 12.1. Suppose X is an incompressible hole for D(M,S) with
diameter at least 57. Then there is an I–bundle ρF : T → F embedded
in M so that

• ∂hT ⊂ S,
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• X is a component of ∂hT ,
• some component of ∂vT is boundary parallel into S, and
• F supports a pseudo-Anosov map.

Here is a short plan of the proof. We are given X, an incompressible
hole for D(M,S). Following Lemma 11.5 we may assume that D,E
are essential disks, without boundary compressions into S − n(∂X),
so that dX(D,E) ≥ 45. We examine the intersection pattern of D
and E to find two families of rectangles R and Q. The intersection
pattern of these rectangles in M will determine the desired I–bundle T .
The third conclusion of the theorem follows from an outermost bigon
argument. The fourth requires another application of Lemma 11.5 as
well as Lemma 2.4.

12.1. Diagonals of polygons. To understand the intersection pattern
of D and E we discuss diagonals of polygons. Let D be a 2n–sided
regular polygon. Label the sides of D with the letters X and Y in
alternating fashion. Any side labeled X (or Y ) will be called an X side
(or a Y side).

Definition 12.2. An arc γ properly embedded in D is a diagonal if
the points of ∂γ lie in the interiors of distinct sides of D. If γ and γ′

are diagonals for D that together meet three or four distinct sides then
γ and γ′ are non-parallel.

Lemma 12.3. Suppose Γ ⊂ D is a disjoint union of non-parallel
diagonals. Then there is an X side of D meeting at most eight diagonals
of Γ.

Proof. A counting argument shows that |Γ| ≤ 4n− 3. If every X side
meets at least nine non-parallel diagonals then |Γ| ≥ 9

2
n > 4n − 3, a

contradiction. �

12.2. Improving disks. Suppose now that X is an incompressible
hole for D(M,S) with diameter at least 57. By Theorem 10.1, the
subsurface X is not an annulus. As C(X) is large, X is not a pants.
Let Y = S − n(X).

Choose disks D′ and E ′ in D(M,S) so that dX(D′, E ′) ≥ 57. By
Lemma 11.5 there are disks D,E ∈ D(M,S) that cannot be boundary
compressed into X or into Y , and having dX(D′, D), dX(E ′, E) ≤ 6. By
the triangle inequality dX(D,E) ≥ 57− 12 = 45.

Recall ∂D and ∂E are tight with respect to ∂X. We may further
assume that ∂D and ∂E are tight with respect to each other. Also,
minimize the quantities |X ∩ (∂D ∩ ∂E)| and |D ∩ E| while keeping
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everything tight. In particular, X − (∂D ∪ ∂E) has no triangle com-
ponents. Now consider D and E as even-sided polygons, with vertices
being the points ∂D ∩ ∂X and ∂E ∩ ∂X respectively. Let Γ = D ∩ E.

Claim. Γ ⊂ D is a disjoint union of diagonals.

Proof. The minimality of |D∩E| and the irreducibility of M imply that
Γ contains no simple closed curves. Suppose γ ⊂ Γ is a non-diagonal.
Then there is an outermost such arc in D, say γ′ ⊂ Γ, cutting a bigon
B out of D. It follows that B is a boundary compression of E into
S − n(∂X). But this contradicts the construction of E. Thus all arcs
of Γ are diagonals for D and, by the same argument, for E. �

One possibility for Γ ⊂ D is shown in Figure 6. By Lemma 12.3
there is a component α ⊂ D ∩X meeting at most eight distinct types
of diagonal of Γ. Choose β ⊂ E ∩ X similarly. As dX(D,E) ≥ 45,
applying Lemma 4.4 proves dX(α, β) ≥ 45− 4 = 41.

Break each of α and β into at most eight subarcs {αi} and {βj} so
that each subarc meets all of the diagonals of fixed type and only of
that type. Let Ri ⊂ D be the rectangle with upper boundary αi and
containing all of the diagonals meeting αi. Let α′i be the lower boundary
of Ri. Define Qj ⊂ E and β′j similarly. See Figure 6 for a picture of Ri.

Ri

αi

α′i

Figure 6. The rectangle Ri ⊂ D is surrounded by the
dotted line. The arc αi in ∂D∩X is indicated. In general
the arc α′i may lie in X or in Y .

An arc αi is large if there is an arc βj so that |αi ∩ βj| ≥ 3. Note
|αi ∩ βj| = |α′i ∩ β′j| so α′i is large if and only if αi is large. We use the
same notation for βj. Let Θ be the union of all of the large αi and βj.
Thus Θ is a graph in X with all vertices of valence one or four. Let Θ′

be the union of the large α′i and β′i.

Claim 12.4. The graph Θ is non-empty.



34 HOWARD MASUR AND SAUL SCHLEIMER

Proof. If Θ = ∅, then all αi are small. Thus |α ∩ β| ≤ 128 and
so |σX(α) ∩ σX(β)| ≤ 512. Lemma 2.2 implies dX(α, β) ≤ 20. As
dX(α, β) ≥ 41 this is a contradiction. �

Let Z ⊂ S be a small regular neighborhood of Θ and define Z ′

similarly.

Claim 12.5. No component of Θ or of Θ′ is contained in a disk C ⊂ S.
No component of Θ or of Θ′ is contained in an annulus A ⊂ S peripheral
in X.

Proof. For a contradiction suppose that W is a component of Z con-
tained in a disk C ⊂ S. Then there is some pair αi, βj cutting a bigon
out of S. This contradicts the tightness of ∂D and ∂E. The same holds
for Z ′.

Suppose now that some component W is contained in an annulus
A, peripheral in X. Thus W fills A. Suppose αi and βj are large and
contained in W . By the classification of arcs in A we deduce either αi
and βj form a bigon in A or the triple ∂X, αi and βj form a triangle.
Either conclusion gives a contradiction. �

Claim 12.6. If W ⊂ Z is a component and δ ⊂ ∂W is a component
then either δ is inessential or peripheral in X.

Proof. Suppose some δ ∈ ∂W is essential and non-peripheral. Any large
αi meets ∂W in at most two points, while any small αi meets ∂W in
at most 32 points. Thus |σX(α) ∩ δ| ≤ 512 and the same holds for β.
Thus dX(α, β) ≤ 40 by the triangle inequality. As dX(α, β) ≥ 41 this is
a contradiction. �

From Claim 12.6 we deduce the following.

Claim 12.7. The graphs Θ, Θ′ are each connected. Also, Θ fills X. �

There are now two possibilities: Θ and Θ′ are either disjoint or
intersecting. In the first case set Σ = Θ and in the second case set
Σ = Θ ∪ Θ′. By the claims above, Σ is connected and fills X. Let
R = {Ri} and Q = {Qj} be the collections of large rectangles.

12.3. Building the I-bundle. Section 12.2 gives us Σ, R and Q. Note
that R ∪ Q is an I–bundle and Σ is the component of its horizontal
boundary meeting X. See Figure 7 for a simple case.

Let T0 be a regular neighborhood of R∪Q, taken in M . Again T0 has
the structure of an I–bundle. Note ∂hT0 ⊂ S, ∂hT0 ∩X is a component
of ∂hT0, and this component fills X due to Claim 12.7. We will enlarge
T0 to obtain the desired I–bundle T ⊂M .
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Ri

Qj

Figure 7. R∪Q is an I–bundle: all arcs of intersection
are parallel.

Begin by enumerating all annuli {Ai} ⊂ ∂vT0 with the property that
some component of ∂Ai is inessential in S. Suppose we have built
the I–bundle Ti and are now considering the annulus A = Ai. Let
γ ∪ γ′ = ∂A ⊂ S with γ inessential in S. Let B ⊂ S be the disk which
γ bounds. So B is contained in X or in Y . By induction no component
of ∂hTi is contained in a disk embedded in S: the base case holds by
Claim 12.5. It follows that B ∩ Ti = ∂B = γ. Thus B ∪ A is isotopic,
rel γ′, to a properly embedded disk B′ ⊂ M . As γ′ lies in X or Y ,
both incompressible, γ′ must bound a disk C ⊂ S. Again, C lies in X
or in Y . Note C ∩ Ti = ∂C = γ′, using the induction hypothesis. So
B ∩ C = ∅.

It follows that B ∪ A ∪ C is an embedded two-sphere in M . Since
M is irreducible B ∪ A ∪ C bounds a three-ball Ui in M . Choose a
homeomorphism Ui ∼= B × I so that B is identified with B × {0},
C is identified with B × {1}, and A is identified with ∂B × I. We
form Ti+1 = Ti ∪ Ui and note that Ti+1 still has the structure of
an I–bundle. Recalling A = Ai we have ∂vTi+1 = ∂vTi − Ai. Also
∂hTi+1 = ∂hTi∪(B∪C) ⊂ S. Thus no component of ∂hTi+1 is contained
in a disk embedded in S. Similarly, ∂hTi+1∩X is a component of ∂hTi+1;
this component is connected and fills X.

After dealing with all of the annuli {Ai} in this fashion we are left
with an I–bundle T . Now all components of ∂∂vT are essential in S.
All of these lying in X are peripheral in X. This is because they are
disjoint from Σ ⊂ ∂hT , which fills X. It follows that the component of
∂hT containing Σ is isotopic to X.

This finishes the construction of the promised I–bundle T and demon-
strates the first two conclusions of Theorem 12.1. For future use we
record the following.
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Remark 12.8. Every curve of ∂∂vT = ∂∂hT is essential in S.

12.4. A vertical annulus parallel into the boundary. Here we
obtain the third conclusion of Theorem 12.1. We say a hole X for
D(M,S) is small if diamX(D(M,S)) < 61 and large otherwise. Suppose
X is a large incompressible hole and T is the I–bundle constructed in
the previous section, having X as a component of ∂hT . We show that
at least one component of ∂vT is boundary parallel into S.

Claim 12.9. All components of ∂vT are incompressible in M .

Proof. Suppose A ⊂ ∂vT is a compressible annulus component. By
Remark 12.8 we may compress A to obtain a pair of essential disks
B and C. Note ∂B is isotopic into the complement of ∂hT . Thus
S − n(∂hT ) compresses. So S − n(X) compresses and X is not a hole,
a contradiction. �

Claim 12.10. Some component of ∂vT is boundary parallel.

Proof. Let D ∈ D(M,S) be an essential disk that cannot be boundary
compressed into S − n(∂X). Via an ambient isotopy of D minimize
|D ∩ ∂vT |. Let Γ = D ∩ ∂vT . Since X is an incompressible hole, Γ is
non-empty. Since M is irreducible, and by Claim 12.9, Γ has no simple
closed curves. Since D cannot be boundary compressed into S−n(∂X),
all arcs of Γ are essential in ∂vT . Let γ be any outermost arc of Γ in D.
So γ cuts a bigon B off of D. Let δ be the closure of ∂B − γ. Let A be
the component of ∂vT containing γ. So (B, γ, δ) ⊂ (M,A, S). Note the
interior of δ is contained in S − ∂hT . This is because ∂vT cannot be
boundary compressed into T .

Let C = AB be the disk that results from boundary compressing the
annulus A along the bigon B. Note C is properly embedded in (M,S),
with ∂C disjoint from ∂hT . Since (M,S) is spotless, C is not peripheral.
It follows that C is inessential. Thus C cuts a closed three-ball U off of
M . Since C is disjoint from T , from Remark 12.8 deduce that T ∩U = ∅.
It follows that A is boundary parallel into S, as desired. �

Remark 12.11. The proof of Claim 12.10 implies that the multicurve

{∂A | A ⊂ ∂vT is a boundary parallel into S}
is disk-busting for (M,S).

12.5. Finding a pseudo-Anosov map. Here we obtain the fourth
conclusion of Theorem 12.1: the base surface F of the I–bundle T
admits a pseudo-Anosov map.

As in Section 12.2, pick essential disks D′ and E ′ in (M,S) so that
dX(D′, E ′) ≥ 57. Lemma 11.5 provides disks D and E which cannot
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be boundary compressed into S − n(∂X). Thus D and E cannot be
boundary compressed into ∂hT . Also, dX(D,E) ≥ 57− 12 = 45.

After isotoping D to minimize intersection with ∂vT it must be the
case that all components of D ∩ ∂vT are essential arcs in ∂vT . By
Lemma 8.7 there is an ambient isotopy of D making D ∩ T vertical in
T . The same holds for E. Choose A and B, components of D ∩ T and
E ∩ T . These are vertical rectangles. As usual, we use Theorem 10.1 to
rule out the possibility that X is an annulus. By Lemma 4.4 we have
diamX(πX(D)) ≤ 2 and so dX(A,B) ≥ 45− 4 = 41.

We now begin to work in the base surface F ; by the above F is not
an annulus. Recall ρF : T → F is the bundle map. Take α = ρF (A)
and β = ρF (B). The natural map C(F )→ C(X), defined by taking a
curve to its lift, is distance non-increasing (see Equation 6.5). Thus
dF (α, β) ≥ 41. Thus, by Lemma 2.4 the subsurface F supports a
pseudo-Anosov map and we are done.

12.6. Corollaries. We now deal with the possibility of disjoint holes
for the disk complex.

Lemma 12.12. Suppose X is a large incompressible hole for D(M,S)
supported by the I–bundle ρF : T → F . Let Y = ∂hT−X. Let τ : ∂hT →
∂hT be the involution switching the ends of the interval fibers. Suppose
D ∈ D(M,S) is an essential disk.

• If F is orientable then dA(F )(D ∩X,D ∩ Y ) ≤ 6.
• If F is non-orientable then dX(D, Cτ (X)) ≤ 3.

Proof. We repeat the proof of Lemma 11.5 with ∂X everywhere replaced
by ∂∂hT . So there is a disk D′ ⊂M which is tight with respect to ∂∂hT
and which cannot be boundary compressed into ∂hT (or into S − ∂hT ).
For any component Z ⊂ ∂hT we have dA(Z)(D,D

′) ≤ 3. By Lemma 8.7
an ambient isotopy (preserving T setwise) makes D′ ∩ T vertical in T
and we are done. �

Recall Lemma 7.3: all holes for the arc complex intersect. This
cannot hold for the disk complex. For example let F be an orientable
surface with boundary and ρF : T → F be the trivial I–bundle. So
M = T is a handlebody. Notice that both components of ∂hT are holes
for D(M). However, by the first conclusion of Lemma 12.12, X and Y
are paired holes, in the sense of Definition 5.5. So, as with the invariant
arc complex (Lemma 7.5), all holes for the disk complex interfere, as
follows.
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Lemma 12.13. Suppose X,Z ⊂ S are large holes for D(M,S). If
X∩Z = ∅ then there is an I–bundle T ∼= F×I in M so that ∂hT = X∪Y
and Y ∩ Z 6= ∅.

Proof. Suppose X ∩ Z = ∅. It follows from Remark 9.1 that both X
and Z are incompressible. Let ρF : T → F be the I–bundle in M with
X ⊂ ∂hT , as provided by Theorem 12.1. We also have a component
A ⊂ ∂vT so that A is boundary parallel into S. Let U be the closure of
the solid torus component of M − A. Note Z cannot be contained in
S ∩ ∂U because Z is not an annulus (Theorem 10.1).

Let α = ρF (A). Choose any essential arc δ ⊂ F with both endpoints
in α ⊂ ∂F . It follows that ρ−1

F (δ), together with two meridional disks
of U , forms an essential disk D in (M,S). Let W be the closure of
∂hT ∪ (∂U − A). Note ∂D ⊂ W .

If F is non-orientable then Z ∩W = ∅ and we have a contradiction.
Deduce F is orientable. Now, if Z misses Y then Z misses W and
we again have a contradiction. It follows that Z cuts Y and we are
done. �

13. Axioms for combinatorial complexes

The goal of this section and the next is to prove, inductively, an
upper bound on distance in a combinatorial complex G(S). This section
presents our axioms for G: sufficient hypotheses for Theorem 13.1.
The axioms, apart from Axiom 13.2, are quite general. Axiom 13.2 is
necessary to prove hyperbolicity and greatly simplifies the recursive
construction in Section 14.

Theorem 13.1. Fix S, a compact, connected, non-simple surface. Sup-
pose G(S) is a combinatorial complex satisfying the axioms of Section 13.
For any constants c, x ≥ 0 there is a constant A = A(c, x) with the
following property. Suppose X is a hole for G with ξ(X) = x. Suppose
αX , βX ∈ G are contained in X. Then

dG(αX , βX)≤A
∑

[dY (αX , βX)]c

where the sum is taken over all holes Y ⊆ X for G.

The proof of this upper bound is more difficult than the proof of
the lower bound, Theorem 5.10. This is because naturally occurring
paths in G between αX and βX may waste time in non-holes. As a first
example, consider the path in C(S) obtained by taking short curves
along a Teichmüller geodesic. The Teichmüller geodesic may spend time
rearranging the geometry of a subsurface. Thus the path of systoles
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in the curve complex might be much longer than the curve complex
distance between the endpoints.

In Sections 16, 17, 19 we will verify these axioms for the curve complex
of a non-orientable surface, the arc complex, and the disk complex.

13.1. The axioms. Suppose G(S) is a combinatorial complex.

Axiom 13.2 (Holes interfere). All large holes for G interfere (Defini-
tion 5.6).

As discussed in Section 5 this axiom is necessary to show G is Gromov
hyperbolic. It also greatly simplifies the inductive proof of Theorem 13.1.
The remaining axioms provide constants so that for any pair of vertices
αX , βX ∈ G, both contained in a hole X for G, there is

• a marking path Λ = {µn}Nn=0,
• an accessibility interval JY ⊂ [0, N ] for every essential subsurface
Y ⊂ X,
• a combinatorial sequence Γ = {γi}Ki=0 ⊂ G that starts with αX ,

ends with βX and has each γi contained in X, and
• an increasing reindexing function r : [0, K]→ [0, N ] with r(0) =

0 and r(K) = N

with various properties. Here are the first four axioms.

Axiom 13.3 (Marking path).

(1) The support of µn+1 is contained inside the support of µn.
(2) For any subsurface Y ⊆ X, if πY (µk) 6= ∅ then for all n ≤ k

the map n 7→ πY (µn) is an unparameterized quasi-geodesic with
constants depending only on G.

The second condition is crucial and often technically difficult to obtain.

Axiom 13.4 (Accessibility). The accessibility interval for X is JX =
[0, N ]. There is a constant B1 so that the following hold.

(1) If m ∈ JY then Y is contained in the support of µm.
(2) If m ∈ JY then ι(∂Y, µm) < B1.
(3) If [m,n] ∩ JY = ∅ then dY (µm, µn) < B1.

Axiom 13.5 (Combinatorial). The vertex γi is contained in the support
of µr(i). Further, there is a constant B2 so that

(1) dY (γi, µr(i)) < B2, for every i ∈ [0, K] and every hole Y ⊂ X,
and

(2) dG(γi, γi+1) < B2, for every i ∈ [0, K − 1].

Axiom 13.6 (Replacement). There is a constant C3 with the following
property. If Y ⊂ X is a large hole for G and if r(i) ∈ JY then there is
a vertex γ′ ∈ G so that
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(1) γ′ is contained in Y and
(2) dG(γi, γ

′) < C3.

There are two axioms left, dealing with straight and shortcut intervals.
These are given in the next subsection.

13.2. Inductive, electric, shortcut and straight intervals. We
describe subintervals that arise when partitioning [0, K], the combina-
torial interval. Let x = ξ(X). As discussed in Section 13.3, we choose a
general upper threshold L2 and, for all y ≤ x, a lower threshold L1(y).

Definition 13.7. Suppose [i, j] ⊂ [0, K] is a subinterval of the combi-
natorial sequence. Then [i, j] is an inductive interval if there is a hole
Y ( X so that

(1) r([i, j]) ⊂ JY (if Y is paired then r([i, j]) ⊂ JY ∩ JY ′) and
(2) dY (γi, γj) ≥ L1(y), where y = ξ(Y ).

When X is the only relevant hole there is a simpler definition.

Definition 13.8. Suppose [i, j] ⊂ [0, K] is a subinterval of the combi-
natorial sequence. Then [i, j] is an electric interval if dY (γi, γj) < L2

for all holes Y ( X.

Electric intervals will be partitioned into straight and shortcut intervals.

Definition 13.9. Suppose [i, j] ⊂ [0, K] is an electric interval. Then
[p, q] ⊂ [i, j] is a straight interval if dZ(µr(p), µr(q)) < L2 for all non-holes
Z ⊂ X.

Definition 13.10. Suppose [i, j] ⊂ [0, K] is an electric interval. Then
[p, q] ⊂ [i, j] is a shortcut if there is a non-hole Z ⊂ X so that

(1) r([p, q]) ⊂ JZ and
(2) dZ(µr(i), µr(j)) ≥ L1(x), where x = ξ(X).

Axiom 13.11 (Straight). There is a constant A = A(x) so that for
every straight interval [p, q] we have

dG(γp, γq)<A dX(γp, γq).

Axiom 13.12 (Shortcut). There is a constant C4 = C4(x) so that for
every shortcut [p, q] we have

dG(γp, γq) < C4.

The verification of the shortcut axiom often requires some of the details
of the classification of holes for G.
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13.3. Deductions from the axioms. Axiom 13.3 and Lemma 3.9 im-
ply that the reverse triangle inequality holds for projections of marking
paths.

Lemma 13.13. There is a constant C5 so that

dY (µm, µn) + dY (µn, µp) < dY (µm, µp) + C5

for every essential Y ⊂ X and for every m < n < p in [0, N ]. �

We C5 larger, if necessary, to arrange C5 ≥ diamS πS(µ ∪ ν) for any
adjacent markings µ, ν ∈ M(S) in the marking graph. We record a
simple consequence of Axiom 13.4.

Lemma 13.14. There is a constant C1 > B1 with the following prop-
erty. If ∂Y cuts Z and if m,n ∈ JY then dZ(µm, ∂Y ) < C1 and also
dZ(µm, µn) < C1.

Proof. Part (1) of Axiom 13.4 says that Y is contained in the support
of µm. Thus µm cuts Z. The same is true of µn. Part (2) of Axiom 13.4
says that ι(µn, ∂Y ) ≤ B1. It follows that πZ(µm) and πZ(∂Y ) have
bounded intersection. Lemma 2.2 gives a bound for dZ(µm, ∂Y ). The
triangle inequality implies that dZ(µm, µn) is also bounded. �

Part (2) of Axiom 13.5 and Lemma 5.7 imply the following.

Lemma 13.15. There is a constant C2 > B2 with the following property.
For any hole Y and for any i ∈ [0, K−1], we have dY (γi, γi+1) < C2. �

We now have all of the constants C1, C2, C3, C4, C5 in hand. Recall L3

is the pairing constant of Definition 5.5 and that M0 is the constant from
the bounded geodesic image theorem (4.6). We choose a lower threshold
L1(y) for all y ≤ ξ(X). We choose the general upper threshold, L2 and
general lower threshold L0. For all z < y ≤ x we require the following.

L0 > C1 + 2C2 + 2L3(13.16)

L1(y) > M0 + 2C1 + 5C2 + 2L3 + L0 + 2(13.17)

L1(x) > L1(z) + 2C1 + 4C2 + 4L3(13.18)

L2 > L1(x) + 2L3 + 6C5 + 2C2 + 14C1 + 11(13.19)

14. Partition and the upper bound on distance

In this section we prove Theorem 13.1 by induction on x = ξ(X).
The first stage of the proof is to describe the inductive partition: we
partition the given interval [0, K] into inductive and electric intervals.
The inductive partition is closely linked with the hierarchy machine [31]
and with the notion of antichains introduced in [42].
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We next give the shortcut partition; each electric interval is divided
into straight and shortcut intervals. We finally bound dG(αX , βX) from
above by combining the contributions from the various intervals.

14.1. Inductive partition. We begin by identifying the relevant sur-
faces. Pick a hole X for G; pick vertices αX , βX ∈ G contained in X.
Define

BX = {Y ( X | Y is a hole and dY (αX , βX) ≥ L1(x)}.

The axioms give a combinatorial sequence Γ = {γi}K0 . For any subin-
terval [i, j] ⊂ [0, K] define

BX(i, j) = {Y ∈ BX | dY (γi, γj) ≥ L1(x)}.

We now partition [0, K] into inductive and electric intervals. Begin
with the partition of one part PX = {[0, K]}. Recursively PX is a
partition of [0, K] consisting of subintervals which are either inductive,
electric, or undetermined. Suppose [i, j] ∈ PX is undetermined.

Claim. If BX(i, j) is empty then [i, j] is electric.

Proof. Since BX(i, j) is empty, every hole Y ( X has either dY (γi, γj) <
L1(x) or Y /∈BX . In the former case, as L1(x) < L2, we are done.

So suppose the latter holds. By the reverse triangle inequality
(Lemma 13.13)

dY (µr(i), µr(j)) < dY (µ0, µN) + 2C5.

Since r(0) = 0 and r(K) = N we find

dY (γi, γj) < dY (αX , βX) + 2C5 + 4C2.

Thus

dY (γi, γj) < L1(x) + 2C5 + 4C2 < L2.

This completes the proof. �

Thus if BX(i, j) is empty then [i, j] ∈ PX is determined to be electric.
Proceed on to the next undetermined subinterval. Suppose instead
BX(i, j) is non-empty. Pick a hole Y ∈ BX(i, j) so that Y has maximal
complexity y = ξ(Y ) amongst the elements of BX(i, j)

Let p, q ∈ [i, j] be the first and last indices, respectively, so that
r(p), r(q) ∈ JY . (If Y is paired with Y ′ then we take the first and last
indices that, after reindexing, lie inside of JY ∩ JY ′ .)

Claim. The indices p, q are well-defined.
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Proof. Since Y ∈ BX(i, j), we have dY (γi, γj) ≥ L1(x). Let m,n =
r(i), r(j). Suppose JY ∩ [m,n] = ∅. By part (3) of Axiom 13.4 we have
dY (µm, µn) < B1. Part (1) of Axiom 13.5 implies that

dY (γi, γj) < B1 + 2B2 < C1 + 2C2.

This is less than L1(x) by Equation 13.17, giving a contradiction. Thus
m < min JY and max JY < n.

Suppose JY ∩ r([i, j]) is empty. So let h be the last index with
r(h) < min JY . Thus max JY < r(h+ 1). We have

dY (µm, µr(h)) < B1 and dY (µr(h+1), µn) < B1.

By Lemma 13.15 we have dY (γh, γh+1) < C2. Applying part (1) of
Axiom 13.5 repeatedly, we find

dY (γi, γj) < C2 + 4B2 + 2B1 < L1(X),

with the last inequality deduced from Equation 13.17. This is a contra-
diction. Thus, if Y is not paired, the indices p, q are well-defined.

Suppose Y is paired with Y ′. Recall measurements made in Y and
Y ′ differ by at most the pairing constant L3 given in Definition 5.5.
Thus we may deduce, as in the previous two paragraphs, JY ′ ∩ r([i, j])
is non-empty.

Suppose now, for a contradiction, that JY ∩ JY ′ ∩ r([i, j]) is empty.

h = max{` ∈ [i, j] | r(`) ∈ JY }Define

k = min{` ∈ [i, j] | r(`) ∈ JY ′}.and

Without loss of generality we may assume that h < k. It follows
that dY ′(γi, γh) < C1 + 2C2. Thus dY (γi, γh) < C1 + 2C2 + 2L3. Also,
dY (γh+1, γj) < C1 + 2C2. Deduce

dY (γi, γj) < 2C1 + 4C2 + 2L3 + 2 < L1(x)

with the last inequality following from Equation 13.17. This contradicts
the assumption that Y ∈ BX(i, j) and we are done. �

Claim. The interval [p, q] is inductive for Y .

Proof. We must check that dY (γp, γq) ≥ L1(y). Suppose first that Y is
not paired. Then by the definition of p, q, by property (3) of Axiom 13.4,
and by the triangle inequality we have

dY (µr(i), µr(j)) ≤ dY (µr(p), µr(q)) + 2C1.

Thus by Axiom 13.5,

dY (γi, γj) ≤ dY (γp, γq) + 2C1 + 4C2.
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Since by (13.18),

L1(y) + 2C1 + 4C2 < L1(x) ≤ dY (γi, γj)

we are done.
When Y is paired the proof is similar but we must use the slightly

stronger inequality L1(y) + 2C1 + 4C2 + 4L3 < L1(x). �

When BX(i, j) is non-empty, these two claims give a hole Y and
indices p, q. We subdivide the element [i, j] ∈ PX into the elements
[i, p− 1], [p, q], and [q + 1, j]. (The first or third intervals, or both, may
be empty.) The interval [p, q] ∈ PX is determined to be inductive and
associated to Y . Now proceed to the next undetermined element. This
completes the construction of PX .

As a bit of notation, if [i, j] ∈ PX is associated to Y ⊂ X we will
sometimes write IY = [i, j]. Note IY is a subinterval of the combinatorial
sequence while JY is a subinterval of the marking path. Note r(IY ) ⊂
JY .

14.2. Properties of the inductive partition.

Lemma 14.1. Suppose Y and Z, both contained in X, are holes for
G. Suppose IZ is an inductive element of PX associated to Z. Suppose
r(IZ) ⊂ JY (or r(IZ) ⊂ JY ∩ JY ′, if Y is paired). Then

• Z is nested in Y or
• Z and Z ′ are paired and Z ′ is nested in Y .

Proof. Let IZ = [i, j]. Let z = ξ(Z). Suppose first that ∂Y cuts Z. By
Lemma 13.14, dZ(µr(i), µr(j)) < C1. Then by Axiom 13.5

dZ(γi, γj) < C1 + 2C2 < L1(z),

a contradiction.
Now, if Z and Y are disjoint then by Axiom 13.2 and Definition 5.5

there are two cases. Suppose Y is paired with Y ′; thus Y ′ and Z meet.
In this case we are done, just as in the previous paragraph. Suppose
instead Z is paired with Z ′; thus Z ′ and Y meet. If Z ′ is nested in Y
then we are done. If ∂Y cuts Z ′ then, as r([i, j]) ⊂ JY , again Axiom 13.5
and Lemma 13.14 imply

dZ′(γi, γj) < C1 + 2C2.

So dZ(γi, γj) < C1 + 2C2 + 2L3 < L1(z), a contradiction. �

Proposition 14.2. Suppose Y ( X is a hole for G.

(1) There is at most one inductive interval IY ∈ PX associated to
Y .
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(2) If Y is associated to an inductive interval IY ∈ PX and Y is
paired with Y ′ then Y ′ is not associated to any inductive interval
in PX .

(3) There are at most two holes Z and W , distinct from Y (and
from Y ′, if Y is paired) such that
• there are inductive intervals IZ = [h, i] and IW = [j, k] and
• dY (γh, γi), dY (γj, γk) ≥ L0.

Remark 14.3. It follows that for any hole Y there are at most three
inductive intervals in the partition PX where Y has projection distance
greater than L0.

Proof of Proposition 14.2. We prove the second claim. Suppose IY =
[p, q] and IY ′ = [p′, q′] with q < p′. It follows that [r(p), r(q′)] ⊂ JY ∩JY ′ .
If q + 1 = p′ then the partition would have chosen a larger inductive
interval for one of Y or Y ′. It must be the case that there is an inductive
interval IZ ⊂ [q + 1, p′ − 1] for some hole Z, distinct from Y and Y ′,
with ξ(Z) ≥ ξ(Y ). However, by Lemma 14.1 we find that Z is nested
in Y or in Y ′. It follows that Z = Y or Y ′, a contradiction.

The first statement has a similar proof.
We prove the third claim. Suppose Z and W are the first and last

holes, if any, satisfying the hypotheses. Since dY (γh, γi) ≥ L0 we find
by Axiom 13.5 that

dY (µr(h), µr(i)) ≥ L0 − 2C2.

By (13.16), L0 − 2C2 > C1 so that

JY ∩ r(IZ) 6= ∅.
If Y is paired then, again by (13.16) we have L0 > C1 + 2C2 + 2L3,
we also find that JY ′ ∩ r(IZ) 6= ∅. Symmetrically, JY ∩ r(IW ) (and
JY ′ ∩ r(IW )) are also non-empty.

It follows that the interval [i + 1, j − 1] between IZ and IW , after
applying the reindexing map, is contained in JY (and JY ′ , if Y is
paired). Thus for any inductive interval IV = [p, q] between IZ and
IW the associated hole V is nested in Y (or V ′ is nested in Y ), by
Lemma 14.1. If V = Y or V = Y ′ there is nothing to prove. Suppose
instead V (or V ′) is strictly nested in Y . It follows that

dY (γp, γq) < C1 + 2C2 < L0.

Thus there are no inductive intervals between IZ and IW satisfying the
hypotheses of the third claim. �

The following lemma and proposition bound the number of inductive
intervals. The discussion here is very similar to the discussion of
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antichains in [42, Section 5]. Our situation is complicated by the
presence of non-holes and interfering holes. Suppose that X,αX , βX are
given, as in the beginning of Section 14.1. Let x = ξ(X).

Lemma 14.4. Suppose ` ≥ (3·L2)x. Suppose {Yi}`i=1 is a set of distinct
strict sub-holes of X, each having dYi(αX , βX) ≥ L1(x). Then there is
a hole Z ⊆ X such that dZ(αX , βX) ≥ L2 − 1 and Z contains at least
L2 of the Yi.

Furthermore, for at least L2 − 4(C5 + 3C1 + 2) of these Yi we find
that JYi ( JZ . (If Z is paired then JYi ( JZ ∩ JZ′.) Each of these Yi is
disjoint from a distinct vertex ηi ∈ [πZ(αX), πZ(βX)].

Proof. Let gX be a geodesic in C(X) joining αX , βX . By the bounded
geodesic image theorem (4.6), since L1(x) > M0, for every Yi there is a
vertex ωi ∈ gX such that Yi ⊂ X − ωi. Thus dX(ωi, ∂Yi) ≤ 1. If there
are at least L2 distinct ωi, associated to distinct Yi, then dX(αX , βX) ≥
L2 − 1. In this situation we take Z = X. Since JX = [0, N ] we are
done.

Thus assume there do not exist at least L2 distinct ωi. Then there is
some fixed ω among these ωi such that at least `

L2
≥ 3(3 · L2)x−1 of the

Yi satisfy
Yi ⊂ (X − ω).

Thus one component, call it W , of X − ω contains at least (3 · L2)x−1

of the Yi. Let w = ξ(W ). Set gW = [αW , βW ] for αW ∈ πW (βX) and
βW ∈ πW (βX). Notice that

dYi(αW , βW ) ≥ dYi(αX , βX)− 8

because we are projecting to nested subsurfaces. This follows from
Lemma 4.4. Hence dYi(αW , βW ) ≥ L1(w).

Again apply Theorem 4.6. Since L1(w) > M0, for every remaining Yi
there is a vertex ηi ∈ gW such that

Yi ⊂ (W − ηi)
If there are at least L2 distinct ηi then we take Z = W . Otherwise we
repeat the argument. Since the complexity of each successive subsurface
decreases by at least 1, we must eventually find the desired Z containing
at least L2 of the Yi, each disjoint from distinct vertices of gZ .

So suppose that there are at least L2 distinct ηi associated to distinct
Yi and we have taken Z = W . Now we must find at least L2 − 4(C5 +
3C1 + 2) of these Yi where JYi ( JZ .

To this end we focus attention on a small subset {Y j}5
j=1 ⊂ {Yi}. Let

ηj be the vertex of gZ = gW associated to Y j. We choose these Y j so
that
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• the ηj are arranged along gZ in order of index and
• dZ(ηj, ηj+1) > C5 + 3C1 + 2, for j = 1, 2, 3, 4.

This is possible by (13.19) because

L2 > 4(C5 + 3C1 + 2).

Set Jj = JY j and pick any indices mj ∈ Jj. (If Z is paired then Y j is
as well and we pick mj ∈ JY j ∩ J(Y j)′ .) We use µ(mj) to denote µmj .
Since ∂Y j is disjoint from ηj Lemma 13.14 implies

(14.5) dZ(µ(mj), ηj) ≤ C1 + 1.

Since the sequence πZ(µn) satisfies the reverse triangle inequality
(Lemma 13.13), it follows that the mj appear in [0, N ] in order agreeing
with their index. The triangle inequality implies that

dZ(µ(m1), µ(m2)) > C1.

Thus Axiom 13.4 implies that JZ ∩ [m1,m2] is non-empty. Similarly,
JZ ∩ [m4,m5] is non-empty. It follows that [m2,m4] ⊂ JZ . (If Z is
paired then, after applying the symmetry τ to gZ , the same argument
proves [m2,m4] ⊂ JZ′ .)

Notice that J2 ∩ J3 = ∅. For if m ∈ J2 ∩ J3 then by (14.5) both
dZ(µm, η2) and dZ(µm, η3) are bounded by C1 + 1. It follows that

dZ(η2, η3) < 2C1 + 2,

a contradiction. Similarly J3∩J4 = ∅. We deduce that J3 ( [m2,m4] ⊂
JZ . (If Z is paired then J3 ⊂ JZ ∩ JZ′ .) Finally, there are at least

L2 − 4(C5 + 3C1 + 2)

possible Yi’s which satisfy the hypothesis on Y 3. This completes the
proof. �

Now define
Pind = {I ∈ PX | I is inductive}.

Proposition 14.6. Let x = ξ(X). We have

|Pind| ≤A dX(αX , βX)

where A = 2(3 · L2)x−1 + 1.

Proof. Suppose, for a contradiction, that the conclusion fails. Let gX =
[αX , βX ] be a geodesic in C(X). Then, as in the proof of Lemma 14.4,
there is a vertex ω of gX and a component W ⊂ X − ω where at least
(3 · L2)x−1 of the inductive intervals in IX have associated surfaces, Yi,
contained in W .

Since x− 1 ≥ w = ξ(W ) we may apply Lemma 14.4 inside of W . So
we find a surface Z ⊆ W ( X so that
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• Z contains at least L2 of the Yi,
• dZ(αX , βX) ≥ L2 − 1, and
• there are at least L2 − 4(C5 + C1 + 2C1 + 2) of the Yi where
JYi ( JZ .

Since Yi ( Z and Yi is a hole, Z is also a hole. Since L2 > L1(x)− 1 it
follows that Z ∈ BX . Let Y = {Yi} be the set of Yi satisfying the third
bullet. Let Y 1 ∈ Y and η1 ∈ gZ satisfy ∂Y 1 ∩ η1 = ∅ and η1 is the first
such. Choose Y 2 ∈ Y and η2 ∈ gZ similarly, so that η2 is the last such.
By Lemma 14.4

(14.7) dZ(η1, η2) ≥ L2 − 4(C5 + C1 + 2C1 + 2)− 1.

Let p = min IY 1 and q = max IY 2 . Note r([p, q]) ⊂ JZ . (If Z is paired
with Z ′ then r([p, q]) ⊂ JZ ∩ JZ′ .) Again by Lemma 13.14

dZ(µr(p), ∂Y
1) < C1.

It follows that

dZ(µr(p), η1) ≤ C1 + 1

and the same bound applies to dZ(µr(q), η2). Combined with (14.7) we
find that

dZ(µr(p), µr(q)) ≥ L2 − 4C5 − 4C1 − 10C1 − 11.

By the reverse triangle inequality (Lemma 13.13), for any p′ ≤ p, q ≤ q′,

dZ(µr(p′), µr(q′)) ≥ L2 − 6C5 − 4C1 − 10C1 − 11.

Finally by Axiom 13.5 and the above inequality we have

dZ(γp′ , γq′) ≥ L2 − 6C5 − 4C1 − 10C1 − 11− 2C2.

By (13.19) the right-hand side is greater than L1(x) + 2L3 so we deduce
that Z ∈ BX(p′, q′), for any such p′, q′. (When Z is paired deduce also
that Z ′ ∈ BX(p′, q′).)

Let IV be the first inductive interval chosen by the procedure with
the property that IV ∩ [p, q] 6= ∅. Since IY 1 and IY 2 were also chosen
deduce IV ⊂ [p, q]. Let p′, q′ be the indices so that V is chosen from
BX(p′, q′). Thus p′ ≤ p and q ≤ q′. However, since IV ⊂ [p, q] and
since r([p, q]) ⊂ JZ , Lemma 14.1 implies that V is strictly nested in
Z. (When pairing occurs we may find instead that V ⊂ Z ′ or V ′ ⊂ Z.)
Thus ξ(Z) > ξ(V ) and we find that Z would be chosen from BX(p′, q′),
instead of V . This is a contradiction. �
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14.3. Shortcut partition. The goal of this subsection is to prove the
following.

Proposition 14.8. Let x = ξ(X). There is a constant A = A(x) with
the following property. If [i, j] ⊂ [0, K] is an electric interval then

dG(γi, γj)≤A dX(γi, γj).

We begin by building a partition of the given electric interval [i, j]
into straight and shortcut intervals. Define

CX = {Z ( X | Z is a non-hole and dZ(µr(i), µr(j)) ≥ L1(x)}.
We also define, for all [p, q] ⊂ [i, j],

CX(p, q) = {Z ∈ CX | JZ ∩ [r(p), r(q)] 6= ∅}.
Our recursion starts with the partition of one part, P(i, j) = {[i, j]}.

Recursively P(i, j) is a partition of [i, j] into shortcut, straight, or
undetermined intervals. Suppose [p, q] ∈ P(i, j) is undetermined.

Claim. If CX(p, q) is empty then [p, q] is straight.

Proof. We show the contrapositive. Suppose Z is a non-hole with
dZ(µr(p), µr(q)) ≥ L2. The reverse triangle inequality (Lemma 13.13)
gives

dZ(µr(p), µr(q)) < dZ(µr(i), µr(j)) + 2C5.

Since L2 > L1(x) + 2C5, we find that Z ∈ CX . Since L2 > C1 > B1

Axiom 13.4 implies that JY ∩ [r(p), r(q)] is non-empty. Thus Z ∈
CX(p, q). �

So when CX(p, q) is empty the interval [p, q] is determined to be
straight. Proceed onto the next undetermined element of P(i, j). Now
suppose that CX(p, q) is non-empty. Then we choose any Z ∈ CX(p, q)
so that Z has maximal ξ(Z) amongst the elements of CX(p, q).

There are two cases. Suppose JZ ∩ r([p, q]) is empty. Let s ∈ [p, q]
be the largest integer so that r(s) < min JZ . Remove [p, q] from the
partition P(i, j) and add the three intervals

[p, s], [s+ 1/2], [s+ 1, q]

to P(i, j). Here [s + 1/2] is an interval of length zero: we call this
a shortcut of length zero for Z. The intervals [p, s] and [s + 1, q] are
undetermined.

Suppose JZ ∩ r([p, q]) is non-empty. Define s, t ∈ [p, q] to be the
largest and smallest indices in [p, q] so that r(s), r(t) ∈ JZ . (We permit
s = t.) Thus r([s, t]) ⊂ JZ . Since Z ∈ CX(p, q) it follows that Z ∈ CX
and so dZ(µr(i), µr(j)) ≥ L1(x). Thus [s, t] is a shortcut interval for the



50 HOWARD MASUR AND SAUL SCHLEIMER

non-hole Z. So remove [p, q] from the partition P(i, j) and add the
three intervals

[p, s− 1], [s, t], [t+ 1, q]

to P(i, j). The intervals [p, s− 1] and [t+ 1, q] are undetermined. This
completes the recursive construction of the shortcut partition.

Pstr = {I ∈ P(i, j) | I is straight}Define

Pshort = {I ∈ P(i, j) | I is a shortcut}.and

Proposition 14.9. Let x = ξ(X). We have

|Pshort| ≤A dX(γi, γj)

where A = 2(3 · L2)x−1 + 1.

Proof. The proof is identical to that of Proposition 14.6 with the caveat
that in Lemma 14.4 we must use the markings µr(i) and µr(j) instead of
the endpoints γi and γj. �

We are now equipped to give the proof of Proposition 14.8.

Proof. Suppose P(i, j) is the given partition of the electric interval
[i, j] into straight and shortcut subintervals. As a bit of notation, if
[p, q] = I ∈ P(i, j), we take dG(I) = dG(γp, γq) and dX(I) = dX(γp, γq).
We have

dG(γi, γj) ≤
∑
I∈Pstr

dG(I) +
∑

I∈Pshort

dG(I) + C2|P(i, j)|.(14.10)

The last term arises from connecting left endpoints of intervals with
the right endpoint of the following interval, applying Axiom 13.5 and
recalling that B2 < C2. We now bound the three terms on the right.

We begin with the third; recall that |P(i, j)| = |Pshort| + |Pstr|,
that |Pstr| ≤ |Pshort| + 1, and that |Pshort| ≤A dX(γi, γj). The second
inequality follows from the construction of the partition while the last
is Proposition 14.9. Thus the third term of Equation 14.10 is quasi-
bounded above by dX(γi, γj). By Axiom 13.12 the second term of
Equation 14.10 is at most C4|Pshort|.

By Axiom 13.11, for all I ∈ Pstr we have dG(I)≤A dX(I). It follows
from the reverse triangle inequality (Lemma 13.13) that∑

I∈Pstr

dX(I) ≤ dX(γi, γj) + (2C5 + 2C2)|Pstr|+ 2C2.

We deduce that
∑

I∈Pstr
dG(I) is also quasi-bounded above by dX(γi, γj).

Thus for a somewhat larger value of A we find

dG(γi, γj)≤A dX(γi, γj).
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This completes the proof. �

14.4. The upper bound. We will need the following.

Proposition 14.11. Let x = ξ(X). For any c ≥ 0 there is a constant
A = A(c, x) with the following property. Suppose [i, j] = IY is an
inductive interval in PX . Then

dG(γi, γj)≤A
∑
Z

[dZ(γi, γj)]c

where Z ranges over all holes for G strictly contained in X.

Proof. Let y = ξ(Y ) and note y < x. Axiom 13.6 gives vertices γ′i,
γ′j ∈ G, contained in Y , so that dG(γi, γ

′
i) ≤ C3 and the same holds for

j. Since projection to holes is coarsely Lipschitz (Lemma 5.7) for any
hole Z we have dZ(γi, γ

′
i) ≤ 2 + 2C3.

Fix any c > 0. Now, since

dG(γi, γj) ≤ dG(γ
′
i, γ
′
j) + 2C3

to find the required constant A(c, x) it suffices to bound dG(γ
′
i, γ
′
j). Let

c′ = c+ 4C3 + 4. Since y < x, we may apply Theorem 13.1 inductively
to obtain a constant A = A(c′, y) with

dG(γ
′
i, γ
′
j)≤A

∑
Z

[dZ(γ′i, γ
′
j)]c′

≤
∑
Z

[dZ(γi, γj) + 4C3 + 4]c′

< (4C3 + 4)N +
∑
Z

[dZ(γi, γj)]c.

Here N is the number of non-zero terms in the final sum. Also, the
sum ranges over holes Z ⊂ Y . We may take A somewhat larger to deal
with the term (4C3 + 4)N and include all holes Z ( X to find

dG(γi, γj)≤A
∑
Z

[dZ(γi, γj)]c

where the sum is over all holes Z strictly contained in X. �

14.5. Finishing the proof. Now we may finish the proof of Theo-
rem 13.1. Fix constants c, x ≥ 0. Let X be any hole for G with
ξ(X) = x. Suppose αX , βX are any vertices of G contained in X. Let
Γ = {γi}Ki=0 be the given combinatorial sequence, given by the axioms.
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Let PX be a partition of [0, K] into inductive and electric intervals. So
we have

dG(αX , βX) ≤
∑
I∈Pind

dG(I) +
∑
I∈Pele

dG(I) + C2|PX |.(14.12)

The last term arises from connecting left endpoints to right endpoints
of adjacent intervals.

We bound the terms on the right-hand side; begin by noticing that
|PX | = |Pind|+ |Pele|, |Pele| ≤ |Pind|+ 1 and |Pind| ≤A dX(αX , βX). The
second inequality follows from the way the partition is constructed
and the last follows from Proposition 14.6. Thus the third term of
Equation 14.12 is quasi-bounded above by dX(αX , βX).

Next, consider the second term of Equation 14.12.∑
I∈Pele

dG(I)≤A
∑
I∈Pele

dX(I)

≤ dX(αX , βX) + (2C5 + 2C2)|Pele|+ 2C2

with the first inequality following from Proposition 14.8 and the second
from the reverse triangle inequality (Lemma 13.13).

Finally we bound the first term of Equation 14.12. Let c′ = c+ L0.
Thus, ∑

I∈Pind

dG(I) ≤
∑

IY ∈Pind

(
A′y

(∑
Z(X

[dZ(IY )]c′

)
+ A′y

)

≤ A′′

( ∑
I∈Pind

∑
Z(X

[dZ(I)]c′

)
+ A′′ · |Pind|

≤ A′′

(∑
Z(X

∑
I∈Pind

[dZ(I)]c′

)
+ A′′ · |Pind|

Here A′y and the first inequality are given by Proposition 14.11. Also
A′′ = max{A′y | y ≤ x}. In the last line, each sum of the form∑

I∈Pind
[dZ(I)]c′ has at most three terms, by Remark 14.3 and the

fact that c′ > L0. For the moment, fix a hole Z and any three distinct
elements I, I ′, I ′′ ∈ Pind.

By the reverse triangle inequality (Lemma 13.13) we find that

dZ(I) + dZ(I ′) + dZ(I ′′) < dZ(αX , βX) + 6C5 + 8C2

which in turn is less than dZ(αX , βX) + L0. It is now an exercise to
show

[dZ(I)]c′ + [dZ(I ′)]c′ + [dZ(I ′′)]c′ < [dZ(αX , βX)]c + L0.
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Thus, ∑
Z(X

∑
I∈Pind

[dZ(I)]c′ ≤ L0 ·N +
∑
Z(X

[dZ(αX , βX)]c

where N is the number of non-zero terms in the final sum. Also, the
sum ranges over all holes Z ( X.

Combining the above inequalities, and increasing A once again, im-
plies that

dG(αX , βX)≤A
∑
Z

[dZ(αX , βX)]c

where the sum ranges over all holes Z ⊆ X. This completes the proof
of Theorem 13.1. �

15. Background on Teichmüller space

Our goal in Sections 16, 17 and 19 will be to verify the axioms stated
in Section 13 for the complex of curves of a non-orientable surface, for
the arc complex, and for the disk complex. Here we give the necessary
background on Teichmüller space. See also [37, 26].

Fix a surface S = Sg,n of genus g with n punctures. Two conformal
structures on S are equivalent, written Σ ∼ Σ′, if there is a conformal
map f : Σ → Σ′ which is isotopic to the identity. Let T = T (S) be
the Teichmüller space of S; the set of equivalence classes of analytically
finite conformal structures Σ on S.

Define the Teichmüller metric by

dT (Σ,Σ′) = inf
f

{
1

2
logK(f)

}
where the infimum ranges over all quasiconformal maps f : Σ → Σ′

isotopic to the identity and where K(f) is the maximal dilatation of f .
Recall the infimum is realized by a Teichmüller map that, in turn, may
be defined in terms of a quadratic differential.

15.1. Quadratic differentials.

Definition 15.1. A quadratic differential q(z) dz2 on Σ is an assignment
of a holomorphic function to each coordinate chart that is a disk and
of a meromorphic function to each chart that is a punctured disk. If z
and ζ are overlapping charts then we require

qz(z) = qζ(ζ)

(
dζ

dz

)2

in the intersection of the charts. The meromorphic function qz(z) has
at most a simple pole at the puncture z = 0.
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At any point away from the zeroes and poles of q there is a natural
coordinate z = x + iy with the property that qz ≡ 1. In this natural
coordinate the foliation by lines y = c is called the horizontal foliation.
The foliation by lines x = c is called the vertical foliation.

Now fix a quadratic differential q on Σ = Σ0. Let x, y be natural
coordinates for q. For every t ∈ R we obtain a new quadratic differential
qt with coordinates

xt = etx, yt = e−ty.

Also, qt determines a conformal structure Σt on S. The map t 7→ Σt is
the Teichmüller geodesic determined by Σ and q.

15.2. Marking coming from a quadratic differential. Suppose
Σ is an analytically finite conformal structure on S. Let σ be the
hyperbolic metric uniformizing Σ and note σ has finite area. In a slight
abuse of terminology, we call the collection of shortest simple closed
hyperbolic geodesics the systoles of σ. Fix a sufficiently small constant
ε; in particular ε is smaller than the Margulis constant. The ε–thick part
of Teichmüller space consists of those surfaces such that the hyperbolic
systoles have length at least ε.

We define P = P (σ), a Bers pants decomposition of S, as follows.
Let α1 be any systole for σ. Define αi to be any systole of σ restricted
to S − (α1 ∪ . . . ∪ αi−1). Continue in this fashion until P is a pants
decomposition. By the collar lemma any curve with length less than
the Margulis constant will necessarily be an element of P .

Suppose now that q is a quadratic differential on the Riemann surface
Σ. Let σ be the uniformizing hyperbolic metric. Let P = P (σ) = {αi}
be a Bers pants decomposition. We must find transversals to P to obtain
a complete clean marking ν(q). Suppose P = {αi}. Fix i and let α = αi.
Let Sα be the annular cover of S corresponding to α. Note q lifts to a
singular Euclidean metric qα on Sα. Let a be a geodesic representative
of the core curve of Sα with respect to the metric qα. Choose c ∈ C(Sα)
to be any geodesic arc, also with respect to qα, that is perpendicular to
a. Let Xα be the non-pants component of S − n(P − {α}). Let β be
any curve in Xα meeting α minimally and so that dα(β, c) ≤ 3. (See
the discussion after the proof of Lemma 2.4 in [31].) Doing this for each
i gives a complete clean marking ν(q) = {(αi, βi)}.

Suppose now that {Σt : t ∈ [−M,M ]} is the Teichmüller geodesic
defined by the quadratic differentials {qt}. Define νt = ν(qt).

Lemma 15.2. [41, Remark 6.2] There is a constant B0 = B0(S) with
the following property. For any Teichmüller geodesic and for any time
t, there is a δ > 0 so that if |t− s| ≤ δ then ι(νs, νt) < B0. �
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Remark 15.3. Suppose Σs and Σt are surfaces in the ε–thick part
of T (S). We take B0 sufficiently large so that if ι(νs, νt) ≥ B0 then
dT (Σs,Σt) ≥ 1.

15.3. The marking path. We construct a path of Bers markings µn,
for n ∈ [0, N ] ⊂ N, as follows. Take µ0 = ν−M . Now suppose that
µn = νs is defined. Let t > s be the first time the marking νt gives
ι(νs, νt) ≥ B0, if such a time exists. If so, let µn+1 = νt. If no such time
exists take N = n and we are done.

Note µn fills S for every n. We now show that µn = νs and µn+1 = νt
have bounded intersection. By Lemma 15.2 there is a time r with
s < r < t so that

ι(νr, νt) < B0.

By construction

ι(νs, νr) < B0.

Let σ be a hyperbolic metric on S where all curves of base(νr) have
length 1 and all transversals in νr are perpendicular to their base curves.
In σ all of the curves of νs and νt have length bounded above and below.
It follows that ι(νs, νt) = ι(µn, µn+1) is bounded solely in terms of B0.
Thus there are constants K, L so that {µn} is a path in the marking
graph M(S) = MK,L(S). Note dY (µn, µn+1) is uniformly bounded,
independent of Y ⊂ S and of n ∈ [0, N − 1].

Theorem 6.1 of [41] says, for any subsurface Y ⊂ S, the sequence
{πY (µn)} ⊂ C(Y ) is an unparameterized quasi-geodesic.

15.4. The accessibility interval. Suppose Y ⊂ S is an essential
subsurface. Note, for any n, the subsurface Y is contained in the
support of µn, as the latter equals S.

In Section 5 of [41] Rafi defines an interval of isolation IY inside of the
parameterizing interval of the Teichmüller geodesic. Note IY is defined
purely in terms of the geometry of the given quadratic differentials.
Further, for all t ∈ IY and for all components α ⊂ ∂Y the hyperbolic
length of α in σt is less than the Margulis constant. Furthermore, by
Theorem 5.3 of [41], there is a constant B1 so that if [s, t]∩ IY = ∅ then

dY (νs, νt) ≤ B1.

We define JY ⊂ [0, N ] to be the subinterval of the marking path where
the time corresponding to µn lies in IY . Finally, if m ∈ JY then ∂Y is
contained in base(µm) and thus ι(∂Y, µm) ≤ 2 · |∂Y |.
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15.5. The distance estimate in Teichmüller space. We end this
section by quoting another result of Rafi.

Theorem 15.4. [40, Theorem 1.1] Fix a surface S and a constant
ε > 0. There is a constant C0 = C0(S, ε) so that for any c > C0 there
is a constant A with the following property. Suppose Σ and Σ′ lie in
the ε–thick part of T (S). Then

dT (Σ,Σ′) =A

∑
X

[dX(µ, µ′)]c +
∑
α

[log dα(µ, µ′)]c

where µ and µ′ are Bers markings on Σ and Σ′, where Y ⊂ S ranges
over non-annular surfaces and where α ranges over vertices of C(S). �

16. Paths for the non-orientable surface

Fix F a compact, connected, non-orientable surface. Let S be the
orientation double cover with covering map ρF : S → F . Let τ : S → S
be the associated involution. Recall from Section 6 that C(F ), C2(F )
and Cτ (S) are all quasi-isometric.

In this section we prove Lemma 16.5, the classification of holes for
Cτ (S). This directly implies the Gromov hyperbolicity of C(F ) — see
Corollary 6.4. As a bit of practice, we also verify all of the axioms of
Section 13 for Cτ (S).

16.1. The marking path. A pants decomposition P for S is τ–invariant
if P is a simplex in Cτ (S).

Definition 16.1. A complete clean marking µ = {(αi, βi)} for S is
τ–invariant if base(µ) is τ–invariant and τ({βi}) = {βi}.

Note the condition on base(µ) is stronger than the condition on transver-
sals; the latter are are only required to be setwise τ–invariant. We
will use the extreme rigidity of Teichmüller geodesics to find a path of
τ–invariant markings.

Lemma 16.2. For every τ–invariant hyperbolic metric σ there is a
τ–invariant Bers pants decomposition P = P (σ).

Proof. Let P0 = ∅. Suppose 0 ≤ k < ξ(S) curves have been chosen to
form Pk. By induction we may assume that Pk is a simplex in Cτ (S).
Let Y be a component of S − Pk with ξ(Y ) ≥ 1. Let α be a systole
for Y ; so α is a shortest, simple, closed, essential and non-peripheral
geodesic.

Claim. Either τ(α) = α or α ∩ τ(α) = ∅.



THE GEOMETRY OF THE DISK COMPLEX 57

Proof. Suppose not and take p ∈ α ∩ τ(α). Then τ(p) ∈ α ∩ τ(α) as
well, and, since τ has no fixed points, p 6= τ(p). The points p and τ(p)
divide α into segments β and γ. Since τ is an isometry, we have

`σ(τ(β)) = `σ(β) and `σ(τ(γ)) = `σ(γ).

Now concatenate to obtain (possibly immersed) loops

β′ = β ∗ τ(β) and γ′ = γ ∗ τ(γ).

If β′ is null-homotopic then α∪τ(α) cuts a bigon out of S, contradicting
our assumption that α was a geodesic. Suppose, by way of contradiction,
that β′ is homotopic to some boundary component b ⊂ ∂Y . Since
τ(β′) = β′, it follows that τ(b) and β′ are also homotopic. Thus b and
τ(b) cobound an annulus, implying that Y is an annulus, a contradiction.
Thus β′ and similarly γ′ are essential and non-peripheral.

Let β′′ and γ′′ be the geodesic representatives of β′ and γ′. Since α
and τ(α) meet transversely, β′′ has length strictly smaller than 2`σ(β).
Similarly the length of γ′′ is strictly smaller than 2`σ(γ). Suppose β′′ is
shorter than γ′′. It follows that β′′ is strictly shorter than α. If β′′ is
embedded then this contradicts the assumption that α was a systole.
If β′′ is not embedded then there is an embedded curve β′′′ inside of
a regular neighborhood of β′′ which is again essential, non-peripheral,
and has geodesic representative shorter than β′′. This is our final
contradiction and the claim is proved. �

If τ(α) = α let Pk+1 = Pk∪{α}. If τ(α) 6= α then by the above claim
α ∩ τ(α) = ∅. In this case let Pk+2 = Pk ∪ {α, τ(α)}. Lemma 16.2 is
proved. �

Recall if α is a curve in S then Sα is the corresponding annular cover
of S. If q is a quadratic differential on S then qα denotes the lifted
metric. We pull α tight inside of Sα and define ⊥ to be the set

{γ ∈ C(Sα) | the geodesic representative of γ is perpendicular to α}.

Lemma 16.3. There is a constant C with the following property. Let
q be a τ–invariant quadratic differential and let σ be the uniformizing
hyperbolic metric. Let P = P (σ) = {αi} be a τ–invariant Bers pants
decomposition, as provided by Lemma 16.2. Then there are transversal
curves βi for the αi so that

• τ({βi}) = {βi} and
• for each i we have dαi(βi,⊥i) ≤ C.

Note ν = {(αi, βi)} is a τ–invariant Bers marking.
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Proof. Fix α ∈ P . Set Pα = P − {α, τ(α)}. Let X be the union of the
non-pants components of S − n(Pα). There are three cases to consider
depending on whether τ(α) = α and whether X is connected.

Suppose τ(α) ∩ α = ∅ and X is not connected. It follows that X is a
union of two copies of S0,4, interchanged by τ . In this case we choose a
transversal β for α so that dα(β,⊥) ≤ 3.

Suppose τ(α) ∩ α = ∅ and X is connected. Since τ fixes X setwise,
it cannot fix any boundary component of X; thus X is a twice-holed
torus and X/τ is a once-holed Klein bottle. In this case we choose a
transversal β ⊂ X − τ(α) so that dα(β,⊥) ≤ 3.

In these two cases, add β and τ(β) to the set of transversals and we
are done.

Suppose τ(α) = α. It follows that X is a copy of S0,4. Thus X/τ is
a twice-holed RP2. There are only four essential non-peripheral curves
in X/τ . Two of these are cores of Möbius bands and the other two are
their doubles. The cores meet in a single point. Perforce α is the double
cover of one core and we take β to be the double cover of the other.

Note ⊥ is a τ -invariant, diameter one subset of C(Sα). If dα(β,⊥) is
large then it follows that dα(τ(β),⊥) is also large. Also, τ(β) twists in
the opposite direction from β. Thus

dα(β, τ(β))− 2dα(β,⊥) = O(1)

and so dα(β, τ(β)) is large, contradicting the fact that β is τ–invariant.
�

We now turn to verifying the marking path and accessibility require-
ments, Axioms 13.3 and 13.4. Suppose that α, β ∈ Cτ (S). If α and
β do not fill S then we may replace S by the support of their union.
Following Thurston [47] let q be the square-tiled quadratic differential,
with squares associated to the points of α ∩ β. (See [8] for analysis of
how the square-tiled surface relates to paths in the curve complex.) Let
qt be the image of q under the Teichmüller geodesic flow.

Lemma 16.4. τ ∗qt = qt.

Proof. Note τ preserves α and also β. Since τ permutes the points of
α ∩ β it permutes the rectangles of the singular Euclidean metric qt
while preserving their vertical and horizontal foliations. Thus τ is an
isometry of the metric and the conclusion follows. �

Let {Σt | t ∈ [−M,M ]} be the Teichmüller geodesic determined by qt.
Choose M so that the hyperbolic length of α is less than the Margulis
constant in σ−M and the same holds for β in σM . Also, α is the shortest
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curve in σ−M and similarly for β in σM . Lemma 16.3 now gives τ–
invariant Bers markings νt for every t ∈ [−M,M ]. As in Section 15.3
we can choose a discrete subset to obtain a path in the marking graph
M(S). By the discussion in Section 15.3 this path satisfies Axiom 13.3.
By the discussion in Section 15.4 we have also satisfied Axiom 13.4.

16.2. The combinatorial sequence. The previous section gives us
a Teichmüller geodesic and a marking path {µn}Nn=0. We choose the
combinatorial sequence by picking γn ∈ base(µn) so that γn is a τ–
invariant curve or pair of curves and so that γn is a systole in σt at the
corresponding time. Note γ0 = α and γN = β. Also, the reindexing
map is the identity map.

We now check Axiom 13.5. Since

ι(γn, µr(n)) = ι(γn, µn) = 2

the first requirement is satisfied. Since µn and µn+1 have bounded
intersection, the same holds for γn and γn+1. Projection to F , surgery,
and Lemma 2.2 imply that dCτ (γn, γn+1) is uniformly bounded.

16.3. The classification of holes. We now finish the classification of
large holes for Cτ (S). Fix L0 > 3C1 + 2C2 + 2C5. Note these constants
are available because we have verified the axioms that give them.

Lemma 16.5. Suppose α, β ∈ Cτ (S). Suppose Z ⊂ S has dZ(α, β) >
L0. Then Z is symmetric.

Proof. Let {Σt} be the Teichmüller geodesic defined above and let
σt be the uniformizing hyperbolic metric. Since L0 > C1 + 2C2 the
accessibility axiom implies JZ = [m,n] is non-empty. For all t in the
interval of isolation IZ , we have

`σt(δ) < ε,

where δ is any component of ∂Z and ε is the Margulis constant. Let
Y = τ(Z). Since τ is an isometry (Lemma 16.4) and since the interval
of isolation is metrically defined we have IY = IZ and thus JY = JZ .
Deduce that ∂Y is also short in σt. The collar lemma implies that
∂Y ∩ ∂Z = ∅. If Y and Z overlap then by Lemma 13.14 we have

dZ(µm, µn) < C1.

By the triangle inequality and two applications of property (3) of
Axiom 13.4 we have

dZ(µ0, µN) < 3C1.

By the combinatorial axiom it follows that

dZ(α, β) < 3C1 + 2C2
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a contradiction. Deduce either Y = Z or Y ∩ Z = ∅, as desired. �

As noted in Section 6 this shows that the only hole for Cτ (S) is S
itself. Because of this, Axioms 13.2 and 13.6 hold vacuously.

16.4. In straight intervals. We verify Axiom 13.11. Suppose [p, q] is
a straight interval. We must show that dCτ (γp, γq) ≤ dS(γp, γq). Suppose
µp = νs and µq = νt; that is, s and t are times when µp, µq are short
markings. Thus dY (µp, µq) ≤ L2 for every Y ( S. This implies that
the Teichmüller geodesic, along the straight interval, lies in the ε–thick
part of Teichmüller space for ε = ε(L2). See [41, Theorem 5.5].

Notice that dCτ (γp, γq) ≤ C2|p − q|, since for all i ∈ [p, q − 1],
dCτ (γi, γi+1) ≤ C2. So it suffices to bound |p − q|. By our choice
of B0 (see Remark 15.3) and because the Teichmüller geodesic lies in
the thick part we find that |p−q| ≤ dT (Σs,Σt). Rafi’s distance estimate
(Theorem 15.4) gives:

dT (Σs,Σt) =A dS(νs, νt).

Since νs = µp, νt = µq, and since γp ∈ base(µp), γq ∈ base(µq) deduce

dS(µp, µq) ≤ dS(γp, γq) + 4.

This verifies Axiom 13.11.

16.5. Taking shortcuts. Finally, we verify Axiom 13.12. Recall that
the reindexing map is the identity. Since S is the only hole, the
interval [0, N ] is electric. Suppose [p, q] ⊂ [0, N ] is a shortcut for
the non-hole Z ( S. Thus γp and γq are contained in base(µp) and
base(µq), respectively. From the first half of the shortcut hypothesis
(Definition 13.10) deduce ∂Z is contained in both base(µp) and in
base(µq). The second half of the shortcut hypothesis, together with
Lemma 16.5 implies that ∂Z is symmetric, and we are done.

17. Paths for the arc complex

We verify the axioms of Section 13 for the arc complex A(S,∆). It is
worth pointing out that in the case of the arc complex the axioms may
be verified using Teichmüller geodesics, train-track splitting sequences,
quasi-Fuchsian three-manifolds, or resolutions of hierarchies. We use
Teichmüller geodesics because they also deal with the non-orientable
case; this is discussed at the end of the section. Train-track splittings
and, presumably, quasi-Fuchsian manifolds also deal with the non-
orientable case.

First note that Axiom 13.2 follows from Lemma 7.3.
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17.1. The marking path. We are given a pair of arcs α, β ∈ A(X,∆).
Recall that σX : A(X) → C(X) is the surgery map of Definition 4.2.
Let α′ = σX(α) and let β′ = σX(β). Note α′ cuts a pants off of X. By
passing to a subsurface, we may assume that α′ and β′ fill X.

As in Section 16.1, let q be the square-tiled quadratic differential
determined by α′ and β′. As in Section 15.3, the differentials qt give a
marking path {µn}Nn=0. This path satisfies the marking and accessibility
axioms (13.3, 13.4).

17.2. The combinatorial sequence. Let Yn ⊂ X be any component
of X − base(µn) meeting ∆. So Yn is a pair of pants. Let γn be any
essential arc in Yn with both endpoints in ∆. Since α′ ⊂ base(µ0) and
β′ ⊂ base(µN) we may choose γ0 = α and γN = β.

The reindexing map is the identity. Thus ι(γn, µn) ≤ 4. This bound,
the bound on ι(µn, µn+1), and Lemma 4.7 imply that ι(γn, γn+1) is
likewise bounded. The usual surgery argument shows that if two arcs
have bounded intersection then they have bounded distance. This
verifies Axiom 13.5.

17.3. The replacement, straight, and shortcut axioms. Suppose
Y ⊂ X is cleanly embedded and is a hole for A(S,∆). Thus ∆ ⊂ ∂Y .
Suppose γn has n ∈ JY . Thus ∂Y ⊂ base(µn) and so γn ∩ ∂Y = ∅.
Taking γ′ = γn verifies Axiom 13.6.

Axiom 13.11 is verified as in Section 16.
We now verify Axiom 13.12. Suppose [i, j] ⊂ [0, N ] is an electric

interval and [p, q] ⊂ [i, j] is a shortcut for a cleanly embedded non-hole
Z ⊂ X. Since p, q ∈ JZ deduce ∂Z ⊂ base(µp)∩ base(µq). Thus γp and
γq are disjoint from ∂Z. There are now several cases.

If ι(γp, γq) = 0 then we are done. If both γp and γq are contained
in Z then we are done, because Z is not a hole. So suppose that γp
and γq are both contained in Y , a component of X − n(Z). If Y is
not a hole then we are done. Finally, suppose that Y is a hole for
A(S,∆). Since [i, j] is electric deduce dW (γi, γj) < L2 for all holes
W ( X. Lemma 13.13 gives a uniform (depending only on x = ξ(X))
upper bound on dW (γp, γq), for all holes W ⊂ Y . Since ξ(Y ) < ξ(X) we
may inductively apply Theorem 13.1, for the complex A(Y,∆). Thus
dA(Y,∆)(γp, γq) is bounded by a constant depending only on x, as desired.

17.4. Non-orientable surfaces. Suppose F is a non-orientable, con-
nected, non-simple surface with boundary. Suppose ∆F ⊂ F is a
collection of boundary components. Let S be the orientation double
cover and τ : S → S be the involution so that S/τ = F . Let ∆ be the
preimage of ∆F . Let Aτ (S,∆) be the invariant arc complex.
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Suppose αF and βF are vertices in A(F,∆F ). Let α, β be their
preimages. Without loss of generality, we may assume σF (αF ) and
σF (βF ) fill F . Note σF (αF ) cuts a surface X off of F . The surface X
is either a pants or a twice-holed RP2. When X is a pants we define
α′ ⊂ S to be the preimage of σF (αF ). When X is a twice-holed RP2

we take γF to be a core of one of the two Möbius bands contained in
X and we define α′ to be the preimage of γF ∪ σF (αF ). We define β′

similarly. Notice α and α′ meet in at most four points.
We now use α′ and β′ to build a τ–invariant Teichmüller geodesic.

The construction of the marking path and combinatorial sequence for
Aτ (S,∆) is unchanged. Notice that we may choose combinatorial
vertices because base(µn) is τ–invariant. There is a small annoyance:
when X is a twice-holed RP2 the first vertex, γ0, is disjoint from but
not equal to α. Strictly speaking, the first and last vertices are γ0 and
γN ; our constants are stated in terms of their subsurface projection
distances. However, since α ∩ γ0 = ∅, and the same holds for β, γN ,
their subsurface projection distances are all bounded.

18. Background on train tracks

Here we give the necessary definitions and theorems regarding train
tracks. The standard reference is [38]. See also [36]. We closely follow
the discussion in [33].

18.1. On tracks. A generic train track τ ⊂ S is a smooth, embedded
trivalent graph. As usual we call the vertices switches and the edges
branches. At every switch the tangents of the three branches agree.
Also, there are exactly two incoming branches and one outgoing branch
at each switch. See Figure 8 for the local model of a switch. We require
every region of S − n(τ) to have negative index.

incoming

incoming

outgoing

Figure 8. The local model of a train track.

Let B(τ) be the set of branches. A transverse measure on τ is a
function w : B → R≥0 satisfying the switch conditions: at every switch
the sum of the incoming measures equals the outgoing measure. Let
P (τ) be the projectivization of the cone of transverse measures. As
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discussed in the references, each vertex of P (τ) gives an essential, non-
peripheral curve carried by τ . Let V (τ) be the set of curves determined
by these vertices. Thus V (τ) is a marking in the sense of Section 2.3.
There are only finitely many tracks, up to the action of the mapping
class group. It follows that ι(V (τ)) is uniformly bounded, depending
only on the topological type of S.

If τ and σ are train tracks, and Y ⊂ S is an essential surface, then
define

dY (τ, σ) = dY (V (τ), V (σ)).

We also adopt the notation πY (τ) = πY (V (τ)).
A train track σ is obtained from τ by sliding if σ and τ are related as

in Figure 9. We say that a train track σ is obtained from τ by splitting
if σ and τ are related as in Figure 10.

Figure 9. All slides take place in a small regular neigh-
borhood of the affected branch.

Figure 10. Counter-clockwise from the upper left we
have the track τ and then the right, central, and left
splittings of τ .

Recall the number of tracks is bounded, up to the action of the
mapping class group. So, if σ is obtained from τ by either a slide or a
split then ι(V (τ), V (σ)) is uniformly bounded.

18.2. The marking path. We will use sequences of train tracks to
define our marking path.

Definition 18.1. A sliding and splitting sequence is a collection {τn}Nn=0

of train tracks so that τn+1 is obtained from τn by a slide or a split.
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The sequence {τn} gives a sequence of markings via the map τn 7→
µn = V (τn). Note every vertex of τn+1 has a multiple that is a sum of
vertices of τn. Using this it is an exercise to show the support of µn+1

is contained within the support of µn. Theorem 5.5 from [33] verifies
the remaining half of Axiom 13.3.

Theorem 18.2. Fix a surface S. There is a constant A with the
following property. Suppose {τn}Nn=0 is a sliding and splitting sequence
of birecurrent tracks in S. Suppose Y ⊂ S is an essential surface.
Then the map n 7→ πY (τn), as parameterized by splittings, is an A–
unparameterized quasi-geodesic. �

When Y = S, Theorem 18.2 is essentially due to the first author and
Minsky; see Theorem 1.3 of [32].

In Section 5.2 of [33], for every sliding and splitting sequence {τn}Nn=0

and for any essential subsurface X ( S an accessible interval IX ⊂ [0, N ]
is defined. Axiom 13.4 is now verified by Theorem 5.3 of [33].

18.3. Quasi-geodesics in the marking graph. We will also need
Theorem 6.1 from [33]. (See [20] for closely related work.)

Theorem 18.3. Fix a surface S. There is a constant A with the
following property. Suppose {τn}Nn=0 is a sliding and splitting sequence
of birecurrent tracks, injective on slide subsequences, where µn = V (τn)
fills S, for all n. Then {µn} is an A–quasi-geodesic in the marking
graph. �

19. Paths for the disk complex

Suppose (M,S) is a spotless pair. The goal of this section is to verify
the axioms of Section 13 for the disk complex D(M,S).

19.1. Holes. The fact that all large holes interfere is recorded above
as Lemma 12.13. This verifies Axiom 13.2.

19.2. The combinatorial sequence. Suppose D,E ∈ D(M,S) are
disks contained in a compressible hole X ⊂ S. As usual we may assume
that D and E fill X. Recall that if τ ⊂ X is a train-track then V (τ) is
the set of vertices. We now appeal to a result of the first author and
Minsky, found in [32].

Theorem 19.1. There exists a surgery sequence of disks {Di}Ki=0, a
sliding and splitting sequence of birecurrent tracks {τn}Nn=0, and a rein-
dexing function r : [0, K]→ [0, N ] so that

• D0 = D,
• E ∈ µN ,



THE GEOMETRY OF THE DISK COMPLEX 65

• Di ∩Di+1 = ∅ for all i, and
• ι(∂Di, µr(i)) is uniformly bounded for all i.

Here µn = V (τn). �

Remark 19.2. For the details of the proof we refer to [32, Section 4].
Note that the double-wave curve replacements of that paper are not
needed here; as X is a hole, no curve of ∂X compresses in M . It follows
that consecutive disks in the surgery sequence are disjoint (as opposed
to meeting at most four times). Also, in the terminology of [33], the
disk Di is a wide dual for the track τr(i). Note τn is recurrent because
E is fully carried by τN . Also τn is transversely recurrent because D is
fully dual to τ0.

Thus µn = V (τn) will be our marking path and Di will be our combi-
natorial sequence. Axioms 13.3 and 13.4 were obtained in Section 18.
The requirements of Axiom 13.5 are now verified by Theorem 19.1.

19.3. The replacement axiom. We turn to Axiom 13.6. Suppose
Y ⊂ X is a large hole for D(M,S). Fix an index i so that n = r(i) ∈ JY .
By Axiom 13.4 we have Y ⊂ supp(µn) and also ι(∂Y, µn) is uniformly
bounded. By Axiom 13.5 ι(∂Di, µn) is uniformly bounded. It follows
that there is a constant K depending only on x = ξ(X) so that

ι(∂Di, ∂Y ) < K.

As in Section 11.1 boundary compress Di as much as possible into
X − ∂Y to obtain a disk D′ so that either

• D′ cannot be boundary compressed into X − ∂Y or
• D′ is disjoint from ∂Y .

We arrange matters so that every boundary compression reduces the
intersection with ∂Y by at least a factor of two. Thus

dD(Di, D
′) ≤ log2(K).

Suppose Y is a compressible hole. Lemma 8.4 implies ∂D′ ⊂ Y and
we are done.

Remark 19.3. Note part (1) of Axiom 13.6 cannot be obtained when
Y is an incompressible hole; it is impossible for any disk D ∈ D(M,S)
to have ∂D ⊂ Y . We finesse this issue as follows. Suppose Y is a large
incompressible hole for D(M,S). Let ρF : T → F be the I–bundle given
by Theorem 12.1. Let ∆ ⊂ ∂vT be the collection of annuli that are
boundary parallel into S. Isotope the components of ∆, rel boundary, to
lie in S. Let δ = ρF (∆). We say that a disk E ∈ D(M,X) is contained
in Y if E is ambiently isotopic to a vertical disk inside of T . Note the
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complex of vertical rectangles in T , with vertical boundary in ∆, is
isomorphic to A(F, δ).

We now verify this form of Axiom 13.6. Suppose Y is a large incom-
pressible hole. Let T and ∆ be as given in Remark 19.3. Isotope D′

to minimize intersection with ∂vT . Let Γ = ∂vT −∆. Notice that all
intersections D′ ∩ Γ are essential arcs in Γ. Simple closed curves are
ruled out by the irreducibility of M . Inessential arcs are ruled out by
the fact that D′ cannot be boundary compressed into X − n(∂Y ). Let
B be an outermost bigon of D′ − Γ. Then Lemma 8.7 implies that B is
isotopic in T to a vertical disk.

If B = D′ then we are done. If not then let A ∈ Γ be the vertical
annulus meeting B. Let D′′ = AB be the boundary compression of A
along B. Note D′′ is also vertical in T . Since ι(∂D′′, ∂D′) ≤ K − 2 we
are done.

19.4. Straight intervals. We now check Axiom 13.11. Suppose [p, q] ⊂
[0, K] is a straight interval. Letm,n = r(p), r(q). Recall that dY (µm, µn) <
L2 for all strict subsurfaces Y ⊂ X. We must check that dD(Dp, Dq)≤A
dX(Dp, Dq). Since dD(Dp, Dq) ≤ C2|q− p| it is enough to bound |q− p|.
Note |q − p| ≤ |n−m| because the reindexing map is increasing. So it
is enough to bound |n−m|.

Suppose µn fills X. Then by Theorem 18.3 the path {µ`} is a quasi-
geodesic inM(X). It follows that |n−m|≤AdM(X)(µm, µn). Increasing
A as needed and applying Theorem 4.10 we have

dM(µm, µn)≤A
∑
Y

[dY (µm, µn)]L2

and the right-hand side quasi-bounded by dX(µm, µn) which in turn is
less than dX(Dp, Dq) + 2C2, proving Axiom 13.11 when µn fills X.

If µn does not fill X then define n′ ∈ [m,n] to be the first index so
that µn′ does not fill X. Let q′ be the first index so that r(q′) ∈ [n′, n].
It follows from the straight hypothesis and Lemma 4.7 that ι(∂Dq′ , ∂Dq)
is uniformly bounded. This, with the previous paragraph, verifies
Axiom 13.11.

19.5. Shortcut intervals. Lastly we check Axiom 13.12. Suppose
[i, j] ⊂ [0, K] is electric for X and [p, q] ⊂ [i, j] is a shortcut for Z ⊂ X.
If p is a half-integer there is nothing to prove. Note X is a hole for
D(M,S) while Z is not. Let Y = X − Z.

By hypothesis r([p, q]) ⊂ JZ . Let D,E = Dp, Dq. As in the proof
of the replacement axiom (Section 19.3) there is a uniform bound K
so that ι(∂D, ∂Z) ≤ K. Let D′ the result of maximally boundary
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compressing D into X − ∂Z. Thus dD(D,D′) ≤ log2(K). There is a
similar disk E ′ for E.

If D′ ∩ E ′ = ∅ then we are done. So suppose D′ ∩ E ′ 6= ∅. If Z or
Y is compressible then ∂D′ ∩ ∂Z = ∂E ′ ∩ ∂Z = ∅ by Lemma 11.2. If
both ∂D′ and ∂E ′ are contained in Z then we are done. If not then
both are contained in some component Y ′ of Y . If Y ′ is not a hole for
D(M,S) then, again, we are done. Suppose Y ′ is a hole for D(M,S).
Since ξ(Y ′) < ξ(X) we can apply Theorem 13.1 inductively to D(M,Y ′).
Since [i, j] is electric there is a sufficiently large cut-off c so that all
terms on the right-hand side of the upper bound vanish. Again we are
done.

We are left with the possibility that both Z and Y are incompressible.
It follows that Z is a hole for D(M,X). The shortcut hypothesis gives
dZ(µr(i), µr(j)) ≥ L1(x). It follows that dZ(Di, Dj) is large and so Z
is a large hole for D(M,X). By Theorem 12.1 there is an I–bundle
ρ : T → F so that T ⊂ M , ∂hT ⊂ X, Z is a component of ∂hT , and
some component of ∂vT is parallel into X. As in the proof of the
replacement axiom, there are disks D′′, E ′′ contained in T , vertical in
T and having intersection at most K − 1 with D′, E ′ respectively.

Since Z is not a hole for D(M,S) there is a disk C, disjoint from Z,
compressing S into M . After performing boundary compressions we
may assume that C ∩ T = ∅. Thus C ∩D′′ = C ∩E ′′ = ∅. This verifies
the final axiom, Axiom 13.12.

It follows that the disk complex satisfies both the lower and upper
bounds: Theorems 5.10 and 13.1. This can be restated as follows.

Theorem 19.4. There is a constant C0 = C0(M,S) so that for any
c ≥ C0 there is a constant A with the following property. For any
D,E ∈ D(M,S) we have

dD(D,E) =A

∑
[dX(D,E)]c.

The sum ranges over holes X ⊂ S for the disk complex D(M,S). �

Remark 19.5. In the discussion of the shortcut axiom we had X a
compressible hole for D(M,S) and Z ⊂ X an incompressible hole for
D(M,X) but not a hole for D(M,S). In this situation Theorem 19.4)
implies that the inclusion D(M,X)→ D(M,S) is not a quasi-isometric
embedding.

20. Hyperbolicity

The ideas in this section are related to the notion of “time-ordered
domains” and to the hierarchy machine of [31]. See also Chapters 4
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and 5 of Behrstock’s thesis [1]. As remarked above, we cannot use those
tools directly as the hierarchy machine is too rigid to deal with the disk
complex.

20.1. Hyperbolicity. We prove the following.

Theorem 20.1. Fix G = G(S), a combinatorial complex. Suppose G
satisfies the axioms of Section 13. Then G is Gromov hyperbolic.

As corollaries we have the following.

Theorem 20.2. The arc complex is Gromov hyperbolic. �

Theorem 20.3. The disk complex is Gromov hyperbolic. �

We deduce Theorem 20.1 from the following.

Theorem 20.4. Fix G, a combinatorial complex. Suppose G satisfies
the axioms of Section 13. Then for all A ≥ 1 there exists δ ≥ 0 with
the following property. Suppose T ⊂ G is a triangle of paths where the
projection of any side of T into into any hole is an A–unparameterized
quasi-geodesic. Then T is δ–slim.

Proof of Theorem 20.1. As laid out in Section 14 there is a uniform
constant A so that for any pair α, β ∈ G there is a recursively constructed
path P = {γi} ⊂ G so that

• for any hole X for G, the projection πX(P) is an A–unparameter-
ized quasi-geodesic and
• |P|=A dG(α, β).

So if α ∩ β = ∅ then |P| is uniformly short. Also, by Theorem 20.4,
triangles made of such paths are uniformly slim. Thus, by Theorem 3.11,
the complex G is Gromov hyperbolic. �

The rest of this section is devoted to proving Theorem 20.4.

20.2. Index in a hole. For the following definitions, we assume that
α and β are fixed vertices of G. Suppose a ∈ πX(α) and b ∈ πX(β). Let
k = [a, b] be any geodesic in C(X) connecting a to b. Define ρk : G → k
to be the relation πX |G : G → C(X) followed by taking closest points on
k. By Lemmas 3.5 and 4.4 the diameter of ρk(γ) is uniformly bounded.
So we may simplify our formulas by treating ρk as a function. Define
indexX : G → N to be the index in X: namely

indexX(σ) = dX(α, ρk(σ)).



THE GEOMETRY OF THE DISK COMPLEX 69

Remark 20.5. Suppose k′ is a different geodesic connecting a′ ∈ πX(α)
to b′ ∈ πX(β) and index′X is defined with respect to k′. Then

| indexX(σ)− index′X(σ)| ≤ 17δ + 4

by Lemma 3.7 and Lemma 3.8. Thus, permitting a small additive error,
the index depends only on α and β and not on the choice of geodesic
k. Henceforth we use the notation k = [πX(α), πx(β)] to denote any
geodesic connecting a point of πX(α) to a point of πX(β).

20.3. Back- and side-tracking. Fix σ, τ ∈ G. We say σ precedes τ
by at least K in X if

indexX(σ) +K ≤ indexX(τ).

We say σ precedes τ by at most K if the inequality is reversed. If σ
precedes τ then we also say τ succeeds σ.

Now take P = {σi} to be a path in G connecting α to β. Recall that
we have made the simplifying assumption that σi and σi+1 are disjoint.

We formalize two properties of unparameterized quasi-geodesics. The
path P back-tracks at most K if for every hole X and all indices i < j
we find that σj precedes σi by at most K. The path P side-tracks at
most K if for every hole X and every index i we find that

dX(σi, ρk(σi)) ≤ K

where k = [πX(α), πx(β)].

Remark 20.6. Note that if P has bounded side-tracking then one may
freely use in calculations whichever of σi or ρk(σi) is more convenient.

20.4. Projection control. Two domains X, Y ⊂ S overlap if ∂X cuts
Y and ∂Y cuts X. The following lemma, due to Behrstock [1, 4.2.1], is
closely related to the notion of time ordered domains [31]. An elementary
proof is given in [29, Lemma 2.5].

Lemma 20.7. There is a constant M1 = M1(S) with the following
property. Suppose X, Y are overlapping non-simple domains. If γ ∈
AC(S) cuts both X and Y then either dX(γ, ∂Y ) < M1 or dY (∂X, γ) <
M1. �

We also require a more specialized version for the case where X is
nested in Y . The proof is an exercise in the application of the bounded
geodesic theorem (4.6). Recall that M0 is the constant given in that
theorem.

Lemma 20.8. Suppose X ⊂ Y are nested non-simple domains. Fix
α, β, γ ∈ AC(S) that all cut X. Let k = [πY (α), πY (β)]. Assume that
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dX(α, β) ≥M0. We have

indexY (∂X)− 4 ≤ indexY (γ)

if dX(α, γ) ≥M0, and

indexY (γ) ≤ indexY (∂X) + 4

if dX(γ, β) ≥M0. �

20.5. Finding the midpoint of a side. Fix A ≥ 1. Let P ,Q,R be
the sides of a triangle in G with vertices at α, β, γ. We assume that each
of P , Q, and R are A–unparameterized quasi-geodesics when projected
to any hole.

Recall that M0 = M0(S) and M1 = M1(S) depend only on ξ(S). We
may assume that if T ⊂ S is an essential subsurface, then M0(T ) <
M0(S).

Choose K1 ≥ max{M0, 4M1, 8} + 8δ sufficiently large so that any
A–unparameterized quasi-geodesic in C(X), for X a hole, back- and
side-tracks at most K1.

Claim 20.9. If σi precedes γ in X and σj succeeds γ in Y , both by at
least 2K1, then i < j.

Proof. To begin, as X and Y are holes and all holes interfere, we need
not consider the possibility that X ∩ Y = ∅. If X = Y deduce

indexX(σi) + 2K1 ≤ indexX(γ) ≤ indexX(σj)− 2K1.

Thus indexX(σi) + 4K1 ≤ indexX(σj). Since P back-tracks at most K1

we have i < j, as desired.
Suppose instead X ⊂ Y . Since σi precedes γ in X deduce dX(α, β) ≥

2K1 ≥ M0 and dX(α, γ) ≥ 2K1 − 2δ ≥ M0. Apply Lemma 20.8 to
deduce indexY (∂X)−4 ≤ indexY (γ). Since σj succeeds γ in Y it follows
that indexY (∂X) − 4 + 2K1 ≤ indexY (σj). Again using the fact that
σi precedes γ in X we have that dX(σi, β) ≥ M0. We deduce from
Lemma 20.8 that indexY (σi) ≤ indexY (∂X) + 4. Thus

indexY (σi)− 8 + 2K1 ≤ indexY (σj).

Since P back-tracks at most K1 in Y we again deduce that i < j. The
case where Y ⊂ X is similar.

Suppose now that X and Y overlap. Applying Lemma 20.7 and
breaking symmetry, we may assume that dX(γ, ∂Y ) < M1. Since
σi precedes γ we have indexX(γ) ≥ 2K1. Lemma 3.7 now implies
indexX(∂Y ) ≥ 2K1 −M1 − 6δ. Thus,

dX(α, ∂Y ) ≥ 2K1 −M1 − 8δ ≥M1

where the first inequality follows from Lemma 3.4.
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Applying Lemma 20.7, deduce dY (α, ∂X) < M1. Now, since σj
succeeds γ in Y , we find indexY (σj) ≥ 2K1. So Lemma 3.4 implies
dY (α, σj) ≥ 2K1 − 2δ. The triangle inequality now gives

dY (∂X, σj) ≥ 2K1 −M1 − 2δ ≥M1.

Applying Lemma 20.7, deduce dX(∂Y, σj) < M1. Thus dX(γ, σj) ≤ 2M1.
Finally, Lemma 3.7 implies the difference in index (in X) between σi
and σj is at least 2K1 − 2M1 − 6δ. Since this is greater than the
back-tracking constant, K1, it follows that i < j. �

Let σα ∈ P be the last vertex of P with the following property: there
exists a hole where σα precedes γ by at least 2K1. If no such vertex of
P exists then take σα = α.

Claim 20.10. For every hole X, if h = [πX(α), πX(β)] then

dX(σα, ρh(γ)) ≤ 3K1 + 6δ + 3.

Proof. Since σi and σi+1 are disjoint we have dX(σi, σi+1) ≤ 3 and so
Lemma 3.7 implies

| indexX(σi+1)− indexX(σi)| ≤ 6δ + 3.

Since P is a path connecting α to β the image ρh(P) is 6δ + 3–dense
in h. Thus, if indexX(σα) + 2K1 + 6δ + 3 < indexX(γ) then we have a
contradiction to the definition of σα.

On the other hand, if indexX(σα) ≥ indexX(γ)+2K1 then σα succeeds
γ in X and σα precedes γ in some hole. This directly contradicts
Claim 20.9.

We deduce that the difference in index between σα and γ in X is at
most 2K1 + 6δ + 3. Finally, as P side-tracks by at most K1 we have

dX(σα, ρh(γ)) ≤ 3K1 + 6δ + 3

as desired. �

We define σβ to be the first σi to succeed γ by at least 2K1 — if no
such vertex of P exists take σβ = β. If α = β then σα = σβ. Otherwise,
from Claim 20.9, we immediately deduce that σα comes before σβ in P .
A symmetric version of Claim 20.10 applies to σβ: for every hole X

dX(ρh(γ), σβ) ≤ 3K1 + 6δ + 3.

20.6. Another side of the triangle. Recall we are also given a path
R = {τi} connecting α to γ in G. As before, R has bounded back- and
side-tracking. Thus we again find vertices τα and τγ the last/first to
precede/succeed β by at least 2K1. Again, this is defined in terms of
the closest points projection of β to the geodesic h = [πX(α), πX(γ)].
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By Claim 20.10, for every hole X the vertices τα and τγ are close to
ρh(β).

By Lemma 3.6, if k = [πX(α), πX(β)], then dX(ρk(γ), ρh(β)) ≤ 6δ.
We deduce the following.

Claim 20.11. dX(σα, τα) ≤ 6K1 + 18δ + 6. �

This claim and Claim 20.10 imply the body of the triangle PQR has
bounded size. We now show that the legs are slim.

Claim 20.12. There is a constant N2 = N2(S) with the following
property. For every σi ≤ σα in P there is a τj ≤ τα in R so that

dX(σi, τj) ≤ N2

for every hole X.

Proof. We only sketch the proof, as the details are similar to our previous
discussion. Fix σi ≤ σα.

Suppose first that no vertex of R precedes σi by more than 2K1

in any hole. So fix a hole X and geodesics k = [πX(α), πX(β)] and
h = [πX(α), πX(γ)]. Then ρh(σi) is within distance 2K1 of πX(α).
Appealing to Claim 20.11, bounded side-tracking, and hyperbolicity of
C(X) we find that the initial segments

[πX(α), ρk(σα)] ⊂ k and [πX(α), ρh(τα)] ⊂ h

must fellow travel. Because of bounded back-tracking along P, ρk(σi)
lies on, or at least near, this initial segment of k. Thus by Lemma 3.8
ρh(σi) is close to ρk(σi) which in turn is close to πX(σi), because P has
bounded side-tracking. In short, dX(α, σi) is bounded for all holes X.
Thus we may take τj = τ0 = α and we are done.

Now suppose that some vertex of R precedes σi by at least 2K1 in
some hole X. Take τj to be the last such vertex in R. Following the
proof of Claim 20.9 shows that τj comes before τα in R. The argument
now required to bound dX(σi, τj) is essentially identical to the proof of
Claim 20.10. �

By the distance estimate, we find that there is a uniform neighborhood
of [σ0, σα] ⊂ P , taken in G, which contains [τ0, τα] ⊂ R. Thus PQR is
slim. This completes the proof of Theorem 20.4. �

21. Coarsely computing Hempel distance

We now turn to our topological application. Recall that a Heegaard
splitting is a triple (S, V,W ) consisting of a surface and two handlebodies
where V ∩W = ∂V = ∂W = S. Hempel [25] defines the quantity

dS(V,W ) = min
{
dS(D,E) |D ∈ D(V ), E ∈ D(W )

}
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and calls it the distance of the splitting. Note a splitting can be
completely determined by giving a pair of cut systems: simplices D ⊂
D(V ) and E ⊂ D(W ) where the corresponding disks cut the containing
handlebody into a single three-ball. The triple (S,D,E) is a Heegaard
diagram. The goal of this section is to prove the following.

Theorem 21.1. There is a constant R1 = R1(S) and an algorithm
that, given a Heegaard diagram (S,D,E), computes a number N so that

|dS(V,W )−N | ≤ R1.

Let ρV : C(S)→ D(V ) be the closest points relation: so

ρV (α) =
{
D ∈ D(V ) | for all E ∈ D(V ), dS(α,D) ≤ dS(α,E)

}
.

It suffices to show the following.

Theorem 21.2. There is a constant R0 = R0(V ) and an algorithm
that, given an essential curve α ⊂ S and a cut system D ⊂ D(V ), finds
a disk C ∈ D(V ) so that

dS(C, ρV (α)) ≤ R0.

Proof of Theorem 21.1. Suppose (S,D,E) is a Heegaard diagram. Us-
ing Theorem 21.2 we find a disk D within distance R0 of ρV (E). Again
using Theorem 21.2 we find a disk E within distance R0 of ρW (D).
Notice that E is defined using D and not the cut system D.

Computing distance between fixed vertices in the curve complex is
algorithmic [28, 46]; thus we may compute dS(D,E). By the hyperbol-
icity of C(S) (Theorem 3.2) and by the quasi-convexity of the disk set
(Theorem 4.9) this is the desired estimate, N . �

Very briefly, the algorithm asked for in Theorem 21.2 searches an
R2–neighborhood in M(S) about a splitting sequence from D to α.
Here are the details.

Algorithm 21.3. We are given α ∈ C(S) and a cut system D ⊂ D(V ).
Make D and α tight. Following [32, Section 4] there is a one-switch
track τ in S = ∂V obtained by collapsing α. The cut system D is dual
to τ and also crosses the sole switch of τ . Now make τ a generic track
by combing away from D [38, Proposition 1.4.1]. Note that α is carried
by τ and so gives a transverse measure w.

Build a splitting sequence of measured tracks {τp}Np=0 where τ0 = τ ,
τN = α, and τp+1 is obtained by splitting the largest branch of τp (as
determined by the measure imposed by α).

Let µp = V (τp) be the vertices of τp. For each filling marking µp
list all markings in the ball B(µp, R2) ⊂ M(S), where R2 is given by
Lemma 21.5 below. (If µ0 does not fill S then output D and halt.)
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For every marking µ so produced we use Whitehead’s algorithm (21.4)
to try and find a disk meeting some curve γ ∈ µ at most twice. For
every disk C found compute dS(α,C) [28, 46]. Finally, output any
disk D which minimizes this distance, among all disks considered, and
halt. �

We use the following form of Whitehead’s algorithm [3].

Lemma 21.4. There is an algorithm that, given a cut system D ⊂
V and a curve γ ⊂ S, outputs a disk C ⊂ V so that ι(γ, ∂C) =
min{ι(γ, ∂E) | E ∈ D(V )}. �

We now discuss the constant R2. First notice that the track τp is
transversely recurrent; this is because α is fully carried and D is fully
dual. Thus by Theorem 18.2 and by Morse stability, for any essential
Y ⊂ S there is a stability constant M2 for the path p 7→ πY (µp). Let δ
be the hyperbolicity constant for C(S) (Theorem 3.2) and let Q be the
quasi-convexity constant for D(V ) ⊂ C(S) (Theorem 4.9).

Since ι(D, µ0) is bounded we will, at the cost of an additive error,
identify their images in C(S). For the purposes of the proof, for every
p ∈ [0, N ] fix Ep ∈ ρV (µp). In particular, fix E0 inside of D. (Note
the disks Ep are not necessarily encountered during the running of
Algorithm 21.3.)

Lemma 21.5. There is a constant R2 with the following property.
Suppose that n < m, that dS(µn, En), dS(µm, Em) ≤M2+δ+Q, and that
dS(µn, µm) ≥ 2(M2 +δ+Q)+5. Then there is a marking ν ∈ B(µn, R2)
and a curve γ ∈ ν so that either

• γ bounds a disk in V ,
• γ ⊂ ∂Z, where Z is a non-hole or
• γ ⊂ ∂Z, where Z is a large hole.

Proof of Lemma 21.5. Choose points σ, σ′ in the ε–thick part of T (S)
so that all curves of µn have bounded length in σ and so that En
has length less than the Margulis constant in σ′. As in Section 15
there is a Teichmüller geodesic and associated markings {νk}Kk=0 so that
dM(ν0, µn) is bounded and En ∈ base(νK).

Claim. There is a constant R3 so that for any small hole X we have
dX(µn, νK) < R3.

Proof. If dX(µn, νK) ≤M0 then we are done. If the distance is greater
than M0 then Theorem 4.6 gives a vertex of the C(S)–geodesic connect-
ing µn to En with distance at most one from ∂X. It follows from the
triangle inequality that every vertex of the C(S)–geodesic connecting
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µm to Em cuts X. Thus the bounded geodesic image theorem (4.6)
implies

dX(µm, Em) < M0.

Note dX(µ0, E0) is bounded by construction. Since X is a small hole the
distance dX(Ep, Eq) is uniformly bounded for any p, q ∈ [0,m]. Since
p 7→ πX(µp) is a unparameterized quasi-geodesic we deduce dX(µp, Eq)
is uniformly bounded for all p, q ∈ [0,m].

Since ι(En, νK) = 2 the distance dX(En, νK) is bounded. By the
triangle inequality

dX(µn, νK) ≤ dX(µn, En) + dX(En, νK)

and the claim is proved. �

Now consider all strict subsurfaces Y so that

dY (µn, νK) ≥ R3.

None of these are small holes, by the claim above. If there are no
such surfaces then Theorem 4.10 bounds dM(µn, νK): taking the cutoff
constant larger than

max{R3, C0,M2 + δ +Q}

ensures that all terms on the right-hand side vanish. In this case the
additive error in Theorem 4.10 is the desired constant R2 and the lemma
is proved.

If there are such surfaces then choose one, say Z, that minimizes
` = min JZ . Thus dY (µn, ν`) < C1 for all strict non-holes and all
strict large holes. Since dS(µn, En) ≤ M2 + δ + Q and {νm} is an
unparameterized quasi-geodesic [41, Theorem 6.1] we find that dS(µn, ν`)
is uniformly bounded. The claim above bounds distances in small holes.
As before we find a sufficiently large cutoff so that all terms on the
right-hand side of Theorem 4.10 vanish. Again the additive error of
Theorem 4.10 provides the constant R2. Since ∂Z ⊂ base(ν`) the proof
of Lemma 21.5 is finished. �

To prove the correctness of Algorithm 21.3 it suffices to show that
the disk produced is close to ρV (α). Let m be the largest index so that
for all p ≤ m we have

dS(µp, Ep) ≤M2 + δ +Q.

Using the stability of p 7→ πS(µp), the hyperbolicity of C(S) and the
quasi-convexity of D(V ) deduce µm+1 lies within distance M2 + δ
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of some vertex v ∈ [α, ρV (α)]. The remark after Lemma 13.13 im-
plies dS(µp, µp+1) ≤ C5 for all p. By the definition of ρV we have
dS(v, ρV (α)) ≤ dS(v, Em); deduce

dS(µm, ρV (α)) ≤ 2C5 + 3M2 + 3δ +Q.

Let n < m be the largest index so that

2(M2 + δ +Q) + 5 ≤ dS(µn, µm) ≤ 2(M2 + δ +Q) + 5 + C5.

If no such n exists then take n = 0. Lemma 21.5 implies that there is a
disk C with dS(C, µn) ≤ C5R2 + C5 + 2 and this disk is found during
the running of Algorithm 21.3. It follows from the above inequalities
that

dS(C, α) ≤ C5R2 + 5M2 + 5δ + 3Q+ 7 + 4C5 + dS(ρV (α), α).

So the disk D, output by the algorithm, is at least this close to α in
C(S). Using the triangle with vertices α, ρV (α) and D it is an exercise
to show

dS(D, ρV (α)) ≤ C5R2 + 5M2 + 9δ + 5Q+ 7 + 4C5.

This completes the proof of Theorem 21.2. �
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[20] Ursula Hamenstädt. Geometry of the mapping class groups. I. Boundary
amenability. Invent. Math., 175(3):545–609, 2009, arXiv:math/0510116v4. [63]

[21] Kevin Hartshorn. Heegaard splittings of Haken manifolds have bounded distance.
Pacific J. Math., 204(1):61–75, 2002. http://msp.berkeley.edu/pjm/2002/204-
1/p05.xhtml. [31]

[22] Willam J. Harvey. Boundary structure of the modular group. In Riemann
surfaces and related topics: Proceedings of the 1978 Stony Brook Conference
(State Univ. New York, Stony Brook, N.Y., 1978), pages 245–251, Princeton,
N.J., 1981. Princeton Univ. Press. [5]

[23] A. Hatcher and W. Thurston. A presentation for the mapping class group of a
closed orientable surface. Topology, 19(3):221–237, 1980. [14]

[24] John Hempel. 3-Manifolds. Princeton University Press, Princeton, N. J., 1976.
Ann. of Math. Studies, No. 86. [18]

[25] John Hempel. 3-manifolds as viewed from the curve complex. Topology,
40(3):631–657, 2001, arXiv:math/9712220v1. [3, 5, 72]

[26] John Hamal Hubbard. Teichmüller theory and applications to geometry, topology,
and dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006. Teichmüller theory,
With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain
Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra, With
forewords by William Thurston and Clifford Earle. [52]

http://arxiv.org/abs/math/0404445v2
http://arxiv.org/abs/math/0109048v2
http://arxiv.org/abs/math/0510136v1
http://arxiv.org/abs/math/9311201v1
http://arxiv.org/abs/math/0010123v1
http://arxiv.org/abs/math/0510116v4
http://msp.berkeley.edu/pjm/2002/204-1/p05.xhtml
http://msp.berkeley.edu/pjm/2002/204-1/p05.xhtml
http://arxiv.org/abs/math/9712220v1


78 HOWARD MASUR AND SAUL SCHLEIMER

[27] Tsuyoshi Kobayashi. Heights of simple loops and pseudo-Anosov homeomor-
phisms. In Braids (Santa Cruz, CA, 1986), pages 327–338. Amer. Math. Soc.,
Providence, RI, 1988. [6, 12, 31]

[28] Jason Leasure. Geodesics in the complex of curves of a surface. Ph.D. thesis.
http://repositories.lib.utexas.edu/bitstream/handle/2152/1700/leasurejp46295.pdf.
[73]

[29] Johanna Mangahas. Uniform uniform exponential growth of subgroups
of the mapping class group. Geom. Funct. Anal., 19(5):1468–1480, 2010,
arXiv:0805.0133v5. [69]

[30] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I.
Hyperbolicity. Invent. Math., 138(1):103–149, 1999, arXiv:math/9804098v2. [3,
6, 9]

[31] Howard A. Masur and Yair N. Minsky. Geometry of the complex of
curves. II. Hierarchical structure. Geom. Funct. Anal., 10(4):902–974, 2000,
arXiv:math/9807150v1. [3, 4, 6, 7, 12, 13, 14, 16, 41, 54, 67, 69]

[32] Howard A. Masur and Yair N. Minsky. Quasiconvexity in the curve complex. In
In the tradition of Ahlfors and Bers, III, volume 355 of Contemp. Math., pages
309–320. Amer. Math. Soc., Providence, RI, 2004, arXiv:math/0307083v1. [3,
4, 13, 63, 64, 73]

[33] Howard A. Masur, Lee Mosher, and Saul Schleimer. On train track splitting
sequences. arXiv:1004.4564v1. [3, 4, 61, 63, 64]

[34] Darryl McCullough. Virtually geometrically finite mapping class groups of
3-manifolds. J. Differential Geom., 33(1):1–65, 1991. [8]

[35] Yair Minsky. The classification of Kleinian surface groups. I. Models and bounds.
Ann. of Math. (2), 171(1):1–107, 2010, arXiv:math/0302208v3. [12]

[36] Lee Mosher. Train track expansions of measured foliations. 2003.
http://newark.rutgers.edu/∼mosher/. [61]

[37] Subhashis Nag. The complex analytic theory of Teichmüller spaces. Canadian
Mathematical Society Series of Monographs and Advanced Texts. John Wiley
& Sons Inc., New York, 1988. A Wiley-Interscience Publication. [52]

[38] R. C. Penner and J. L. Harer. Combinatorics of train tracks, volume 125 of
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,
1992. [61, 73]

[39] Robert C. Penner. A construction of pseudo-Anosov homeomorphisms. Trans.
Amer. Math. Soc., 310(1):179–197, 1988. [6]

[40] Kasra Rafi. A combinatorial model for the Teichmüller metric. Geom. Funct.
Anal., 17(3):936–959, 2007, arXiv:math/0509584v1. [55]

[41] Kasra Rafi. Hyperbolicity in Teichmüller space. November 2010,
arXiv:1011.6004. [3, 4, 54, 55, 59, 75]

[42] Kasra Rafi and Saul Schleimer. Covers and the curve complex. Geom. Topol.,
13(4):2141–2162, 2009, arXiv:math/0701719v2. [41, 45]

[43] Dale Rolfsen. Knots and links. Publish or Perish Inc., Houston, TX, 1990.
Corrected revision of the 1976 original. [18]

[44] Martin Scharlemann. The complex of curves on nonorientable surfaces. J.
London Math. Soc. (2), 25(1):171–184, 1982. [6]

[45] Saul Schleimer. Notes on the complex of curves.
http://www.warwick.ac.uk/ masgar/Maths/notes.pdf. [5]

http://repositories.lib.utexas.edu/bitstream/handle/2152/1700/leasurejp46295.pdf
http://repositories.lib.utexas.edu/bitstream/handle/2152/1700/leasurejp46295.pdf
http://arxiv.org/abs/0805.0133v5
http://arxiv.org/abs/math/9804098v2
http://arxiv.org/abs/math/9807150v1
http://arxiv.org/abs/math/0307083v1
http://arxiv.org/abs/1004.4564v1
http://arxiv.org/abs/math/0302208v3
http://newark.rutgers.edu/~mosher/
http://arxiv.org/abs/math/0509584v1
http://arxiv.org/abs/1011.6004
http://arxiv.org/abs/math/0701719v2
http://www.warwick.ac.uk/~masgar/Maths/notes.pdf


THE GEOMETRY OF THE DISK COMPLEX 79

[46] Kenneth J. Shackleton. Tightness and computing distances in the curve complex,
arXiv:math/0412078v3. [73]

[47] William P. Thurston. On the geometry and dynamics of diffeomorphisms of
surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417–431, 1988. [6, 24, 58]

[48] Friedhelm Waldhausen. Some problems on 3-manifolds. In Algebraic and geo-
metric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif.,
1976), Part 2, Proc. Sympos. Pure Math., XXXII, pages 313–322. Amer. Math.
Soc., Providence, R.I., 1978. [2]

[49] Heiner Zieschang. On Heegaard diagrams of 3-manifolds. Astérisque, (163-
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