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Abstract. A compressed variant of the word problem for finitely generated groups,
where the input word is given by a context-free grammar that generates exactly
one string (also called a straight-line program), is studied. It is shown that finite
extensions and free products preserve the complexity of the compressed word
problem and that the compressed word problem for a graph group can be solved
in polynomial time. Using these results together with connections between the
compressed word problem and the (classical) word problem allows to obtain new
upper complexity bounds for certain automorphism groups and group extensions.

1 Introduction

The word problem for finitely generated groups is a fundamental computational prob-
lem linking group theory, topology, mathematical logic, and computer science. For a
group G, finitely generated by Σ, it is asked whether a word over Σ and the inverses
of Σ represents the 1 of G. The word problem was introduced in the pioneering work
of Dehn from 1910 [10] in relation with topological questions. It took about 45 years
until Novikov [32] and later independently Boone [5] proved the existence of a finitely
presented group with an undecidable word problem. Despite this negative result, many
natural classes of groups with decidable word problems were found. Prominent exam-
ples are for instance finitely generated linear groups, automatic groups [17], and one-
relator groups. With the advent of computational complexity theory, also the complexity
of word problems became an active research area. For instance, it was shown that for
a finitely generated linear group the word problem can be solved in logarithmic space
[27, 40], that automatic groups have polynomial time solvable (in fact quadratic) word
problems [17], and that the word problem for a one-relator group is primitive recursive
[7].

Group theoretic operations, which preserve (or moderately increase) the complexity
of the word problem, are useful in order to get a building set for constructing groups
with efficiently solvable word problems. An example of such a construction is the free
product: it is not hard to see that the word problem for a free product G ∗ H can be
reduced in polynomial time to the word problem for G and H . In this paper, we will
increase the building set of such group operations by introducing a new technique for
obtaining upper complexity bounds for word problems. This technique is based on data
compression. More precisely, we use a compressed representation of strings — so called



straight-line programs, briefly SLPs — which is able to achieve exponential compres-
sion rates for strings with repeated subpatterns. Formally, an SLP G is a context-free
grammar, which generates exactly one string eval(G). Recently, SLPs turned out to be
a very flexible compressed representation of strings, which is well-suited for studying
algorithms on compressed data. For instance, several polynomial time algorithms for
the pattern matching problem on SLP-compressed input strings were developed [18,
26, 31, 37]. In [28], the first author started to investigate the compressed word prob-
lem for a finitely generated group G with finite generating set Σ. For a given SLP G
that generates a string over Σ and the inverses of Σ it is asked whether eval(G) repre-
sents the 1 of G (actually, in [28] the compressed word problem for finitely generated
monoids was studied). This problem is equivalent to the well-known circuit evaluation
problem, where we ask whether a circuit over a finitely generated group G (i.e., an
acyclic directed graph with leafs labeled by generators of G and internal nodes labeled
by the group multiplication) evaluates to the 1 of G. In [3], this problem was investi-
gated for finite groups, and it was shown that there exist finite groups, for which the
circuit evaluation problem is complete for P (deterministic polynomial time).

In [3, 28], the main motivation for studying the compressed word problem came
from computational complexity theory. Since the input in the compressed word problem
is given in a more compact form than in the ordinary word problem, it can be expected
that in general the compressed word problem for a group G is more difficult than the
ordinary word problem. For instance, whereas the word problem for a finitely generated
free group belongs to the class L (deterministic logspace) [27], the compressed word
problem for a finitely generated free group of rank at least two is P-complete [28].1

In [38], the second author used the polynomial time algorithm for the compressed
word problem for a free group in order to present a polynomial time algorithm for the
ordinary word problem for the automorphism group of a free group, which answered
a question from [24]. Hence, the compressed word problem is used in order to obtain
better algorithms for the ordinary word problem. In this paper, we will continue this
idea and thereby obtain efficient algorithms for a variety of word problems. In order to
achieve this goal, we proceed in two steps:

In the first step (Section 3) we show connections between the compressed word
problem for a group G and the word problem for some group derived from G. We
prove three results of this kind:

– IfH is a finitely generated subgroup of the automorphism group of a groupG, then
the word problem for H is logspace reducible to the compressed word problem for
G (Proposition 2). This result is a straight-forward extension of Theorem 5.2 from
[38].

– The word problem for the semidirect product K oϕ Q of two finitely generated
groups K and Q is logspace reducible to (i) the word problem for Q and (ii) the
compressed word problem for K (Proposition 3).

– If K is a finitely generated normal subgroup ofG such that the quotientG/K is an
automatic group, then the word problem for G is polynomial time reducible to the
compressed word problem for K (Proposition 4).

1 It is believed, although not proven, that L is a proper subclass of P.
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In the second step (Section 4) we concentrate on the compressed word problem. We
prove the following results:

– If K is a finitely generated subgroup ofG such that the index [G : K] is finite, then
the compressed word problem forG is polynomial time reducible to the compressed
word problem for K (Theorem 1).

– The compressed word problem for a free product G1 ∗ G2 is polynomial time re-
ducible (under Turing reductions) to the compressed word problem for G1 and G2

(Theorem 2). This result even holds for the more general graph product construc-
tion [20] (Theorem 4).

– The compressed word problem for a graph group [15] can be solved in polynomial
time (Theorem 3). In a graph group, every defining relation is of the form ab = ba
for generators a and b.

– The compressed word problem for a finitely generated linear group belongs to the
complexity class coRP (Theorem 5), which is the complementary class of random-
ized polynomial time, see Section 4.4 for the definition.

We end this paper with a few direct applications of the above results. Let us mention
one of them concerning topology, see [41] for definitions: Crisp and Wiest [9] have
shown shown that the fundamental group of any orientable surface (and of most non-
orientable surfaces) embeds in a graph group. It follows that for most fundamental
groups of surfaces, the word problem for the corresponding automorphism group can
be solved in polynomial time. These automorphism groups play a very important role
in algebraic topology.

2 Preliminaries

Let Σ be a finite alphabet. With Σ+ = Σ∗ \ {ε} we denote the set of non-empty words
over Σ. We use Σ−1 = {a−1 | a ∈ Σ} to denote a disjoint copy of Σ. Let Σ±1 =
Σ ∪ Σ−1. Define (a−1)−1 = a; this defines an involution −1 : Σ±1 → Σ±1, which
can be extended to an involution on (Σ±1)∗ by setting (a1 · · · an)−1 = a−1

n · · · a−1
1 .

For Γ ⊆ Σ, we denote by πΓ (w) the projection of the word w to the alphabet Γ , i.e.,
we erase in w all symbols from Σ \ Γ .

For a word s = a1 · · · am (ai ∈ Σ) let

– |s| = m, alph(s) = {a1, . . . , am},
– s[i] = ai for 1 ≤ i ≤ m
– s[i : j] = ai · · · aj for 1 ≤ i ≤ j ≤ m and s[i : j] = ε for i > j,
– s[: i] = s[1 : i] = a1 · · ·ai for 0 ≤ i ≤ m, and
– s[i :] = s[i : m] = ai · · · am for 1 ≤ i ≤ m+ 1.

For c ∈ N let Σ≤c = {w ∈ Σ∗ | |w| ≤ c} denote the set of all words of length at most
c.

For background in complexity theory see [33]. For languagesK,L we write K ≤P
m

L (resp. K ≤log
m L) if there exists a polynomial time (resp. logspace) many-one reduc-

tion fromK to L. We write K ≤P
T L if there exists a polynomial time Turing reduction

from K to L, which means that K can be solved in deterministic polynomial time on
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a Turing machine with oracle access to the language L. Let � ∈ {≤P
m,≤

log
m ,≤P

T }. In
case K � L1× · · ·×Ln we write K � (L1, . . . , Ln). Clearly, if L1, . . . , Ln belong to
the class P (deterministic polynomial time) and K ≤P

T (L1, . . . , Ln), then K belongs
to P as well.

2.1 Groups

For background in combinatorial group theory see [30]. Let G be a finitely generated
group and let Σ be a finite group generating set for G. Hence, Σ±1 is a finite monoid
generating set forG and there exists a canonical monoid homomorphismh : (Σ±1)∗ →
G, which maps a word w ∈ (Σ±1)∗ to the group element represented by w. For u, v ∈
(Σ±1)∗ we will also say that u = v in G in case h(u) = h(v).

The word problem for G with respect to Σ is the following decision problem:

INPUT: A word w ∈ (Σ±1)∗.
QUESTION: w = 1 in G, i.e., h(w) = 1?

It is well known and easy to see that if Γ is another finite generating set for G, then
the word problem for G with respect to Σ is logspace many-one reducible to the word
problem for G with respect to Γ . This justifies to speak just of the word problem for
the group G. The word problem for G is also denoted by WP(G). The automorphism
group of a groupG is denoted by Aut(G).

The free group F (Σ) generated by Σ can be defined as the quotient monoid

F (Σ) = (Σ±1)∗/{aa−1 = ε | a ∈ Σ±1}.

As usual, the free product of two groups G1 and G2 is denoted by G1 ∗ G2. Assume
that Σi is a finite generating set for Gi (i ∈ {1, 2}), where Σ1 ∩ Σ2 = ∅. Then, every
element of the free productG1 ∗G2 can be represented by a word u ∈ (Σ±1

1 ∪Σ±2
2 )∗,

where

– u = u1 · · ·un for some n ≥ 0 and u1, . . . , un ∈ (Σ±1
1 )+ ∪ (Σ±1

2 )+,
– for all 1 ≤ i < n: ui ∈ (Σ±1

1 )+ ⇔ ui+1 ∈ (Σ±1
2 )+, and

– for all 1 ≤ i ≤ n: ui 6= 1 in G1 if ui ∈ (Σ±1
1 )+ and ui 6= 1 in G2 if ui ∈ (Σ±1

2 )+.

We call such a word irreducible inG1∗G2. If v = v1 · · · vm is another word, irreducible
inG1∗G2 (with v1, . . . , vm ∈ (Σ±1

1 )+∪(Σ±1
2 )+ and vi ∈ (Σ±1

1 )+ ⇔ vi+1 ∈ (Σ±1
2 )+

for all 1 ≤ i < m), then u and v represent the same group element of G1 ∗ G2 if and
only if n = m and for all 1 ≤ i ≤ n, ui and vi represent the same group element of G1

(if ui, vi ∈ (Σ±1
1 )+) or of G2 (if ui, vi ∈ (Σ±1

2 )+).
For the standard definition of automatic groups, see [17]. Every automatic groupG

is finitely presented and its word problem can be solved in time O(n2). We will need
the following important properties of automatic groups, see [17]. Let G be automatic
and let Σ be a finite generating set for G. Then there exists a normal form mapping
NF : (Σ±1)∗ → (Σ±1)∗ and constants α, β ∈ N with the following properties, where
u, v ∈ (Σ±1)∗, and a ∈ Σ ∪Σ−1:

– NF(u) = NF(v) if and only if u = v in G, NF(u) = u in G, and NF(ε) = ε
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– The set of normal forms NF((Σ±1)∗) is regular.
– The normal form NF(u) can be computed in timeO(|u|2) (hence the word problem

of G can be solved in quadratic time).
– ||NF(u)| − |NF(ua)|| ≤ α, i.e., the length of the normal form only changes by a

constant amount when appending a generator to a word.
– If NF(u) = a1 · · · am and NF(ua) = b1 · · · bn (with a1, . . . , am, b1, . . . bn ∈ Σ ∪
Σ−1), then there exists words r0, r1, . . . , rmax(m,n) ∈ (Σ∪Σ−1)≤β such that r0 =
ε, rmax(m,n) = a, and (a1 · · · ai)ri = (b1 · · · bi) in G for all 1 ≤ i ≤ max(m,n)
(here we set ai = ε for m < i ≤ max(m,n) and bi = ε for n < i ≤ max(m,n)).

The last property is also called the synchronous fellow traveller property.

2.2 Trace monoids and graph groups

In the following we introduce some notions from trace theory, see [11, 14] for more
details. This material will be only needed in Section 4.3. An independence alphabet is
just a finite undirected graph (Σ, I) without loops. Hence, I ⊆ Σ ×Σ is an irreflexive
and symmetric relation. The complementary graph (Σ,D) with D = (Σ × Σ) \ I is
called a dependence alphabet. The trace monoid M(Σ, I) is defined as the quotient

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}.

It is a cancellative monoid. Elements of M(Σ, I) are called traces. The trace represented
by the word s ∈ Σ∗ is also denoted by [s]I . For a ∈ Σ let I(a) = {b ∈ Σ | (a, b) ∈ I}
and D(a) = {b ∈ Σ | (a, b) ∈ D}.

Traces can be represented conveniently by dependence graphs, which are node-
labelled directed acyclic graphs. Let s = a1 · · ·an be a word, where ai ∈ Σ. The
vertex set of the dependence graph Ds of s is {1, . . . , n} and vertex i is labeled with
ai ∈ Σ. There is an edge from vertex i to j in Ds if and only if i < j and (ai, aj) 6∈ I .
Then, for two words s, t ∈ Σ∗ we have [s]I = [t]I if and only if Ds and Dt are
isomorphic. In particular, we can speak of the dependence graph of a trace u. Clearly,
by taking the transitive and reflexive closure of the edge relation of a dependence graph
Ds, one obtains a partial order.

A trace u is a prefix of a trace v if there exists a trace w such that v = uw in
M(Σ, I). The prefixes of a trace v correspond to the downward-closed node sets of the
dependence graph of u. For two traces u, v ∈ M(Σ, I), the infimum with respect to the
prefix order is denoted by u u v. That is, u u v is a prefix of u and v and every other
common prefix of u and v is a prefix of u u v. With u \ v we denote the unique trace t
such that u = (u u v)t; uniqueness follows from the fact that M(Σ, I) is cancellative.
Note that u \ v = u \ (u u v). For words s, t ∈ Σ∗ we write s �I t if the trace [s]I is a
prefix of the trace [t]I .

Example 1. Let (Σ, I) be the following independence alphabet:

b d a c

The corresponding dependence alphabet looks as follows, where the self loop at every
node is omitted:
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a b c d

Let s = dabcd and t = abaadcdb. The (Hasse diagram of the) dependence graph of s
and t, respectively, looks as follows. For a node i ∈ {1, . . . , 8} we only show its label
from {a, b, c, d}.

a b

d c d

a b a a b

d c d
Ds Dt

Since we only show Hasse diagrams, we omit for instance the edge from the first d to
the second d in Ds.

We have s �I t. For u = dabcbdc the dependence graph is

a b b

d c d c
Du

We see that [t]I u [u]I = [s]I , [t]I \ [s]I = [t]I \ [u]I = [aab]I , and [u]I \ [s]I =
[u]I \ [t]I = [bc]I .

A clique covering of the dependence alphabet (Σ,D) is a tuple of subsets (Σi)1≤i≤n

such that Σ =
⋃

1≤i≤nΣi and D =
⋃

1≤i≤n(Σi × Σi). It is well-known that for a
clique covering (Σi)1≤i≤n and two words s, t ∈ Σ∗ on has [s]I = [t]I if and only if
πΣi

(s) = πΣi
(t) for all 1 ≤ i ≤ n. This fact is also known as the projection lemma

[14]. We also need the following simple fact:

Lemma 1. Let (Σi)1≤i≤n be a clique covering of the dependence alphabet (Σ,D) and
let s, t ∈ Σ∗. Then s �I t if and only if πΣi

(s) is a prefix of πΣi
(t) for all 1 ≤ i ≤ n.

Proof. The “only if”-direction is trivial. For the “if”-direction assume that there exist
words ui ∈ Σ∗

i (1 ≤ i ≤ n) such that πΣi
(t) = πΣi

(s)ui. ¿From [16, Prop. 1.6] it
follows that there exists a word u ∈ Σ∗ such that πΣi

(u) = ui for all 1 ≤ i ≤ n. Hence
πΣi

(t) = πΣi
(s)πΣi

(u) = πΣi
(su). By the projection lemma we have [t]I = [su]I ,

i.e., s �I t. ut

Example 2. A clique covering of the dependence alphabet from Example 1 is

({a, b}, {b, c}, {c, d}).

The tuple of projections for the word s (resp. t) from Example 1 is (ab, bc, dcd) (resp.
(abaab, bcb, dcd)). Every component of the tuple (ab, bc, dcd) is a prefix of the corre-
sponding component of the tuple (abaab, bcb, dcd). Hence, we have indeed s �I t.

A trace rewriting system R over M(Σ, I) is just a finite subset of M(Σ, I) ×
M(Σ, I) [11]. We can define the one-step rewrite relation →R ⊆ M(Σ, I)×M(Σ, I)
by: x →R y if and only if there are u, v ∈ M(Σ, I) and (`, r) ∈ R such that x = u`v
and y = urv. The notion of a confluent and terminating trace rewriting system is de-
fined as for other types of rewriting systems [4]. A trace t is irreducible with respect
to R if there does not exist a trace u with t →R u. The set of all traces that are irre-
ducible with respect to R is denoted with IRR(R). If R is terminating and confluent,
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then for every trace u, there exists a unique normal form NFR(u) ∈ IRR(R) such that
u

∗
→R NFR(u).

The graph group G(Σ, I) is defined as the quotient group

G(Σ, I) = F (Σ)/{ab = ba | (a, b) ∈ I}.

Note that (a, b) ∈ I implies a−1b = ba−1 in G(Σ, I). Thus, the graph group G(Σ, I)
can be also defined as the quotient

G(Σ, I) = M(Σ±1, I)/{aa−1 = ε | a ∈ Σ±1}.

Here, we implicitly extend I ⊆ Σ ×Σ to I ⊆ Σ±1 ×Σ±1 by setting (aα, bβ) ∈ I if
and only if (a, b) ∈ I for a, b ∈ Σ and α, β ∈ {1,−1}. We can also lift the involution
−1 : (Σ±1)∗ → (Σ±1)∗ to an involution −1 : M(Σ±1, I) → M(Σ±1, I) by setting
[s]−1

I = [s−1]I (well-definedness is easily seen).
Free groups and free abelian groups arise as special cases of graph groups; note that

G(Σ, ∅) = F (Σ) and G(Σ, (Σ × Σ) \ idΣ) = Z|Σ|. Graph groups were studied e.g.
in [15]; they are also known as free partially commutative groups [12, 42], right-angled
Artin groups [6, 9], and semifree groups [1].

2.3 Grammar based compression

In this section we introduce straight-line programs, which are used as a compressed
representation of strings with reoccuring subpatterns. Following [35], a straight-line
program (SLP) over the alphabet Γ is a context-free grammar A = (V, Γ, S, P ), where
V is the set of nonterminals, Γ is the set of terminals, S ∈ V is the initial nonterminal,
and P ⊆ V × (V ∪ Γ )∗ is the set of productions, such that (i) for every X ∈ V
there is exactly one α ∈ (V ∪ Γ )∗ with (X,α) ∈ P and (ii) there is no cycle in the
relation {(X,Y ) ∈ V × V | ∃α : (X,α) ∈ P, Y ∈ alph(α)}. A production (X,α)
is also written as X → α. The language generated by the SLP A contains exactly one
word that is denoted by eval(A). More generally, every nonterminal X ∈ V produces
exactly one word that is denoted by evalA(X). We omit the index A if the underlying
SLP is clear from the context. The size of A is |A| =

∑
(X,α)∈P |α|. Every SLP can be

transformed in polynomial time into an equivalent SLP that is in Chomsky normal form
(as a context-free grammar). This means that all productions have the form A → BC
or A → a for nonterminals A,B, and C and a terminal a. The following tasks can be
solved in polynomial time (the first two problems can be reduced to simple arithmetic,
whereas the third problem requires more subtle techniques):

– Given an SLP A, calculate |eval(A)|.
– Given an SLP A and a number i ∈ {0, . . . , |eval(A)| − 1}, calculate eval(G)[i].
– Given SLPs A and B decide whether eval(A) = eval(B) [34].

Let G be a finitely generated group and let Σ be a finite generating set for G. The
compressed word problem for G with respect to Σ is the following decision problem:

INPUT: An SLP A over the terminal alphabet Σ±1.
QUESTION: Does eval(A) = 1 hold in G?
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Here, the input size is |A|. It is easy to see that also for the compressed word problem
the complexity does not depend on the chosen generating set, which allows to speak of
the compressed word problem for the groupG. The compressed word problem forG is
also denoted by CWP(G). The following fact is trivial:

Proposition 1. Assume thatH is a finitely generated subgroup of the finitely generated
group G. Then CWP(H) ≤log

m CWP(G).

The next lemma is crucial for our applications of compressed word problems.

Lemma 2. For a given sequence ϕ1, . . . , ϕn of homomorphisms ϕi : Γ ∗ → Γ ∗ (1 ≤
i ≤ n) and a symbol a ∈ Γ we can compute in logarithmic space an SLP A such
that eval(A) = ϕ1 · · ·ϕn(a). Moreover, |A| = O(

∑
a∈Γ

∑n

i=1 |ϕi(a)|). In particular,
if Γ is fixed and every ϕi is taken from some fixed finite set of homomorphisms, then
|A| = O(n).

Proof. Let us take nonterminals Ai,b, where 0 ≤ i ≤ n and b ∈ Γ , and define the
productions as follows:

A0,b → b

Ai,b → Ai−1,a1
· · ·Ai−1,am

, where ϕi(b) = a1 · · · am

By induction on i one can easily show that eval(Ai,b) = ϕ1 · · ·ϕi(b). ut

A composition system A = (V, Γ, S, P ) is defined analogously to an SLP, but in
addition to productions of the form A → α (A ∈ V , α ∈ (V ∪ Γ )∗) it may also
contain productions of the form A → B[i : j] for B ∈ V and i, j ∈ N [18]. For
such a production we define evalA(A) = evalA(B)[i : j].2 As for SLPs we define
eval(A) = evalA(S). In [21], Hagenah presented a polynomial time algorithm, which
transforms a given composition system A into an SLP B such that eval(A) = eval(B).
We will also allow more general kinds of productions, where right-hand sides are arbi-
trary words, built up from terminals, nonterminals and symbols B[: i], B[i :], B[i : j]
for a nonterminal B and i, j ∈ N. The semantics of such productions is the obvious
one.

In Section 4.3 we will need the following generalization of composition systems:
An extended composition system over the terminal alphabet Γ may contain in addition
to productions of the form A → α (A ∈ V , α ∈ (V ∪ Γ )∗) and A → B[i : j] (B ∈ V
and i, j ∈ N) also productions of the form A → πΣ(B) for B ∈ V and Σ ⊆ Γ . For
such a production we define evalA(A) = πΣ(evalA(B)).

Lemma 3. Let Γ be a fixed terminal alphabet. There is a polynomial time algorithm,
which transforms a given extended composition system A over the terminal alphabet Γ
into an SLP B such that eval(A) = eval(B).

2 In [18], a slightly more restricted formalism, where all productions have the form A → a ∈ Γ

or A → B[j :]C[: i], was introduced. But this definition is easily seen to be equivalent to our
formalism.
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Proof. Let A be a given extended composition system. By the Hagenah’s result from
[21] it suffices to construct in polynomial time an equivalent composition system. For
this, we construct in polynomial time a composition system B, which contains for every
nonterminalX of A and every subset Σ of the fixed terminal alphabet Γ a nonterminal
XΣ such that eval(XΣ) = πΣ(eval(X)). For this we introduce in a bottom-up way new
productions: For a productionX → a with a ∈ Γ we introduce the productionsXΣ →
πΣ(a). For a productionX → Y Z, we introduce the productionsXΣ → YΣZΣ. For a
production X → πΘ(Y ) let XΣ → YΣ∩Θ. Finally, consider a production X → Y [i :
j]. We introduce the productionsXΣ → YΣ [k : `], where k = |πΣ(eval(Y )[: i−1])|+1
and ` = |πΣ(eval(Y )[: j])|. These lengths can be computed in polynomial time as
follows: Implicitly, when processing the production X → Y [i : j] we have already
constructed a composition system which generates the string eval(Y ) = eval(YΓ ).
Hence, by adding a single production, we can write down a composition system for
the string eval(Y )[: i − 1]. Using Hagenah’s algorithm [21] we can transform this
composition system in polynomial time into an equivalent SLP. ¿From this SLP, the
length |πΣ(eval(Y )[: i− 1])| can be easily computed bottom-up (the SLP for the string
eval(Y )[: i− 1] is then not used anymore). ut

It should be remarked that in the previous proof it is crucial that the alphabet Γ is
fixed, i.e., not part of the input. Otherwise the construction would lead to an exponential
blow-up. It is not clear whether Lemma 3 remains true, when the terminal alphabet Γ
is part of the input.

3 Connections between the word problem and the compressed
word problem

Our main motivation for studying the compressed word problem for a group are the
following results:

Proposition 2 (cf [38]). Let G be a finitely generated group and let H be a finitely
generated subgroup of Aut(G). Then WP(H) ≤log

m CWP(G).

Proposition 3. Let K and Q be finitely generated groups and let ϕ : Q→ Aut(K) be
a homomorphism. Then, for the semidirect productKoϕQwe have WP(KoϕQ) ≤log

m

(WP(Q),CWP(K)).

Proof. Elements of the semidirect product K oϕ Q can be written as pairs (k, q) ∈
K × Q and the multiplication is defined as (k, q)(`, p) = (k ◦ ϕ(q)(`), qp) (here
◦ is the multiplication in K; note that ϕ(q) ∈ Aut(K)). Let us consider a word
(k1, q1)(k2, q2) · · · (kn, qn), where ki (resp. qi) is a generator of K (resp. Q). In K oϕ

Q, this word equals (θ1(k1) ◦ θ2(k2) ◦ · · · ◦ θn(kn), q1q2 · · · qn), where θi ∈ Aut(K)
is the automorphism defined by θi = ϕ(q1 · · · qi−1) = ϕ(q1) · · ·ϕ(qi−1) for 1 ≤ i ≤ n
(note that θ1 = idK). By Lemma 2, we can compute in logarithmic space an SLP A

over the generators of K, which produces the string θ1(k1)θ2(k2) · · · θn(kn). We have
(k1, q1)(k2, q2) · · · (kn, qn) = 1 in K oϕ Q if and only if q1q2 · · · qn = 1 in Q and
eval(A) = 1 in K. This proves the proposition. ut
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The semidirect product G = K oϕ Q is a an extension of K by Q, i.e., K is
a normal subgroup of G with quotient G/K ' Q. A reasonable generalization of
Proposition 3 would be WP(G) ≤log

m (WP(G/K),CWP(K)). But this cannot be
true: there exist finitely generated groups G,Q,K such that (i) Q = G/K, (ii) Q and
K have a decidable word problem, and (iii) G has an undecidable word problem [2].
On the other hand, if we require additionally, that Q is finitely presented (in fact, Q
recursively presented suffices), thenGmust have a decidable word problem [8]. For the
special case that the quotientQ = G/K is automatic (and hence finitely presented), we
can prove the following:

Proposition 4. Let K be a finitely generated normal subgroup of G such that the quo-
tient Q = G/K is an automatic group. Then WP(G) ≤P

m CWP(K).

Proof. Let Σ be a finite generating set for K and let Γ be a finite generating set of
the automatic group Q = G/K (recall that automatic groups are finitely presented).
Let ϕ : G → Q be the canonical morphism and choose a mapping h : Q → G with
h(1) = 1 and ϕ(h(a)) = a for a ∈ Q. The set Σ ∪ h(Γ ) generates G and there exists
a so called factor set f : Q×Q→ K such that h(a)h(b) = f(a, b)h(ab) for a, b ∈ Q.

Let us first prove the following claim (recall from Section 2.2 the existence of nor-
mal form mappings for automatic groups):

Claim 1. For a given word w = a1 · · · an (ai ∈ Γ±1) with NF(w) = b1 · · · bm (bj ∈
Γ±1) we can compute in polynomial time an SLP A(w) over the terminal alphabetΣ±1

such that |A(w)| ∈ O(n3) and in G we have

h(a1)h(a2) · · ·h(an) = eval(A(w))h(b1) · · ·h(bm).

Proof of Claim 1. Let us take a word w = a1 · · ·an (ai ∈ Γ±1). If n = 0, then we take
for A(w) an SLP generating the empty string. Now assume that n > 0 and let

v = a1 · · · an−1,

NF(v) = c1 · · · ck, and

NF(w) = b1 · · · bm.

There is a constant α (only depending onQ) such that k ≤ α ·(n−1) andm ≤ k+α ≤
α · n.

By induction, we can assume that we have already calculated an SLP A(v) over the
terminal alphabet Σ±1 such that

h(a1)h(a2) · · ·h(an−1) = eval(A(v))h(c1) · · ·h(ck)

in G and |A(v)| ≤ δ · (n− 1)3, where δ is a constant, which can be fixed later. Hence

h(a1)h(a2) · · ·h(an) = eval(A(v))h(c1) · · ·h(ck)h(an)

in G. For the rest of the proof, we have to distinguish the cases k ≤ m and k > m. We
only consider the case k ≤ m, the case k > m can be dealt similarly. So, assume that
k ≤ m. Since the automatic groupQ satisfies the synchronous fellow traveller property,
there exist a constant β ∈ N (depending only on Q) and words r0, . . . , rm ∈ (Γ±1)≤β

such that:
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(1) r0 = ε, rm = an,
(2) ri−1bi = ciri, i.e., ci = ri−1bir

−1
i in Q for 1 ≤ i ≤ k, and

(3) ri−1bi = ri, i.e., 1 = ri−1bir
−1
i in Q for k < i ≤ m.

In the group K the identities in (2) and (3) correspond to identities of the following
form (when writing h(ri), we identify ri with the element of Q it represents):

(1’) h(ci) = pih(ri−1)h(bi)h(ri)
−1 (1 ≤ i ≤ k)

(2’) 1 = pih(ri−1)h(bi)h(ri)
−1 (k < i ≤ m).

where p1, . . . , pk ∈ (Σ±1)∗. Since in (1’) and (2’) there is only a finite number (de-
pending only on Q) of different possibilities for bi, ci ∈ Γ±1, and ri ∈ (Γ±1)≤β , we
can write down a finite list of all possible candidates for the words pi. In particular,
there is a constant γ (depending only on Q and K) such that p1, . . . , pk ∈ (Σ±1)≤γ .
Since h(r0) = h(1) = 1 and h(rm) = h(an), we obtain

h(c1) · · ·h(ck)h(an) = p1h(b1)h(r1)
−1p2h(r1)h(b2)h(r2)

−1 · · ·

pmh(rm−1)h(bm)h(rm)−1h(an)

= p1h(b1)h(r1)
−1p2h(r1)h(b2)h(r2)

−1 · · · pmh(rm−1)h(bm)

in G. We now shift the elements h(bi) and h(ri)
−1 to the right (thereby, the h(ri)

and h(ri)−1 cancel out each other) by applying the automorphisms of K defined by
conjugation with these elements to the pi ∈ K. Note that since the length of any word
ri is bounded by the fixed constant β, all applied automorphisms are taken from some
fixed finite subset of Aut(K). By Lemma 2, we can compute an SLP B of sizeO(m2) ≤
O(n2) such that

p1h(b1)h(r1)
−1p2h(r1)h(b2)h(r2)

−1 · · · pmh(rm−1)h(bm) =

eval(B)h(b1)h(b2) · · ·h(bm) in G.

The size bound for B holds, since p1 · · · pm has length O(m) and to each symbol in
p1 · · · pm we apply O(m) many automorphisms. We obtain

h(a1) · · ·h(an) = eval(A(v))eval(B)h(b1) · · ·h(bm) in G.

Hence, we can take for A(w) an SLP which computes the concatenation of eval(A(v))
and eval(B). It follows that

|A(w)| = |A(v)|+ |B|+ 1 ≤ δ · (n− 1)3 +O(n2).

By choosing the constant δ large enough (depending on the constant hidden in the
O(n2) term), we obtain |A(w)| ≤ δ · n3. This completes the proof of Claim 1.

Let us continue the proof of Proposition 4. Assume that w is a word over the gener-
ating set Σ±1 ∪ h(Γ±1) of G. Let

w = w0h(a1)w1h(a2) · · ·wn−1h(an)wn
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with wi ∈ (Σ±1)∗ (0 ≤ i ≤ n) and ai ∈ Γ±1 (1 ≤ i ≤ n). Let ψi ∈ Aut(K)
(1 ≤ i ≤ n) be the automorphism of K defined by ψi(k) = h(ai)kh(ai)

−1 and let
χi = ψ1 · · ·ψi for 0 ≤ i ≤ n. Thus, χ0 = idK and we have

w = w0h(a1)w1h(a2) · · ·wn−1h(an)wn

= χ0(w0)χ1(w1) · · ·χn(wn)h(a1)h(a2) · · ·h(an)

in G. In the automatic quotient Q we have ϕ(w) = a1 · · · an. Hence, we first calculate
in polynomial time the normal form v = NF(a1 · · · an). If v 6= ε, then we know that
w 6= 1 inG. Hence assume that v = ε. By Claim 1, we can compute in polynomial time
an SLP A over the terminal alphabet Σ±1 such that h(a1)h(a2) · · ·h(an) = eval(A)
in G. Hence, w = 1 in G if and only if χ0(w0)χ1(w1) · · ·χn(wn)eval(A) = 1 in
G, which (by Lemma 2) can be transfered in polynomial time into an instance of the
compressed word problem for K. ut

4 Upper bounds for compressed word problems

4.1 Finite extensions

Since every finite group is automatic, Proposition 4 applies to the case that the quo-
tient Q is finite. In this situation, we even obtain a polynomial time reduction from the
compressed word problem of G to the compressed word problem of K:

Theorem 1. Assume that K is a finitely generated subgroup of the group G such that
the index [G : K] is finite. Then CWP(G) ≤P

m CWP(K).

Proof. Let Γ be a finite generating set for K and let Σ be a finite generating set for G.
Let h : (Σ±1)∗ → G be the canonical morphism. Let Kg1, . . . ,Kgn be a list of the
cosets of K, where w.l.o.g. g1 = 1. Let A be the coset automaton of K. This is a finite
automaton over the alphabet Σ±1 and with state set {Kg1, . . . ,Kgn}. The initial and
final state is K = Kg1 and there is a transition Kgi

a
→ Kgj (a ∈ Σ±1) if and only

if Kgia = Kgj . Note that this automaton accepts a word w ∈ (Σ±1)∗ if and only if
h(w) ∈ K. Since it can be checked in polynomial time whether the word generated
by a given SLP is accepted by a given finite automaton (here, we even have a fixed
automaton A), we can check in polynomial time whether h(eval(A)) ∈ K for a given
SLP A.

Now let A be an SLP in Chomsky normal form over the alphabet Σ±1. We want
to check whether eval(A) = 1 in G. First, we check in polynomial time, whether
h(eval(A)) ∈ K. If not, we reject immediately. Otherwise, we will construct an SLP B

over the generating set Γ±1 of K, which computes the same group element as A. Then
we can apply an algorithm for the CWP for K.

Let V be the set of nonterminals of A and let S be the start nonterminal of A. The
set of nonterminals of B is the set of triples

W = {[gi, A, g
−1
j ] | A ∈ V, 1 ≤ i, j ≤ n, gih(eval(A))g−1

j ∈ K}.

By the above observation, this set can be computed in polynomial time. Now, let us
introduce the production for the nonterminal [gi, A, g

−1
j ] ∈ W . First, assume that the
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production for A is A → a, where a ∈ Σ±1. Hence, giag
−1
j ∈ K, and we introduce

the production [gi, A, g
−1
j ] → w, wherew ∈ (Γ±1)∗ is such that h(w) = giag

−1
j . Now

assume that the production for A is of the form A → BC. Assume that gih(eval(B))
belongs to the coset Kgk. Thus, gih(eval(B))g−1

k ∈ K, i.e., [gi, B, g
−1
k ] ∈ W . We

introduce the production

[gi, A, g
−1
j ] → [gi, B, g

−1
k ][gk, C, g

−1
j ].

Note we have gih(eval(A))g−1
j = gih(eval(B))g−1

k gkh(eval(C))g−1
j . Hence, since

gih(eval(A))g−1
j and gih(eval(B))g−1

k both belong to the subgroup K, we also have

gkh(eval(C))g−1
j ∈ K, i.e., [gk, C, g

−1
j ] ∈ W . Finally, let [g1, S, g

−1
1 ] = [1, S, 1] be

the start nonterminal of B. It is easy to prove that for every nonterminal [gi, A, g
−1
j ] ∈

W , evalB([gi, A, g
−1
j ]) represents the group element gih(evalA(A))g−1

j . Thus, eval(A) =
1 in G if and only if eval(B) = 1 in K, which is an instance of the CWP of K. This
proves the theorem. ut

The reducibility relation ≤P
m in Theorem 1 cannot be replaced by the stronger re-

lation ≤log
m (unless P = L) because there exists a finite group G with a P-complete

compressed word problem [3] (take K = 1 in Theorem 1).

4.2 Free products

The aim of this section is to prove the following theorem:

Theorem 2. Assume thatG = G1∗G2. Then CWP(G) ≤P
T (CWP(G1),CWP(G2)).

Proof. For the proof of the theorem, it is useful, to introduce a special kind of composi-
tion systems, which we call 2-level composition systems. A 2-level composition system
over the terminal alphabet Γ is a tuple A = (B, Vu, V`), where B = (V, Γ, S, P ) is a
composition system and V = Vu∪V` (Vu∩V` = ∅) is a partition of the set of nontermi-
nals into the set of upper-level nonterminals Vu and the set of lower-level nonterminals
V` such that: S ∈ Vu and for every production (A→ w) ∈ P we have either (i) A ∈ V`

and w ∈ (V` ∪ Γ )∗ or (ii) A ∈ Vu and (w ∈ V ∗ or w = B[i : j] for some B ∈ Vu

and i, j ∈ N). For A ∈ V we set evalA(A) = evalB(A) and eval(A) = eval(B). De-
fine the composition system Au = (Vu, V`, {(A → w) ∈ P | A ∈ Vu}, S) and let
ueval(A) = eval(Au) ∈ V ∗

` . Using Hagenah’s result [21], every 2-level composition
system can be transformed in polynomial time into an equivalent SLP.

Let Σi be a finite generating set for Gi (i ∈ {1, 2}), where Σ1 ∩Σ2 = ∅. Let A be
an SLP over the terminal alphabet Σ±1

1 ∪ Σ±1
2 . Our goal is to construct in polynomial

time a 2-level composition system A
′ such that eval(A) and eval(A′) represent the same

group element of G1 ∗G2 but eval(A′) is irreducible in G1 ∗G2. Then, eval(A) = 1 in
G1 ∗G2 if and only if eval(A′) = ε.

The construction of A′ follows the strategy for free groups from [28]. In a first
step we check for every nonterminal A of A whether either eval(A) ∈ (Σ±1

1 )∗ and
eval(A) = 1 in G1 or eval(A) ∈ (Σ±1

2 )∗ and eval(A) = 1 in G2 (for this, we have
to solve instances of CWP(G1) and CWP(G2)). If this is true, then we eliminate the
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nonterminalA from A by replacingA in all right-hand sides by ε. We iterate this process
as long as we can eliminate nonterminals. Let us denote the resulting SLP again by A.
W.l.o.g. we can assume that A is in Chomsky normal form.

Let V be the set of nonterminals of A. We define a partition V = Vu ∪ V` of
V as follows: V` = {A ∈ V | eval(A) ∈ (Σ±1

1 )∗ ∪ (Σ±1
2 )∗} and Vu = V \ V`.

This defines a 2-level composition system (A, Vu, V`). In the rest of the proof we will
manipulate this 2-level composition system such that at the end we obtain a 2-level
composition system A′ with the property that (i) it generates the same group element
of G1 ∗ G2 and (ii) every nonterminal of A′ generates a word which is irreducible in
G1∗G2. In the following, the notions eval, ueval, Vu, V` will refer to the currrent 2-level
composition system. Note that initially, forA ∈ V` we have: eval(A) 6= 1 in G1 in case
eval(A) ∈ (Σ±1

1 )∗ and eval(A) 6= 1 in G2 in case eval(A) ∈ (Σ±1
2 )∗. In particular,

eval(A) ∈ (Σ±1
1 )+ ∪ (Σ±1

2 )+. This property will be preserved during the construction
of A′.

A word u = A1 · · ·An (Ai ∈ V` for 1 ≤ i ≤ n) is called irreducible, if for all
1 ≤ i < n: eval(Ai) ∈ (Σ±1

1 )+ ⇔ eval(Ai+1) ∈ (Σ±1
2 )+. Since every word eval(Ai)

(1 ≤ i ≤ n) neither represents the 1 of G1 (if eval(A1) ∈ (Σ±1
1 )+) nor of G2 (if

eval(A1) ∈ (Σ±1
1 )+), this means that eval(A1) · · · eval(An) is irreducible in G1 ∗G2.

For words u, v ∈ V ∗
` we write cancel(u, v) if u = An · · ·A1, v = B1 · · ·Bn for

some n ≥ 0 and A1, . . . , An, B1, . . . , Bn ∈ V` and for every 1 ≤ i ≤ n there is
j ∈ {1, 2} such that eval(Ai), eval(Bi) ∈ (Σ±1

j )+ and eval(Ai)eval(Bi) = 1 in Gj .

Claim: On a Turing machine with oracle access to CWP(G1) and CWP(G2) we can
check in polynomial time whether cancel(eval(C), eval(D)) for given composition sys-
tems C and D over the terminal alphabet V`.

Proof of the Claim: By Hagenah’s result [21] we may assume that C and D are SLPs.
From D we can easily compute an SLP D

′ such that eval(D′) is the string that results
from reversing eval(D). Define a mapping f1 : V` → V` as follows: Fix an order �
on V`. Then, for A ∈ V`, f1(A) is the smallest B ∈ V` such that eval(A) = eval(B)
in either G1 or G2. Moreover, define a second mapping f2 : V` → V` as follows: For
A ∈ V`, f1(A) is the smallest B ∈ V` such that eval(A) = eval(B)−1 in either G1

or G2. Note that the mappings f1 and f2 can be computed in polynomial time on a
Turing machine with oracle access to CWP(G1) and CWP(G2). We extend f1 and f2
to morphisms on V ∗

` . Now we can easily compute SLPs C′ and D′′ such that eval(C′) =
f1(eval(C)) and eval(D′′) = f2(eval(D′)). Then, cancel(eval(C), eval(D)) if and only
if C′ and D′′ generate the same strings over the alphabet V`. This can be checked in
polynomial time [34].

Let us now construct the 2-level composition system A′. In a bottom-up process, simi-
larly to [28], we will process every upper-level nonterminal from Vu. Thereby, we will
enforce that for every A ∈ Vu, ueval(A) ∈ V ∗

` is irreducible and hence eval(A) is
irreducible in G1 ∗ G2. So, assume that A → BC is a production of A with A ∈ Vu

and that B and C are either from V` or were already processed. There are four possi-
ble cases: (i) B,C ∈ V`, (ii) B,C ∈ Vu, (iii) B ∈ Vu, C ∈ V`, and (iv) B ∈ V`,
C ∈ Vu. In case (i), we must have either eval(B) ∈ (Σ±1

1 )+ and eval(C) ∈ (Σ±1
2 )+

or eval(B) ∈ (Σ±1
2 )+ and eval(C) ∈ (Σ±1

1 )+, because otherwise A would belong to
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V`. Hence, ueval(A) = BC is irreducible and we do not have to modify the production
A→ BC for A. ¿From the cases (ii)–(iv) we will only consider case (ii), the other two
cases are simpler to deal with.

The words u = ueval(B) ∈ V ∗
` and v = ueval(C) ∈ V ∗

` are already irre-
ducible. We now determine the maximal amount of cancellation between u and v,
when interpreting the symbols in these words as elements from G1 ∪ G2. Assume that
u = Bn · · ·B1 and v = C1 · · ·Cm for B1, . . . , Bn, C1, . . . , Cm ∈ V`. We first deter-
mine in polynomial time the symbols B1, C1 ∈ V` . If either eval(B1) ∈ (Σ±1

1 )+ and
eval(C1) ∈ (Σ±1

2 )+ or eval(B1) ∈ (Σ±1
2 )+ and eval(C1) ∈ (Σ±1

1 )+ then ueval(A) is
already irreducible and we do not have to modify the productionA→ BC. Otherwise,
using binary search over the range {1, . . . ,min(n,m)} we find the largest number i
such that cancel(Bi · · ·B1, C1 · · ·Ci). Note that we can write down composition sys-
tems of polynomial size generating the words Bi · · ·B1 and C1 · · ·Ci. Hence, by the
above claim, the number i can be found in polynomial time on a Turing machine with
oracle access to CWP(G1) and CWP(G2). Next, we have to distinguish the following
cases:

– i = n = m: We replace the productionA→ BC by A→ ε.
– i = n < m: We replace the productionA→ BC by A→ C[i+ 1 :].
– i = m < n: symmetric to the previous case.
– i < n, i < m: we add a new lower-level nonterminal D to V` together with

the production D → Bi+1Ci+1. Note that eval(Bi+1)eval(Ci+1) 6= 1 (either
in G1 or in G2) because otherwise i would not be the largest number such that
cancel(Bi · · ·B1, C1 · · ·Ci). Moreover, the production A → BC is replaced by
A→ B[: n− i− 1]DC[i+ 2 :].

This concludes the construction of the 2-level composition system A′. ut

Again, the reducibility relation≤P
T in Theorem 2 cannot be replaced by the stronger

relation ≤log
m (unless P = NC)3 because the compressed word problem for Z ∗ Z is P-

complete [28], whereas the compressed word problem for Z is easily seen to be in NC.

4.3 Graph groups and graph products

For this section, we need the material from Section 2.2. Let us fix an independence
alphabet (Σ, I). Define a trace rewriting system R over M(Σ±1, I) as follows:

R = {([aa−1]I , [ε]I) | a ∈ Σ
±1}. (1)

One can show that R is terminating and confluent and that for all u ∈ M(Σ±1, I):
u = 1 in G(Σ, I) if and only if NFR(u) = [ε]I , i.e., u

∗
→R [ε]I [12]. This leads to a

linear time solution for the word problem of G(Σ, I) [12, 42].

Example 3. Let (Σ, I) be the following independence alphabet:

3 NC denotes Nick’s class — the class of all problems that can be solved with polynomially
many processors in polylogarithmic time.
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b d a c

An example for a derivation using the trace rewriting system R is:

[b−1adc−1a−1cbd−1]I =

[b−1ada−1c−1cbd−1]I →R

[b−1ada−1bd−1]I =

[b−1aa−1dbd−1]I →R

[b−1dbd−1]I =

[b−1bdd−1]I →
2
R [ε]I

The fact that [b−1adc−1a−1cbd−1]I
∗
→R [ε]I becomes quite obvious, when looking at

the dependence graph of the trace [b−1adc−1a−1cbd−1]I :

b−1 a a−1 b

d c−1 c d−1

This graph can be reduced to the empty graph by successively canceling nodes with
inverse labels, which are moreover connected by an edge.

In this section, we will show that the compressed word problem for G(Σ, I) can
be solved in polynomial time. We follow our strategy for free groups [28]. For a given
SLP A over the terminal alphabet Σ±1 we construct an extended composition system
(see Section 2.3) B such that [eval(B)]I = NFR([eval(A)]I ). For this we will accu-
mulate the productions of B in the same way as in the free group case. We start with
all productions from A of the form A → a. Now assume that A contains a production
A → BC and that B already contains enough productions such that [evalB(B)]I =
NFR([evalA(B)]I ) and [evalB(C)]I = NFR([evalA(C)]I ). We have to add a rule for
the nonterminalA such that

[evalB(A)]I = NFR([evalB(B)evalB(C)]I ). (2)

Intuitively, R-reduction steps in the trace [evalB(B)evalB(C)]I can only occur at the
border between the prefix [evalB(B)]I and the suffix [evalB(C)]I , because both these
traces are irreducible w.r.t. R. In other words, some suffix of [evalB(B)]I will cancel
against some prefix of [evalB(C)]I . We have to determine and cut away on the level of
extended composition systems this suffix and prefix, respectively. At this point, the con-
struction becomes more involved than for the free groups case. We need two lemmas:

Lemma 4. For two given extended composition systems A and B it can be checked in
polynomial time whether eval(A) �I eval(B).

Proof. By Lemma 3 we can assume that A and B are SLPs. Let (Σi)1≤i≤n be a clique
covering for the dependence alphabet (Σ,D). We compute in polynomial time SLPs Ai

and Bi (1 ≤ i ≤ n) such that eval(Ai) = πΣi
(eval(A)) and eval(Bi) = πΣi

(eval(B)).
By Lemma 1 it suffices to check whether eval(Ai) is a prefix of eval(Bi) for all 1 ≤ i ≤
n. But this can be easily reduced to an equivalence check: Compute ni = |eval(Ai)| and
an SLP Ci with eval(Ci) = eval(Bi)[: ni]. Finally check whether eval(Ci) = eval(Ai)
for all 1 ≤ i ≤ n. ut
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Lemma 5. Let p, q ∈ M(Σ±1, I). If p, q ∈ IRR(R), then

NFR(pq) = (p−1 \ q)−1(q \ p−1).

Proof. Let p, q ∈ IRR(R). By [13, Lemma 13], in the trace monoid M(Σ±1, I) there
exist factorizations p = xr and q = r−1y such that NFR(pq) = xy. Moreover, r is the
trace with maximal length such that p and q can be written as p = xr and q = r−1y. It
follows that r = (p−1 u q)−1, x = (p−1 \ q)−1, and y = q \ p−1. ut

Example 4. Let (Σ, I) be the independence alphabet from Example 3. Let

p = [cbdcd−1b−1a]I ∈ IRR(R) and

q = [da−1baac−1bd−1]I = [da−1bc−1d−1aab]I ∈ IRR(R).

Hence,
p−1 = [a−1bdc−1d−1b−1c−1]I = [da−1bc−1d−1b−1c−1]I

and we see that

p−1 u q = [da−1bc−1d−1]I ,

p−1 \ q = [b−1c−1]I , (p−1 \ q)−1 = [cb]I , and

q \ p−1 = [aab]I .

Hence, NFR(pq) = (p−1 \ q)−1(q \ p−1) = [cb]I [aab]I = [cbaab]I . This fact can be
also visualized in the dependence graph of the trace pq, which looks as follows:

b b−1 a a−1 b a a b

c d c d−1 d c−1 d−1

(p−1 \ q)−1 (p−1 u q)−1 p−1 u q q \ p−1

¿From Lemma 5, it follows that in order to compute a production for the nonterminal
A such that (2) holds, we basically have to solve the following problem: For a given
extended composition system B with nonterminalsB and C, construct a production for
a new nonterminalA such that

[evalB(A)]I = [evalB(B)]I \ [evalB(C)]I .

Then, productions for ([evalB(B)]−1
I \ [evalB(C)]I )

−1 and [evalB(C)]I \ [evalB(B)]−1
I

can be calculated in the same way.
Let us first solve this problem for uncompressed strings. Then we will argue that

our algorithm leads to a polynomial time algorithm for compressed input strings.
How can we compute for two given words s, t ∈ (Σ±1)∗ words u, v ∈ (Σ±1)∗

such that
[u]I = [s]I u [t]I and [v]I = [s]I \ [t]I?

We can accumulate the strings u and v by determining for every position from {1, . . . , |s|}
(viewed as a node of the dependence graph of s) whether it belongs to [u]I or [v]I . In
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a first step we search for the longest (string) prefix s0 of s such that s0 �I t, i.e., [s0]I
is a (trace) prefix of [t]I . If s0 = s then we can set u = s and v = ε and we are ready.
Otherwise we can write s = s0a1r1 with a1 ∈ Σ±1. Let i1 = |s0| + 1 be the position
of the a1 in s. Clearly, all positions in s from {1, . . . , i1 − 1} belong to the maximal
common trace prefix [u]I , whereas position i1 does not belong to [u]I (by maximality
of s0), i.e., it belongs to the difference [v]I . We therefore set u := s0 and v := a1. Now,
every position in the suffix r1 of s, which contains a symbol dependent from a1, cannot
belong to the maximal common prefix [u]I , because it depends on position i1 (which
itself does not belong to the maximal common prefix). Hence, we proceed by searching
the maximal prefix s1 of r1 such that s0πI(a1)(s1) = uπI(a1)(s1) �I t. If s1 = r1, then
we can set u = s0πI(a1)(r1) and v = aπD(a1)(r1) and we are ready with the calcula-
tion of u and v. Otherwise we can write r1 = s1a2r2. By the same arguments as above
we can update u and v by u := uπI(a1)(s1) and v := vπD(a1)(s1)a2. In the next step
we search for the maximal prefix s2 of the suffix r2 such that uπI(a1)∩I(a2)(s2) � t,
and continue in this way.

Example 5. Again, let (Σ, I) be the independence alphabet from Example 3. Let s =
da−1baac−1bd−1 and t = a−1bdc−1d−1b−1c−1. Note that [s]I is the trace q from
Example 4, whereas [t]I is the trace p−1 from Example 4. Let us compute [u]I =
[s]I u [t]I and [v]I = [s]I \ [t]I by the above algorithm.

The longest prefix s0 of the string s = da−1baac−1bd−1 such that s0 �I t is
da−1b. Hence, in a first step we set u := da−1b and v := a. ¿From the string s, it
remains to process the suffix r1 = ac−1bd−1. We have to search the longest prefix s1
of r1 such that s0πI(a)(s1) = da−1bπ{d,c}(s1) �I t. Note that π{d,c}(r1) = c−1d−1

and we have s0π{d,c}(r1) = da−1bc−1d−1 �I t. Hence we have s1 = r1 and we set
u := uπ{d,c}(r1) = da−1bc−1d−1 and v := vπD(a)(r1) = aab.

We obtain the following lemma:

Lemma 6. Let s, t ∈ (Σ±1)∗. Let s = s0a1s1a2 · · · sk−1aksk be the unique factoriza-
tion such that

(a) 0 ≤ k ≤ |Σ|, a1, . . . , ak ∈ Σ±1, s0, . . . , sk ∈ (Σ±1)∗, and
(b) sj is the maximal prefix of sjaj+1sj+1 · · ·aksk such that

πΣ\Σ0
(s0)πΣ\Σ1

(s1) · · ·πΣ\Σj
(sj) �I t, (3)

where Σj = D(a1) ∪ · · · ∪ D(aj) for 0 ≤ j ≤ k (hence Σ0 = ∅ and Σ \ Σj =
I(a1) ∩ · · · ∩ I(aj)).

Then we have

[s]I \ [t]I = [πΣ0
(s0)a1πΣ1

(s1)a2πΣ2
(s2) · · · akπΣk

(sk)]I and

[s]I u [t]I = [πΣ\Σ0
(s0)πΣ\Σ1

(s1) · · ·πΣ\Σk
(sk)]I

(note that πΣ0
(s0) = ε and πΣ\Σ0

(s0) = s0).
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The bound k ≤ |Σ| in (a) follows because the elements a1, . . . , ak must be pair-
wise different: if ai = aj+1 for i ≤ j, then sj would not be the maximal prefix of
sjaj+1sj+1 · · ·aksk satisfying (3), because aj+1 6∈ Σ \Σj = I(a1)∩· · ·∩I(aj) (note
that aj+1 6∈ I(aj+1) = I(ai)) and thus πΣ\Σ0

(s0)πΣ\Σ1
(s1) · · ·πΣ\Σj

(sjaj+1) �I t.
The above algorithm for computing [s]I \ [t]I leads to a polynomial time algorithm,

which adds to a given extended composition system B with nonterminals B and C
(satisfying [evalB(B)]I , [evalB(C)]I ∈ IRR(R)), a new production A → α such that
[evalB(A)]I = [evalB(B)]I \ [evalB(C)]I :4

i := 1; (a pointer in the word eval(B))
α := ε; (eval(α) will become [eval(B)]I \ [eval(C)]I )
ρ := ε; (eval(ρ) will become [eval(B)]I u [eval(C)]I )
Γ := ∅; (corresponds to the alphabet Σj = D(a1) ∪ · · · ∪D(aj) from Lemma 6)
while i ≤ |eval(B)| do

j := max{j ≤ |eval(B)| | eval(ρ ◦ πΣ\Γ (B[i : j])) �I eval(C)}; (*)
ρ := ρ ◦ πΣ\Γ (B[i : j]);
if j < |eval(B)| then

a := eval(B)[j + 1];
α := α ◦ πΓ (B[i : j]) ◦ a;
Γ := Γ ∪D(a)

else
α := α ◦ πΓ (B[i :]);

endif
i := j + 2;

endwhile

Let us argue that this algorithm can be implemented in polynomial time. The number of
iterations of the while-loop is bounded by |Σ| since k ≤ |Σ| in Lemma 6. The condition
eval(ρ ◦ πΣ\Γ (B[i : j])) �I eval(C) in line (*) can be checked in polynomial time
by Lemma 4. Hence, the number j in line (*) can be computed in polynomial time via
binary search. We obtain the main result of this section:

Theorem 3. If G is a graph group, then the compressed word problem for G belongs
to the class P .

Let us end this section with a generalization of both Theorem 2 and 3. A graph
product is given by a triple (Σ, I, (Gv)v∈Σ), where (Σ, I) is an independence alphabet
and Gv is a group, which is associated with the node v ∈ Σ. W.l.o.g. assume that
Σ = {1, . . . , n}. The group G(Σ, I, (Gv)v∈Σ) defined by this triple is the quotient

G(Σ, I, (Gv)v∈Σ) = (G1 ∗G2 ∗ · · · ∗Gn)/{xy = yx | x ∈ Gu, y ∈ Gv , (u, v) ∈ I},

i.e., we take the free product (G1 ∗G2 ∗· · ·∗Gn), but let elements from adjacent groups
commute. Note that G(Σ, I, (Gv)v∈Σ) is the graph group G(Σ, I) in case every Gv is

4 In the algorithm we use the notation eval(α) and eval(ρ) where α and ρ are right-hand sides
of an extended composition system; the meaning is the obvious one. Moreover, concatenation
of strings is denoted by ◦ for better readability.
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isomorphic to Z. Moreover, free products and direct products appear as special cases
of the graph product construction. Graph products were first studied by Green [20]. By
combining the ideas from Section 4.2 with our algorithm for graph groups, one can
prove:

Theorem 4. Assume thatG is a graph product of finitely generated groupsG1, . . . , Gn.
Then CWP(G) ≤P

T (CWP(G1), . . . ,CWP(Gn)).

4.4 Linear groups

Recall that a language L belongs to the complexity class RP (randomized polynomial
time) if there exists a randomized polynomial time algorithm5 A such that:

– if x 6∈ L then Prob[A accepts x] = 0

– if x ∈ L then Prob[A accepts x] ≥ 1/2

The choice of the failure probability 1/2 in case x ∈ L is arbitrary: By repeating the
algorithm c times (where c is some constant), we can reduce the failure probability to
(1/2)c and still have a randomized polynomial time algorithm. A language L belongs
to the class coRP, if the complement of L belongs to RP. This means that there exists a
randomized polynomial time algorithm A such that:

– if x 6∈ L then Prob[A accepts x] ≤ 1/2

– if x ∈ L then Prob[A accepts x] = 1

Theorem 5. If G is a finitely generated linear group, then the compressed word prob-
lem for G belongs to coRP.

Proof. Let G be linear over the field K. For the case that K has characteristic 0, it is
shown in [27] that G is isomorphic to a group of matrices over the ring Z[x1, . . . , xn]
(for some n). If K has prime characteristic p > 0, then G is isomorphic to a group
of matrices over Fp[x1, . . . , xn] [40] (here Fp ' Z/pZ is the field of cardinality p).
Hence, we can reduce the compressed word problem for G to the following problem:

INPUT: A circuit C over the polynomial ring Z[x1, . . . , xn] (in case K has character-
istic 0) or Fp[x1, . . . , xn] (in case K has characteristic p > 0).
QUESTION: Is the polynomial, to which the circuit C evaluates, the zero-polynomial?

This problem belongs to coRP by [23]. ut

Let us mention that graph groups are finitely generated linear [22].

5 A randomized algorithm A may flip coins. Hence, it accepts a given input only with some
probability. If there exists a polynomial p(n) such that for every input of length n and ev-
ery possible outcome of the coin flips, A runs in time at most p(n), then A is a randomized
polynomial time algorithm.
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5 Applications

In this section, we present some immediate corollaries to the results from Section 3 and
4. We concentrate on automorphism groups.

It was shown in [25] (based on previous work from [39]) that the automorphism
group of a graph group is finitely generated. Proposition 2 and Theorem 4 imply:

Corollary 1. For a graph group G, the word problem for Aut(G) can be solved in
polynomial time.

Crisp and Wiest [9] have shown that the fundamental group of any orientable sur-
face and of every non-orientable surfaces of genus at least 4 (see [41] for definitions)
can be embedded in a graph group. Hence, by Proposition 1 and Theorem 4, the com-
pressed word problems for these fundamental groups can be solved in polynomial time.
The fundamental group of the non-orientable surface of genus 1 (the projective plane)
is Z/2Z, hence its compressed word problem can be also solved in polynomial time.
Finally, the fundamental group of the non-orientable surface of genus 2 (the Klein bot-
tle) has the presentation 〈x, y | x2 = y2〉, i.e., it is an amalgamated free product of
two copies of Z, amalgamating 2Z. Using techniques similar to those from Section 4.2
for free groups, one can show that for this group the compressed word problem can be
solved in polynomial time as well. Hence, with Proposition 2 we obtain:

Corollary 2. Let G be either the fundamental group of an orientable surface or the
fundamental group of a non-orientable surface with genus different from 3. Then the
word problem for Aut(G) can be solved in polynomial time.

The case of the non-orientable surface of genus 3 remains open. Its fundamental
group has the presentation 〈x, y, z | x2y2 = z2〉. Automorphism groups of fundamental
groups of surfaces play an important role in algebraic topology; they are closely related
to mapping class groups.

Another class of fundamental groups, which embed into graph groups are funda-
mental groups of finite state complexes [19]. Hence, by the above arguments, also the
automorphism groups of these fundamental groups can be solved in polynomial time.

6 Open problems

Many open problems remain concerning compressed word problems. Let us mention
some of them.

1. Is the compressed word problem for a hyperbolic group solvable in polynomial
time? For torsion-free hyperbolic groups one might try to attack this question using
the canonical representatives of Rips and Sela [36].

2. What about the compressed word problem for automatic groups? Is it possible to
proof a non-trivial lower bound (e.g. NP-hardness or coNP-hardness) for the com-
pressed word problem of some specific automatic group?
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3. Is the uniform compressed word problem for graph groups solvable in polynomial
time? In this problem, the independence alphabet (Σ, I), which defines the un-
derlying graph group, is also part of the input. This question depends on whether
Lemma 3 also holds for a variable terminal alphabet Γ .

4. Can Theorem 2 be generalized from free products to (suitably restricted) amalga-
mated free products and HNN-extensions?

5. Is it possible to relax the restriction to an automatic quotient group Q in Proposi-
tion 4?
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