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CHAPTER 1

The mapping class group and the complex of
curves

1. Introduction

These notes began as an accompaniment to a series of lectures I gave
at Caltech, January 2005. The lectures were first an exposition of two
papers of Masur and Minsky, [32] and [33] and second a presentation
of work-in-progress with Howard Masur.

I give references to various articles and books in the course of the
notes. There are also a collection of exercises: these range in difficulty
from the straight-forward to quite difficult. For the latter I sometimes
give a hint in Appendix A, if I in fact know how to solve the problem!

I thank Jason Behrstock, Jeff Brock, Ken Bromberg, Moon Duchin,
Chris Leininger, Feng Luo, Joseph Maher, Dan Margalit, Yair Minsky,
Hossein Namazi, Kasra Rafi, Peter Storm, and Karen Vogtmann for
many enlightening conversations. I further thank Jason Behrstock for
pointing out a collection of errors in a previous version of Section 7 of
Chapter 2. I thank Adele Jackson for pointing out a mistake in one of
the exercises.

These notes should not be considered a finished work; please do
email me with any corrections or other improvements.

2. Basic definitions

There are many detailed discussions of the mapping class group in
the literature: perhaps Birman’s book [4] and Ivanov’s [24] are the best
known.

Before we introduce the mapping class group of a surface, let’s
recall a few basic notions. A surface S is a two-dimensional manifold.
Unless otherwise noted, we assume that our surfaces are compact and
connected. Typically we shall also require that S be orientable, with
non-orientable surfaces relegated to the exercises. Recall that the disk
is the surface {z ∈ C | |z| ≤ 1} and the annulus is the surface S1× [0, 1],
circle cross interval.

Suppose S is a surface. A curve α ⊂ S is an embedded copy of
the circle S1. We say α is separating if S − α (S cut along α) has two
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4 1. THE MAPPING CLASS GROUP AND THE COMPLEX OF CURVES

components. Otherwise α is nonseparating. We say α is essential if
no component of S − α is a disk. We say α is non-peripheral if no
component of S − α is an annulus. Virtually all curves discussed are
assumed to be essential and non-peripheral.

See Figure 1.

Figure 1. Three nonseparating curves and one separat-
ing curve in the genus two surface, S2.

An arc α in S is the image of the unit interval I under a proper
embedding. An arc α is essential if no component of S − α has closure
being a disk. (If S is an annulus, then we redefine essential arcs to be
those proper arcs meeting both boundary components.) Of course, a
closed surface contains no essential arcs. See Figure 2.

Figure 2. A separating curve and a few essential arcs
in the twice-holed torus, S1,2.

The (geometric) intersection number of two curves or arcs α and
β is ι(α, β): the minimal possible number of intersections between α
and β′ where β′ is any curve or arc properly isotopic to β. Note that
the intersection number between two curves or arcs is realized exactly
when S − (α ∪ β) contains no bigons and no boundary triangles. Here
a bigon is a disk meeting α and β in exactly one subarc each while a
boundary triangle is a disk meeting α, β, and ∂S in one subarc each.
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Exercise 1.1. Suppose that α, β are essential curves in a compact
connected surface S. Suppose that β′ is isotopic to β with |α ∩ β′| =
ι(α, β) > 0. Then there is an isotopy βt of β = β1 to β′ = β0 so that
|α ∩ βs| ≤ |α ∩ βt| for all s, t satisfying 0 ≤ s ≤ t ≤ 1.

Exercise 1.2. Suppose that α, β are any curves in a compact
connected surface S. Suppose that α and β meet once, transversely.
Prove that ι(α, β) = 1.

Now suppose that ι(α, β) > 0. Prove that both α and β are essential
and non-peripheral.

The genus of a surface S, denoted g(S), is the minimal number
of disjoint essential non-peripheral curves required to cut S into a
connected planar surface. So the torus T2 = S1

∼= S1 × S1 has genus
one and the connect sum of g copies of the torus has genus g.

As a bit of notation we will use Sg,b,c to denote a compact connected
surface of genus g with b boundary components and c cross-caps. The
classification of surfaces tells us that every surface is homeomorphic to
one of these. Typically we take Sg,b = Sg,b,0. Also, if b = 0 we simply
write Sg. We define the complexity of orientable S to be ξ(Sg,b) =
3g + b− 3.

An essential subsurface X in S is an embedded connected surface
where every component of ∂X is contained in ∂S or is essential in S.
We do not allow boundary parallel annuli to be essential subsurfaces.

Exercise 1.3. Classify all pairs (g, b) so that Sg,b contains no
essential non-peripheral curves. We will call these the simple surfaces.

Exercise 1.4. Classify all pairs (g, b) so that in Sg,b every pair of
essential non-peripheral curves, which are not isotopic, intersect. We
will call these the sporadic surfaces.

Exercise 1.5. Fix a surface S. Prove that for any pair of non-
separating curves in S there is a homeomorphism throwing one onto
the other. How many kinds of separating curve are there in Sg,b, up to
homeomorphism?

3. The mapping class group

We now spend a bit of time discussing homeomorphisms of surfaces.
Before we begin, it is nice to have a few simple examples. So here
is a concrete construction of a surface together with accompanying
homeomorphism.

Let Γ be a finite, polygonal, connected graph in R3 and let h : R3 →
R3 be an isometry sending Γ to itself. Then we can obtain a closed
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surface S by taking the boundary of the closed ε neighborhood of
Γ, S = ∂Nε(Γ). The restriction of the isometry, h|S, is a surface
homeomorphism. If Γ is not homeomorphic to an interval then h is
necessarily of finite order. For example, see Figure 3.

Figure 3. The θ-graph gives some symmetries of S2.

Exercise 1.6. Find a finite order homeomorphism of S2, the closed
genus two surface, which cannot be obtained in this fashion.

Here is another nice construction: Recall that the torus S1 can be
obtained as the quotient of the plane R2/Z2, where Z2 acts on the
plane by (n,m) · (x, y) = (x+ n, y +m). Consider now the orientation
preserving linear maps of the plane sending the integer lattice to itself,
SL(2,Z).

Exercise 1.7. Classify all finite order elements of SL(2,Z) up to
conjugacy. Thought of as finite order homeomorphisms of S1, which
elements are induced as symmetries of a graph in R3?

A B

CD

A

BC

D

Figure 4. An order four map of the torus.

There are three possibilities for elements A ∈ SL(2,Z):

• periodic: the trace of A is less than 2 in absolute value,
• reducible: the trace equals ±2,
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• Anosov : the trace is greater than 2 in absolute value.

Exercise 1.8. You have probably already shown above that periodic
elements have finite order. Show that every reducible element leaves a
parallel family of circles in S1 invariant and fixes pointwise exactly one
of these (disregarding the identity and multiplying by − Id if necessary).

Of even more interest are the Anosov elements. Here the matrix A
has two distinct real eigenvalues λ+ = λ > 1 and λ− = 1/λ. The lines
parallel to the eigenspaces for A foliate the plane in two different ways.

Call these foliations F̃±. These descend to the torus to give transverse
foliations F±. We may further endow each of these foliations with
transverse measures µ± as follows: for any arc α in the torus choose a

lift α̃. Let µ+(α̃) be the distance between the two lines of F̃+ which
meet the endpoints of α̃. We could use the two transverse measures
to determine a new Euclidean metric on S1, with respect to which the
Anosov element acts in a fairly standard way – it preserves the foliations
F±, stretching F+ (shrinking F−) in the tangential direction. That is,
A preserves the triple (S1,F±) and rescales the transverse measures µ±

by a factor of λ±.

Exercise 1.9. Verify the claims of the above paragraph. Give an

accurate picture of F± for the map induced by A =

(
2 1
1 1

)
, as shown

in Figure 5.

A B

CD

A

B

C

D

Figure 5. The action of A on the plane. Check that
this descends to act on the torus.

Let us leave these examples and return to our general theme. Sup-
pose that f is a homeomorphism of S. The mapping class [f ] is the
proper isotopy class of f . We omit the brackets when they are clear
from context.

Note that the mapping classes form a group, the mapping class
group MCG(S).
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Exercise 1.10. Show that the composition of mapping classes is
well defined.

Following Thurston we call a mapping class [f ]

• periodic: if [f ] is finite order,
• reducible: if some representative f ′ ∈ [f ] permutes a collection

of disjoint, non-parallel, essential, non-peripheral curves (up to
isotopy).
• pseudo-Anosov : if there are a pair of transverse, singular, mea-

sured foliations F and G, a number λ > 1, and a representative
f ′ ∈ [f ] so that f ′(F) = F/λ and f ′(G) = λG.

Instead of giving a precise definition of a singular foliation, here is a
collection of examples: an Anosov map of the torus S1 gives a foliation
and lifting by a branched cover Sg → S1 gives a singular foliation in Sg.
If the branched cover is chosen carefully the Anosov map will lift to a
pseudo-Anosov map on Sg.

Here is an equivalent characterization of pseudo-Anosov maps:
f : S → S is pseudo-Anosov if and only if for every essential non-
peripheral curve α the geometric intersection number ι(α, fn(α)) grows
without bound. As a hint of the proof of the equivalence: any such
curve under iteration by f comes closer and closer to being “parallel” to
the stable foliation, F . See Casson and Bleiler [9] or Fathi, Laudenbach,
and Poénaru [14] for a detailed discussion.

Exercise 1.11. Convince yourself that it is somewhat ok to ignore
the difference between a homeomorphism and its mapping class by
proving: if [f ] is reducible then there is a f ′ ∈ [f ] which permutes the
given collection of essential non-peripheral curves, on the nose. (For
the much more ambitious reader: prove that if [f ] is periodic then there
is a f ′ ∈ [f ] which is finite order.)

We have already shown that the reducible elements of SL(2,Z)
are also reducible in this new sense. Here is a much more general
set of examples: fix attention on a properly embedded curve α in
an oriented surface S and let N = N(α) ∼= S1 × [0, 1] be a closed
annular neighborhood. (The homeomorphism is chosen so that the
product orientation agrees with the given orientation on S.) Define the
positive Dehn twist τα : S → S by setting τα|S − N = Id and setting
τα(θ, r) = (θ + 2πr, r).

Exercise 1.12. If α bounds a disk, then τα is isotopic to the identity.

Exercise 1.13. The surface S need not be orientable to define a
positive Dehn twist. It suffices that the neighborhood N = N(α) be
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Figure 6. Twisting along the vertical curve transforms
the horizontal one. As the twist is positive, the horizontal
curve “turns left.”

homeomorphic to an oriented annulus. (Prove that you cannot twist
about the core of a Möbius band.) Such curves are called two-sided. If
α ⊂ S bounds a Möbius band then α is certainly two-sided. Prove that
if α bounds a Möbius band then τα is isotopic to the identity.

Performing Dehn twists on a collection of disjoint curves gives the
basic examples of reducible maps.

Exercise 1.14. Suppose that α and β are curves in S with ι(α, β) =
1. Show that τατβτα = τβτατβ as mapping classes – this is called the
braid relation. Once you’ve done this, it should be easy to show that
(τατβ)6 = τγ as mapping classes, where γ is the boundary of a closed
regular neighborhood of α ∪ β.

Exercise 1.15. Prove that MCG(S1) ∼= SL(2,Z).

Exercise 1.16. Note that it is possible for a periodic mapping to
be reducible. Find one in MCG(S2) which is not.

Generalizing the notion of a Dehn twist is what we will call a
partial map: chose an essential subsurface X ⊂ S and a mapping class
f : X → X. Choose a representative f ′ ∈ f so that f ′|∂X = Id and
extend f ′ by the identity map on S−X. Then the extension is a partial
map. We say X contains the support of the partial map.

Remark 1.17. More formally, for any pair of disjoint essential sub-
surfaces X, Y ⊂ S there is a fairly natural mapMCG(X)×MCG(Y )→
MCG(S). (We are ignoring issues regarding Dehn twists about curves
parallel to boundary components of X and Y .) Other relations between
mapping class groups may be found in Birman’s book [4].

We finish this section by stating a major milestone in both the study
of surface dynamics and of three-manifolds:
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Theorem 1.18 (Thurston [43]). Every mapping class is periodic,
reducible, or pseudo-Anosov.

4. The complex of curves

We now come to the main object of interest for these notes. The
complex of curves was first defined by Harvey [19], who was studying
the Teichmüller spaces of Riemann surfaces. More recently, Minsky
began to investigate three-manifolds via the geometric structure of the
curve complex. I will follow Masur and Minsky’s treatment in [32]
and [33].

Fix attention on a non-sporadic surface, S. Define a simplicial
complex C(S) as follows: for vertices we take isotopy classes of essential
non-peripheral curves in S. A collection of k + 1 vertices {αi}k0 form a
k-simplex whenever the αi can be realized by disjoint curves in S.

Exercise 1.19. Show that top dimensional simplices in C(S) have
ξ(S) many vertices. (This is one explanation of the definition of ξ(S).)

Exercise 1.20. Show that C(S0,5) and C(S1,2) are isomorphic as
simplicial complexes. Do the same for C(S0,6) and C(S2,0). Show that
C(S0,6) and C(S1,3) are not isomorphic.

To simplify our discussion, and to continue to follow [32] closely, we
generally restrict attention to the one-skeleton of C(S).

Let dS(α, β) denote the minimal number of edges in any edge path
in C1(S) starting at α and ending at β. For this to be well-defined we
must show that C1(S) is connected. In fact we can show quite a bit
more:

Lemma 1.21. Fix S a compact, connected surface which is not
simple. Suppose that α and β are curves with ι(α, β) 6= 0. Then

dS(α, β) ≤ 2 log2(ι(α, β)) + 2.

This form of the inequality may be found as Lemma 2.1 in Hempel’s
paper [22].

Remark 1.22. The proof relies on the idea of curve surgery – given
α and β we can form many other curves by taking the union of various
arcs of α− β with arcs of β − α.

Remark 1.23. The lemma implies that C(S) is connected. The
connectedness of C(S) was naturally first observed by Harvey [19]
(see his Proposition 2). Harvey cites Lickorish [30] for the inductive
argument, which is an essential step in the proof that the mapping
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class group is finitely generated. Our proof of Lemma 1.21 follows
Lickorish [29] – even the diagrams are the same.

It can be argued that the key ideas to prove connectedness first
appeared in Dehn’s work. However his surgery arguments appear to be
much more complicated. See Stillwell’s notes in [13].

Proof of Lemma 1.21. Suppose that S is not simple. We also
suppose that S is orientable and not sporadic. The other cases are
left as Exercises 1.25 and 1.31. Suppose that α and β are essential,
non-peripheral curves in S with positive geometric intersection number.

We begin with the following observation: Suppose that X ⊂ S is an
essential subsurface and X is a once-holed torus or four-holed sphere.
Suppose further that α and β are contained in X with intersection
number one (if X ∼= S1,1) or two (if X ∼= S0,4). Then dS(α, β) = 2. To
see this, note that if X is a strict subsurface then there is a boundary
component of X which will serve. If X = S then this follows from the
definition of C(S), which is a copy of the Farey graph.

We now no longer assume that α and β are contained in a low
complexity surface.

Exercise 1.24. Verify that the conclusion of the lemma holds when
ι(α, β) ≤ 3.

Suppose now that ι(α, β) = n > 2. Isotope β to realize this inter-
section number. Orient α.

We have two cases. Suppose first that there are two intersections
points x, y ∈ α ∩ β, consecutive along β, with the following property:
Let γ be the subarc of β with ∂γ = {x, y} = γ ∩ α. Then the tangents
to α at x and y agree, up to parallel translation along γ. See the left
side of Figure 7.

x

y

α

β

α′

α′′

Figure 7. A neighborhood of the union α ∪ γ is an
essential once-holed torus. The curves α, α′, α′′ span a
Farey triangle in this subsurface.
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Let δ′ and δ′′ be subarcs of α so that δ′∩ δ′′ = {x, y} and δ′∪ δ′′ = α.
Form the simple closed curves α′ and α′′ by isotoping γ ∪ δ′ and γ ∪ δ′′
slightly, into general position. See the right side of Figure 7.

Thus ι(α′, β) + ι(α′′, β) ≤ ι(α, β). Since α′ and α′′ intersect once
transversely by Exercise 1.2 the curves are essential and non-peripheral.
The observation above proves that dS(α, α′) and dS(α, α′′) are each
equal to two. Finally, one of α′ or α′′ has intersection number with β
at most half as large as α does and the induction is complete.

We now turn to the second case. Suppose now that there are three
consecutive intersection points x, y, and z with the following property:
Let γ be the subarc of β containing y with endpoints ∂γ = {x, z}. Then
the tangents to α at x and z agree, and that at y disagrees, after parallel
translation along γ. See the left side of Figure 8.

x

y

z α

β

α′

α′′

Figure 8. A neighborhood of the union α ∪ γ is an
essential four-holed sphere. The curves α, α′, α′′ span a
Farey triangle in this subsurface.

Up to relabeling, symmetry, and reorienting α we may suppose that
the three arcs of α− {x, y, z} have endpoints {x, y}, {y, z}, {z, x} and
induced orientations pointing away from the first point in each case.
Surger α as shown in the right side of Figure 8 to obtain α′ and α′′. The
observation above proves that dS(α, α′) and dS(α, α′′) are each equal to
two.

We find that, as above, ι(α′, β) + ι(α′′, β) ≤ ι(α, β). Now, the
intersection number of any two of α, α′, α′′ is exactly two. If the geo-
metric intersection number of any two of them is zero (it cannot be
one) then there is a bigon in the picture. This bigon can be used to
reduce the intersection number of α and β, an impossibility. Thus
ι(α, α′) = ι(α′, α′′) = ι(α′′, α) = 2 and again, by Exercise 1.2, the curves
α′ and α′′ are essential and non-peripheral. The observation above
proves that dS(α, α′) and dS(α, α′′) are each equal to two. Finally, one
of α′ or α′′ has intersection number with β at most half as large as α
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does and the induction is again complete. This completes the proof of
the lemma.

Exercise 1.25. Generalize to the case where S is non-orientable.

Note that Lemma 1.21 is not sharp: there are curves α and β with
dS(α, β) = 2 but with ι(α, β) as large as desired.

Exercise 1.26. Find such pairs.

However, it is also true that Lemma 1.21 cannot be improved in an
obvious way. For example, if α is any essential non-peripheral curve
and f : S → S is any pseudo-Anosov mapping then dS(α, fn(α)) grows
linearly with n while ι(α, fn(α)) grows exponentially. As a reference for
the first fact, see Theorem 2.27 below. As for the second, see Casson
and Bleiler [9].

Here is another standard interpretation of curves at high distance in
C(S). Suppose that dS(α, β) ≥ 3. Then the pair of curves α and β fill
the surface S: any other curve γ meets either α or β. It follows that
S − (α∪ β) is a collection of disks and annuli, with exactly one annulus
containing each component of ∂S.

Exercise 1.27. Give explicit examples of a pair of curves at distance
exactly 3 in C(S2). Can you find an explicit pair of curves with distance
exactly 4?

Another result which we should mention, on the global topology of
C(S), is Harer’s theorem: the curve complex is homotopy equivalent
to a wedge of infinitely many spheres, all of the same dimension. See
Ivanov’s article (Theorem 3.3.A of [25]) for a more complete statement.
The relevant paper of Harer’s is [18].

Exercise 1.28. Find spheres in C(S0,5) and in C(S2). Can you
prove that these are not contractible?

5. A trip to the zoo: the Farey graph

Here we fill the gap left by the fact that C(S) has no edges when S
is a sporadic, non-simple surface. That is, when S is either S1, S1,1, or
S0,4.

The Farey graph F has vertex set the set of isotopy classes of
essential non-peripheral curves in S1. A collection of k+ 1 vertices span
a k–simplex if all of the curves pairwise meet exactly once.

Exercise 1.29. Prove that any top dimensional simplex in F is a
triangle.
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1/0

0/1

1/1−1/1

2/1

1/2

2/3

Figure 9. A terrible picture of a small part of the Farey
graph. Exercise: draw a better picture. Some of the

vertices are labeled via the corresponding elements of Q̂.
Here p/q represents the curve of corresponding slope on
the torus.

Note that the Farey graph is also the “curve complex” for the
surfaces S1,1 and S0,4. For the former no change in the definition is
necessary. For the latter we take vertices to be essential non-peripheral
curves in S0,4 and take an edge between any pair that meets exactly
twice.

Exercise 1.30. Prove this. The fact that S0,4 and S1,1 both cover
the orbifold S2(2, 2, 2,∞) may be useful.

We denote distance in the Farey graph by dF(·, ·).

Exercise 1.31. Prove that dF(α, β) ≤ log2(ι(α, β)) + 1 for curves
in S1 or S1,1 while dF(α, β) ≤ log2(ι(α, β)) for curves in S0,4.

6. A trip to the zoo: the annulus and the pants

When S ∼= S0,2 the standard definition of C(S) has no edges or
vertices. It is important to fill this gap — we will need the “curve”
complex of the annulus to help keep track of Dehn twists. We note
that we do not need to invent a curve complex for the pants S0,3: any
mapping class on S0,3 is a product of twists on the boundary, and these
are recorded by the curve complex of the corresponding annuli.

Fix A = S1× I. Let C(A) be the complex where vertices are isotopy
classes of spanning arcs, via isotopies fixing the boundary pointwise.
Two vertices are connected by an edge if the isotopy classes have disjoint
representatives.
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Exercise 1.32. Check that C(A) is quasi-isometric to R. See
Section 3 of CoarseGeometry for definitions.
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CHAPTER 2

Coarse geometry

1. Basic definitions

In this part of the notes we will recall a number of definitions from
metric and coarse metric geometry. A wonderful but difficult introduc-
tory paper in the topic is Gromov’s article on hyperbolic groups [16].
A more readable introduction is the book by Coornaert, Delzant, and
Papadopoulos [12].

Let (X , dX ) be a metric space. Recall that a path in X from x to y
is a continuous map P : [a, b]→ X from the interval [a, b] ⊂ R so that
P (a) = x and P (b) = y. Also, P is a geodesic if dX (P (a′), P (b′)) =
|b′−a′| for all a′, b′ ∈ [a, b]. We say X is a geodesic metric space if every
pair of points of X is connected by a geodesic. We denote a geodesic
connecting x to y by [x, y] when the parameterization and image may
safely be forgotten.

We now have an important definition:

Definition 2.1. The metric space X is Gromov hyperbolic (or
δ-hyperbolic or simply hyperbolic) with constant δ ≥ 0 if, for every
geodesic triangle xyz the closed δ neighborhood of the two sides [x, y]
and [y, z] contains the third side [z, x].

Exercise 2.2. Prove that there are points c ∈ [x, y], a ∈ [y, z], b ∈
[z, x] so that dX (a, b) and dX (b, c) are at most δ. (Note the asymmetry.)

Loosely speaking, Gromov hyperbolicity says that geodesic triangles
in the space X are “slim.” This (plus great deal of work) has many
applications to the study of infinite groups. For example, if the Cayley
graph of a finitely presented group is hyperbolic then Dehn’s word
problem is solvable in that group.

Exercise 2.3. Show that a tree (for example, a graph without
loops) is hyperbolic with constant δ = 0. Show that any metric space
with bounded diameter is hyperbolic for some constant δ. Show that
R2 is not hyperbolic for any constant. It follows that Rn and hence Zn
(for n > 1) are not Gromov hyperbolic.

We may now state:

17
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Theorem 2.4 (Masur and Minsky [32]). The curve complex C(S)
is hyperbolic.

We cannot even sketch the proof here. Instead we refer the reader to
their original paper, or to Bowditch’s version [5]. As just a hint we note
that their proof finds, for any pair of vertices α and β, a “good” path
between them. They then go on to show that closest point projection
of C(S) to one of these paths greatly contracts distance. This in turn
implies hyperbolicity.

2. Boundaries

Here we recall the definition of the Gromov boundary of a hyperbolic
metric space. In the following, fix (X , dX ) a δ-hyperbolic metric space.
Pick ω ∈ X a basepoint. Define the Gromov product of x and y in X
to be:

(x · y) = (x · y)ω =
1

2
(dX (x, ω) + dX (y, ω)− dX (x, y)).

Roughly speaking, this is the distance between the basepoint ω and
a geodesic connecting x to y. Put another way, fix geodesics P and Q
connecting ω to x and y. The Gromov product measures how long P
and Q fellow-travel.

Exercise 2.5. Justify the first remark by proving, if x, y, ω ∈ X
and R = [x, y] is a geodesic from x to y, then dX (ω,R)− 4δ ≤ (x · y) ≤
dX (ω,R).

Exercise 2.6. Here is a sort of triangle inequality: For all x, y, z, ω ∈
X we have:

(x · y) ≥ min{(x · z), (z · y)} − 5δ.

(In fact, this condition is equivalent to hyperbolicity. For the details
see [7], page 411.) It is trivial to deduce:

(x · y) ≥ min{(x · z), (z · w), (w · y)} − 10δ.

We say that a sequence {xi}i∈N converges at infinity if limi,j→∞(xi ·
xj) =∞. Sequences {xi} and {yi} converging at infinity are equivalent
if limi,j→∞(xi · yj) =∞. Finally, define ∂∞X , the Gromov boundary of
X to be the set of these equivalence classes.

Exercise 2.7. Check that these notions are independent of the
choice of basepoint ω. Check that equivalence is an equivalence relation.

Exercise 2.8. Prove that if X has bounded diameter then ∂∞X is
empty.
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It is also possible to give a metric on ∂∞X , but the construction is
delicate and also basepoint-dependent. See the book of Ghys and de la
Harpe [15] or that of Bridson and Haefliger ([7], pages 429-437). We
will content ourselves with giving a topology on ∂∞X .

Fix points X and Y in ∂∞X . Extend the Gromov product to ∂∞X
by taking:

(X · Y ) = inf{lim inf
i,j→∞

(xi · yj) | {xi} ∈ X, {yj} ∈ Y }.

We say that a sequence {Xn} ⊂ ∂X converges to X if limn→∞(Xn ·X) =
∞.

Exercise 2.9. Check that convergence is independent of our choice
of basepoint, ω.

In using inf{lim inf} in the definition we are following several authors:
for example [12] and [2]. Others, such as [7] and [15], use sup{lim inf}
instead.

Exercise 2.10. Does it make any difference? What if we used
inf{lim sup} or sup{lim sup} instead? Prove, for example, if {xi} and
{yj} converge to distinct points on the boundary then there is an N ∈ N
so that the set {(xi · yj) | i, j ≥ N} has diameter less than 10δ. (Hint:
use the “rectangle inequality” of Exercise 2.6.)

The next exercise is taken from Remark 3.17 (page 432) of [7]:

Exercise 2.11. The extended Gromov product is similar to a
metric:

• (X · Y ) =∞ if and only if X = Y .
• (X · Y ) = (Y ·X).
• (X · Y ) ≥ min{(X · Z), (Z · Y )} − 10δ.

Here is a useful bit of analysis:

Exercise 2.12. Prove the Cauchy criterion: {Xn} ⊂ ∂∞X con-
verges if and only if for all M ∈ N there is an N ∈ N where m,n ≥ N
implies that (Xm ·Xn) ≥M .

Before attempting the curve complex, perhaps it would be wise to
consider a few examples:

Exercise 2.13. Show that the boundary of the three-valent tree,
∂∞T3, is a Cantor set and so is compact. Prove that ∂∞T∞ is not
compact. (This last can be done directly or by using the Cauchy
criterion.)

Exercise 2.14. Prove ∂∞C(S) is not compact.
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We may now state an important theorem of Klarreich [27]:

Theorem 2.15. The boundary at infinity of C(S) is homeomorphic
to EL(S), the space of ending laminations.

We only sketch the definition of EL(S) – we refer the reader to
Kapovich’s book [26] for details about laminations and foliations. Let
PML(S) be the space of projectively measured laminations on S. Let
∆ ⊂ PML(S) be the set of all laminations that contain a closed leaf or
that are disjoint from an essential, non-peripheral simple closed curve.
Then EL(S) is the quotient of PMF(S)−∆ by forgetting the measures,
remembering only the topological equivalence class.

As a companion to Theorem 2.15 there is an outstanding question
of Peter Storm:

Question 2.16. Is the boundary of the curve complex, ∂∞C(S),
connected?

Of course, for F = C(S1,1) = C(S0,4) the answer is “no”. However, as
the complexity ξ(S) grows perhaps ∂∞C(S) becomes highly connected...
See Chapter 5 for a related discussion.

3. Quasi-isometric embeddings

We now turn to another branch of Gromov’s program of “coarse
geometry.”

A function f : X → Y is a (K,E) quasi-isometric embedding for
K ≥ 1, E ≥ 0 if, for every x, y ∈ X , we have

1

K
(dX (x, y)− E) ≤ dY(x′, y′) ≤ K · dX (x, y) + E

where x′ = f(x) and y′ = f(y). If, in addition, f is E-dense (an
E neighborhood of f(X ) equals all of Y) then we say that f is a
quasi-isometry and that X is quasi-isometric to Y. We note that a
quasi-isometry need not be continuous.

(As a bit of notation, if r, s ∈ R and 1
K

(r − E) ≤ s ≤ K · r + E

then we write r
K,E
= s. We also call r and s quasi-equal with constants

(K,E) if this occurs.)
By now you have the hang of things: coarsen your favorite met-

ric concept by replacing exact measurements by measurements with
bounded multiplicative and additive error (and by sticking a “quasi” in
front of the word).

Given a space X we can ask:

• Which more familiar space is X quasi-isometric to?
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• What is the group of quasi-isometries of X to itself (up to the
equivalence relation that f ∼ g if g−1f moves all points at most
a bounded amount)?
• What other invariants of X can we compute? (Such as the

Gromov boundary, size and growth of metric balls, metrically
interesting subspaces...)

Exercise 2.17. Show that Z with the standard metric is quasi-
isometric to R. Recall that Tk is regular k-valent tree. So T2 is isometric
to R. Show that T3 is quasi-isometric to T4. (In fact T3 is quasi-isometric
to Tk for any k > 2.) However, T3 is not quasi-isometric to T∞, the
regular tree of countably infinite valence. (Some care must be taken
here: the natural CW structure on T∞ is not metrizable.)

Exercise 2.18. Prove that T∞ is quasi-isometric to F , the Farey
graph.

Exercise 2.19. Show that R2 with the metric d1(x, y) = |x1 −
y1| + |x2 − y2| is quasi-isometric to R2 with the metric d2(x, y) =√

(x1 − y1)2 + (x2 − y2)2. In fact the additive error E may be taken to
be zero and so the two metrics are bi-Lipschitz.

Exercise 2.20. Show that Gromov hyperbolicity is a quasi-isometry
invariant : if f : X → Y is a quasi-isometry, and X is δ hyperbolic, then
Y is δ′ hyperbolic. Nonetheless, one can show that T3 is not quasi-
isometric to Hn, the hyperbolic space of dimension n > 0. A model for
Hn is the upper-half space {(x1, x2, . . . , xn) ∈ Rn | xn > 0} with metric
ds
xn

where ds is the standard L2 line element for Rn. Find instead an

explicit quasi-isometric embedding f : T3 → H2.

Exercise 2.21. Give an example of a quasi-isometric embedding
h : X → X which is not a quasi-isometry for any choice of constants.

Exercise 2.22. Suppose that h : X → Y is a quasi-isometric em-
bedding between Gromov hyperbolic spaces. Define a natural map
∂h : ∂∞X → ∂∞Y and prove that ∂h is injective and continuous.

Exercise 2.23. Suppose that X is a Gromov hyperbolic space and
∂∞X is totally disconnected. Show, by means of an example, that X
need not be quasi-isometric to a tree. What if X admits a co-compact
isometric group action?

Exercise 2.24. Show that if n 6= m then Rn is not quasi-isometric
to Rm. (Hint: show that Zn is not quasi-isometric to Zm by counting
the number of points in a ball of radius R.)
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We define a (K,E) quasi-geodesic L in X to be a (K,E) quasi-
isometric embedding of a closed connected subset of R.

Exercise 2.25. Given (K,E) classify all possible images of (K,E)
quasi-geodesics in T3, the three-valent tree.

4. Action of the mapping class group

Suppose now that f : X → X is an isometry : f is onto and, for any
x, y ∈ X , we have dX (x, y) = dX (f(x), f(y)). An orbit O(x) of f is the
set {fn(x) | n ∈ Z}.

We say f is:

• elliptic if every orbit of f is bounded,
• hyperbolic if every orbit of f is a quasi-isometric embedding of Z

(and thus is a quasi-geodesic), or
• parabolic if f is neither elliptic nor hyperbolic.

Note that quasi-isometries fall into the same classification.

Exercise 2.26. Show that any isometry of T3 is elliptic or hyperbolic.
This is not the case for H2.

We now have:

Theorem 2.27 (Masur and Minsky [32]). Periodic and reducible
elements of MCG(S) act elliptically on C(S). Pseudo-Anosov elements
act hyperbolically. (Also, Dehn twists act hyperbolically on C(S0,2).)

As a consequence we have:

Corollary 2.28. The curve complex C(S) has infinite diameter.

Remark 2.29. Masur and Minsky [32] also present a more direct
proof of Corollary 2.28 which is due to Luo, adapting an argument of
Kobayashi [28]. Here is a brief sketch – we refer the reader to Kapovich’s
book [26] for details about foliations: Choose F a uniquely ergodic
minimal foliation and let αi be a sequence of curves which converge to
F as projectively measured foliations. If all of these curves are distance
at most M from some curve β we can choose sequences {βji }Mj=0 so that

• β0
i = β,

• βMi = αi, and
• βji ∩ β

j+1
i = ∅.

We now take subsequences with respect to the j index to find a collection
{βji }Mj=0 with all of the above properties and in addition the sequence

{βji }∞i=0 converges to a projective measured foliation Fi. Using the
fact that F is minimal and uniquely ergodic we can deduce that F =
FM−1 = FM−2 = . . . = F0 = β, a contradiction.
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5. Subsurface projections

We now turn to one of the most important definitions used by
Masur and Minsky in their study of the curve complex. There are two
definitions commonly given. The first is more concrete, but the second
generalizes correctly to annuli. We will give both.

5.1. Cutting up curves. Suppose that X is an essential non-
simple subsurface of S. Define the subsurface projection πX : C(S)→
C(X), as follows: fix attention on α ∈ C(S) and isotope α to minimize
the number of connected components of α ∩X. Now,

• if α ⊂ X then set πX(α) = α,
• if ι(α, ∂X) > 0 then pick any arc α′ ⊂ α ∩ X, set N equal to

a closed neighborhood of α′ ∪ ∂X, and set πX(α) equal to any
component α′′ of ∂N which is essential and non-peripheral in X,
or
• if α ⊂ S −X set πX(α) = ∅.
In the first two cases we say that α cuts X. In the last case we say

α misses X. So, properly speaking, πX is defined only on those vertices
of C(S) which cut X. We extend πX to a disjoint collection of curves
in the obvious way.

5.2. Lifting curves. We now turn to the second definition. Fix
a hyperbolic metric on S. Suppose that X is an essential non-pants
subsurface of S. Redefine the subsurface projection πX : C(S)→ C(X),
as follows: fix attention on a curve α. Straighten α to be a geodesic.

Let α̃ be the collection of lifts of α to X̃, the cover of S corresponding

to the subgroup π1(X). Compactify X̃ by adding its Gromov boundary
and take the closure of α̃ in the resulting surface, which we identify
with X.

• if α̃ is a single curve, not peripheral in X, then take πX(α) = α,
or
• if X is not an annulus and if α̃ contains arcs essential in X

then pick any one of them, say α′ ⊂ α̃, set N equal to a closed
neighborhood of α′ ∪ ∂X, and set πX(α) equal to any component
α′′ of ∂N which is essential and non-peripheral in X, or
• if X is an annulus and if α̃ contains spanning arcs essential in X

then pick any one of them, say α′ ⊂ α̃, to be πX(α), or
• if all components of α̃ are parallel into the boundary set πX(α) =
∅.

This definition is a bit more technical, but is required to deal with
the annulus case.
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For either definition we could take πX to be set-valued to avoid
losing information. As it turns out, such care will not be necessary.
Also, as a bit of notation we write dX(α, β) for dX(πX(α), πX(β)) when
πX(α) and πX(β)) are not the empty set.

5.3. Consequences.

Lemma 2.30. Suppose that X is an essential non-pants subsurface
of S, α and β both cut X, and dS(α, β) = 1. Then dX(α, β) ≤ 6.

Proof. This follows from the fact that ι(πX(α), πX(β)) ≤ 4 and
from Lemma 1.21. (When X is sporadic we will need the version of
Lemma 1.21 provided by Exercise 1.31. When X is an annulus the
bound improves from 6 to 1.)

Lemma 2.31. Suppose that g = {α0, α1, . . . , αn} is a path in C(S).
Suppose that every αi cuts X, a non-pants essential surface in S. Then
dX(α0, αn) ≤ 6n.

This has a useful generalization:

Corollary 2.32. For every a ∈ N there is a number b ∈ N with the
following property: Suppose that g = (α0, α1, . . . , αn) is a sequence of
vertices in C(S) each of which cuts X and where ι(αi, αi+1) ≤ a. Then
dX(α0, αn) ≤ b · n.

6. An example of curves at distance four

We are now equipped to give a fairly explicit example of a pair of
curves at distance four.

Let S be the five-holed sphere S0,5. Choose disjoint arcs δ0, δ1, δ2 in
S connecting pairs of distinct boundary components so that δ0 and δ2

share exactly one boundary component, and δ1 shares none. Let αi be
the essential non-peripheral boundary component of a closed regular
neighborhood of δi ∪ ∂S. See Figure 1. Note that {α0, α1, α2} is a
geodesic of length two in C(S).

Note that α2 cuts S into P , a pair of pants, and X2, a four-holed
sphere. Choose f a partial pseudo-Anosov supported in X2 and raise
it to a large enough power, say fn, so that dX(α0, f

n(α0)) ≥ 25. This
is possible by Theorem 2.27. (As C(X2) = F is the Farey graph the
map f and the power n can be made explicit.) Let α3 = fn(α1) and let
α4 = fn(α0).

Claim. The curves α0 and α4 have distance exactly four in C(S).

Note that dS(α0, α4) ≤ 4 as the αi gives a path of length exactly
four. It is also clear that any path from α0 to α4 passing through α2 has
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α0

α1

α2

Figure 1. The curve α2 separates the bottom two bound-
ary components from the top three.

length at least four. Suppose then that we have a path g = {βj}m0 in
C(S) from α0 = β0 to α4 = βm which does not pass through α2 (no βj
equals α2). It follows that every βj cuts the four-holed sphere X2. We
apply Lemma 2.31 to find that 25 ≤ dX(α0, α4) = dX(β0, βm) =≤ 6m.
Thus m > 4 and we have proved that dS(α0, α4) = 4.

Exercise 2.33. Make the vague parts of this construction concrete.
You will need to investigate how MCG(S0,4) acts on the Farey graph
F . Can you find the smallest possible intersection number between two
curves in S0,5 which are at distance four in C(S0,5)? Lemma 1.21 does
not give a very good lower bound... (Perhaps you need at least sixteen
intersection points?)

Remark 2.34. The construction above underlines the similarity
between the action of a partial map on C(S) and the action of a rotation
on R2. The partial map f “rotates” all of C(S) about the non-peripheral
boundary of X2, the support of f .

Remark 2.35. It is also interesting to note the combinatorial nature
of C(S). Despite the fact that C(S) is locally infinite, in the above
construction any not-too-long path from α0 to α4 must go through α2,
and not merely travel close to α2.

Remark 2.36. The above techniques also give another way to think
about Corollary 2.28: Let X4 ⊂ S be the four-holed sphere component
of S − α4. We can find a conjugate of f supported in X4, take a large
power of it (twice as large as before), and apply it to α0. This produces
α8 which is at distance eight from α0. Proceeding in similar fashion
constructs a geodesic segment of any desired length.

Again, this chain of thought can be summarized by:
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Lemma 2.31. Suppose that g = {α0, α1, . . . , αn} is a path in C(S).
Suppose that every αi cuts X, a non-pants essential surface in S. Then
dX(α0, αn) ≤ 6n.

Lemma 2.31 works for any path in C. If we instead have a geodesic,
the conclusion becomes much stronger:

Theorem 2.37 (Theorem 3.1 of Masur and Minsky [33]). Suppose
that g = {α0, α1, . . . , αn} is a geodesic in C(S). Suppose that every αi
cuts X, a non-pants essential surface in S. Then dX(α0, αn) ≤ M1,
with M1 a constant depending only on ξ(S).

The point here is that, if we restrict our attention to geodesics, the
size of the projection of the endpoints need only be sufficiently large
(bigger than M). The projection does not need to be as long as the
geodesic itself to ensure that the path meets the link of the boundary
of X.

Again, we only hint at the proof: it relies on finding a sequence of
singular Euclidean metrics on S (based on the geodesic g) and examining
how these restrict to the subsurface X.

Equipped with Theorem 2.37 or Lemma 2.31 we may now deduce

Proposition 2.38. Suppose that S is not simple. Then ∂∞C(S) is
not sequentially compact.

Exercise 2.39. Using the exercises above prove the proposition for
sporadic S (that is, prove that ∂∞F is not compact).

Exercise 2.40. Prove the proposition when ξ(S) ≥ 2.

We end this section with an example of Hempel’s (Summer 2005,
Technion), shown in Figure 2.

7. A trip to the zoo: separating and nonseparating curves

7.1. Definitions. Define Nonsep(S) to be the subcomplex of C(S)
spanned by the vertices which are nonseparating curves. In general
Nonsep(S) is non-empty and connected.

Exercise 2.41. Give the list of orientable compact surfaces so
that Nonsep(S) is either empty or is not connected. (Caution: the
connectedness proof is less trivial when ∂S is non-empty.)

To simplify our discussion, for the moment, we restrict our attention
to closed surfaces.

Exercise 2.42. Prove, as long as g ≥ 2, that the natural inclusion
of Nonsep(Sg) into C(Sg) is an isometric embedding and induces a
quasi-isometry of the two spaces.
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0
0

α β

Figure 2. The sides of the rectangle are glued as shown.
The two circles are glued by a reflection followed by 4/25
of a rotation to make the marked points agree. The
result is a closed genus two surface. The circles become a
simple closed curve α and the light lines close up to give
β. Hempel claims that d(α, β) = 4.

Thus, in these cases, we deduce that Nonsep(S) is not especially
interesting – or at least is nothing new. Define now Sep(S) to be the
subcomplex of C(S) spanned by the vertices which are separating curves.
In general Sep(S) is non-empty and connected.

Exercise 2.43. Prove that when g ≥ 3 the complex Sep(Sg) is in
fact connected. (As a hint: straightforward curve surgery can’t work,
as it may produce non-separating curves. Think instead about doing a
pair of curve surgeries. For a solution see [31].)

7.2. Sep(S) is not quasi-isometrically embedded. Again fix
g ≥ 3 and S = Sg. Let ν : Sep(S)→ C(S) be the natural inclusion.

Claim 2.44. The map ν : Sep(S)→ C(S) is not a quasi-isometric
embedding.

Proof. Fix attention on a nonseparating curve α ⊂ S. Let X =
S −N(α) be the complement of a neighborhood of α. Note that every
separating curve in S cuts X.

Now, for any n ∈ N we may choose β and β′ in X which are
separating in S and so that dX(β, β′) is greater than 6n (use a partial
pseudo-Anosov supported in X). Note that dS(β, β′) = 2.

On the other hand, suppose that g = {βi}m0 is a path from β to β′

in Sep(S). Then we may apply Lemma 2.31 to find that m ≥ n. That
is, dSep(β, β′) ≥ n.
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So vertices at arbitrarily large distance in Sep(S) are reduced to
distance two by the map ν. So ν is not a quasi-isometric embedding.

Exercise 2.45. Suppose that g ≥ 3. Show that Sep(Sg) is not
Gromov hyperbolic by finding a quasi-isometric embedding of Z2.

7.3. Bizarre, irregular behavior. As we perhaps now expect,
when S has low genus or boundary the complexes Nonsep(S) and
Sep(S) display exceptional behavior. Please note that this section is
not referenced by the rest of the text and may safely be ignored. Note
also that this material was written to correct an significant error, kindly
brought to my attention by Jason Behrstock, in a previous version of
these notes.

We have the following exercise:

Exercise 2.46. If S is planar then Nonsep(S) is empty. If S = S1,b

then Nonsep(S) is nonempty, but is not connected. If S = Sg,b where
g ≥ 2 and b is arbitrary, then Nonsep(S) is connected. However, if
b ≥ 2 then Nonsep(S) is not quasi-isometrically embedded in C(S).

Fix S = S1,b with b ≥ 2. Then Nonsep(S) is the first example we
have seen where the complex does contain edges, but is not connected.
As with C(S1) and with C(S1,1), it is tempting to add edges between
curves which intersect exactly once. After doing so there is again a
fairly natural inclusion of Nonsep(S) into C(S) (send the center of
an edge between intersecting curves to the boundary of the regular
neighborhood of the union of the curves). Again, this is not a quasi-
isometric embedding: for example, all S1,1 subsurfaces are obstructions.

The complex of separating curves also has exceptional behavior in
the bounded case.

Exercise 2.47. As above, if S = S0,4 then Sep(S) is disconnected.
If S = S1 or S1,1 then Nonsep(S) is empty. If S is any one of the
surfaces S1,2, S2, or S2,1 then Sep(S) is nonempty, but is not connected.
If S = Sg,b where g ≥ 2 and b ≥ 2, then Sep(S) is connected. The
argument of Claim 2.44 shows that ν : Sep(S) → C(S) is not a quasi-
isometric embedding.

As above, we can add edges to Sep(S0,4) between curves that meet
exactly twice, obtaining the Farey graph. This naturally suggests how
to add edges to the complex of separating curves for other surfaces.
That is, for S being any one of the surfaces S1,2, S2, or S2,1 add edges
between curves that meet exactly four times.

Exercise 2.48. Suppose S is one of S1,2, S2, or S2,1. With this new
definition of Sep(S), is Sep(S) connected?
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Exercise 2.49. Determine the dimension of a maximal simplex in
Sep(S2). It is at least five.

Exercise 2.50. Even with this new definition of Sep(S2) there is
still a fairly natural map of Sep(S2) into C(S2) induced by sending
a curve to itself. Following Claim 2.44 show that this map is not a
quasi-isometric embedding. (Hint: You will need to use Corollary 2.32
instead of Lemma 2.31.)

Nonetheless we have:

Conjecture 2.51. Sep(S2) is Gromov hyperbolic.

7.4. Curing the bizare, irregular behavior. Fix S = Sg,b with
b > 1. We say that a separating essential non-peripheral curve α is a
pants curve if S − α has a component which is a pair of pants. Let
Nonsep′(S) be the subcomplex of C(S) containing all nonseparating
curves and all pants curves.

Exercise 2.52. Prove that the natural inclusion of Nonsep′(S) into
C(S) is an isometric embedding and induces a quasi-isometry of the
two spaces.
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CHAPTER 3

Estimating distance and hierarchies

1. A few simple examples

Let us leave the realm of the curve complex for a moment and
discuss how to estimate distance in a few simple metric spaces.

As our first example consider R2 with the standard L1 metric. Let
X, Y ⊂ R2 be the x and y axes. Let πX : R2 → X be the closest point
projection map. Define πY similarly. As usual, for points x, y ∈ R2

define dX(x, y) = dX(πX(x), πX(y)) and define dY similarly. We have
the expected formula:

dR2(x, y) = dX(x, y) + dY (x, y).

Here is a less trivial example. Let F2 = 〈a, b〉 be the free group
on two generators. Let Γ be the Cayley graph of F2 with respect to
the generators a and b: vertices are group elements and g, g′ ∈ F2 are
connected by an edge if we can multiply g on the right by a, b, a−1, or
b−1 to obtain g′. Note that Γ is a copy of the four-valent tree. For any
reduced word w which does not end in a or a−1 we define the a-line
L(w) ⊂ Γ to be the geodesic with vertex set {wan | n ∈ Z}. Define the
b-lines similarly.

For any a or b-line L we again have a closest point projection
πL : Γ→ L and we can, for any x, y ∈ F2, define

dL(x, y) = dL(πL(x), πL(y)).

Exercise 3.1. Show that dΓ(x, y) =
∑
dL(x, y) where the sum is

taken over all a and b-lines. Also, if we are given the pairs (w, dL(w)(x, y)),
and if there are at least two such pairs where the second term is positive,
we can recover the points x and y.

These examples may help to make the next section clearer.

2. Hierarchies, holes, and the pants complex

Let us try to make the ideas behind Claim 2.44 a bit more general.
Suppose that G(S) is a simplicial complex, where the vertices are
collections of essential non-peripheral curves or arcs in S, perhaps with
some additional restrictions (eg separating). The edges and higher

31
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dimensional simplices of G(S) come from a relation of the form “α and
β have small geometric intersection.” We further insist that there be a
natural map ν : G(S)→ C(S). Often this map is MCG(S) equivariant.
For example: the subcomplex G(S) = Sep(S) ⊂ C(S).

Definition 3.2. A non-pants essential subsurface X ⊂ S is a hole
for G(S) if every vertex of G(S) cuts X.

Recall that essential surfaces are always connected. Note that if X
is a hole and X ⊂ Y is an essential subsurface then Y is again a hole;
it also follows that the entire surface S is a hole.

Generalizing Lemma 2.31 we have:

Lemma 3.3. For any G(S) there is a constant K so that if X is a hole
for G(S) then the projection map πX : G(S)→ C(X) is K-Lipschitz.

Definition 3.4. Suppose X is a hole for G. Define the diameter of
X to be diam(πX(G)).

Often we are only interested in holes where the diameter is sufficiently
large, say bigger than M2 > M1, the latter being the constant of
Theorem 2.37. In these cases it often follows that the diameter is
infinite.

Note that if G(S) is closed under the natural action of MCG(S)
then all holes X have infinite diameter. This is due to the existence of
partial pseudo-Anosov mappings with support equal to X.

Note that it is not always the case that G(S) is closed under the
MCG(S) action: see our discussion of the disk complex D(V ) ⊂ C(S)
in Chapter 4.

Exercise 3.5. Find all holes for Nonsep(Sg).

Exercise 3.6. Find all holes for Sep(S2) and Sep(S3).

‘

Exercise 3.7. Suppose that MCG(S) acts naturally on G(S).
Show that if G(S) has disjoint holes X and Y , then there is a quasi-
isometrically embedded Z2 in G(S). (This generalizes Exercise 2.45,
above.)

Here is another concrete example. Recall that a pants decomposition
of S is a collection of disjoint curves in S cutting S into a collection of

essential pants : three-holed spheres. Two pants decompositions {αi}ξ(S)
i=1

and {βi}ξ(S)
i=1 are connected by an elementary move if αi = βi for all

i > 1 and 0 < ι(α1, β1) < 3. That is, α1 and β1 are at distance one in
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the Farey graph of the surface they fill. Let P(S) be the pants graph:
vertices are pants decompositions and edges are elementary moves.

It follows that X is a hole for P(S) as long as X is not a simple
surface. We have a remarkable theorem of Masur and Minsky (see
Section 8 of [33]):

Theorem 3.8 (Masur-Minsky). There is a constant C ′ = C ′(S)
where, for any C > C ′, there are constants (K,E) so that

dP(P, P ′)
K,E
=
∑

[dX(P, P ′)]C

where the sum is taken over all holes X for P(S).

This generalizes their estimate of word length in MCG(S). Equiva-
lently, they estimate distance in the marking complex MC(S):

Theorem 3.9 (Masur-Minsky). There is a constant C ′ = C ′(S)
where, for any C > C ′, there are constants (K,E) so that

dMC(µ, µ
′)

K,E
=
∑

[dX(µ, µ′)]C

where the sum is taken over all holes X for MC(S).

Of course all essential subsurfaces X ⊂ S (except for pants) are
holes for MCG(S) and the marking complex. See the discussion of
heirarchies, below, for a brief description of the marking complex.

Now, if G(S) is fairly well behaved, we can hope that the “distance
estimate” of Theorem 3.8 holds:

Conjecture 3.10. There is a constant C ′ = C ′(G(S)) where, for
any C > C ′, there are constants (K,E) so that

dG(x, y)
K,E
=
∑

[dX(x, y)]C

where the sum is taken over all holes X for G(S).

In particular, when G(S) equals either the arc complex of a surface
with boundary or the disk complex of a handlebody (both defined
below) then the above conjecture is work-in-progress of Howard Masur
and myself. On the other hand, if G is not quasi-convex (say, C(S)
minus a sequence of disjoint metric balls which increase in size) then
the distance estimate will not hold.

Trivially, we have

Exercise 3.11. Conjecture 3.10 holds for Nonsep(Sg).

Here is a general scheme for verifying Conjecture 3.10. We follow
Masur and Minsky’s proof of Theorem 3.8.
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The crucial tool they introduce is the notion of a hierarchy. Suppose
that x and y are vertices of G(S). These give simplices in C(S). Choose
vertices x′ ∈ x and y′ ∈ y. Choose a tight geodesic g = {vi} ⊂ C(S)
connecting x′ to y′. That is:

• the multicurve vi equals the essential non-peripheral components
of the boundary of N(vi−1 ∪ vi+1) and
• for any γi ∈ vi the collection {γi} is a geodesic in C(S).

For each i we choose a tight geodesic in C(Xi) connecting vi−1 to vi+1

and for each of these we do the same, and so forth. (There are delicate
issues to cope with when switching from one Xi to another.) We note
that, by Lemma 6.2 of [33], the length of the geodesic we chose in a
subsurface X is quasi-equal to the size of the projection dX(x, y).

This entire structure is the hierarchy connecting x to y. The hierar-
chy can be broken into a sequence of markings : in the generic case this
is a pants decomposition Q of the surface S together with transversals
for each α ∈ Q. (It is not too far wrong to think of the transversal for
α as being a curve β which meets α exactly once or twice and which is
disjoint from all curves in Q− α. Strictly speaking, what we have set
forth is called a complete clean marking by Masur and Minsky.)

Let {µi} denote this sequence of markings. Consecutive markings are
related by two moves “Flip” (switch a pants curve with its transversal)
and “Twist” (Dehn twist a transversal once about its pants curve). We
can use the hierarchy to determine a small collection of subsurfaces in
which each of these moves occurs – this is the drift of pages 962 to 963
of [33]. For each move which occurs in a hole X we must find a vertex
αi ∈ G(S) which meets αi−1 in a uniformly bounded number of points.
(As we shall see, it is not always possible to choose a vertex of G(S)
which lies completely inside of the hole X.) For moves not occuring
in a hole retain the previously chosen vertex of G(S). Consecutively
chosen vertices of G(S), say αi and αi+1, may not be adjacent in G(S)
but, as they have uniformly bounded intersection they have uniformly
bounded distance in G(S).

This construction should give the upper bound: dG(x, y) is less than
the sum of the subsurface projections to the holes (with some choice
of (K,E), as usual). The lower bound follows from the fact that the
marking moves cannot occur in more than a small collection of holes
simultaneously.

We end this section with another simple conjecture:

Conjecture 3.12. Suppose that any pair of infinite diameter holes
X and Y for G(S) intersect. Then G(S) is Gromov hyperbolic.
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Examples of this may be found in [8] or [3]. Both rely heavily on [33].
It would follow, for example, that Sep(S2) is Gromov hyperbolic.

Exercise 3.13. Suppose that G(S) has n disjoint holes, andMCG(S)
acts naturally on G(S). Show that there is a quasi-isometric embedding
of Zn in G(S).

The image of a quasi-isometric embedding of Zm, for m > 1, is
called a quasi-flat. The maximal possible rank of a quasi-flat in G(S) is
called the rank of G(S). Generally it is somewhat difficult to compute
this quantity. There is a preprint of Brock and Masur showing that the
rank of P(S2) is two.

Ask one of them for a copy of their paper and imitate the techniques
within to prove that the rank of Sep(Sg) is two, for all g > 2. In
particular, generalize Hruska’s isolated flats property (see [23]) to this
context and prove that the property holds for Sep(Sg), if g > 2.

3. A trip to the zoo: the arc complex

Define the arc complex A(S), when ∂S 6= ∅, as follows: vertices are
essential arcs in S. A collection of k + 1 vertices span a k-simplex if
all k + 1 of the arcs can be realized disjointly. As usual, we generally
restrict attention to the one-skeleton. The distance in A(S) between
two vertices is the minimal possible number of edges in an edge path
between them.

There is a natural map πS : A(S) → C(S) defined exactly as the
subsurface projections were defined, above: let πS(α) be any component
of the boundary of N(α ∪ ∂S), a regular neighborhood of α ∪ ∂S.

In order to understand πS a bit better we define the arc and curve
complex AC(S), when ∂S 6= ∅ as follows: vertices are essential arcs or
curves in S. As usual, a collection of k + 1 vertices span a k-simplex if
all k + 1 of the arcs and curves can be realized disjointly.

Exercise 3.14. Show that the inclusion of C(S) into AC(S) is a
quasi-isometry. The map πS and the proof of Lemma 2.30 will be useful.

However we also find:

Claim 3.15. Suppose that S is not planar, S has at least one
boundary component, and S 6= S1,1. Then the map πS : A(S)→ C(S)
is not a quasi-isometry.

Proof of Claim 3.15. The proof follows the outline provided by
Claim 2.44. The only change is the set of holes: let X be any essential
non-simple subsurface of S, not equal to all of S, but which contains
all of the boundary components of S. To be concrete, let X be the
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complement of a non-separating curve in S. It is clear that every
essential arc cuts X. We can now choose a partial pseudo-Anosov
supported on X and the proof goes through as before.

Note that Claim 3.15 lends context to a question asked by Brian
Bowditch:

Question 3.16. As g and b vary how do the quasi-isometry types
of C(Sg,b) and A(Sg,b) change?

We may look to Conjectures 3.10 and 3.12 for other facts which may
be true about A(S).

We end this section by sketching an elegant argument shown to me
by Feng Luo, adapting an argument of Darryl McCullough [35]:

Claim 3.17 (Harer [17]). The simplicial complex A(S) is con-
tractible.

This contrasts with C(S) which, as remarked above, is typically an
infinite wedge of spheres [17].

Proof of Claim 3.17. Fix attention on a single arc α. Suppose
that K is a finite simplicial complex and f : K → A(S) is a simplicial
map. We will show that f contracts to a point. Note that if f(K) is
contained in the one-neighborhood of α there is a homotopy of f to the
constant map f : K → α as desired.

Suppose not. Choose a generic hyperbolic metric on S so that the
boundary of S is geodesic. For each vertex f(v) of the image, straighten
f(v) to be a geodesic and do the same for α. Define |f | =

∑
ι(α, f(v))

where the sum ranges over the vertices of K. Orient α and let v be the
vertex of K so that f(v) is the first arc you meet while traveling along
α in the direction of the orientation. Let β be the arc connecting the
beginning of α to this first intersection point of α and f(v).

We can surger f(v) along β to obtain two essential arcs: form
β ∪ f(v) and take a regular neighborhood. This is a hexagon in S and
two of the three sides, γ and γ′, are the desired arcs. (Check that these
are both essential.) Finally, define f ′ : K → A(S) to agree with f on
all of K0 − v and set f ′(v) = γ. This is again a simplicial map and
|f ′| < |f |. The induction is complete.

We have shown that any map of a finite simplicial complex into
A(S) may be homotoped to α. By Whitehead’s Theorem [21] A(S) is
contractible.

Remark 3.18. There is a subtle point here – Whitehead’s Theorem
is usually stated in terms of CW complexes. However, A(C) thought of
as a CW complex is not metrizable! This is somewhat uncomfortable,
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as we have been thinking about A(S) as a metric space. One solution
is to prove Whitehead’s Theorem for simplicial complexes, with metric
induced by taking every simplex to be isometric to the Euclidean simplex
with side lengths equal to one. (See Bridson’s paper [6].) We must then
verify that Whitehead’s Theorem in fact holds for A(S) equipped with
this metric topology.

Exercise 3.19. Can you improve the argument to give an explicit
deformation retraction to α?

Exercise 3.20. Show that the complex AC(S) is contractible.

Even better than contractibility or Gromov hyperbolicity would be a
control over the global curvature of A(S). Our combinatorial complexes
are not manifolds, so we do not expect any kind of Riemannian curvature.
However there are synthetic geometry definitions of curvature, for
example the notion of a CAT(κ) space (see Bridson’s and Haefliger’s
book [7]).

Question 3.21. Is A(S) a CAT(κ) space for some κ ≤ 0? How low
can you go?
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CHAPTER 4

Handlebodies

In this chapter we turn from the study of the curve complex and
directly related objects in order to begin our study of Heegaard splittings.
We refer the reader to Scharlemann’s survey article [39] for a detailed
treatment.

Following the work of Minsky and others (Brock, Souto, Namazi...)
we expect that the way that a Heegaard splitting interacts with the
curve complex will inform the geometry of the underlying manifold.

Our immediate goal is more modest: What is a “good” Heegaard
diagram and, if given a bad Heegaard diagram, how can we find such a
good diagram?

1. Basic definitions

Recall that a handlebody V is a compact three-manifold which is
homeomorphic to a closed regular neighborhood of a finite, connected,
polygonal graph in R3. The graph is called a spine for V . The genus of
V is the genus of ∂V .

It is a basic theorem of three-manifold topology (see Rolfsen [38])
that any closed orientable three-manifold M can be obtained by taking
a pair of handlebodies V and W , of the same genus, and gluing them
together by a homeomorphism f : ∂V → ∂W . We usually denote the
image of ∂V inside of M as the surface S and call S a Heegaard splitting
surface. The triple (S, V,W ) completely determines M and is called a
Heegaard splitting of M .

We note that a three-manifold never has only one splitting: new
ones may be obtained from old by a process called stabilization. This
is defined as follows: Fix attention on a splitting S ⊂M and let B be
a small ball in M with B ∩ S = D being an equatorial disk. Remove
two smaller disks from D and add an unknotted tube in B to create
a surface S ′ with genus one higher. The surface S ′ cuts M into two
handlebodies V ′ and W ′ and is the stabilization of S.

Exercise 4.1. Stabilization is unique: that is, the splitting S ′

depends only on S and not on the choices made in the stabilization
procedure.

39
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Theorem 4.2 (Reidemeister and Singer). Any two Heegaard split-
tings of a closed three-manifold have a common stabilization.

A proof can be derived from the fact that two triangulations of M
have a common subdivision.

We now must understand how the handlebodies V and W interact
with the curve complex. Recall that a properly embedded disk D ⊂ V
is essential in the handlebody V if ∂D ⊂ S = ∂V is an essential curve.
Define the disk complex D(V ) ⊂ C(S) to be the subcomplex spanned
by the boundaries of all essential disks.

Exercise 4.3. Show that D(V ) is connected. Even better: show
that D(V ) is contractible. (Or read McCullough’s paper [35].)

Exercise 4.4. Show that a splitting (S, V,W ) is stabilized if and
only if there are essential disks D ⊂ V and E ⊂ W so that ι(∂D, ∂E) =
1.

Define the distance between subcomplexes X ,Y of the curve complex
to be the minimal possible number of edges in an edge path connecting
a vertex of X to Y . We denote this distance by dS(X ,Y).

Hempel [22] defines the distance, dS(V,W ), of a Heegaard splitting
(S, V,W ) to be the number dS(D(V ),D(W )). This generalizes several
more classical definitions:

• S ⊂M is reducible if and only if dS(V,W ) = 0.
• S ⊂ M is weakly reducible if and only if dS(V,W ) ≤ 1 (Casson

and Gordon [10]).
• S ⊂M has the disjoint curve property if and only if dS(V,W ) ≤ 2

(Thompson [42]).

The negations are called irreducible, strongly irreducible, and full,
respectively.

We also recall the definition of the handlebody group. Let MCG(V )
be the group of proper isotopy classes of homeomorphisms of V . Note
that, for every f ∈MCG(V ) there is a mapping class ∂f ∈MCG(S) =
MCG(∂V ).

Exercise 4.5. Check that MCG(V ) is in fact a group. Prove that
∂ : MCG(V )→MCG(S) is an injection.

Exercise 4.6. Does every torsion element in MCG(V ) arise as a
symmetry of some spine for V ?

There is a purely “group-theoretic” approach to Heegaard split-
tings: they correspond to double cosets of MCG(S) by MCG(V ), the
handlebody group.



3. INTERVAL BUNDLES AND THE DISK COMPLEX 41

2. The disk complex is quasi-convex

Recall that a subset Y of a geodesic metric space X is convex if
every geodesic with endpoints in Y is contained in Y .

It is possible to coarsen this idea: we say that Y in quasi-convex in
X , with constant R, if every geodesic with endpoints in Y is contained
in an R neighborhood of Y .

We can now state another striking result of Masur and Minsky [34]:

Theorem 4.7. The disk complex D(V ) is a quasi-convex subset of
the curve complex C(∂V ).

As usual we only hint at the proof: Masur and Minsky find a
sequence of essential disks Di joining D to E by doing a sequence of
disk surgeries. (See below.) Furthermore, they arrange that the ∂Di

occur as the vertices of a nested sequence of train tracks. Thus the
sequence Di is quasi-convex and the theorem follows.

Corollary 4.8. Fix M1 as in Theorem 2.37. Suppose that X is an
essential, non-simple subsurface of S. Suppose also that dS(∂X,D(V ))
is greater than the constant of quasi-convexity of D(V ). Then X is a
hole for D(V ) with diameter bounded by M1.

Proof. Suppose X is as given by hypothesis. X is a hole because
dS(D, ∂X) > 1 for any disk D. Suppose now that D and E are essential
disks in V and g is a geodesic in C(S) connecting ∂D to ∂E. Note that
every vertex of g cuts X, so we may apply Theorem 2.37 to find that
dX(D,E) is at most M1. As the same holds for any pair of disks, the
diameter of πX(D(V )) is bounded by M1.

Thus, if large diameter holes do exist for D(V ), they must be
relatively close to D(V ).

Exercise 4.9. Before reading the next section: can you find a large
diameter hole for D(V )?

3. Interval bundles and the disk complex

Here we present a “standard example” (shown to me by Hossein
Namazi) which will inform the rest of our discussion of D(V ). Begin as
follows:

Definition 4.10. A curve α ∈ C(S) is a dead end for a subset
X ⊂ C(S) if, for all β such that dS(α, β) = 1, we have dS(β,X ) + 1 =
dS(α,X ).
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Now fix F = S1,1 and take V = F × [0, 1]. Note that V is the
genus two handlebody. As usual set S = ∂V . As a bit of notation,
take α = ∂F × {1/2} and take X = F × {0}, Y = F × {1}. Let
projF : V → F be projection onto the first factor.

Proposition 4.11 (Namazi). The curve α is a dead end for D(V ).

We require one definition: if β is a curve or arc in F then the surface
proj−1

F (β) is a vertical surface.

Proof. Suppose that β is any essential non-peripheral curve in X.
Suppose that δ ⊂ X is an essential arc disjoint from β. Let B be the
vertical annulus having β as a boundary component. Let D be the
vertical disk with δ ⊂ ∂D.

Note that B is disjoint from D. Also, α is disjoint from β, which is
disjoint from ∂D. The proposition follows.

We can adapt the standard example above to prove:

Claim 4.12. The inclusion of the disk complex D(V ) into C(S) is
not a quasi-isometric embedding.

Proof. Choose a compact, connected orientable surface F with
one or two boundary components so that V ∼= F × [0, 1]. As above, set
X = F × {0} and Y = F × {1}. We will show that X is an infinite
diameter hole for D(V )

First note that Y is incompressible in V . So every disk meets X
and so X is a hole. Second, fix δ, an essential arc in F . Fix f : F → F ,
a pseudo-Anosov map on F . Let ε = fn(δ) where n is arbitrary. Let
D = proj−1

F (δ). Let E = proj−1
F (ε). Then πX(D,E) ≥ n/2 and we are

done.

4. Holes for the disk complex

Here we sketch a classification of all holes for D(V ), with diameter
bounded below. Please note that this is a work in progress.

We begin with a few pieces of notation for I-bundles. In what follows

we only consider I-bundles I → T
projF→ F with total space T being

orientable. So, given the base surface F which must be a compact, with
boundary, connected surface, we take T to be the orientation I-bundle:
T is a product, F × I, if F is orientable and T is twisted, F ×̃I, if F
is non-orientable. Recall that the vertical surface in T above a curve
α ⊂ F is an annulus or Möbius band exactly as α preserves or does not
preserve orientation in F .
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We call the vertical surface in T lying above ∂F the vertical boundary
of T . Denote this as ∂vT = proj−1

F (∂F ). The closure of the complement
of of ∂vT is the horizontal boundary. We write this as ∂hT = ∂T − ∂vT .

We may now state our main theorem:

Theorem 4.13. Fix V = Vg. There is a constant M2 = M2(V ) with
the following property: Suppose that X ⊂ S = ∂V is a hole for D(V )
with diameter at least M2. Then either X compresses in V or X is
incompressible in V and there is an I-bundle T ⊂ V with the following
properties:

• the surface X is a component of ∂hT ,
• ∂hT ⊂ S, and
• at least one component of ∂vT is contained in S.

In any case, the surface X is not simple.

Remark 4.14. Note that there is a marked similarity in the above
theorem to some of the statements of JSJ theory for pared handlebodies.
The same similarity (but not identity!) holds for the proofs. This line
of thought was inspired by Oertel’s [36] investigation of handlebody
automorphisms.

We proceed via a sequence of claims.

Claim 4.15. If X ⊂ S is a hole for D(V ) then Y = S − X is
incompressible.

This follows directly from the definitions.

Claim 4.16. If X ⊂ S is an essential subsurface and X compresses
in V then dS(∂X,D(V )) ≤ 1.

This is obvious, but provides a bit of context for Corollary 4.8. We
may now turn to the incompressible case.

We begin with a standard definition:

Definition 4.17. Suppose that D is an essential disk in V . Suppose
that that E is a disk in V so that ∂E = α ∪ β with

• α ∩ β = ∂α = ∂β,
• E ∩ S = α,
• E ∩D = β, and
• the arc α is essential in S − ∂D.

Then E is a boundary compression for D and we may surger D along E
as follows: Let E ′ and E ′′ be two parallel copies of E. Set D′ ∪D′′ =
(D −N(β)) ∪ E ′ ∪ E ′′. Then D′ and D′′ are the surgered disks. Note
that these are both essential in V .
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We specialize this definition as follows:

Definition 4.18. Suppose that D is an essential disk in V and
that X is an essential subsurface in S. Suppose that E is a boundary
compressing disk for D with E ∩ S = α ⊂ X. Then we call E a ∂X
compressing disk.

Claim 4.19. Suppose that D is an essential disk in an I-bundle
T → F and D has been isotoped to minimize ∂D ∩ ∂vT . Suppose F
is orientable. Let X ∪ Y = ∂hT . We have projF (D ∩ X) is at most
distance one from projF (D ∩ Y ) in A(F ).

Here is a sketch: The claim is true for vertical disks. Now induct
on the number of ∂X compressions required to make D vertical. The
induction hypothesis needs to be a bit stronger than that stated in the
claim: instead of a single pair of arcs (α, β) ⊂ (D ∩ X,D ∩ Y ) with
disjoint projection to F several such pairs are needed.

Remark 4.20. If F is nonorientable letX = ∂hT and let τ : A(X)→
A(X) be the natural involution. In this case if D ⊂ V is an essential
disk then D ∩X is at most distance one from the fixed point set of τ .

Claim 4.21. Suppose X is an incompressible hole for D(V ) and D
is an essential disk. Then there is an essential disk D′′ in V which is
∂X incompressible, is ∂S−X incompressible, and has dX(D,D′′) < M3.
Here M3 is a constant independent of X, D, and S.

A sketch: Given D do ∂S−X compressions until no more are possible
to obtain a diskD′. Note thatD′∩X is nonempty, asX is incompressible.
As all of the boundary compressions are disjoint from X we may assume
that the projections πX(D) and πX(D′) are identical.

Now let N be a regular neighborhood of X in V . Then I → N → X
is a product I-bundle. For every ∂X compressing disk E of D′ use E
to guide an isotopy of D′ which is the identity outside of a regular
neighborhood of E and which isotopes E ∩D′ into N . After all of these
isotopies we may apply Claim 4.19 and Lemma 2.30 (several times) to
obtain the claim.

We are now equipped to give a sketch of the proof of Theorem 4.13:
Suppose that X is an incompressible hole for D(V ). Suppose that D
and E are essential disks in V so that dX(D,E) is larger than M2.
Applying Claim 4.21 twice we may assume that D and E are both ∂X
and ∂S−X incompressible, while maintaining the fact that dX(D,E) is
quite large.

We now regard D and E as polygons, with vertices being the points
of ∂D∩∂X and ∂E∩∂X. Note that the arcs of D∩E, lying in D, form
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a collection of diagonals of D. A combinatorial argument proves that
there is an arc α ⊂ ∂D ∩X which has at most four types of diagonal
adjacent to it. Note that there is at least one type of diagonal adjacent
to α as dX(α, ∂E) is quite large. Identically there is an arc β ⊂ ∂E ∩X
with similar properties.

We deduce the existence of a pair of rectangles Q ⊂ D and R ⊂ E
with the following properties:

• exactly one side α′ ⊂ ∂Q (β′ ⊂ ∂R) is contained in α (β)
• the two sides of Q (R) adjacent to α′ (β′) are parallel diagonals

in D (E)
• the number of intersections of α′ and β′ is at least one-sixteenth

of ιX(α, β).

Finally, we claim that α′ and β′ fill X. Thus we may take a regular
neighborhood of α′ ∪ β′, add vertical three-balls as necessary, and find
the desired I-bundle T having X as a component of ∂hT .

Remark 4.22. This completes the proof of Theorem 4.13, except
for the case of annuli. This case is covered in a forth-coming paper with
H. Masur.

Remark 4.23. We also note that Conjectures 3.10 and 3.12 should
also apply to D(V ), suggesting that D(V ) is Gromov hyperbolic.

The applicability of Conjecture 3.12 seems puzzling at first – for
instance in the standard example V = F×I the top and bottom surfaces
X and Y are disjoint and are both holes. However, by Claim 4.19 the
projection of a disk D into X is (for our purposes) identical to the
projection of D into Y . Thus X and Y are not really “disjoint.”

5. Heegaard diagrams

We now recall another piece of standard terminology:

Definition 4.24. Suppose that S is a closed connected orientable
surface with genus g. A collection ∆ of g disjoint curves {αi}, so that
S −∆ is homeomorphic to S0,2g, is called a cut system for S.

Exercise 4.25. Define the Hatcher-Thurston graph HT (S) as
follows: vertices are cut systems for S and two such, {αi} and {βi},
are connected by an edge if firstly αi = βi for i 6= 1 and secondly
ι(α1, β1) = 1. (This graph was introduced in the course of their proof
that the mapping class group is finitely presented [20]. Their paper
also introduces the pants complex, P(S), in an appendix.)

Find the holes for HT (S). You might also prove that HT (S) is
connected. What is the maximal size of a complete subgraph of HT (S)?
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Exercise 4.26. Show that HT (Sg) contains g-dimensional quasi-
flats. Is HT (S1,n) Gromov hyperbolic? Check that this last is quasi-
isometric to Nonsep(S1,n).

Note that a cut system ∆(V ) uniquely determines a handlebody V
with boundary S. The converse is far from true; as long as g > 1 the
handlebody V has infinitely many cut systems. As MCG(V ) contains
maps f with ∂f pseudo-Anosov there are, for any n, cut systems ∆(V )
and ∆′(V ) at distance more than n in the curve complex C(S).

Exercise 4.27. Find an explicit f ∈MCG(V ) so that ∂f is pseudo-
Anosov.

Exercise 4.28. Wajnryb [44] has introduced a graph similar to
that of Hatcher and Thurston in his study of the handlebody group:
Fix a handlebody V with boundary S and define a graph with vertices
being cut systems for V . Connect two systems {αi} and {βi} by an
edge if firstly αi = βi for i 6= 1 and secondly ι(α1, β1) = 0. We call this
graph Waj(V )

What are the maximal complete subgraphs for Waj(V )? (Careful:
there are two “kinds.”) What are the holes for Waj(V )? (Careful: the
symmetry group of Waj(V ) isMCG(V ), notMCG(S).) Is it connected?
Can you add cells to make it simply connected?

Definition 4.29. Suppose that (S, V,W ) is a Heegaard splitting
and that ∆(V ) and ∆(W ) are cut systems determining V and W . Then
the triple (S,∆(V ),∆(W )) is a Heegaard diagram for the splitting S.

The obvious question immediately arises: given a Heegaard diagram,
what can we deduce about the underlying splitting S or, better yet,
about the underlying manifold M = V ∪S W?

A great deal of work has gone into this question as it has connec-
tions to problems such as three-sphere recognition, deciding (strong)
irreducibility of splittings, and the Poincare Conjecture.

6. Almost computing the Hempel distance

We end by sketching a possible application of our work to a closely
related question. Recall that the Hempel distance of a splitting (S, V,W )
is dS(V,W ): the minimal possible number of edges in an edge path
from D(V ) to D(W ) inside of C(S).

Question 4.30. Find an algorithm which, given a Heegaard diagram
(S,∆(V ),∆(W )), computes the distance dS(V,W ).

This question seems somewhat out of reach, as least for our coarse
geometric techniques. Instead we consider:
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Question 4.31. Find an algorithm which, given a Heegaard diagram
(S,∆(V ),∆(W )), computes the distance dS(V,W ) up to an error term
which is a priori bounded by some function of ξ(S).

This appears to be more tractable. We proceed as follows: Suppose
that S is a closed, orientable, connected surface with genus two or
larger.

Conjecture 4.32. There is an algorithm which, given a vertex
α ∈ C(S) and a cut system ∆(V ) in S, finds a disk D ⊂ V so that

dS(α,D) ≤ dS(α,D(V )) +M4

where M4 is a constant depending only on the topological type of S.

Note that an answer to Question 4.31 follows by applying the
hyperbolicity of C(S) and the quasi-convexity of D(V ).

Here is a “work-in-progress” approach to Conjecture 4.32: Build
algorithmically a hierarchy H between α and ∆(V ). (See recent work of
Shackleton [41].) Let D be a disk of D(V ) which is as close as possible
to α. (We are trying to construct D or in fact any disk which is within a
bounded distance of D.) Consider H ′, a hierarchy between ∆(V ) and D.
By hyperbolicity of C(S) the hierarchies H and H ′ should fellow-travel
until H “turns” and moves directly away from D(V ) towards α.

Now, the large links along H ′ should only occur in holes for D(V ).
Note that if we are given a subsurface X ⊂ V we can algorithmically
decide if X is a hole for D(V ). As H and H ′ fellow-travel they should
have identical large links. So the large links along H should be holes
for D(V ) until H turns towards α. To find a disk near D it suffices to
find this corner which is almost equivalent to finding the last time a
large link in H is a hole for D(V ).

7. A trip to the zoo: Scharlemann’s complex

We end the chapter with a graph recently introduced by Scharle-
mann [40]. Let S2 be the standard genus 2 Heegaard splitting for the
three-sphere, S3. We say that a separating curve α ⊂ S is a reducing
curve if α bounds a disk in both of the handlebodies V ∪W = S3 − S.

We define a complex MS(S2) as follows: the vertices are reducing
curves for S2 in S3. Two such are connected by an edge if they intersect
exactly four times. We ask our now standard list of questions about
MS(S2):

• What is the maximal complete subgraph?
• It the graph connected? (See Scharlemann’s paper [40] for an-

swers to both of these questions.)
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• What cells need we add to make it simply connected?
• Finally, what are the holes for MS(S2)?

Remark 4.33. A student of Culler’s, Erol Akbas [1], has proven
that MS(S2) is quasi-isometric to a tree: in fact, the longest simple
loop in MS(S2) has length three. (See also [11].)

The motivated reader will find several interesting questions posed
in Scharlemann’s paper. In particular, let Gg be the Goeritz group in
genus g: the group of automorphisms of the genus g Heegaard splitting
of S3. Powell [37] suggests a system of generators, but little else is
known.



CHAPTER 5

Ends and boundaries

The main result we wish to reach is the following:

Theorem 5.8. Fix g ≥ 2. For any ω ∈ C0(Sg,1) and for any r ∈ N
the complex C(Sg,1)−B(ω, r) is connected.

Here B(ω, r) is the closed ball of radius r about ω. This answers a
question of Masur’s, as least for S = Sg,1 with g ≥ 2. The theorem is
perhaps unexpected when compared to Remark 2.35 or compared with
the unsettled status of Storm’s:

Question 2.16. Is the Gromov boundary of the curve complex,
∂∞C(S), connected?

1. Proof sketch

We prove Theorem 5.8 in two steps. Fix a basepoint ω ∈ C0(S). We
first show:

Proposition 5.1. The curve complex has no dead ends with respect
to ω.

Recall that by Definition 4.10 a curve α ∈ C(S) is a dead end for ω
if, for all β such that dS(α, β) = 1, we have dS(β, ω) + 1 = dS(α, ω).

The next step is to investigate the natural map π∗ : C(Sg,1)→ C(Sg)
which “caps-off” the boundary component. Fix τ ∈ C(Sg) and let
Fτ = π−1

∗ (τ). We now have a remarkable collection of observations due
to Behrstock and Leininger:

Proposition 5.4. The subcomplex Fτ
• is not R-dense, for any R,
• is dense in ∂∞C(Sg,1), and
• is connected.

Their original interest in Fτ was to give a “natural” subcomplex
of C(S) which is not quasi-convex: this is implied by the first two
properties.

Proposition 5.4 and Proposition 5.1, together with a discussion of
Dehn twists, will finish the proof of Theorem 5.8.

49
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I take this opportunity to again thank Jason Behrstock and Chris
Leininger for many interesting conversations and for showing me the
proof of Proposition 5.4. I also thank Ken Bromberg for showing me his
great simplification of my proof of Theorem 5.8. The shorter version is
presented below.

2. Dead ends

Let S = Sg,b be a non-pants surface. Fix ω ∈ C0(S). We now prove:

Proposition 5.1. The curve complex C(S) has no dead ends with
respect to ω.

Proof. If C(S) is a copy of the Farey graph then the claim is trivial.
Likewise when S = S0,2. So suppose that S is non-sporadic, as well as
non-simple.

In the first case we will suppose that α ∈ C0(S) is either non-
separating or cuts off a pair of pants from S. Thus S − α has one
component, X, which is not a pair of pants. In the second case we will
suppose that α cuts S into a pair of surfaces X and Y , neither of which
is simple.

Suppose we are in the first case. Thus link(α) = B(α, 1)−α ∼= C(X)
has infinite diameter in its intrinsic metric. (If X is sporadic then recall
that C(X) is instead defined to be a copy of the Farey graph.) Set
n = dS(α, ω). Choose some β ∈ C(X) so that dX(β, ω) ≥ 6n + 1. It
follows from Lemma 2.31 that the geodesic from ω to β misses X. But
the only essential non-peripheral curve in the complement of X is α
itself. Thus dS(β, ω) = n+ 1 and α is not a dead end.

Suppose now we are in the second case. Thus link(α) = B(α, 1)−α
is the join of C(X) and C(Y ) and has diameter equal to two in both its
intrinsic and extrinsic metrics. (Again, if X or Y is sporadic we replace
the infinite disconnected set of vertices of C(X) or C(Y ) by a copy of
the Farey graph.) Set n = dS(α, ω). If ω is contained in X, say, the
claim is trivial – simply choose β ⊂ X to intersect ω. We may thus
assume that both πX(ω) and πY (ω) are nonempty. This is equivalent
to saying that n ≥ 2.

So choose some β ∈ C(X) so that dX(β, ω) ≥ 6n+1. We may assume
that β is either nonseparating in S or cuts off a pair of pants from S.
It again follows from Lemma 2.31 that the geodesic from ω to β misses
X. If the geodesic goes thru α we are done, as before. So assume that
the geodesic visits a curve γ in the subsurface Y . If dS(γ, ω) < n− 1
we contradict the fact that dS(α, ω) = n. If dS(γ, ω) > n − 1 then
dS(β, ω) > n and we are done. So assume that dS(γ, ω) = n − 1. It
follows that dS(β, ω) = n. Finally, by the first case the curve β is not a
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dead end. We find a curve β′ so that dS(β′, β) = 1 and dS(β′, ω) = n+1.
The path from α to β to β′ shows that α is not a dead end and the
proof is complete.

3. The Birman short exact sequence

Recall the Birman short exact sequence:

π1(Sg, x0)→MCG(Sg,1)→MCG(Sg)

for g ≥ 2. Here we think of Sg,1 as being a copy of the closed genus g
surface equipped with a basepoint x0 which all curves avoid and which
all isotopies fix. The inclusion is defined by sending γ ∈ π1(Sg, x0) to
the homeomorphism which drags x0 along the path γ. The surjection
is defined by forgetting the point x0. See Birman’s book [4] for details.

Exercise 5.2. If γ and δ are paths in π1(Sg, x0) we write their
composition by δ ◦ γ. This is the path obtained by first following γ and
then δ. Check that the inclusion of the Birman short exact sequence is
in fact a homomorphism. Can you write the image of γ in MCG(Sg,1)
as a composition of Dehn twists? (Hint: what about when γ is a simple
closed curve?)

Exercise 5.3. Show that π1(Sg, x0) ⊂ MCG(Sg,1) is of infinite
index, normal, and finitely generated.

Corresponding to the Birman short exact sequence there is a “fibra-
tion” of curve complexes:

Fτ → C(Sg,1)→ C(Sg).
Here the fibre map (on the right) is the map π∗ which caps-off the
boundary component with a disk (or, equivalently, forgets the marked
point). The properties obtained in Exercise 5.3 become:

Proposition 5.4 (Behrstock-Leininger). The subcomplex Fτ ⊂
C(Sg,1)

• is not R-dense, for any R,
• is dense at infinity, and
• is connected.

We first prove a lemma:

Lemma 5.5. The fibre map π∗ is 1-Lipschitz

Proof. Every curve which is essential and non-peripheral in Sg,1
remains so in Sg. Also if α, β ⊂ Sg,1 are disjoint then their images in Sg
are either disjoint or are equal. Thus π∗ does not increase distance.
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Proof of Proposition 5.4. We take the assertions in turn. As
C(Sg) has infinite diameter the first assertion follows from Lemma 5.5.

Pick now some point Σ in ∂∞C and choose a sequence of curves
{σn} converging to Σ. For convenience pick α ∈ Fτ as the basepoint
for the Gromov product. Our goal is to produce a sequence αn ∈ Fτ
which also converges to Σ.

For each n choose a simple arc δn connecting the puncture x0 to the
curve σn. Let gn ∈ MCG(Sg,1), in the image of π1(Sg), be the result
of dragging the puncture along δn, around σn, and back to x0 along
δn. (This map is isotopic to the identity when S has genus one.) See
Figure 1.

Figure 1. The dot is the puncture. The map gn is
isotopic to doing oppositely oriented Dehn twists on the
two boundary components of the annulus.

Choose m to be a large multiple of twelve times the distance between
α to σn. Take αn = gmn (α). Clearly αn ∈ Fτ . Take Yn to be an annular
neighborhood of σn. Then dYn(α, αn) ≥ 6 · dSg,1(α, αn) by the Dehn
twist case of Theorem 2.27 and by the choice of m. Using Theorem 2.37
or the more elementary Lemma 2.31 it is an easy to show that the
geodesic from α to αn has a vertex which is disjoint from σn. It follows
from the definition of the Gromov norm that αn converges to Σ.

To show Fτ is connected in C(Sg,1) fix distinct curves α and β in Fτ .
These are isotopic in Sg but not in Sg,1. We induct on the intersection
number ι(α, β), measured in Sg,1. Suppose the intersection number is
zero. Then α and β are disjoint and we are done. Suppose that the
intersection number is non-zero. There is a bigon B ⊂ Sg − (α ∪ β).
It follows that the puncture resides in B, in the surface Sg,1. Now
construct a curve β′ by replacing the arc β ∩B by the arc α ∩B and
performing a small isotopy. Now β′ ∈ Fτ because β′ is isotopic to β in
Sg. Finally, ι(α, β′) ≤ ι(α, β)− 2.

Exercise 5.6. Show that π1(Sg, x0) acts transitively on Fτ .
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Question 5.7. The proof of Proposition 5.4 shows that all points of
∂∞C are tangential limit points of the fibre Fτ . Is it possible to describe
the subset of the boundary which can be reached conically?

Recall our notation π∗ : C(Sg,1)→ C(Sg) which sends a curve in Sg,1
to its isotopy class in Sg. As above we use Fτ = π−1

∗ (τ) to denote the
fibre over τ . We may now prove:

Theorem 5.8. Fix g ≥ 2. For any ω ∈ C0(Sg,1) and for any r ∈ N
the complex C(Sg,1)−B(ω, r) is connected.

Proof. Choose α and β vertices of C(Sg,1)−B(ω, r). By Proposi-
tion 4.11 the curve complex has no dead ends. So we may connect α
and β, by paths disjoint from B(ω, r), to points outside of B(ω, 2r+ 2).
Call these new points α′ and β′.

Choose now a point τ ∈ C(Sg) so that dSg(π∗(ω), τ) > r. Pick any
point γ ∈ Fτ . As in the proof of the second property of Proposition 5.4
build a curve γ′ ∈ Fτ : γ′ which is the image of γ under the mapping
class which drags the puncture x0 many times around α′. As before we
may assume that the geodesic, call it g, between γ and γ′ contains a
vertex α′′ which is distance at most one away from α′.

We claim that at least one of the two segments in g − α′′ avoids
the ball B(ω, r). For suppose not: Then there are vertices µ, µ′ ∈ g on
opposite sides of α′′ which both lie in B(ω, r). Thus dSg,1(µ, µ

′) ≤ 2r.
It follows that the length along g between µ and µ′ is at most 2r. So
dSg,1(ω, α

′) ≤ 2r + 1. This is a contradiction.
Thus we can connect α′ to a vertex of Fτ (namely, γ or γ′) avoiding

B(ω, r). Identically, we can connect β′ to, say, δ ∈ Fτ while avoiding
B(ω, r). Finally, by Proposition 5.4 the fibre Fτ is connected. As
B(ω, r) ∩ Fτ = ∅ this completes the proof.

4. Difficulties finding ends of other curve complexes

We first note that no straightforward extension of Theorem 5.8, to
Sg,n is possible. Although the Birman sequence remains the same:

1→ π1(Sg,n)→MCG(Sg,n+1)→MCG(Sg,n)→ 1

the map C(Sg,n+1) → C(Sg,n) is no longer defined. Consider a loop
in Sg,n+1) which encloses the “to-be-forgotten” puncture and exactly
one other. This loop has no possible image in C(Sg,n). Ignoring this
problem, one might examine an orbit of Γ = π1(Sg,n), as it acts on
C(Sg,n). The orbit in fact is dense at infinity and is again connected.
The proof is identical to the proof of Proposition 5.4. However:

Exercise 5.9. Fix α ∈ C(Sg,n+1). Then Γ · α is 3-dense in C.
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In a more general vein, we might consider any subgroup H <
MCG(S) which is infinite index, normal, and finitely generated. Hope-
fully, H orbits will have the properties set out in Proposition 5.4. The
Torelli group Ig springs to mind. Unfortunately, we have:

Lemma 5.10. Any orbit of the Torelli group is 6-dense in C(S).

Proof. Fix curves α and γ. Fix, once and for all, a standard
homology basis B = {x1, y1, . . . , xg, yg} within distance two of α. We
will find an element of the Torelli group taking B to a curve system
within distance four of γ.

Replace γ by a disjoint curve a1 which is nonseparating. Extend
a1 to a homology basis {a1, b1, . . . , ag, bg}. Express x1 in terms of this
basis: x1 =

∑
(piai + qibi). In the once-holed torus spanned by ai

and bi take δi to be the curve of slope pi/qi. Band-sum the curves δi
together to get a curve x′1 which is homologous to x1. We note that
dC(γ, x

′
1) ≤ 4.

We must now produce a curve y′1 which meets x′1 exactly once and
which is homologous to y1. Consider the original curve y1. Consider
the intersection points x′1 ∩ y1 and notice that the algebraic intersection
is exactly one. Order the intersection points {cj} using the orientation
on x′1. If there is only one such point, take y′1 = y1. If there are many,
then there is a pair of points cj and cj+1 of opposite sign. Let δ be the
subarc of x′1 with ∂δ = {cj} ∪ {cj+1} so that the interior of δ is disjoint
from y1. Surger y1 along δ. (See Figure 2.) This produces an oriented
multi-curve which, in homology, sums to [y1].

Figure 2.

We repeatedly surger the multicurve. Every time we surger we
produce a new oriented multi-curve which intersects x′1 in two fewer
points and which sums, in homology, to [y1]. This procedure halts
when the number of intersection points falls to one. Now band sum the
resulting multi-curve in the complement of x′1. Note that the component
meeting x′1 is non-separating, so it is possible to perform the band sum
while preserving orientations. The resulting single curve is the desired
y′1.

In essentially identical fashion we may surger and band-sum the
curves xi and yi, i > 1, to produce a standard homology basis B′ =
{x′i, y′i} where x′i ∈ [xi] and y′i ∈ [yi]. It is easily checked that any
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mapping class taking the basis B to the basis B′ lies in the Torelli
group, and this completes the proof.

5. A trip to the zoo: the sphere complex

The double, Doub(N) of a manifold N is obtained by taking two
copies of N , say N ×{0} and N ×{1}, and gluing them via the identity
map on ∂N .

Exercise 5.11. Check that Doub(Sg,b) ∼= S2g+k−1. Verify that the
double of a handlebody Doub(Vg) is homeomorphic to Mg, the connect
sum of g copies of S2 × S1.

Similarly, a properly embedded submanifold F ⊂ N gives rise to an
embedded submanifold Doub(F ) ⊂ Doub(N). For example, if E is a
disk in Vg then its double is a sphere in Mg.

As usual we have a related complex. Define the sphere complex
S(Mg) as follows: vertices are essential two-spheres in Mg. A collection
of k + 1 vertices span a k-simplex if all k + 1 of the spheres can be
isotoped to be disjoint.

We have a natural map Doub(·) : D(Vg) → S(Mg) taking disks to
spheres.

Exercise 5.12. Suppose that g ≥ 2. Before reading on show that
this map is not one-to-one.

Exercise 5.13. Suppose that g ≥ 2. Check that this map is onto.
(This is much harder.)

There are several ways to understand the fibre of the map D(Vg)→
S(Mg). The most obvious would be to consider the corresponding
mapping class groups: Doub(·) : MCG(Vg) →MCG(Mg). Just as we
defined a Dehn twist, τα, on a curve α there is a notion of a Dehn twist
on a disk D ⊂ V or a sphere S ⊂M . Naturally enough, we find that
the double of a disk twist τD gives a sphere twist about Doub(D). Note
that, for any essential sphere S ⊂ M the map τ 2

S is trivial. That is,
twisting a sphere twice gives a map isotopic to the identity. This is the
famous plate trick.

In fact, both disk and sphere twists act trivially on the fundamental
group of the underlying manifold. Therefore it algebraically nicer
to consider the homomorphism MCG(Vg) → Out(Fg). The kernel is
generated by disk twists and accordingly it is called the twist group:

Twistg →MCG(Vg)→ Out(Fg).
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There is a marked resemblance to the Birman short exact sequence. As
expected there is a fibration:

FS → D(Vg)→ S(Mg).

However, much less is known about the fibre of this map.

Question 5.14. Is FS equal to an orbit of Twistg acting D(V )?
Is FS coarsely connected? Is the complement of a ball in D(V ) still
connected? Does this give information about C(Sg)?



APPENDIX A

Hints for some exercises

Hint 1.3. The only orientable simple surfaces are the annulus and
the pants.

Hint 1.4. The sporadic surfaces are the closed and once holed tori,
as well as the four holed sphere.

Hint 1.5. Use the classification of surfaces. What do you get when
you cut S along α?

Hint 1.6. Take a regular 4g-gon and identify opposite sides. This
gives a genus g surface with a rotation symmetry of order 4g. This
symmetry cannot be obtained from the motion of a graph in R3.

Hint 1.14. First show that if a mapping class f fixes, up to isotopy,
a collection of curves (or arcs) cutting S into a bunch of disks, then f is
the identity element of MCG(S). (You will need the Alexander Trick:
any homeomorphism of a disk which fixes the boundary pointwise is
isotopic to the identity, via an isotopy fixing the boundary pointwise.)

Now notice that to answer the question it is enough to examine a
regular neighborhood of α ∪ β, which is a once holed torus.

Hint 1.15. There are several ways to do this – for example lift
everything to the universal cover and “straighten”.

Hint 1.16. See the hint for Exercise 1.6.

Hint 1.26. Perhaps a partial mapping will be useful.

Hint 1.27. For curves at distance three, it may help to notice that
two essential arcs can fill the surface S1,1 and that you can glue together
two copies of S1,1 to obtain S2.

Hint 1.24. Consider the subsurface obtained by taking a regular
neighborhood of α∪β. There are three posibilities when S is orientable.

Hint 2.45. Find disjoint essential surfaces X, Y ⊂ Sg so that every
separating curve in Sg cuts both X and Y . Now use partial pseudo-
Anosov maps. For more details see the solution to Exercise 3.7.
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Solution 3.7. The MCG(S) action on G(S) is equivariant with
respect to subsurface projection. Choose partial pseudo-Anosov maps
f, g supported in X and Y . (If one of these is a annulus then use a
Dehn twist about the core, instead.) Fix any vertex γ ∈ G(S). Define
P = {γm,n}, where γm,n = fmgn(γ). Let p : Z2 → P be defined by
p(m,n) = γm,n. So we have an upper bound:

dG(γ, γm,n) ≤ m · dG(γ, γ1,0) + n · dG(γ, γ0,1).

For the lower bound, note that since subsurface projection is coarsely
Lipschitz we have a constant K so that

KdG(γ, γm,n) +K ≥ max{dX(γ, fm(γ)), dY (γ, gn(γ))}.
Since f, g act hyperbolically on C(X), C(Y ) there is another constant
K ′ so that

K ′dX(γ, fm(γ)) +K ′ ≥ m · |f |X
where |f |X is the stable translation length of f acting on X. As the
same holds for g, we are done.
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Travaux de Thurston sur les surfaces, Soc. Math. France, Paris, 1979 [MR
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