TUNNEL NUMBER ONE KNOTS IN S^3 AND GENUS ONE SPLITTINGS

ABSTRACT. We give a family of knots in the three-sphere which have increasingly complicated bridge positions with respect to the standard genus one splitting.

1. INTRODUCTION

A knot $K \subset S^3$ has a (g, b) position if K may be isotoped to have exactly b bridges with respect to the standard genus g Heegaard splitting of S^3 . Of course, if K has a (g, b) position then K also has a (g, b+1) position.

The purpose of this note is to prove:

Theorem 1.1. There is a family of tunnel number one knots $K_n \subset S^3$ so that K_n has no (1, n) position.

We remark that a tunnel number t knot must always have a (t+1, 0) position of a special kind: the knot K may be isotoped to be a *primitive* curve K' lying on the boundary of V_{t+1} , the standard genus t + 1 handlebody. (That is, K' meets some essential disk $D \subset V$ in exactly one point.)

2. Sketch of the proof

Let $V = V_2$ be the standardly embedded genus two handlebody in S^3 . Let W be the closure of $S^3 \setminus V$. Let $S = V \cap W$ be the standard genus two Heegaard splitting of S^3 . Consider $\mathcal{C}(S)$ the curve complex of S. Curves which are primitive on V form a subcomplex.

This subcomplex is best thought of in its relation to the disk complex $\mathcal{D}(V)$, and lies in a radius one neighborhood of $\mathcal{D}(V)$ inside of $\mathcal{C}(S)$. We are interested in primitive curves (in V) which are far away from $\mathcal{D}(W)$ inside of $\mathcal{C}(S)$. We deduce the existance of such from:

Proposition 2.1. There is a sequence of disks $D_n \subset V$ so that $d_S(D_n, \mathcal{D}(W)) \geq n$. Here $d_S(\cdot, \cdot)$ denotes distance in the curve complex $\mathcal{C}(S)$.

This is proved by finding a pseudo-Anosov map $f: S \to S$ which extends over V but not over W and then applying a criterion of Kobayashi [1].

Date: January 11, 2006.

This work is in the public domain.

2 TUNNEL NUMBER ONE KNOTS IN S^3 AND GENUS ONE SPLITTINGS

The desired primitive curves are distance at most two from the disks D_n .

Suppose now that K_n is a primitive curve on V, meeting D_n exactly once. Pushing K_n slightly into V and removing an open regular neighborhood of K_n we obtain a compression body/handlebody splitting of $E(K_n)$ the exterior of K_n .

Claim 2.2. If n is large enough then the given genus two compression body/handlebody splitting of $E(K_n)$ has Hempel distance at least n/2.

We now require a slight generalization of work of Scharlemann and Tomova:

Theorem 2.3. If S is a compression body/handlebody splitting of E(K)and T is any generalized Heegaard splittings of E(K) which is not a stabilization of S then the quantity $-\chi(T) + 2$ is an upper bound for the Hempel distance of S.

We are now in a postion to prove the theorem: let K_n be as above and suppose that T is the generalized Heegaard splitting of $E(K_n)$ coming from a (1, b) position of K_n . So T is a 2b-holed torus and $-\chi(T) + 2 = 2b + 2$. Combining the theorems above we find that $2b + 2 \ge n/2$ and so $b \ge (n - 4)/4$. Thus b goes to infinity with n and we are done.

3. The details

There are lots.

References

 Tsuyoshi Kobayashi. Heights of simple loops and pseudo-Anosov homeomorphisms. In *Braids (Santa Cruz, CA, 1986)*, pages 327–338. Amer. Math. Soc., Providence, RI, 1988.