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This is joint work with Howard Masur.
The graph of curves of a surface S has as its vertex set all isotopy

classes of simple closed essential, nonperipheral curves in S. Two dis-
tinct vertices are connected by an edge if the classes in question have
disjoint representatives. This graph C(S) (or rather, its clique complex)
was introduced by Harvey [2] and has been used to study the mapping
class group [7], Kleinian groups [9], and Heegaard splittings [4].

There is a veritable zoo of similar objects: A(S) the graph of arcs [1],
Sep(S) the separating curve complex, the Hatcher-Thurston complex,
the pants complex [3], and so on. Let G(S) be any of these. The vertices
are all isotopy classes of multi-curves in S, and the edges of G(S) are
the relation “small geometric intersection,” typically disjointness. All
edges are given length one. We wish to study the coarse properties of
the resulting metric space. The model theorem in this direction is due
to Masur and Minsky [6]:

Theorem 1. The graph of curves is Gromov hyperbolic.

Following [7] or [5], if X is an essential subsurface of S then any of the
above graphs admits a “cut-and-paste” map to C(X) as follows: Pick α
a vertex of G(S). Isotope α to intersect X tightly. Pick any component
of α ∩X. This gives an arc α′ in X. Let α′′ be any nonperipheral (in
X) component of the boundary of a neighborhood of α′ ∪ ∂X. Then
α′′ is a subsurface projection of the vertex α to X and we have a coarse
map πX : G(S) → C(X). If every vertex of G(S) meets X nontrivially
then the subsurface projection is everywhere defined. In this case we
call X a hole for G(S).

From Lemma 2.3 of [7] it is straight-forward to show:

Lemma 2. For any G(S) there is a constant K > 0 so that subsurface
projection to any hole is K-Lipschitz.

It is then easy to deduce:
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Corollary 3. Suppose G(S) admits an action by the mapping class
group and X and Y are disjoint holes. Then G(S) is not Gromov
hyperbolic.

It is a pleasant exercise to classify the holes for any of the standard
examples given above. In particular one finds examples where all holes
intersect. It is natural to conjecture a converse to Corollary 3:

Conjecture 4. Suppose that G(S) admits an action by the mapping
class group and any pair of holes X and Y intersect. Then G(S) is
Gromov hyperbolic.

A crucial step in proving the conjecture for any fixed G(S) would be
to verify the distance estimate:

Conjecture 5. The sum
∑′ dX(α, β) is within uniform multiplicative

and additive error of the distance between α and β in G(S).

Here the summation ranges over all holes X for G(S). The quantity
dX(α, β) equals the distance between πX(α) and πX(β) in C(X). The
“prime” on the summation indicates that all summands less than cer-
tain size are omitted.

We have verified the distance estimate and hyperbolicity for the arc
complex. The techniques required are essentially contained in the two
papers [6] and [7].

It is much more difficult to obtain the two conjectures for the graph
of disks, D(Vg), defined by McCullough [8]. This graph has as vertex
set all proper isotopy classes of essential disks in a genus g handlebody
Vg. As usual the edges come from disjointness. As work-in-progress
we have classified the holes for D(V ) using the techniques of Masur
and Minsky, Jaco-Shalen-Johannson theory, and an analysis of which
surfaces admit pseudo-Anosov maps.

Suppose now that ∂V is identified with S. Then there is a relation-
ship between D(V ) and C(S). The former is included in the latter by
the natural boundary map. In fact a pair of handlebodies V and W ,
both glued to S, specifies a three-manifold with Heegaard splitting sur-
face S. Hempel [4] then defines the distance of S to be dS(V,W ): the
minimal distance in C(S) between the subgraphs D(V ) and D(W ). As
an application of the classification of holes we obtain:

Algorithm 6. Fix a genus g. There is a constant K and an algo-
rithm which, given a Heegaard diagram (S,D,E), computes the distance
dS(V,W ) up to an additive error of at most K.
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