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Abstract

This thesis studies the degeneratian of g ric structures on manifolds We begin

with s foliation with transverse geomewic structure on a manifold M; this can be regarded as
a kind of degenerate geametric structure oo M. We investigate when the foliation can be
“approximated” by non-degenerate geometric structures on M. This can bé made precise in
terms of developing maps dexcribing geometric structures and foliations on M.

To approximate a folimion by non-degenerate geometric structures in this way, we carry

OUT LWO SLeps

(1) Find 2 (suitable) family of representations starting with the holonomy represeniation for

the folistion

(2) Show that there are geometri structures with these representations as holanomy represen-
taucns

We inwoduce a 1-fam giving 2 “iangent vector” to a family of developing maps and
obsain “regeneration conditions™ an the form guaranteeing that step (2) is possible. For a 1-
dimensional foliarion, thew conditions can be also be expressed in terms of cohomology, mak-
ing them easier 10 apply.

To carrs out step (1} we study the topology of certain spaces of representations using
cobomological techniques bn particular, we consider the representations of certain 3-manifold
grougs mwio the group of hyperbolic mometries PSLC.

Applying the previms resuls, we investigate when certain foliations of 3-manifolds
with non-hypertwolic peometric swuctures (madelled on the geometries : E°, H2XR, PSLR and
Solv) can arise as limits of degeperaung hyperbolic structures. In general, the initia] foliation

wilh ransverse geomeiri: structure must sausfy restricuve topological and geometric condi-
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tons for such deformation Lo be passible.
We also give a new proof of a formula of Schlafli describing 1be derivative of volume
) . wrvchure
for a smooth family of polyhedra in a space of constant, Using this result, we describe the
variauon of volume as hyperbolic structures are deformed.
Finally, we illusirate how our results can sometimes be used 1o find the exact boundary
of hyperbolic Dehp surgery space. We discuss the space of hyperbolic structures on the figure

eight knol compiement in detail
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Introduction

In this thesis, we study the deformation of geometric structures on manifolds In general,
the structures we consider will be incomplete with special kinds of singularities We will be
particularly interested in understanding the ways that these structures can degenerate.

These ideas have been used t0 construct geometric swuctures on 3-manifolds Every
closed 3-manifold M conins a link T such that AM—E has a complete hyperbolic structure
(see eg. Myers [My]\. One could try o deform this hyperbolic structure to obtain incomplete
byperbolic structures on M with cone type singularities 2loog L If the cone angle could be
increased from O 1 29 then we would obtain a hyperbolic structure on M.

This idea was first used by Thurston [Th1) to prove that if M is a hyperbolic manifold
with boundary consisting of tori, then “almast all” manifolds obtained by Dehn surgery on M
3lso have complete hyperbolic structures. (Here “almost all” means that finitely many sur-
geries are excluded for eack boundary component of M.)

In general, these hyperbolic cone manifold structures will degenerate in some way,
before the cope angles reach 27 By analyzing the kinds of degeperatian that can occur when
cone angles are <z, Thursion [Th3] was able 10 use this approach to show the existence of

geometri structures on orbifolds with singular Jacus of dimensiop at least one.

Some examples

We first give some 2-dimensional examples 1o illusirate the kind of behaviour we will

consider.

Example 1: Cone manifold structures on the three-punciured sphere
In the hyperbolic plane, there is a unique ideal triangle wilh all vertices op the circle at

wnfimty, and three angles equal to zera By doubling such a triangle, we obtain the unique

Introduction 2

complete hyperbolic structure on the 3-punctured 2-sphere.

Now we can deform the ideal triangle by moving the vertices inwards from infinity,
keeping the three sides of equal length This gives a family of (finite) Lyperbolic triangles
with positive angles If we continue moving the vertices of our triangle radially inwards, the
triangles become smaller and smaller, and finally shrink to a poinL Then shapes of the trian-
gles become closer to Euclidean triangles, and the angle sum approaches 7 as the triangles
shrink. By rescaling so that the diameter of the triangles stays consiant, there is geometric

convergence to a Euclidean limit.

Tr:'anﬂlu in H

By doubling such triangles, we obtain an incomplete hyperbohic structures on the 3-
punctured spbere. The metric completion gives a hyperbolic cone manifold siructure on the
2-sphere with three cone points corresponding 10 the vertices of the triangles \ear each cone
point, the metric is modelled on a cone with angle equal 1o twice the angle of the tnangle a1
he corresponding vertex.

By doubling a family of triangles shrinking to a point, we obtain a family of hyvperbolic

cone manifold structures on S? with 3 cone points, which begin with the complete by perbolic
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structure (with cope angles 2¢ro0) and shrink w0 a point as the sum of cone angles increases to

2. By rescaling the metrics so that the diemeter remains constant, we obtain a limiting

Euclidean cone manifold structure with sum of the cone angles equal 10 2.

A - ""Q—»d—b-
— g R Ao N
&= \ Eshr,?!‘/

Euclidean
Structure
‘ In this way we obtain a continuous family of cone manifold structures with metrics

ComF‘c}'f. ‘\jPU’bD ke

changing from hyperbolic to Euclidean to spherical as the cobe angles increase. For instance,
SisEueliie using equilateral triangles we obtain three equal cone angles 8 varying between 0 and 2w

By using spherical triangles, insiead of hyperbolic triangles we can contioue to increase hyperbolic for 0 <8 <2/ 3, Euclidean for # = 2w/ 3 and spherical for 2n/ 3<6 <2w.

the angles. This gives a family of spherica) cone manifold structures on S? with 3 cone points,

Example 2 : Euclidean siructures on the torus
siarting with a non-singular structure (when cone angles are 27) and shrinking to a poiwnt as

Any Euclidean structure on the torus can be obtained from a parallelogram by identify-
the sum of the cone angles decreases o 2.
ing opposite edges by translation. There are several ways these structures can degenerale as
the Euclidean structure is deformed
The simplest deformation is rescaling of the Euclidean metric by factors appraaching

2ero. Then the tori shrink to a point in the Limit It is alwo easy to construct a sequence of

Euclidean tori shrinking down 1o a circle as Lmit Ip this case, there 1s fohation arising from

the limjting process, consisting of clased geadesics with lengths approaching zero.
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Mare generally considerafamily of Fuclidean tori T, £>0 obtained from the parallelo-

1n R? with sides given by vectors (1,0), (x, ry), with y>Q
gram 8

(=,9)

(x,ty
_>

(©,0) (0 ©,0 (1,0)

Again 2 Lmsting foliation arises, and the hmut of the tori 7, is obtained by shrinking each leaf

of the foliation w0 a point

Introduction &

Example 3 : Limits of hyperbolic structures oo a punctured torus
We begin with a complete byperbolic structure on a once-punctured torus obtained by
gluing together the sides of a hexagan in H? with angles 0, /2, 7/2,0, /2, 1/2 as in the

following figure.

We fix two edges and move the two ideal vertices in from infinity. By gluing up these
hyperbolic polybedra, we obtain a family of hyperbolic structures on the torus with one cone
point, with cone angle varying berween O and 2. As the angle approaches 27, the tori degen-
erate 10 a circle. As in example 2, we also obtain a limiting foliation by circles whose length

goes 10 zero.

il



Introducuon [}
7 Introdection

Given a foliation defined by a submersion D:M— X, and holonomy representation

p:m(M)— G, can we find a smooth family of developing maps D,:lt-l-' X, and holonomy

representations p,: ¥,(M)— G, t 20, such that
P (1) D, is 2 local diffeomorphism for >0,
Q) Dp=D?
Then D, describe a family of (G, X)-structures on M degenerating to the given foliation with
== o O wansvers (G,, X)>structure.
-2 To approximate a foliation by non-degenerate geomelric structures in this way, we need
O 10 CaITy out two steps :

(1) Find a family of represcntations starting with the holonomy representation for the folia-

tion. (2) Show that there are geometric structures with thesc representations as holonomy
This example can also be easily modified to obtain a family of hyperbolic cone manifold
represenlations.
structures on the torus shrinking to & point in the limit
We begin by considering the second question. In chapter one, we introduce a 1-form o

Contents of thesis with values ip the Lie algebra of G giving a “langent vector” to a family of developing maps.

The cohomology class of w is determined by the Zariski tangent vector to the corresponding
In this thesis, these examples will be generalized as follows. We begin with a folistion
family of holonomy representations
with transverse geometric structure on & manifold M; this can be regarded as a kind of degen-
In chapter two, we find conditions on w which guarantee that a foliation can be approxi-
erate georoetric structure on M. We investigate when the foliation can be “approximated™ by
mated by non-degenerate geometric structures lIn the case of a 1-dimensional folation, we
non-degenerate geometric structures on M. This can be made precise in terms of developing
sbow that these “regeneration conditions™ can be expressed in wrms of cohomology; making
maps describing geometric structures and fobiations oo M.
them much easier to apply.
Let (G, X) be a geometry, where G is a group acting transitively and analytcally oo X. '
In chapter three, we study the wpology of certain spaces of representations using coho-
A (G, X)-structure or & foliation with a transverse (G, X)-structure on a manifold Af can he
mological techniques In particular, we consider the representations of certain 3-manifolds
described by 2 developing map D:M— X, with aswociated holonomy represnuation
with boundary into tbe group of hyperboli isometries PSL,C.
p:m (M)~ G. Tbe developing map 15 a local diffeomorphism for a geometric structure an M,
In chapter four, we apply the previos results to threemanifolds For example, we
and a subme:sior for 2 foliation with transverse geometric structure. Then the main problem
investigate when certain foliations of manfolds with non-hyperbolic geometric structures
we consider s the following.
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(modelled on the geometries : E*, H*XR. PSL,R and Solv) can arise as limits of degenerating
hyperbolic structures Io general, the initial foliation with transverse geometric structure
must satisfy restrictive topological and geometric conditions for such deformation to be pomi-
ble

In chapter five, we study the variation of volume as geometric structures are deformed.
First we give a new proof of a result of Schlifli giving the derivative of volume for a
smoothly varying family of polyhedra in a space of constant curvature. Then we apply this
result to obtain a formula for the variatian of volume for hyperbolic and spherical manifolds
with cone type or Debp surgery type singularities. In particular, the derivative of volume
only depends on the geometry along the sipgular locus

In chapter six, we show how the previous results can sometimes be used to find the
“local” boundary of hyperbolic Dehn surgery space. We discuss the case of Dehn surgery an
the figure eight knot n detail Finally, we consider briefly some of the open problems arising
from this work.

There is also ap appendix describing some of the standard results on group cohomolagy
and de Rham cohomology with caefficients in a flat vecior bundle.

It is worth poting that chapters 5 and 6 are largely independent of the other chapters
The references 1o previous sections consist mainly of definitions and some examples.

Convendons : All manifolds and maps are assumed to be smooth unless otherwise indi-

cated

CHAPTER 1

Deformations of geometric structures on manifolds

1. Geometric structures on manifolds

In this chapter we begin to study the deformation and degeneration of geometric struc-
tures on manifalds We will consider locally homogeneous geometric structures on a manifold
M, locally modelled oo a homogeneous space X =G/ H, where G is a (inite dimensional) Lie
group and H is a closed subgroup. Then G acts transitively and analytically on X, and the

pair (G, X) defines a geometry in the sense of Thurston (Th1, chap.3] [Th2)).

Definition 1.1. A (G, X) geometric structure op a manifold Af is given by a covering of M
by open sers U, and diffeomorphisms ¢,:U,—~ X to open subsets of X, giving coordinate charts
on M, such that all the tansition maps are restrictions of elements in G.

Given such a geometic structure there is a developing map D: M— X, where M is the
universal covering of M, defined as follows. Begin with an embedding ¢,:/;C M — X giving
a coordinate chart on M. If ¢,:U,— X is another coordinate chart with U, N{/; = @, there is a
unique g€G such that ge¢p,=¢, on U, M/, So ¢, extends w0 a map ¢:I/,U7,—~ X, with
¢=¢,on U, and ¢ =g-¢; on U, In this way, we can extend ¢, by analytic coptinuation
along paths in Af. Since the result of the analytic continuation only depends on the homotopy
class of the path involved, we obtain a well defined map D:M— X. Then D s a local

diffeomorphism stisf ying the equivariance condition
D(ym) = p{y}DXm) )

for m€M , y€3,(M), where p:w(M)— G is 2 bomomorphism called the holonomy represen-

tarion for the geometric structure Here ym denoles the image of m under the covering
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transformation on M corresponding 10 y€m (M) (See Thurston [Thi, chap3] for mare
details.) Note that D and p are not uniquely defined; changing the original coordinate chart ¢;
by an element g€G gives a new developing map g« D with corresponding bolonomy represen-
tation gepeg™t.

Any collection of coordinate charts as in definition 1.1, can be enlarged 1o a maximal

such collection; aall this a maximal (G, X) atlas on M.

Definition 1.2 Two (G, X)-structures on a fixed manifold M are isomor phic if the mazimal
(G, X) atlases defining the structures are equal This is equivalent to requiring that develop-
ing maps for the structures differ by compositiop with an element of G.

Two (G, X)structures on M,; and M, are isomarphic (written =) if there is a
diffeomorphism M, o M, taking a maximal atlas for M, to & maximal atlas for M,
Equivalently, their developing maps differ by composition with a diffeomorphism ﬁ,-‘ M,

covering a diffeomorphistn M~ M, and an element of G.

Definition 13. A (G, X)sturucture on a manifold is complete if the developing map
D:M~ X is a diffeomorphism. Lo the case that G & group of isometries of a Riemannian
metric on a manifold X without boundary, this agrees with the other usual definjtions, for
example :
(1) every geodesic in M can be extended indefinitely
or
(2) M is a complete metric space : every Cauchy sequence converges.

Ip the case where G acts on X with compact point stabilizers, every (G, X) structure on
» closed manifold is complete. (See Thurston [Th1, chap.3]))

We will be interested in finding geometric structures on pon~<ompsct manifolds
Without any completeness condition, such structures may be badly behaved pear infinity. For

our purposes, it Will be much 100 restrictive to require structures to be complete. For example,

L Deformations of geometric structures on manifolds 12

we will be especially interested in deforming finite volume, hyperbolic structures oo 3-
manifolds however, Mosiow’s rigidity theorem shows that there is a unigue complete struc-
ture. We will add extra conditions in the next section to control the singularities aliowed.

We pow outlipe another approach to describing a geometric structure on a manifold.
Given a representation p:w,(M)=I'— G there is an associated foliated X-bundle X(p) over M
defined as follows. Let A denote the universal cover of M. Then there is an action of T on
MxX given by y:(m,x)r—(ym,p(y)x), mEM, x€X, where T acts on M by covering
transformations Then X(p) is the quotient space (MXX)/T and the projection MxX— M
induces the bundle projction X(p)— M. Moreover, there is a natural foliation of X(p) by the
images of Mxx, x€X with a transverse (G, X) structure (see definition 2.1) coming from the
fivres X of the bundle.

A geometric (G, X) structure on M with holonomy p is given by X(p) together with a
section of this bundle transverse o the foliation. Sections of the bundle always exist if the
Sbre X is contractible (eg. for X = H" or E” ), bowever finding sections transverse to the folia-
tian is pot always possible. Given a transverse section, one obtains local coordinate charts on M
as ip definitian 1.1 by projpcting to a fibre X along the leaves of the foliation. Conversely,
given coordinate charts @,:U,—~ X covering M we can construct a developing map D:M—X
as above. Then the map §: M— MxXn+(m, D(m)) gives a sction lransverse to the folia-
tion. (A map D: M— X satisfyiog the above equivariance condition (*) grves a map transverse
10 the foliation if and only if D is an immersion (ie. Jocal diffeomorphism).)

In the case where p(I') is a discrete subgroup of G, the map X — X/ p([) is 2 covering (or
acbifold covering if p(T’) bas torsion elements) we cn identify M with X and p(I') with the
group of covering transformations. Then X(p)EXxX/(x,y)~(yx, yy), y€p() and the
diagonal map X— XXX, x(x, x) gives a section transverse w0 the foliation

When M is non<compact, we Wish to obtain geometric structures with certain restncied

kinds of singularities 30 we will impose extra conditians on the sections “at infinity”.
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2. Allowed singularities In this section, we introduce two types of singularities of

geometric structures that will be allowed in the following work.
Definition 1.4. Cone tyoe singularities

We define these for geometric structures modelled on constant curvature geometries as
follows A geometric structure on a manifold M with cone type singularities is given by a
triangulation of M by geometric simplices with totally geodesic faces glued together by
isometries. We thep say that Af is a (hyperbolic, spherical or Fuclidean) cone manifold. (One
could give a definition in & much more general setting, but this won't be needed for our pur-
poses.)

Such a cone manifold has a smooth metric of constant curvawure K op the complement
of the codimension-2 skeleton, and an orthogona) crass section to each codimension-2 face is
locally a 2-dimensional cone of curvature K. The angle of this cone is the cone angle along
this face. A neighbourhood of the face is obuained by gluing together simplices around the face
s0 that the sum of dihedral angles is equal w0 the cone angle. The singular locus I, consisting
of the points where the metric is pot smooth, is exacily the union of codimension-2 faces
where the cope angle is not 2w. We will alsv say that "M —T has a geometric s.truclure with

cone type singularities”.
Definition 1.5. Dehn surgers type singulanties

First we introduce 8 model for these singularities Let (G, X) be a Riemannian geometry, L a
totally geodesic codimension two submanifold of X, and N an €-peighbourhood of L in X.
Let H be the subgroup of G leaving L invariant Then K preserves N—L o lifts to 2 group H
P—
of isometries of the universal cover (N—L)of N—L.
Let M be a non<ompact manifold with a (G, X)structure. Then there is a Dehn sur-

gery singularicy at ap end of M if there is a neighbourhood E of the end such what

1. Deformations af geome Ui structures on manifolds 14

(1) the image of the developing map D:E— X 15 contained in N—L as above,

(2) D 1lifts to a diffeomorphism D:E— (N=L) which is the developing map for a
(#, (N=L)}structure on E.

Let 5:m,(E)~ H be the holonomy representatian for this structure. Then I = (ar(E))
is a discrere subgroup of H, and (N=L)— (N=LWT is a covering. It follows that the
geometric structure on the end of M is modelled on (N=Ly/T.

Throughout this thesis we will also assume that AN=L)/T is compact. However, there

are situations where it might be useful to remove this restriction.

We will be primarily interested in the 2- and 3-dimensional cases

In the 2-dimensional case, L 1s a point and H is the group SO(2)=S" of rotations about L.
Then ASR can be parametrized so that 8 €R corresponds to the lift w (N=L) of a rotation of
N about L by angle @. (Note that 8 can be defined as an element of R rather than R mod2m,
0 that 6 = O for the identity element of H.) A discrete subgroup T of H=R is cyclic, and of
@ €R is a geperator of I then the quotient (NZL)/T 5 a cone with angle 8. So Dehn surgery
singularities are exactly cope type singulariuies in dimension twe. Similarly, 1n any dimension,
cone type singularities along a totally geadesic codimension-2 submanifold of M form an
imparant special case of Dehn surgery singularities

For the case of a 3-dimensional geometry (G, X), L is a geodesic in X, and N-Lis
d:fleomorphic w(D‘;:]:;rm)xRER’. Isometries in A an be parametrized by elements of R? sv
that ({, 0) corresponds 1o the lift of an element of A acting as translatian by [ along L and
rozation by @ around L. The action of & on (F=D) s equivalent 10 the action of a subgroup
of R? on R? by translations Then T is discrete subgroup of R? and £577x0, o) is topologi-
czlly a solid torus with its core circle removed.

Following Thurston [Th1, chap.4] we parametrize the singularity at E as follows. For

each element x in the homology group H,(E; Z)>w,(M)SZ? the holonomy of x is an
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1sometry of G preserving an axis L in X and lifts 1o an element h(x)€ H CR2 This gives a
homomarphism h: H,(T; Z)—~ R? with image the discrete group I=Z2 Now h extends to an
isomarphism h: H,(7; R)— R? and we define the (generalized) Dehn surgery coe ficiens at
the end E 10 be the unique class c€ 4,(7 ; R) satisfying Kc) = (0, 2.

In the hyperbolic case, there is a complex structure on G = PSLAC) and it is useful to
think of & as a complex valued function : Mx)=Nx)+i6(x) Then the Dehn surgery
coeficient ¢ satisfies h(c) = 2w i (Compare [Th1, chap4].

Fixing a basis a, b for the homology group H,(T; Z)ZR?, the Dehn surgery coefficient is

(p,q) where p, g are the unique real pumbers such that

pha)+q H(d)=1(0, 2m)

Remarks : (1) If a hyperbohic structure o a 3-manifold is complete at ap end, there is a local

model analogous to that given in the above definition. Take N to be & horoball (a neighbour-

=R? the group of hyperbolic isometries preserv-

_ e
hood of point L at infiniy);, and HEHEL 1

ing N=N-L= NTL (Thus arises as a limit of the spaces (N=L) where geodesics L are
chosen with both their endpoints copverging to a single point at infinity.) Then the local
mode] for a complete end is N/ T where FZZ2 is a discrete subgroup of HERAL

(2) The name ~(generabzed) Dehn surgery type singularity”™ comes from the following
observations (We explain this further in remark (3) below.) When p and g are relatively
prime inlegers, an incomplete geometric structure on M with an (p, ¢) Dehn surgery singular-
ity can be compleied 10 give 2 non-singular, complele geometric structure on the manifold
M, , obuined by wpological (p, g) Deha filling on M. Tbus, M, ;) denotes the manifold
obtained by gluing 2 solid torus V w @M so that a meridian curve of V is identified with a
simple clused curve homologous 10 pa+gb on §M.

When pg are integers with greatest common divisor gcd(p.q)=d>1 there is a non-

singular suructure on branched covers of M(z gy WiB branching index 4 over C. More
4 4
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genenally, if (pg) = r(st) where s/ are relauvely prime integers and r s rational then taking
the metric completion gives structures on M, ,, having cone-type singularities with cone angle
2w/ r along the core circle € of the added sohd torus V.

When the ratio of p to g is irTational, the metric completion of M is the compactification

of M obtained by adding a single point corresponding to the end E.

Examples of Dehn surgery type singularities
(a) Cone type singularities
Such a singularity with cone angle @ is obtained (locally) by gluing together the sides of a

wedge of X of angle @ by a rotation

Cross sec Mon &

Gore)
1

ldenh'f‘y bﬂ rototion

(b) Shear type singularities
Take B cut open along a half plzne, bounded by & straight line L. Glue the sides together
afier a translauon of length [ parzllel 10 L, then quotient out by a translation through dis-
tapce 1 parallel to L Then the quotient is topologically an open solid torus V = S'xR? having
a Dehn surgery type singularity along its core circle C. Choasing a basis a, b for H (V—C; 2)

where a is a meridian and b & Jorgitude for V, we have Ka)={l, 2w), k() =(1, 0) and the
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Dehn surgery coefficient 1s (1, —/).

N

[dulh'{»:’ LJ Franglation
(d 21 rotaNon)

(¢) The most general Jocal form of singularity is a combinatica of types (a) and (b) : Glue
together the sides of a wedge by a translation plus rotation, then quotient by a Z action
preserving the aiis

(d) The most common and interesting examples of geometric structures on 3-manifolds
with Debn surgery type singularities are those obtained in “hy perbolic Dehn surgery”. Lt M
be a 3-mamfold with ¢ cusps, having a complete hyperbolic structure Mo Then Thurston has
shown that there is a c-dumensiopal complex manifold of representauons
m(M)— isom(H*) = PSLAC) pear the holonomy representation for M, corresponding to
incomplete byperbolic siructures on M near M, witb Dehn surgery type singularities Using
these observations and remark 2 above, Thursion proves that almast all manifolds obuined by
topological Debn surgery on M have (non-singular) hyperbolic structures (See [Th1, chap.5L
csh)

() A singular manifold modelled on R> with R acting by translations

Let A be a flat annulus in a 3-torus T2 with boundary consisting of two paraliel geodesics.

1 Deformations of gromeirik stUuclures ob manifolds 18

Cut T open along A and reglue by a translauon in the direction of the boundary geodesics.
Then the holonomy around each component of dA is a translation preserving the geudesic.

This gives an (R?, R?)-swructure on T2 with Dehn surgery type singularities along 8A.

Remarks:

(3) Ler M be the interior of 2 3-manifold M with boundary consisting of ton T, A
geomeuric structure op M with generalized Dehn surgery type singularities can be described
by a developing map D:M— X which extends smoothly 10 & map D:M—~x restricung to a
submersion frunf,w:geodesic in X on each lif1 T, of T,

On each boundary torus 7, there is an induced foliation F whose leaves are the preim-
ages of points in the geadesic [ = P(T,) with a (signed) invariant wransverse measure induced
from length along L It follows that the foliation is isotopic to a linear foliation of T, Choosing
an orienution on L, we can also define a (signed) measure along each leaf of F, given by the
wial angle of rotation around the axis L (More precisely, the length of a curve a in T, is the
Limit of the total rotational angle for & sequenze of curves in M approaching @.) Then the
generalized Dehn surgery coordinate at 7, 1s the homology class in H,(7,; R) of a “scgment of
a leaf” of F having total angle 277. (One should approximate muluples of the segment by sim-
Fle clasec curves 1o give a precise definition of this homology class!)

The metric completion of M can be described as follows (Compare [Th1, chap.4]) Extend
the mewn: on M over the boundary components T, using the degenerate metric given by the
transver® mezsure on F. Thus, the distance between two points of 7, is the infimum of total
measures of curves on 7, joining the points. Then the metric completion M of M is obtained
from M &M by identif¥ing points a1 distance zero apart

If the foliation F on T, consists of simple closed curves then the completion (near T) is
obtained by adding a single circle C whose length is the measure of a “shoriest”™ simple closed
curve tasverse w F. Topologically, Af 1s obuained from M by Dehn filing : M = MW

where V' 1s 2 solid torus glued to T, so that each Jeaf of F bounds a disc in V. Metrically, M
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has cone type singularities along C, with cone angle equal to the total angular measure of each
leaf of F.So M has a smooth metric exactly when the Dehn surgery coefficient is an indivisi-
ble element of H(T,; Z)C H\(T,; R)

Otherwise, F is s foliation of T, by lines of irrational slope and the metric completion M

1s the one-point compactification of M.

(4) There eust Dehn surgery type singularities with all possible Dehn surgery
coefficients for the 3-dimensional geometries containing geodesics with 2-dimensional stabiliz-
ers All geodesics have this property in the isotropic geometries : (isom(H?), B7), (isom(S*), 57)
and (isom(E®, E?)). For the fibred geometries with point stabilizer 1-dimensional, anly the
fibres have 2-dimensional stabilizers. For the other geometries, geodesics have subilizrs of
dumension 1.

For geodesics with 1-dimensional stabilizers, there is still a 1-dimensional st of general-
zed Dehp surgery coeficients which make sense. The identity component of the group 5 of
1sumetries preserving an axis consists of a one-parameter group of screw moiions (irapslation
plus rotation) along the axis H CRXnZ is generated by lifts of screw motions and lifts of

“rotauions” by angles nw, n€Z.

3. Topology on geometric structures

Let M,, 0S¢ €1, bea 1-parameter family of geometric structures on M.

Definition 1.6. We say that the geometric structures M, vary continuously (in the C* topol-
ogy) if we can chouse developing maps D,:A_l- X for M, which vary continuously in the
weak (or compact-open) C* wpology on the space of C™ maps M—X. Weay that M, is a
smooth family of geometric structures if the structures vary continuously 1o the C™ topology.
Note that the corresponding holonomy representations p,: 7 (M)~ G also vary smoothly :

p(y) is a smooth path in G for each y €m (Af).

1. Defarmations of geometrik siructures on manifolds 20

Of basic impartance in our approach 10 the deformation of geometric structures on mani-
folds is the following obwervation Given the holonomy representauan p:m(M)— G for 2
(G, X)suructure on M, all nearby representations w,(M)— G near p also correspond 10
geometric structures on M. (Compare [We1l [Th1, chap5] [L})

We will give a proof of 8 more general result in section 5 below. Intuiuvely, the resuit
follows from the fact that transversality is an open condition : Think of a geometric structure
as 2 section of an X-bundle transverse to a foliation agin section 1. Since the bundle and folia-
ton vary smoothly with the representation, it is easy to believe Lhat represnuations giving
EROMLLIIC SUUCTUTES are open-

In the next section, we introduce some machinery to make this argument rigorous.

4. Infinitesimal Deformations

In this secuon, we study infinitesimal deformations of representations and geometric
structures on manifolds First we review some standard cohomology theory for studying the
deformation of repressntations. Then we show how to define a differential form describing an
infinitesima) deformation of developing maps. We refer the reader 10 the appendix of this
thesis for notation, definitions and references for basic properties of the group cohomology and
de Rham cobomology used below.

We will be interested in deforming certain kinds of degenerate (G,X)-structures on a
manifold M. Such a soucture will be given by a smooth map D:M—X satisfying an
equivariznce condiion D(ym)=p(y}D(m), where p is a “holonomy” representation
w, (M)~ G. It will be convepient to use the lerm “developing map” for any such map D (not
pecessarily an immersion) Such a map D gives 2 non-singular (G, X)}-structure on M if and
anly if D is an immersion (ie. local diffeomorphism). Then D is a developing map for the
(G, X)-structure on M, as defined in section 1.

Let D,:b-l— X be a smooth family of developing maps describing a deformation of (pos-

sibly degenerate) (G, X)-structures on 2 manifold M. Then there are several ways 1o obuin a
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tangent vector 1w the deformation, giving an element in a certain cohomology group M {M).

4.1. Tangents to representations
First, we obtain a wangent vector to the family of holonomy represcntations

p,:T = m(M)—= G, with py = p. See [RL [We3] for further details
For each y€T, the derivative :—,(p,()))l,.oeTG,(,) is a tangent vector to G at plyl We

identify tangent space at g 1n G with the Lic algebra g =7G, of G, by right translation :
v€T,G—vg~'€g, writing wh for the derivative of right translation by h€G applied 1o

v€TG. With this identification, we cbtain a map p : [~ g, with
. d
' A= 2Pyl sy -
By differentiating the relation

2y, v = plyoeiys)
we see that p sauisfies the cocycle condition :
Ply iy = ply,)+ Adpd(y,> Hy2)
It follows that p represents a 1-cocycle in ZXT; Adp) for the group I’ with coefficients in the
fa Ad i
I-module g, where T acts by the representation I+ G— Aut(gl Here, Ad:G—g is the
adpunt representation of G on its Lie algebra g. (See appendix for details)

Now consider a trivial deformation of p: given by conjugation p, = g,-p-g,“‘, where g, is a

smooth path in G starting at the identity. Then differenuation shows that
)= g-Adply)g
where g€g is the tangent vector o g, at ¢ =0. So p = dj is a coboundary in BT'; Adp)

Thus, given a curve of (conjugacy classes of) represeniations p,: '~ G we obtain a cobo-

mology class in M (I'; Adp), the group cohomology of T with coefficients in the Lie algebra g
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of G, regarded as a I-module by the representauion l‘--PG—ouAux(g). We will also write
HXT; g.,) for this cohomelogy group.

Let M be a manifold which is a X(T', 1). Then the group cohomology HXT; Adp) s
naturally isomorphic to the (simplicial, singular, Cech or de Rham) cobomology H (M ; E(p))
of M with coefficients in the flat vector bundle E(p) constructed as follows Let
p:T'=m(M)— G be the holonomy map for M and let M be the universal cover of M. Then
T acts on Mxg by y:(m, x)~{(ym, yx) where T acts on M by covering transformations and
on g by the Adp representation. Then the quotient Mxg/T is a vector bundle E(p) over M
with projection induced from the patural projection Mxg onto M. Moreover, E(p) has a

canonical flat connection such that the images of xXng?xg give horizontal sections of E(p)

Remark : If 7(M)=T but M is not necessarily a K(I', 1), H{M; E(p))ZHT; Adp) for

i=0, 1 and there is an injection HXT; Adp)—~ HXM; E(p)).

Using the de Rham theorem, we can obtain a closed 1-form w on M with values in the
flat vector bundle E(p), representing the cohomelogy class p tangent to the represeniations p,
The explicit map from de Rham cohomology to group cohomology is given by integration
along paths in M. To make this precise, it is convenient 10 work in the universal cover M of

M. The form w lifts 10 2 g-valued form @ on M satisfying the equivariance conditian

alyv) = Adpl(yralv)
for v€TM, y€I. (More formally, @ is a form with values in the product bundle A_IXg over
ﬁ; however we will always think of @ as a form with values in g, using the canonical (and
flat) projection Mxg— g.)

Fixing x € M, we obtain a cocycle z : T— g corresponding 10 w defined by

"
Ay)= f @
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where the integral 1s waken over any path in M puing x to yx. It is easy to check that
different choices of x only change z by a coboundary. Note also that if /:Iv-l-g is an

integral of @ :

fp)=

s
&

then
» y
Aypl= f @+ f @ = Ky)+ Adply) f(p)
r ¥

This observation is often useful for determining the cohomology class of a form.

We will see below, bow to direaly obtain a 1-form w in OYM; E(p)) describing »
deformation of geometric structures oo M. It turns out that the form w gives more informa-
tiop than the group cocycle p, decribing ap infinitesimal deformation of developing maps

rather than just a deformation of the holonomy representations

4.2. Forms tangent to a deformation

Let D, :M— X, 1€J=[0, 1) be any smooth family of “developing maps”~ (not necessarily
local diffeomorphisms), with holonomy representations p,: (M)~ G. Then we define
differential forms tangent to the deformation as follows We choose smoolh maps g,:h?*G

such that
Dim) = g(m}Dem), golm)=1 Q)

and
glym) = p (g mlpy)?, =)

forall meM, t€], yEu, (M)

Remark : If g, were uniquely determined by (*), then (**) would follow immediately from
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the equivariance property of D. In general, g, is not uniquely determined by these conditions.
(For instance, we will be interested in the case where the image of D, is a single pownt)

To see that such g, exist in general, coasider the bundles EG and EX over MXxJ
(J=[0,1)) with fibres G and X respectively, defined as follows Each y€m,(M) acis on

MxJxG by  y:i(m,t,@)—(ym,t,py)gpolyr®) and o0 MxIXX by

y:(m,t, x)~(ym, 1, p{y)x). We define EG and EX as the quotients of these group actions
EG=MxIxG/m(M), and EX = M>xJxX/w{M)

with bundle projction induced by projection onto MxJ. Given D, there is 2 natural fibre
preserving map w: EG— EX induced by (m, 1, g)—(m, ¢, gDym)). Furtber, w is a submer-
sion, since the map G— X g€Grgx is a submersion for any fixed x€X. The map
(m, )= (m, t, D{m)) gives a section s: MxJ— EX. Using the homotopy lifting property for
w:EG— EX we can lift s to a section 5: M>J— EG such that w.5=s5 and §=1 on MXxO.
Then 7 lifts to a map MxJ— MXJIXG, (m,0)—{(m, ¢, g{m)) such that g, satisfies the condi-
tions (*) and ().

3, -
Let dg denote the derivative -ﬂ%r— :M— g =TG,. By differentiating (=), we see that 3g

satisfies the equivariance condition

aglym) = % lo Py +polyYoglmlpdy)!
or
aglym) = p(y)+ Adp(yyoglm) (=)
where p : I'— g, is the cocycle tangent 10 the family of representations p, at £ =0.
We define § 10 be the g valued 1-form or M given by g=d(%):Tb-!- g Then gisa
closed form, and differentiating (***) shows that

&yv) = Adp(y) gv)
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for vETM. Hence, § desends o a I-form w on M with values in E(p) we write
w€OYM; E(p)). Moreover, using (=) we see thai the cohomology class in H XM ; E(p))
represented by w corresponds lo the tangent vector p€H Xw(M); Adp) 10 the path of
represeplations p, as defined in 4.1. In particular, this shows that the cohomology clas of w is

independent of the choices made above

Remark : Suppase we vary the developing maps by a smooth path A, in G with h, = 1, replac-

b, (m)— e—hi; hence the

ag,
g D, by h-D, Then we can replace g(m) by h,-g{m), ai;(m) by = ~

forms g and w are unchanged.

S. Integrating infinitesimal deformations
We now show that therc are always developing maps (nol necessarily immer sions)

corresponding Lo 1-parameter families of representations

Proposition 1.7. Let D:M— X be a developing map with holonomy p: T = m(M)~ G. Let
P, be a smooth I-parameter family of representations p,: T~ G, with Zariski tengent vector
ar =0 representing a class c€ HAT; Adp)=H'(M ; E\p)). Then there is a smooth I-
parameter family of developing maps D,:M~— G with holonomy representarions p, such that
Do=D. Moreover, if w is any E(p)-valued form on M representing the cohomology class c,
we can chvose D, such thar the derivarive of D, at t =0 is represented by the form w.

@,

Y €HXT; Adp,). These depend

Proof. For each 120, we have a cohomology class ¢, =

smoothly on r in the following snse : ¢, is represented by a map m(M)— g which varies
smoothly with r. We claim that there are closed 1-forms w, € QXM ; E(p,)) such that wy = w,
w, represents the cohomology class ¢, and w, depends smoothly on ¢ in the following sense
Each w, lifts 10 a g-valued form &, on M smatisfying the equivariance condition

@{y)= Adp(y)a(v), for yEm (M), vETM. We require that &, be chosen to vary smoothly
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with 1.

Essentially this can be seen by examining an explicit form of the de Rham isomorphism,
(see eg. [B-T). However, the fact that the coeflicient bundle is varying introduces a slight
complication, so we give another proof.

A smooth family of cohomology classes ¢, € H{T'; Adp,), t€J can also be thought of as a
single class in H{I'; C™J, g)u,), where the coefficient module consists of all smooth maps
Jf:J— g with T-action given by :

(r/X) = Adp(y) /() *)
for y€T', 1€J. The corresponding de Rham cohomology group is H{M ; E) where E is the flat
vector bundle with fibre C*(J, g) defined as follows Each y€T = w,(M) acts on M by cover-
ing transformations and on C*™(J, g) by (*1 Then E is the quotient of MXC=(J, §) by the
diagonal action of T, (m, f)—(ym, y/).

A cobomology class in HAI;C=(J,g)) is given by a smooth family of i~cocycles
2z,:I"~ g, while a cobomology class in M ; E) is given by a smooth family of closed forms
m,€ Q'(M; Adp,). So it follows immediately from the de Rham isomorphism theorem that we
can find a smooth family of forms € (M ; E(p,)) representing the classes ¢, Now, 17w in
general, but @ — 7o = da, for some a€ QM ; E(p ). It is easy wo extend ag 10 a smooth fam-
ily o, € Q%M ; E(p,)) of sections of E(p,). Then we can take w,=7,+da.

Given [orms &, as above we obtain the required deformation of the developing maps by

m
integration. Fix a basepoint x, in M and define a;: M~ g by a(m)= j w,. Then we obtain

2

&:M—G by solving the first order differential equatian :

(m)
Bg:'n = a(g,(m)}g,(m), with ini-

tial condition g{m)= 1, for ¢ =0. Finally, D(m)= g(m}Dylm). o

Remark : if D is a local diffeomorphism, then D, is also a local diffeomorphism for all  near

0, so we obtain a family of non-degenerale geometric structures on M with holonomies Pr
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Other proofs of this result can be found in {Th1, chap.5) and L] (based on the argument of
[We1]). The condition on the derivative is not included in the other proofs
In the next chapters we will apply this result in the case where D is not a local

diffeomorphism.

The following addendum shows that generalized Dehn surgery type singularities are

open.

Proposition 1.8. In the above situarion, assume that p corresponds 1o a geomelric Strucnae
with generalized Dehn surgery type singularities. Then there are geometric structures with

generalized Dehn surgery type singularities corresponding 1o all represenuations near p.

Proof. This is similar to an argument of Thurston in [Th1, chap5} Let E be an end of M
having & Dehn surgery type singularity. Then there is a geodesic L (preserved by polm (E))
and neighbourbood N of L in X, such that D = D,: E= (N~L)C X lifts to D: E—(N=L).
Now truncate E to obwin a compact deformation reiract X C E, and choose a compact funda-
mental domain FC £ projcting to F. Then the disiance from Do(F) to L is positive. So the
distance from D,(F) w the axis L, preserved by p{m(E)) is also positive, for all ¢ near O.
Hence D,: K~ (N,—L) lifts 10 D,: K~ (N=L,). Then D, extends over E “linearly” to com-

plete the proof. 8]

CHAPTER 2

Regeneration of geometric structures

6. Deforming foliations to geometric structures

In this chapter, we consider the situation where a family of geometric structures an a
manifold degenerates to a lower dimensional geometric limit The limiting process often gives
rise to a foliation of the manifold, with a transverse geometric structure. The recent work of
Cheeger and Gromov (C-GUP]) on “collapsing of Riemannian manifolds” studies similar
phenomena from a different point of view.

In the introduction, we have given some 2-dimensional examples of the kind of
behaviour we have in mind Many 3-dimensional exemples arise as byperbolic structures
with Dehn surgery type singularities degenerate. Some explicit examples of such degeneraticn
for the figure eight knot complement are given in [Thi, chap.4)} The kinds of possible degen-
eration occurring for hyperbolic cone manifolds with cone angles <w are analyzed in detail
by Thurston [Th3} using the idea of geometric limits (See also [Gr])

Our approach is rather different. We begin with a degenerate geometric struciure on a
manifold, and ry to “approximate” by non-degenerate structures on M. We will all this

“regeneration” of the degenerate structure. The basic question we consider is the following.

Given a foliavion with transverse geometric structure on a manifold M, when cap it be

deformed 10 obtain “nearby” non-degenerate geometric structures on M?

This can be made precise as follows. Let M be an p-dimensiopal manifold, pessibly with
boundary, and let (G, X) be an n-dimensional geometry. Let X, be a submanifold of X,

invariant under a subgroup G, of G such that G, acts transitively on X, Then (G, X,) is also
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a geometry.

Definition 2.1. A foliation F on M with transverse (Gy, Xo)-structure is given by a cover-
ing of M by open sets U, and submersions ¢ :U,— X, onto open subsets of X such that all
trapsition maps are restrictions of elements of G, The leaves of the folietion in a chan U, are
given by the preimages of points in X under ¢,

As in section 1, there is a developing map D: M~ Xo which is 2 submersion satisf ying

an equivaniance condition
Dym) = p(y}Dlm),

for ahl 7€I'=1r|(M).m€A-l. where p:T'— G; is a homomorphism, called the holonomy
representarion for the structure. The components of preimages of points under D give the
Jeaves of a foliation F of M, which is invariant under the group m,(M) of covering transfor-
matons and covers the foliation F on M.

Such a foliation F is complete if the developing map D is a fibration.

Basic problem :

Throughout this chapter we assume that we are given such a foliation F (not pecessarily
complete) with developing map D: M— X,C X and holonomy p : 7,(M)— G,CG. (Note : We
could take X a single point or X = X then F would be a foliation of codimension zero or
dimension zerof)

Our aum is to find conditions so that there is 2 smooth 1-parameter family of developing
maps D, 1M — X, 120, with holonomy representations p,: I'— G satisfying the conditions

(1) Dy=D

(2) D, is a ocal diffeomorphism for £>0.

Then each D, >0 will define a non-degenerate (G, X)}structure on M; and these structures

degenerate to the foliation F as r— 0. We will also obtain conditions enabling us to restrict
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the kind the singularities involved.

Remarks : In chapters 4 and 6, we will apply the results obtained here 10 construct many
examples of such degeneration. The examples will be mostly for the case where M isa 3-
manifold and the geometry is a constant curvature geometry : (G, X)= (isom(H?), H'),
(isom(S*), $2) or (isom(EY), E°). However, most of the theory developed applies in any dimen-

sion.

7. Conditions for regeneration of foliations

Let D:M— XpCX be a submersion defining foliations Fon Mand F on M. If
D,:A-l-v X is a smooth family of developing maps with Dy = D, then we bave defined an asso-
ciated form w € '(M ; E(p)) representing the infinjtesimal deformation of D. We now obtain
conditions on @ ensuring that D, are local diffeomorphisms for all 1>0 sufficieptly small,
whenever D, has w as & tangent vector. For simplicity, we always assume thal the tangent

bundle TF wo the folistion is orienrable.

Example :

The following simple example illustraies the crucial idea underlying this section. Sup-
pose that A, :R?— R? is a smooth family of linear maps with Ay(x, y)=(x, 0} Then a2 ample
“non-degeneracy” condition on the derivarive dA = % will ensure that the maps A, are iso-

mor phisms for all (>0 sufficiently close to zeTo

. i G dA, ac
Write A, = ] and T= adl Then A, =

dl
det A, = td + O(t?) and A, is invertible for >0 near 0 if d=0. (*)

1+10a tdc
36 13d

I+0(t’l So

Here is a more canonical formulation of this condition. The preimages of points under
A, give a foliation F of R? by vertical lines xxR. Then the derivative 34 applied 10 a vertcal

tangent vector v=(0, y), y=0, is 34(v)=(c, d)y. So the condition (*) is that the vertical
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component of dA(v) should be non-zero on vectors v0 tangent to the foliation F.

General case :

In general, we must ensure that the “Jacobian® of D, is non-zero for all £>0. More pre-
cisely, let v denote the volume form on X. Then we require that D;v (the induced volume
form on M) is non-degenerate on M. Choose a smooth frame field €),~ ., 00 M such that

€,.—, ¢ gives a basis for the tangent space TF 1o the foliation F at each point. Let
vim)=De,, - ,e,) =W dDfe), - ,dDe,))

where e, are evaluated at the point meM.
Then we must have v,#0 for all 1>0. Now if X = dimF then v, vanishes to order k —1

att =0, and we require that :

¥ ’
2% _0 fori<k,and Lm0 fori=k ®
B o

at all points of M. Clearly, this is sufficient to guarantee v, 0 for all positive £ near 0. (This
is the simplest possible case; in geperal the kth derivative could also be zero. See the remark
below for some further discussion.)

We now evaluate these derivatives at a point méeM. First we adjust D,:h-l—- X and
g.:M— G by a smooth path &, in G so tbat D{m) = D(rm) and g(m)=1 for all ¢. This leaves v,
uncbanged since v is invariant under the isometry group G, and leaves w unchanged by a

remark from section 4.2 Then

2 lo= X odDe). - . e, - . dDes) =)

where D= i—lo(dD,) :TM,~TXpn (Note that dD,: TM,— TX pm) for all ¢, 30 the ¢

derivative can also be regarded as a map inw TX j.; by the usua) identification.)
For i=1,_,k dDfe)=0 since e, is tangent to F. So (=) vanishes unless k=1, in

which case there is a single pon-vanishing term :
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% = WiXe,), dDlep). - . dDee)

In general, the firn non-vanishing term is :

% = WUD(ey), - , Dey), dDdes 41, - + dDofe)

and the regeneration conditian (*) becomes
wDle,), - , Dle,), dDgle; 1)), — . dDfle,) =0
We can rewrite this condition in terms of the form w describing the infinitesimal defor-
mation. The lift § of w to M is a g-velued form We can think of an clement of the Lie alge-
bra g of G as a Killing vector field on X as follows. Let ¢:GxX— X be the action of G on X.
Then vEg corresponds to the vector field ¢.(v) on X given by ¢-(Wx)= %chp(rw),x)

for x€X. We write W(x) for ¢.(vXx).

Claim : D(v) = gvXD(m)) for all v€TM

3 _ .
To see this, first note that since g{m) =1 for all z, § = d(—‘%)= %(dg,):TM..—‘ g Since

Dfm)=¢lg,, Dgm), it follows that
D)= %dnﬁ(dg,(v), 0) = dg( %(dg,(v)), 0)= §vXDym))

using dgo(v) = 0.

So the regeneration condition is that glen_rgledrdDle, ,;)n_AdDle,) should be a
non-zero volume form on X at every point meM.

It will be convenient to abbreviate this somewhat, so we write w(F) for A'w evaluated
on a oriented k-vector tangent 1o F, and [TX] for a oriented n —k-vector tangent to X, For
example, letting €TM denote the image of e,€TM under projection to M, we can take
Wk F)= o(@)r- AalE,) at m€M and [TX )= dDle, .\ )n—AdDe,) at D(m)€X, Then we can

rewTite the regeneration condition as
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o FINTX]=0

Summarizing this discussion we obuain :

Theorem 2.2 Let D: M~ X, be the developing map and p:m,(M)— G, the holonomy for a
foliation F with transverse (Go, Xo) geometric structure. Let p,:m(M)— G be & smooth
family of representations such that py= p. Assume that the tangent vector $€ HY(M ; Adp)

to p, can be represented by a E(p)-valued I-form w satis fying
o FTXJ]=0

Then there is a smoath family of developing maps maps D,:A?-‘ X, 120 such that Dy= D,
D, is a local di ffeomor phism for t>0, and w is a tangens vector to the family D,

In particular, each D, with 1>0 de fines a non-degenerate geometric structure an M.

Remark 2.3. We needn’t assume the ktb deriv is non-zero in (*L. The same argumeat can be
applied much more generally : If have an analytic family of developing maps then for each

i=1,_k dDfe)=ct™+0C™"") for some integer n,>0 and ¢,€TX. Then v, is also analytic

3
functon of 1 =tisfying v, = er*+0(t™*"), where n = } n, and c€R. Again we obtain a regen-

eration condition by requiring that the nth derivative of v, is non-zero.

Remark 2.4. Here is a slightly different formulation of the non-degeneracy condition on w.
The form w describing an infinitesimal deformation gives a map &:TM— T X — ¥(X,) where
TX — v(X,) is orthogonal projection onto the normal bundle to X, in X. This map is defined
by @(v) = n(w(vXD(m)), for v€TM,,, m€M, where nx is the component of x orthagonal to

Xo
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Then the “non-degeneracy condition” on w bolds if and only if @ ukes tangent spaces

TF to the leaves of F to fibres of the normal bundle ¥(X() by an isomarphism.

Remark 2.5 Limiting geometric structures

A 1-form w€ QXM ; E) lifts o a 1-form & on M with values in g- Chocsing a base point
mo€M, @:TM— g can be integrated to give 8 map [:M— g, where ]_(m)xfﬁ. We then
=

obtain s map f:M— (X,), where f(m) is the component of the vector field fm) in the por-
mal bundle te X, at the point D{m).
Then flym)= Adp(y)fim)+nzly) for all y€w (M), m€M. Hence, there is a “developing

map” D: M— Xxv(X,) where y acts on ¥(X,) by
(x. )= (p(y)x, n.Ay)+Adp(yX).

Here t€¥(X,) is & vector normal to X, at the point x€X, Then D is an immersion if and
only if w satisfies the non-degeneracy condition given in the remark above

Often, D can be used to construct a limiting metric and geometric structure on M with
D as the developing map. We illustrate this for the simplest case, when X is a point Then
v=v(Xg= TX,' is a vector space with Euclidean metric given by the Riemannian metric on
X. Since Adp(y) acts on ¥ by rotatians it follows that the action of each y€m,(M) given by
(*) is a Euclidean isometry. So we obtain a limiting Euclidean geometric structure on M in this
case. The limiting metric thus constructed is uniquely defined up to rescaling.

There are many other situations where a limiting metric arises in a natural way from

the degeneration of geometric structures. We will discuss this further in [Hol

8. Dehn surgery type singularities for foliations

We introduce a potion of “Dehn surgery type singularities” for certain ]-dimensional
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foliations of manifolds

Topological Dehn surgery singularities

First we desribe a (lopological) model foliation. Let VOV ,5V, be Euclidean spaces
with dimV =n, dimV, =n ~1 and dimV,=nr—2 Let p:V— V, be the orthogonal projection.
Then the preimages of points under p give the leaves of a foliation F of VER" by straight
lines Now F lifts to a foliation F op the universal cover (V-:T’z) of V=V, defined by the
submersion i:(‘r:{’;)-° V-V,~V,

w— .
In the 2-dimensional case, the foliation of (V~V,)=R? looks like :

Explicitly, we can ke V=C, V,=R, V,=0, p:zr Re(z)} Taking exp:C— C—0 as the
unjversal covering, we see the leaves of F are given by {z€C: Re(e*) =¢] for c€R For c=0,
the leaves are straight Lnes R+nmin€Z. In between each pair of straight lines, we have a
Reeb type foliation.

The 3-dimensional case is obtained by taking the product of the 2-dimensional case with
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Let H be the group of isometries of V preserving V, and Vo Then H lifts to a group H
of isometries of (V—V,) preserving the foliation F. If T 1s a discrete subgroup of H, then F

y
descends to a foliation on (V—V,)/T.

Definition 26. A folistion with {1opalogical) Dehn surgery type singularities is modelled on
such a foliation.

In the case n =2, HZZ where n€Z corresponds to the lift of a rotation by nw around
the point V, With the npotation introduced above, n carresponds to the map
C—C, xtyirx+yi+nmi If TZZ is the subgroup of wZ=H generatsd by nz, thea the

induced foliation on C/T has an n-pronged singularity :

If n=3, then V; is a geodesic in V. Elements of & can be parametrized by elements of
RXWZ 50 that (I, n7) corresponds 10 the 1ift of a rowatian by n about the geodesic plus wans-
lation by distance { along V5 In this case, ISZ2C H so the quotient (V—V',)/TSRY/Z? i
topologically T 2xR.

The local structure of the foliation can be seen as follows Let H=R2 be a half space

foliated by parallel lines, restricting to a foliation of 35 =R% Let LC3H be a line orthogona!
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1o the foliation of 84 dividing 8/ wnto 2 cornponents 34 * and 3K ~.
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Then a foliauon with Debn surgery singularities of type (2) is obtained by gluing
rogether copies X, H,, —H, of H sotbat 8H," is glued to0 347, (i taken med n) by a lincar
map respecting the feliations. The resulting foliation of R*—line depends op the choice of glu-
ing maps; however the foliation i1s determined by n and the translational holonomy /€R giv-
ing the total shearing along the line of singularities (Note that if n = 2 then the foliation is
topologically non-singular; although the transverse structure will be singular unless { = 0.)

The simplest case is when /= 0. Then we bave a two dimensional foliation with an n-

prong singularity at a point crosed with R
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Il
X
)

The general case is obuained by cutting this example open along a halfl plane bounded by the

singular axis, and regluing the sides after a translation by { along the axis

Geometric Dehn surgery singularities

For foliations with transverse geomelric structure, we consitruct model singularities as
follows Let p:Y— X, be a fibration, defining 2 complele 1-dimensional foliauon F with
transverse (G, Xo)structure. Let LCY be a codimension two submanifold of ¥, which is
transverse 1o the fibres, so that the projction p: L~ X, is an immersion onto a toully geodesic
codimension one submanifold of X,

Let N be a tubular neighbourhood of L in ¥. Then the foliation F|N—L lifts to a fola-
tion F of the universal cover N=L. Let A be the group of diffeomorphisms of N—Z which

preserve the foliation F and project to isometries of X, preserving p(L).

Definition 2.7. A Dehn surgery type singularity for a foliation with trapsverse (Gg., X:)-
ol -
structure is modelled on N—L/T with foliation induced by F, where I is a discrete subgroup

of A.
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Topologically, these singularities are of the form discussed above. The singularities can
be parametrized as follows

In the 3dimensional case, each element of T can be thought of as translation by distance
d along L (measured in X ;) compased with a rotation by angle 8 €nZ. The holonomy of each
element in #,(3) is the pair (4, 8 )eRxnZ

These singularities can also be parametrized by a generalized Dehn surgery coe ficiens
c€H(T;R) as in chapter 1 (section 2) The holonomy w(T)=H (M ; Z)~ RxnZCR?
extends 10 a linear isomorphism h: H (T ; R)— RZ Then c€H,(T; R) is the unique clas satis-
fying h(c) = (0, 2m)

In this situation, only a restricted set of Dehn surgery coefficients are possible. If a,, a; is
2 base for H\(T;Z) then Ma)=(,, n,m), where n,€Z and [,éR Then the Dehn surgery
coefbcient ¢ = (cy, c;) satisfies ¢, (I, nym)+c, (I, nym) = (0, 2m) Looking at the second coordi-
pzites shows that ¢ sausfies a linear equation with inleger coefficients of the form

anyten;, = 2, withn,,n,€Z

Examples 2.8.

(a) Let M be a clased manifold with a 1-dimensional foliation F and T a codirnension-2
submanifold of M such that each component of T is transverse 10 F. Then F gives foliation
on M—L with (1opological) Dehn surgery type singularities If M is any covering of M—L
then F lifts 10 a foliation of M with Dehn surgery singularities

(b) Assume that M is 2 3-dimensional Seifert fibre space with base orbifold B, and let
P:M— B be the projection. Then the fibres of P give a foliation F of M by ci;-r]d Now B
has a metric of constant curvature (except when B is a 2-sphere with one or two cone points)
Choosing such a metric defines a transverse (Go, Xo)structure for F, modelled on either HZ
E? o $2 In fact, M has a (G, X)}structure modelled on opne of the six Seifert fibred

geometries (See [Th1, chap.S (revised version)))
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Let T be a simple closed curve in M projecting to a geodesic in the base B. If N is a
small tubular neighbourhood of a component L of £ wn M, then the com pasition
P:N=LC M- B lifts to a map i:N‘—';.—- B. Moreover, the group w(N—L)EZ? of covering
transformations project to isometries of B preserving p(L). Hence, F restricts to a (G, Xo)
foliation on M-I with Dehn surgery  singularities. Here, the holonomy
m(N-L)~ HCRXWZ is given by is ha) = (0, 27), hb) = (1, 27) where I is the length of
PL)and a, b are meridian and longitude on aN.

(c) Let ¢:T— 7T be an Anosov diffeomorphism of the torus T2 =R%Z2 Then ¢ is
covered by a linear map with mawix A€GL(2,Z) having two distinct real eigenvalues
A, 1/ There are two linear foliations F,, F, of 72 invariant under @ by lines in the direc-
tions of the two eigenvectors of A Each of these foliations extends to a 1-dimensional folia-
tion of the mapping torus of ¢ : the bundle over S? obtained from 72x40, 1] by identif ying
(s.0) with (¢{s), 1) for €T Furtber, there are transverse measures g,, u, satsfying
@ity = Ay, P-puz = A, From this it follows easily that there is a transverse hyperbolic struc-
wre. (In fact, an affine structure.)

Similarly, let ¢ : S~ S be a pseudo-Anosov diffeomorphism of a surface S. Then here are
two transverse foliations F,, F, on § invariant under ¢, with isolated singulariues of the

form :
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2 N

N=3 h=4

[ (0"{9 ak cusps of §)

Again each of these foliations gives rise 10 a 1-dimensional foliation of the mapping torus of -3
with transverse hyperbolic structure. These foliations have Dehn surgery type sipgularities,
modelled on the above 1wo dimensiopal singularities crossed with S% with angle nw
corresponding to an n-pronged singularity on S.

In each case, we obtain a holonomy representation (giving the signed lengih of curves
with respect to the transverse measure), =,(M—I)— PSL;R and developing map
D:M~E— K.

(d) The transversely hyperbolic foliations discussed in [Th1, chap.4] also have singulari-
ties of Dehn surgery type. These arise as follows Suppose that we have a hyperbolic structure
with Dehn surgery on a 3-manifold given by gluing together ideal hyperbolic simplices. |13
often happens that the hyperbolic structure A family of such hyperbolic structures M, may
degenerate in the following way. All simplices are positively oriented far (>0, but flatten
out simultaneously as t— 0. In this case, there is a natural projection in each topological sim-

plex 1o a flatiened simplex lying in H2
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This gives rise to a foliation with transverse hyperbolic structure and limjting developing map
M— H2 Thes foliations always have Dehn surgery type singularities, and the Dehn surgery
coefficient for the foliation is the limit of the Dehn surgery coefficients for the M,

(e) Every 3manifold has 3-orthogonal foliations with transverss Euclidean structure
baving Debn surgery type singularities along a link. Further, the singularities are all of the
form (I, 6)=(0, w) or (0, 4w). This is an immediate consequence of the recent result of [H-
L-M-W] showing that the Borromean rings are universal : more precisely, every 3-manifold is
a branched covering of the 3-sphere branched over the Borromean rings, wil= branching

indices 1, 2 and 4. (Compare the following figure.)
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Foli a5 shown to
obmia Borromean rin,x
" 3
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L

The following result is the main justification for introducing the idea of Dehn surgery
singularities for foliations Suppose that a foliation can be approximaied by non-degenerate
geometric structures Then the pext result shows that if the foliation has Dehn surgery singu-

larities then the geometric structures can be chosen to also have Dehn surgery singularities.

Theorem 2.9. Let D:M—~ X, 1>0 be a smoah family of developing maps such that D, is
an immersion for t>0. Assume Do: M — X is a submersion de fining a foliation on M with
Dehn surgery type singularities. Then there are developing maps D,: M~ X, 120, such tha
Dy = Do. D, = D, except in an {arbiurarily small] neighboahood of the ends of M, and D, is

the holonomy for a geometric structure on M with Dehn surgery type singularities.

Proof. Let E be an end of M where the foliation has a Dehn surgery type singularity. We
have seen in section 7 (remark 2) that if w satisfies the regeneration condition then there is an
induced immersion D: M~ 1{X,), where »(X,) denotes the normal bundle to Xg in X. The
developing map D: M~ X, is just the composition of D with the bundle projection

(X~ X, We can write DX(m)=(D(m), n(m)) and D = (D, i) where n€TX pay and ALX,
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Then

Dfm) = exp paftn(m))+0(t?)
= exp paftAlm)}+0(t?) *)

Now, asume that F has a Dehn surgery vype singularity at the end E. Then tbere is
LCw(X,) such that D: E—~ p(X)-L. Now truncate £ o obtain & compact KCE. Let FCE
be a compact fundamental domain for the action of #,(£) on X. Then the distance from D(F)
to I is positive. Let L be the image of L in X, This is the axis preserved by po(w,(E)). h fol-
lows from equatian (*) above that there is ¢ >0 such that the distance from D{F) 1o the axis
L, preserved by pfw(E)) is given by a+{r?) , s is positive for all ¢ >0 near 0. Hence
D,:K— (N~L) lifs w D,: K— (N.,-:Z,). Moreover, D is a diffeomorphism onto its image;
hence 50 is D, Since #,(E) acts on 1(X,) a5 covering wansformations, s does plm). Then

extend over E “linearly” to complete the proof. s}

9. Cohomology conditions for regeneration

Jo this section, we obtain more usefu) necesarsy conditions for regeneration of folatons.
Let M be a compact orienrable manifold {possibly with boundary) and let F be a 1-
dimensional foliation with transverse (G, X Jstructure on the icterior of M. Asume that
the foliation bas Dehn surgery type singulariues Then we want w0 find (G, X)sructures on
M with Dehn surgery type singularities, degenerating w the fohzuion F. For sumplicity we
also assume that X, is 2 codimension-1 submar:fold of X with trivial narmal bundle and that
the tangent bundle TF 1w the foliation F is oriensed.

Let D: M— X(C X be the developing mzp for F unth holenomy p : (M)— G,CG, and
write E for the flat vector bundle E(p) defined in secron 41. Then there is a bundle map
n:E— MXR w0 the trivial R bundle on M isduced by the map uking (m, v)EMXg w0 the

component W D(m)) of WD(m)) in the direction of the positive unz normal 1o X, in X at the
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point DXm)€ X, Here v€g is regarded asa Killing vecior field on X. n cap also be regarded as
a section of the dual flat vector bundie E'.

Then n induces 2 map n- : (M E)— Q(M;R). Further, there is a dua} bundle map
n': MxR— E’, inducing a map n” : R'(M;R)— QM ; E') In general n won’t be a flat map
0 there will not be induced maps on cohomology: however n is parallel along each leaf of the
foliavon F.

In particular, nw is 8 R-valued form on M and the regeneration condition from theorem

22 (or 2.4) can be written in the form
n.w(v)>0 *)

for all v€TM which are positively oricnted tangent veciors to F. We will abbreviate this,
wriung : nw>0 on TF.

We assume first that all the leaves of F are closed as subsets of inzM; then each leaf
extends to compact, properly embedded submanifold of M. (This follows from the local struc-
wre of Dehn surgery type singularities) For example, let N be a closed manifold with Seifert
fibrauion and T a link in N transverse 10 the fibres. Then the foliation of N restricis 102 foli-
ation F of M = N—U(Z) of his form. The leaves of F consist of circles and open ntervals
whose closure in M is an interval with endpoints in M.

Now an obvious necessary condition for (*) is that the integral f nuw of nw over each
1

(oriented) leaf L of F should be pasitive.

It will be convenient to Write this in terms of a form dual wo L. First we recall the
definition of the Poincaré dual m; o a submapifold of a2 compact n-manifold M. Let
i:3M C M be the inclusion and let QM , 3M ; R) denote the space of R-valued k-forms w on
M such that i'w = 0. (We call these “forms vanishing on aM™.)

For every oriented k-dumensional submanifold j:LC M properly embedded in M,

\plegration over L defines a Linear functional on QM , 3M:R):
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Hw) = f jw.
1
This induces a linear functianal on the relauve cohomology HYM , aM ; R), since
Udw) = [ dj'w) = [j'w =0
1 L

far @€ 0 YM, M R) S

Using Poioaré duslity H*'(M,3M) SH""*(M), we obuain s cloed form

7, € 0“4\ ; R) Poincaré dual w I, characterized by :

[ro= furn

1 M
for all € 0*(M . ON;RY

I pe-tcular, for each leafl LC M as above, we obtain a closed form 7, representing a

class in H* (M ;RL This is also the dual of 2 homology class [LI€H (M, 3M; R);, we will
refer to [ and 7, = the “Yolation cycle” carried by L. (This lerminology makes more sense,
if we thisk of L as a kcycle on inrM with closed support representing an element in the
bomology Foup Hi_codEuM ;R) dual H*(inrM ; R). See [B-T] for some further dis-
ession of bymology with closed supporis}

Applzng n” givss a form n'n; €05 74M ; E") which is closed since n is parallel on each

Jeaf of F. This gives a linear functionzl n”L defined by

r Hal = fum n'n *)

Ar

defined o certair £-saluesd kforms i i clear that this definition makes sense for E-valued
forms vaashing on @M; and snce mw & closed there is an induced map on cohomology
HM; E)~ R We meed W extend the defnition to a larger class

Asstre that D: M— X.C X carvespends w a geometric structure or foliation with Dehn
sugery 1yye singoleTies Thes eack enc of M hasa neighbourhood diffeomorphic to 2 quo-

teat N—L I, where N is 2 nesghbocrhood of a codimension-2 submanifold LCX whereTis
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a discrete subgroup of H, the lifts of isometries of G preserving L. We fix such a neighbour-
bood U of each end of M, and give USN=L a Euclidean metric such that  acts by
Euclidean 1sumetries (The Euclidean metric on the normal bundle to L in X is invariant
under H; use the exponential map w obtain a suitable metric on N—L and N=L) This givesa
flat connection (actually a product structure) on the tangent bundle to U and we will say
that & form on M with values in flat vector bundle £ is parallel on U if its covariant deriva-
tive is zero. (Equivalently, using the connections on U and E, a form « locally gives maps
w,:TMy— E; depending smoothly on u€l. w is parallel ifl the map w, is locally consmant.)
Let 0,(M; E) denote the space of E-valued forms w ob M such that w is constant on a
neighbourhood of each end of intM. Let H:(M: E) denote the cohomology of the complex

10, (M: E), dl.

Proposition 2.10. [/ p corresponds to a geometric structure or foliation with Dehn swgery
type singularities then the inclusion 0,(M; E(p))C Q'(M ; E(p)) induces an isomar phism on

cohomology: H,‘(M s EQN=H (M ; E(p)).

Proof. We use the following elementary lemma, leaving the proof as ap exercise for the
reader. (Jt also follows from theorem 3.17, using the fact that EZw(L) is a fiat orthogana) vec-

tor bundle over & )

Lemma 2.11. Let U be a neighbourhood of an end of M as above. Then every class in

H'W ; E) can be represented by a unique parallel form
o

(1) We first show that every cohomology class c€ H'(M ; E) can be represented by 3 form @
such that
(*) @ 15 constant on a peighbourhood of each compopent 3 of 3, with values 1t the

infinitesimal centralizer of the axis in X, preserved by p(,(3)).
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(Hence, naw vanishes on 3M.)

By the lemma, the restriction i'c€ H'(U; E) can be represented by such a unique con-
sunt form a € QYU ; E) ;atisfying condition (*). Let 8 be any form in QXM ; E) representing
c. Then a — B 5 a coboundary on U, ay a — 8= do where o is a section of £ over U!. Extend
o toa secuon 0 of E and take w = 8+ dG.

(2) Moreover, if » as above is a coboundary w=da with € 0%M; E) then w is a

cobouadary on U; 30 w =0 on U. It follows that o is constant on U; hence a € I);(M;E) =]
It follows that n4s— O a1 each end of M and we have

Proposition 2.12. For each leaf L of F, there is a continuous linear functional n'L on
0;(.\!; E) de gned by :

n'L[m] = _{n-«n = [m'\n"nl_

This induces ¢ linear finetional on eohomology - n'L: HNM; E)XH}M: E)~ R

depeding only on the cohormalogy class [n L€ HNM ; E°).

Remark 2.13 Regeaerauon Conditions.

The :ondiuon that f N4 >0 15 the same as the condition that n.L[w]}>0. The previous propo-
z

suac ircphies that this can be writtken in terms of group cohomology, since
HXN ; E=HY7(M); Adp) Explicitly this can be done as foliows.

(1) ¥ L 1 a closed leaf, with homocopy class [L] in #,(M) then the condition becomes :
Were 1s 2 cocyzle € ZMw (M), Adp) representing the cohomology class of w such that

RECEND f naw = nJLE>0.

(Mo precisely, we mean that X(LD€g regarded asa Killing vector field points in the positive
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normal direction to X, at all points of D(M).) This condition is independent of choice of base

point used 10 obtain the homotopy class [L)€ 7, (M) : Putting I = [L] we have p(!) = 1 hence
ala™") = 2a)+ Adp(a) (1)—Adplala~")Ka) = Adp{a)=(1)
However, the vector fields corresponding 1o Adp{a)z(l) differ by an isometry p{a) preserving

X, Hence, nX1)>0 if and only if nx(ala™*)>0.)

(2) Let L be a oriented leafl meeting 3M. Lift L w0 a path L in M joining two components
3_. 8, of 8M. Let I,Cw(M),i=+, — be the group of covering transformations preserving 3;
then D(8,)= A(t) is the axis preserved by p,(T,) The axes A_(r), A,(1) lie 10 X, and intersect

for r = 0. The condition that f n.w>0 is exacily the condition :
i

(REGEN2) the axes move apart in finitesimally for t>0, with A,(¢) lying above A (1).

X X

44— (D) A + "&)
— /

A_(0)
A v

(This condition can also be written in terms of group cohomology but we won't use this form.)

In fact these cohomology conditions (REGEN1) and (REGEN2) are enough t¢ ensure

that w is cohomologous 10 a form satisfying the positivity condition n«w>0 an TF. In the
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next mclion we will give a proof of this by using techniques of Sullivan from [Su} We wil
also obtain a cobomological set of regeneration condition when the leaves of the foliation are

Dot pecessarily closed.

10. Sufficiency of cabhomology conditions

Now we prove that the bomological conditions for the deformation of foliations to
geametric suncwres are actually sufficient This section is an extension of ideas introduced by
Sullivan for £nding real-valued forms positive op the leaves of a foliation. The reader should
comsult [Su] far mare denails

First we introduce mare nostion. Let Q3 = Q*(M ; R) denote the R-valued k-forms on
M. let 0y denote the dual space of currenw : continuous linear functionals on Q. Let
Q= Q)(M; E) denote the space of F-valued k-forms w on M, paralie} on a fixed compact
neighbourhood of 3M. Let 0 denote the dual space of continuous linear functionals on

Let F be a foliation on itM and assume thai p is flat along every leaf of F. Let
CF C 0Oy denaie the convex cone of foliation currents : the closure of finite convex combina-
Uoms of Dirac currents, given by evaluating forms on the 1angent k-vector to F al any point
of intM. Let CC 1" denote the image n'(CF) under the map induced by . We wish to find
forms w€ ) such that &(C)>0.

We now use the z2pproach of Sullivan, with C as “structure cone”™. The idea of the argu-
mex1 is the same as that ic {Sul however there is a shght technical complication since our

stracture cooe may be defined on a popcompact manifoid
Lemims 214 There are forms @€ [} positive on C.

Proof. These are easily consructed Jocally : this is clear except perhaps on a neighbourhood U
of zn exd of M. To coastruct a suiuble form on U note the developing map D:U— X, bas
iznge contaimed o one of the two components of X(—L Cboase @ Lo be a constant form

whose value op TF is an wnfinitesimal rotation with axs [, with direction of rotation chosen
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s0 tbat n.w>0 on the component of Xo—L containing image( D). (Note : naw <0 on the other

side of L.)
n,w>o
Cros s Sechen: Nylw< O T &
Finally, piece together these Jocal forms using a partition of unity. [m}

The following result is the crucial point needed w0 apply Sullivan's ideas in our situation.
Some control on the behaviour of forms at infinity is needed to obtain compactness here; this is

the reason for the use of forms paralle] near the ends of M.
Proposition 2.15. The cone C is a compact convex cone in 2,

Proof. Let w€ () be a form such that n.w is positive on C. Let C denote the set of c€C such

that o) = f w = 1. We will show that C is compact,,

Now C is a closed subset of C and is compact if and only if the set of values Ma 15
bounded for any fixed form n€ 0 (by the upiform boundedness principle, cf[Sul). Let U be a
neighbourhood of the ends of M such that 1) and w are constant forms on U, with M—U com-

pact Thenp there is a constant K >0 such that:
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In.n(v); €K Jn.adv))

for all vecuors v tangent w the foliation F. (Such an inequality holds oo U since n.7 is Just a
multiple of na on U". There is a similar inequality oo M—U by compactness) Hence, for a

fnite sum of Dirac anrents c€C we have dn) SX(w) It follows that ()€K for all c€C. O

Let B and Z demote the subspaces of boundaries and cycles in Q°. Thus
B=[(leQ : o) =0, for all closed forms w€ 0} ) and

Z={1e0 : Ku) =Q, for all exact farms w€Q ).

Thearem 2.16. Assaome that
CN8 = {0}. =)
Ther a cohmomlogy dass u€ H (M ; E) car. be represented by a form w€ (M ; E) such that

wwl(v)>0 for dl vETF tangent 1o the foliction F if and only if nad f)>0 for all [foliation
cvdes fEH KM ;R).

Froof. (The a-gument is essentially the same as in [Su}) First note that Z and B are clased
s:bspeces of . Since C is a compect convel cone and BNC = {0} it follows from the Hahn-
Banach theorem that there is a hyperplane /DB which supporis C (1. HNB = {0)).
Bguivalent?y, there is & continuous linear functiona) !: Q'— R such that {20 on C, with
ke!=H. By [de R] forms in Q(M; E) and currents m O(M; E) are duals Since
CCOM; E) r foliows that Q7 C Q(M; E)" = (M ; E). Hence ! is defined by a form

w€0'M; E) wnth kenel H, such that o(C}>0: A7) = £ wr for all 7€ Q. Since w van-
mhes o B we bave [ w dn =0, far all n€ XM ; E) paralle} near infinity. This implies easily

thet dw = 0 oz 5uM; bene dw =002 M. So there are closed forms pasitive on M.
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ber L =kerw = H B

The transverse geometric structure on F gives a transverse invariant measure g on F,
which defines a foliation cycle in f€ Q5. (f is given by integrating forms over leaves of F
with a2 weighiing given by the transverse measure u.) Then n’f€f) is also a cycle; bence

CNZ={0). h follows thatC, Z, B arc arranged as follows.
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By s slight extension of the previous argument, we then find that a cohomology class
VEH (M ; E) can be represented by a “positive” form w€ (1(M ; E) such that w(C)> 0 if and

only if u« is positive when evaluated on the bomology classes of cycles in C. 0

To apply this result in our situation, we need 1o understand the foliation cycles for F.
We will restrict our atiention to the case where cach leafl of F is a closed subset of inrM.
Lecally (in 2 coordinate chan) any foliation current is given by integratian over leaves with
TeSpect 0 some measure on 3 transversal to the leaves If all Jeaves are closed sets, then any
exueme point of the cone of foliation curremts is given by integrating a Dirac measure: con-
centrated at a single leaf. It follows that the extreme points of the cone of fohation cycles are
Just the folation cycles {L] supported by leaves Hence, the condition n-id{ £)>0 for all folia-

uan cycles / is equivalent w the conditions of the previous section : n"Lw) = f w > 0 for all
1

Javes Further the non-degeneracy condition (=) becomes : there is no leaf L such that

J @ =0 for all closed forms w€QXM; EL But this is impossible if «IZ])>0 where
L€H M E) is the cohomology class of w So we have proved :
Theorem 2.17. Ler F be as above. Assume that every leaf of F is a closed subset of intM.

Then a cohamology class u€ HY(M ; E) can be represented by a form w€ QM ; E) satis [ ying

the regenzration condition : nw>0on TF if and only if [LD>O0 for all leaves L of F.
o

Combicing this with theorem 22, we obuin the following criterion for regeneration of

gTOMeLrnc sirucuures.

Theorem 218. Let D: M~ X be a submersion, and p:1,(M)— G a holonomy map such that
Dym) = p/yrDm) for y€T/M), m€M. Ler C€HM; E,) rcpresent the tangent to a

swoth fe=ily of representations p,:5(M)—~ G. Assume that c is positive when evaluated
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over every foliation cycle [ for F (ie. {f)>0 for all f). Then there is @ smooth femily of
developing maps D,:M— G such that Dy=D. D, is a local di ffeomorphism for t>0, and the
derivative to D, at t =0 represented by the form w.

In particular, there is a family of (G X)structures on M converging to the (possibly

degenerate) structure given by D= D,

Further, from theorem 2.9 we have the following

Addepndum. /f F has Dehn surgery type singularities, then we can enswre that the D, 1>0

de fine (G, X} structures with Dehn surgery type singularities.

Remark 2.19 Special Case.
If D defines a 1-dimensional foliation on inztM with all leaves closed (as subsets of inzM), then
the regeneration condition (/)>0 in the theorem reduces to:
there 15 a cocycle =€ Z*(w,(M); Adp) representing the cohomology class ¢ such that
(REGEN1) n({L])> 0 whenever L is a leaf di fTeomorphic 10 §'
and
{REGEN?2) the axes preserved by p(a,) and p(3,) move apart in finitesimally for >0, when
Lis aleaf joining boundary cormponents 8, and 8, of 3M.

In other words, the lengihs of all Jeaves become positive under the infinitesimal defor-

maton

CHAPTER 3

Cohomology Theory of Deformations

Let R(T. G) denote the space of all representations I'— G. Let gen be a set of generators
and rel a st of relations for T. Then R(I, G) is an analytic subset of Gfe" consisting of maps
gen— G =mtisfying the selations rel If G is an algebraic group and T is finitely generated then
R(T.G) 5 an algebraic variety. The group G acts on R(T, G) by corjugation and the quotient
RI.G)/G b of particular interest because it parametrizes locally the space of (G, X)-
suructures on M. (Compere propasciions 1.7, 1.8 and [L])

In chaprer 1, sectiom 4.1, we noted the following

Lemma 3.1, ZXT, g..,) is the Zariski tangent space to R(T.G) & a representation p.

BYT . gas,) is the Zarisks targens space to the orbit G.p. [m]

Hezze. in some seoe, the dimension of H YT, G) gives the dimension of R(T', G)G at p.
However. the spaces invelved are sngular in general so more work is needed 10 oblain a good
undersianding of the Joca) swuctze of KT, G) and R(T, G)/ G.

As generz] referemoes for this chapter, we suggest the books [Brl [R) and the papers
fWe3l [G1] [G2] [5-M] The appendix to this thesis also contains s summary of notation and

Froperues of group cobomnology used below.

11. Obsuuctions w defarming representations

We have seer that every smootk 1-parameter family of representations I'— G gives a
Zarisiy wagent vecwor in ZAT', G - However, the tangens cone w0 R, G) consisting of Zar-
ski tergent vestoss whuch emtend 1o I-parameter families of representations I'— G is oflen a

propeT s.set o the Zarsski tangest spce. If the tangent cone is equal o the Zariski tangent
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space, then R(I', G) is locally a mamfold with dimension given by ZXI', g). (See Whitney
{Wh2] for more information on tangent cones.)

In fact there is a sequence of obstructions in //XT'; Adp) to the extension of a Zariski
tangent vector in ZXNI'; Adp) to a 1-parameter family of representations. We now indicate
how this comes about and explicitly give the first obstructions.

Let p,:T~ G be a smooth 1-perameter family of representations with po=p. Put
pLg) = exp(f(g)plg) for g€T, where f,:I— g has Taylor series expansion f(g)= ‘_}:iltia.(g).
For p, to be a representation we have

plgh) =plgrp(h)
for all g, h€T. Equivalently, p(ghlp(gh)™" = p(g)p(g)"p(g)p (R)p(h) " }p(g) ™", or

exp( it'a,(gh)) = exp( ir’a,(g))exp(El‘Adp(g)a,(h)) ®

1=) 1=1 1=l

Using the Campbell-Baker-Hausdorfl formula
expla)exp(d) = explat+b+ %[a L b)+ 11_2[Ia L b, B %[a .8), aH-)

and expanding (the logarithms of) both sides of (*) in Taylor series, we obtain a sequence of

equations for the coefficients a{g). In particular, tbe terms of degree <2 give:

a,(gh)—a,(g}—Adp(gla,(h) =0 a)

afgh>-adg)- Adp(ghakh) = 31a,(g). Adplg)a(h] @

These equations can be interpreted in terms of group cohomology of T with coefficients in
the T-module Adp = g, Equation (1) says that a,:T— g 15 a cocycle in ZXT'; g). Equation
(2) says that day =[a,, a;] where [ , 1:CTI'; g)XCXT; g)— CT; g) denotes the cup product

using coefficient pairing [ , ):gxg— g. (See appendiv) In particular. la;, a,)=0in HAT; g
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12 Conditions for a representation space to be a manifold

In chis sctioc, we give some cohomological condiuens for a space of represeptations
R(T.G) 1 be manifold The main ideas here go back 1o Weil [We3)

First, we note the follow'ing easy consequence of the implicit function theorem. (For a
proof see [We3) or [R])

Lemma 32. Ler A, B, C be smooth manifolds and a:A— B, B:B— C be smooth maps.

Suppose there is ¢ point c€C such that B.a{A)={c). Let a€A be a point such thar the

sequence of derivarives
do ap
TA— Tﬂo(a)—' TC,
is exact. Then o A) = B~Yc) is a manifold in a neighbourhood of ab). o

Asa first aprlcatior, we outline Weil’s proof of the following result.

Theorem 33. Ler p:T— G be a representation such that H{T', Adp)=0. Then p is locally
rigid : giving en isclated poins in KT, G).

Pracf. Let gen, rel be smu of generators and relators for T.  Define maps

. s
G G G™ where algXy)=gply)g™}. for all y€gen and B is the evaluation

mar giver by substtuung a point of G into the relations of rel Then it is clear that
B.0/G)="=(1,1,_,1)€G™, B )= R, G)and alG)=Gp is the orbit of p in R, GL

We identify e tangen: spaces of G,G*",G™ with g, g, g™ (using right transla-
tan back 10 the identity 1€G) Then the derivatives of a, § are just the coboundary maps

< 4!
d°, ¢! in a complex g~ g™ g™ whae cohomology gives H (T, Adp). (To s¢

this consider 2 CW-camplex X with #,(X) =T made up of one O-cell, one 1~<ell for each gen-
eralr ir gem and aoe 2-cx]l for each relation in rel Ther the cellular homology

HYX; A2p¥=HYI ; Adp) is exactly the homology of the above complex.)
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If HYI, Adp) =0 then the above sequence is exact, and it follows from the lemma that

R(T', G) = Gp near p, as desired. [n]

The following result is well known. We give a proof analogous to the above proof of

Weil's theorem.

Theorem 3.4. Let p:T— G be a representation such that HXT, Adp)=0. Then KT ,G)is a

mani fold near p, whose dimension is the dimension of ZXT', Adp).

Proof. Let X be 3 CW—complex with a single vertex such that w(X) =T and w(X) =0 for
j=2 Then HAT,Adp) is isomaphic to the cellular cobomology groups
HY(X; gasp) = HY{X; Adp) fori=0, 1, 2 (See [Br])

Let X, be the st of (oriented) i<ells in X. Let C'=C{X;G) be the =t G™ of maps
assigning an element (@) of G to each icell 0€X, such that &) = (o)™ where & denotes
the cell o with orientation reversed. It will be convenient 10 parametrize the cells as simplices,
and we le1 0, . 0, denote the vertices of i-simplex o and label faces by giving an ordered list
of vertices as subscripts.

The representation p:w(X)— G can be reabized as an element pECHX; G) satisfying
the cocycle condition p(0y,}p(0,:}p(0n) = e for every 2-simplex o of X. (For instance, if p is
the holonomy representation for a geometric structure on X then we can take pledge) to be
the holonomy along the edge obtained from the developing map.)

We define maps

A P
CHX:Gr— CHX: GIXCAX: G)—— CX;6) x C > X ¢ i

as follows B l’*’z’
A(f)=(f, D'f), where D' flo) = flay,} {0} flO) =

for f€C', o€ X, and

01;'{,«1
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TRy
Bf,g)= Djg, where Diglo) = T100 Y gla,20} flog, ) glagy ) glo2) " g01)™
for f€C!, geC?, 0€X,
Then B.A =(1) where (1) denotes the map whose value oo all i-simplices is the identity

tlement 1€G. (Compare the following figure.)

3

(Ferms cancel in pairs )

Ao, A7HC'x(1)) is exacily AT, G

We igemtify the tangent space 10 G at a point with the Lie algebra g by right translation
to the tangeat space at the identity. Then if p€R(T, G), the derivatives of A at p and B at
Alp)={p, (1)) are given by :

dA=19d":CKX: g)~CYX: g)oCiAX;yp)

dB=0+d%:ChX; g)@CiX; g)-CXX; p)
where the raps d' are exactly the boundary mazps 1n the complex CXX ; 8.adp) giving the (cel-
lular) cohozology HAT; Adp) = HAX; Adp)
New sace HAX; Adp)=0, imd" = kerd? and it follows thay the sequence of derivatives

4A 48

CHX: g CHX: ) CAX; g— CYX; p) @ ¢Y

b exact Heace by lemma 14 , A is a submersion onwo a neighbourhood of (p, (1)) in

B C X GIXCAX; G In particular, R(T,G)= A~XCHX:G)x(1)) is & manifold of
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the same dimension as kerd' = ZXT, Adp). a

We will also peed a relative version of this resuit

Proposition 3.5. Let X be a simplicial complex and Y a subcomplex. Assume X is comnected
and let Y, — Y. be the components of Y. Let T=w(X)and T,=w(Y,) fori=1—.n(for
any choice of base points). Let p be a representation p :T— G restriaing to representations
p:T,~G. Assume that R, ,G) is a manifold near p, for each i Then if image

(HYX, A)~ HXX))=0, R(I', G) is a manifold near p.

There is also an equivalent version in terms of the representations of fundamental groupaids,

iz, G-valued cocycles ZY(X ; G) and ZX(Y ; G).

Proposition 3.6. Ler X be a simplical complex and Y a subcomplex. Let p be cocycle
representing an element of HNX;G). Assume that ZNY ; G) is @ mani fold near the restric-
tion plY. Assume that im(HXX,Y; g)— HXX; g)=0. Then ZXX;G) is a manifold near

P

Proof. Define CYX:G), C{Y;G) and maps A,B,D' as above Pt
ZYX ;G)= A"MCNX;G)x(1)) (corresponding o representations in R(I',G))} eaod define
2 Y ;G) similarly. Let r:C{X;G)—~C4{};G) be the restriction map and
C{X,Y;G)=r"X1) the preimage of the trivial cocycle having value 1 oo each i-simplex of
Y.

Since r is a submersion, S =r~YZX¥ ; G)) is a manifold containing Z¥X ; Gl Further,
DYS)CCAX,Y ; G) and there are maps:

a »
S CX:GIXCAX.,Y;Gr—— CAX;CG)

where a is the restriction of A=1®D':C{X;:G)~ CHX;GIXCHAX;G) w S, and b s B res-
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mced to CAX,Y;G) M p€kerD’ (giving a representation in R(I', G)), then we have seen
above that da= jd’ and db = 0+d? where j:TSCCHX; g) is induced by inclusion and d*
are the coboundary maps for computing the cohomology with local coefficients in g. Using this
obscrvation, the condition thar im{H XX, Y ; g}~ HXX; g)) = 0 implies that kerdbCimda By
the construction of the maps @, b we have bea(s) =(1) for all s€S; hence imdaC kerdh. By
lemma 32, it follows that « is a submersion onto a mamifold a(S) ; hence
ZYX;G) = a~XCXX ; G)x(1)) is a manifold o

13. Local properties of representation spaces

We pow study some local properties of the representation space R = R(I', G). First we
reca® 2 fundemental result am the structure of real abalyuc varieties A proof for the case of
real algebraic varieties can be found in Whitney [Wh1] As Whitney observes in the introduc-

tion w [Whi] the same proof 2pphes in the analytic case.

Thearem 3.7. Let V be an analviic subset of R*. Let M be the set of points in V' where the
dimewsion of the Zariski tamgent space is minimal Then M is a smooth manifold with
iangent s pace equal 10 the Zariski tangent space ar each poire, and V —M is a proper ana-

hitic subses of V.
u]

Remark : Ths faiks ie genezal, of V s given by the zero set of a family of smooth, non-
anztruc funcuons. (For example, take a C* function oc R vanishing on a closed interval)

Let p. be a reprewrntatuon in R For each p in R write H', for the cohomology group
BT, g ) Then the followmg proposition gives some stability properties of these groups and

her relatnaar with the Jocal properties of the space of representations
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Proposition 3.8.

(1) dimH', SdimH', . for all representations p € R near po

(2) 1f dimH', is constant in a neighbarhood of py in R then the cobandary maps
d'~! and d' have constant rank in this neighbarhood of py

(3) 1f d" has constant rank at all points of R near po. then R(T, G) is a mani fold near
Po 0f dimension equal 1o the dimension of kernel d'= Z".

(4) 1/ R, G) is a manifold near p, and H® has constant rank near po, then there are
neighbourhoods U of pgin R(T,G) and V of 1 in G such that the “local” quotient U/V is a

manifold of dimension equal 1o the dimension of H'.

Proof. Parts (1) and (2) follow, from the fact that the rank (and pullity) of linear maps are
lower (upper) semicontinuous functions of the map. The coboundary maps d' giving Lie
group cohomology with coefficients in Adp depend continuously on the representation p. But,
the dimension of image d' cap pot increase in a limit, while the dimension of kernel d' caan
pot decrease in a hmit Hence, the dimension of H', = kerd'/imd'™' cannot decrease in 2
Lmit, as p— p, Moreover, dimH' sricily increases unless the rank of d' and d'~' both
remain constant in a neighbourhood of po

Part (3) follows from the observations that d' can be identified with the derivative of
D' and (D'Y"(1) = R(T', G, using the previous theorem.

The bypothesis of part (4) umplies that the G-orbits on R(I', G) pear p are manifolds of
(constant) dimension equal to the rank of d® Hence U/V is a manifeld of dimension

dimZ'—dimimd® —dimH . o]
The following is a refinement of part (4), in the case Where G is an algebraic group.

Proposition 3.9. Asswme that G is an algebraic group. R(T', G) is a manifold near p and
dimH® is consiant near p Then there is a neighbourhood U of p in R(T, G) such thar the

quotient U/ G is a mani fold of dimension equal 10 the dimension of H'.
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Proof. Consider the action of the group G by conjugation on the algebraic variety
E=RT,G) Since this is an algebraic group action it follows that each orbit is a locally
(Zarski-) clowed submet of R (This a stapdard fact for algebraic group actions The map G— L
given by gegx is 2 morphism of algebraic varieties So the image Gx contains a dense open
subser U o its Zariski closure Gx. Hence GU = Gx is an open subset of Gx.)

k falllows that if two nearby representations in R are conjugate, then they are conjugate

by elemems of G near 1. So the result follows from part (4) of the previous propasition. [w]

Remark X10

In grneral the globel quotient R(I', G)/G will be badly behaved, eg- pon-Hausdorfl.
However, we will be primarily concerned with the local structure of R(T, G) 50 the preceding
resuks will sufice far our purpesss Far information on global quotient spaces R(I', G)/G and
the zsocianed character variery, see [G1] [G2] [C-S] and [1-M]

Propesiin 38 also gives anocher proof of the following results from the previous sec-

nan

Corollary 3L (1) If H' =0« p then RT, p) is a manifold near p equal to the orbit of
g under G The image of pin KT, G)/G is an isolated point.

(2017 H=0a p then R(T,G) is a manifold near P of dimension equal to dimZ°.

14 Some groperties of cohamology

34.1. Poimcare duality
One urparant property of the cobomology groups H'(M; E) with coefficients in a fiat
ecur bunddle {or locz] cefficaent system) £ x Poincaré duality. Given a pairing A @ B— C of

a1 vector bundies (ar loal coeffickeat systers) there is an associated cup product
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U: HYM; A)eH(M; B)—~ H'*(M;C).

Let M be an orientlable closed manifold of dimension n. When a pairing A®B—R is
non-degenerate, we have Poincaré duality: the cup product gives a non-degenerate bilinear

form
HYM; A)@H""XM; B)—~ H(M ; R)=R

When M 1s an orientable n-manifold with boundary 8M there is & relative version : the cup

product gives a non-degenerate bilinear form
HYM:A)@H" (M ,8M; B)— H" (M ,3M ; RFR.

Proofs of these results can be found, for example, in [Sw, chap. XI} alternatively one can
give proofs via d¢ Rbham theory by exiending the usual arguments for the case of real
coefficients (eg. [B-TD.

We will be interesied in the case where A =B are vector bundles of infinitesimal
1sometries with fibres isomorphic 10 the Lie algebra g of the isometry group G. Then one such
pairing comes from the Killing form { . ) :gxg— R on the Lie algebra g. Another natural
pairing comes from the Lie bracket [ . }:gxg— g on the fibres. The frsi pairing gives
Poincaré duality when the Killing form is noz-degererzte ie. when the Lic algebra g is sem-
isimple. This holds, for example, when G is the isomeury group of a sphere or hy perbolic space.

More generally, we obtain a non-degenerate pawring gxg— R, invariant under the
adjoint action, whenever G is reductive, Le. AXG)C GL(g) is semisimple. We can then use the

trace parring (4, B) —tr{AB") on GL(g).

14.2. Kronecker pairing
For any flat vector bundle E, let £ denote the dual vector bundle Then there is an iso-

morphism

H(Y ;EVSH{Y; E)
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induced by the Kronecker puring (evaluation of cohomology on homology)

HGU  EXH (Y ; E)-~R

143 Enler characteristic
h 5 also useful ‘to recall that the Euler characieristic (M) of M is given by :
(dimE) - XM) = } (—1YdimH(M;E).
+ =0
15. Some cobhamology cakculations
In this secion wWe compute cobomology groups HAT'; Adp) for ceriain representations
p:I— PSLAC), where T is the fundamental group of a surface or 3-manifold All dimen-

sioes given will be com plex dimensions.

Case (a) Let S be a surface of genus g. We compute the cohomology groups H' = HXS; Adp)
for some represenutions p: 7,(S)— PSLAC)

Surpose that p is “irreducible’. (We really mean that p(w(S)) fixes no point on the
sphere at infinny for H? or p 1ifts 10 an irreduable represntation w,— SLAC).) Then H°=0
ance e cenmalizer of p(w(S)) is wivial, so H?=0 by Poincaré duality. Thus,
dime H? = —~dumd :C)- X(S) = —3xS) = 6g—6.

Feo a worus, £ =1, representatiocs are usuzlly reducible. In the generic case, one generator
of 7,(S*=2Z2 15 a kyperbolic traasformation of H? and 1ts axis must be preserved by ibe other
genenatr. Then there is a one (complex) dimensiana) infinitesimal centralizer (corresponding
to tive :-fnitesimz! rotations and trasslations along the axis which commute with the p(Z?)
action) b this ase, we obain H°=H?=C and H'=C% The same result holds when the
image of p consisss of parzbolic elementx (o tus case, there is a 1-dimensional family of

wmfioriecmal peretwlic elements com=uting with the p(Z7) acz:om.)
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Remark 3.12. In botb cases, the dimension of ' is constant for representations near p. h
follows fror proposition 3.8 that the space of representations is a manifold of complex dimen-
sion 4 near p. Further, dimH°®= 1 is constant near p so the “local quotient space” of represen-
tations near p up 10 conjugacy is a manifold of complex dimension 2. [t is an easy exercise o
see that this space can be parametrized locally by traces or “complex angles™ of images of two
generators.

There are also isolated irreducible representations of Z2. For example, there is an irredu-
cible representation Z2— PSLAC) whose image is the subgroup Z, ®Z,C PSLAC) generated

by 180" rotations about 3 orthogonal axes in H’. Then H°=H'=H?=0.

Case (b) Now we consider the case of & compact 3-manifold M, with boundary 3M containing
no spheres. Let p:w (M)~ PSLAC) be a representation such that
(*)

(i) the centralizer of p(T) in PSLAC) is rivial

(ii) for each torus boundary componen: T CaM, p(wr(T))=1 preserves either a geodesic
in H? or a point at infinity. (i.e. p(my(T)) is not a subgroup of Z, ® Z,)

(iii) for each non-torus component S of dM, the restriction of p w0 7,(S) has wrivial cen-

tralizer.

(Condition (*) holds, for example, whenever p is geometric : corresponding to a hyperbolic
structure with cone or Dehn surgery type singularities a1 torus boundary components and

complete at other boundary components.)

We consider two special cases.

(1) M is a union of n tori

We have an cohomology exact sequence

T H{M, MY} H{M) H(3M) H'*YM,aM)y— _ (™)
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Now HXM)= HYM,3M)=0 since p has trivial centralizer, so by Powcaré duality, the
third cobomology groups also vanish. By the previous example, we know that H YaM)=C>

and HYaM) = HX3M)=C". In the exact squence

. ]
HYXMy— HNaM)>—— HXM M)
the mapse a and B are dual maps (with respect w0 Poincaré duality) so
dimima = diminf= JdmH'@M)=n  Le  x  deote  the  dimession  of

Lero = ker{H(M)— H'@M)) = in(H'(M , 3M)— HYM)). Then using the exact sequepce

(**) nt follows that dim H{M)= H(M ,aM)=n+x ,fori=1,2

Remark 3.13
A shight refinement of this argument will prove useful Let 3, denote the ith boundary

corronent of M. Then we can write @ =(a,, - , @,)and 8 = 8,+.. +8,, where

o, p,
HYMy— HY3)—— HXAM, oM).

The: a 25d B are dual maps and dim ima = dim imp = %dunh"(a,), for each i

(2) Each component S, of @M has genus >1, and the restriction of p 10 each ,(S,) is
srrecacible. (This is the generic case, and holds for instance when p is the holonomy represen-

e of & cormplete hyperbolsc structure on intA.)

Thez a scmilar argument shows that for i =1, 2, dimH{M)= H{M, oM)= —73x(aM)+1.

whee 1 = dum ker{ H (M)— H¥3M)) = dimim(H (M , 3M)— H(M)).

(3) Let M be 2 compact 3-manifold with boundary containing no spheres, and let
£ . M)y~ PSL/C) be an represcotation satisfying the conditions (*). Then by combining

zes (1) and (2), the cohomology with Adp coeficients s given by

dirF(M) = &imH (M, aM) = :23~X<aM)+:+x for i=1,2, where ¢ is the number of tori
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components of M, and a = dim ker(H (M)~ HY3M)) = dim im(H M, 3M)—~ H(M)).

Remark : Similar cohomology calculatians were poted by Thurston in & Princeton University

course in Spring 1982

From these calculations we obtain the following result, originally proved by a different

method in [Th1) (see also [C-S])

Theorem 3.14. Ler M.T be as above and let R be an irreducible componens of R(I', PSLAC))

which contains a representation, saris fying the conditions (*). Then R has complex dimension
SN+3= 223—;\<M)+x+3.

1f p€R is a represeruation such thar d&imZ YT, Adp) = N+3 or R has dimension N+3
at p, then R is a complex manifold of dimension N+3 near p. Further, the con jugacy classes
of represzntations near p form a complex manifold of dimension N. 1f 8M consists of tori
T, then the represeniations near p are paramerrized up to conjugacy by traces or complex

lengths of (suuably chosen) elements a,€m(T

Praof. There is a Zariski dense set of representations p€R such that p satisfies (*) and near p,
R coincides with R(T', PSLAC)) and is s smooth manifold of dimension equal w dimR
Further, at such points dimZXT, Adp) = dimR = dimH YT, Adp)+3. But we have seen that
for every such p, dimH (T'; Adp)2N, and dimB I ; Adp) = 3, so the first claim follows. The
next part follows from prop 3.6 or from the general fact that the Zariski langenl space (o a
complex variety R has dimension 2dimR at every point and R is smooth where equality holds
(cf. prop. 3.7).

If equality holds then  {M)— HX3M) is an inpction. (x = 0 in the previous notation)
Let R(3M) denote the product R(3,)X_ xR(8,), where 3,, - , 8, are the components of oM.
Then it follows that restriction induces an immersion of the local gquotient spaces

R(M)/ PSLLC— R(3M)/ PSLLC. (By 39, these local quotient spaces are manifolds of
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dimension dimH M) and H Y aM).)
If M consists of tori, then each R(3))/ PSL,C s parametrized by traces of two genera-
torz (Remark 312) The final claim follows from the fact that im(H XM)—~ H¥a)) has dimen-

sion %dimﬂ‘(a,)= 1 for all i (Remark 1.13).
o

This will abwo prove useful for dealing with examples, 1n the pext chapter.

The arguments used above extend immediately 10 compute cobomology for represente-

Uons of surface and 3-manifold groups into reductive groups.

Remark 3.18.

The condition that 0= im(H XM, 3M)— HYM)), (ie 1 =0), can be regarded as a kind
of rigidity: roughly, there are no infinitesimal deformations of M fixed on 3M. This rigidity is
abo refiected in the fact that the representations and geometnic structures are determined
(loa)ly) by their restrictions to the boundary of M (theorem 3.14).

For example, let M be a 3-manifold with boundary consisting of ¢ tori. Then 1t follows
asily from the Mostow rigidity theorem (or local nigidity theorems of [We2l, (GR]) that x
vansshes at the holonomy representation p€R(w (M), PSL,C) for a complewe hyperbolic
structure on M or a hyperbolic orbifold structure on A (ie. with cone angles of the form
2w'n,n€Z along 3M.) In each of these cases, R(w,(M), PSLLC) PSLAC is locally a manifold
of dimezsion 1. Thurston's hyperbolic Dehn surgery theorem follows from this result and the
facy tha: all representations pear p correspond to hyperbolic structures with generalized Debn
surpery type singularities (theorem 1.8).

In the pent section we will show =0 for representations coming from certain
Euclidean structures We will use this in chapter 4, to deform Euclidean structures to

“pezrby” hyperbolic structures and spherical structures
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16. Cobomology of Euclidean orbifolds

Suppase that Q" is 2 Euchdean orbifold, i.e. Q is a quotient E'/IT where IT is a discrete
subgroup of G = 1som(E") Let EC Q be the singular locus of @ consisting of the image of the
union LCE” of fixed point sets of pon-trivial elements of I Let M = 0—intN(T) where N(L)
1s a closed tubular neighbourhood of T in Q. (In general Q is not a topological manifold, and
we use tubular neighbourhood to mean the image in Q of a N-invariant tubular neighbour-
hood of I 1n E°.) Put =7 (M) = m,(Q—E), and let p:T— G be the bolonomy representation

for the Euclidean structure on 0. (So imp =TNICG.)

Now G is a split extension R*— C-'S(In) where 7 takes a Euclidean isometry to its
rotational part, and R” consists of translations. Let p = wp : T— 50(n), and identify SO(n)
with the subgroups of isom(H"), 1som(S") fixing a pont Then we will study the problem of
deforming p in KT, isom(E"), R(T", isom(H")) and 1o R(T", isom(S™)).

First we study the cohomology of M with coefficients in the flat vector bundles Eglp),
Eylp) and Edp) of infinitesimal 1sometries of euclidean, byperbolic and spherical geometries.

The following observation will be impartanL

Proposition 3.16. The flar vector bundles Ex(p) E\(p), and E(p) are isomorphic. More-
over. in the 3-dimensional case, each flar bundle is 1somar phic 10 the direct sum of two copies

o/ the euclidean tangent bundle of Q.

Provf. The first claim follows [rom the fact that the adjunt action of SO(n) on infinitesumal
trenslauons and rolations about a point are the same in all cases. The second claim follows
from the fact that if n =3 the adjoint actions on infinitesimal translations and rotations are
somarphic. Explicitly, if A€50(3) and ¢ is an infinisimal rotation then the adjpint action of
A is jusi rotation by 4 11~ Az, If we represent an iafinitesimal rotation by a vector r whaose
direction gives the axis of rotation and lengih gives the magnitude of rowation, then A acts by :

7 Ar. (Thss can alwo been scen from the Lie algetra structures The ad actions of so(3) are
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clearly isomorphic for the three Lie algebras, and each splits as a direct sum.)

Finally, the action on infinitesimal rotations gives rise to the Fuclidean tangent bundle
since if g, €som(E®) are the transition maps for the Euclidean structure then the correspond-
ing transition maps on the fibres of the two bundles are equal : the projction w(g,,) and the

derivative dg,, both give the rotational part of g, w]

Thus, in the 3-dimensiopal case, it suffices 10 consider the cohomology of M with coefficients in
the tangent bundle T(M). More generally, the cohomology of an n-dimensional Euclidean
orbifold M with coefficients in a flat, orthogonal vector bundle V is given by the following

theorem.

Theorem 3.17. Ler M and V be as above. Then every cohomalogy class in the image of the

natural map (HYM ,3M ; V)~ HYM ; V)) can be represented by a parallel 1- form on M.

Proof. (Due 10 Thurston.) Let w€ (M . 3M ; V) be a closed V-valued 1-form on Mvanishing
on M. Using the flat connection on V we can represent w locally as a F-valued form where
F is a (fixed) fibre of the bundle V. So for each point x in an open subset of M, w gives a
linear map w(x): T,M— F varying smoothly with x. We extend w over all of ¢ by putung
w=0 on the peighbourhood N(I) of I Fixing a base point €M we oblain a map
f: MCX— F by integraling w along paths in M based at x,, Since w is closed, the integral

fm(x)dx along & path ¢ only depends on the homotopy class of ¢ in M, and we can identify
<
the collection of homotopy classes of paths in M based at x, with the universal cover of M in
the usual way. Then [ satisfies the equivariance condition :

Slyx) =y flx)+ely), forall y€T, x€X

where y acts on X by covering transformations for M and on F by the holonomy representa-
tion ¢ :T— SO(F)C GL(F) for the fiat vector bundie V and c¢:I'— F isa cocycle representing

the cobomology class in AT, F) corresponding to the class of w in HXM, V) Thus, the
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derivative df 1sa F-vaiued 1-form on X satis{ying
dflyx)=ydfx), forall y€I', x€X.

For each r>0, we define 3 new map /,:E"— F by averaging / over balls of radius r :

Ao = [ riay

1
voll 8,(x)) Fia

= E- _
~ vollB,(0) 'w)ﬂx Yy

where B,(x) 1s the Euclidean ball of radius r centred at x and the integration is with respect
W Lebesgue measure Then f, is also equivariant and its derivative df, gives a V-valued 1-
form w, on M.

We claum that by 1aking the limit as r— oo of df, we obtain a parallel V-valued form
w. o0 M which is equivariantly bomotopic, bence cohomologous, to w. (However, the maps /f,

will pot converge in general) To see this, note that

df(x)= d flx—y)dy

1
vell B0 glo)

1
T vollB.11)) '_’(.)dﬂy)dy

so lid f N <lidfIi = sn;;:tkull(co, where ligll denotes the supremum over E” of the Euclidean

norm {¢| of &. Moreover,

N . 1
Iaf (23 £3): S 5B [ an

B,(:Ve 8,0y

vol(B,(x) s B,(y))

< | 5
Slaf vol(8,)

vol(3B8,)

<iid Nirconst |x—y | vol (B)
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€ lldﬂl'con:l'—lx—-LI
=

where © denotes the symmetric difference.

o

2 >
-
8.we8.ly)

|df (x)}—d )
Hence lim “LTX‘)'—I@ =0. So the df, form a bounded equicontinuous family, and by

the Ascoli-Arzela theorem there is a convergent subsequence with limit &, satisfying d@,, =0

which descends o a parallel form on M as desired. D
Essentially the same argument gives a proof of the following theorem of Bieberbach.

Theorem 3.18. Two compact Euclidean orbifolds are a finels equivalent if and only if their

fundamental groups (in the orbi fold sense) are isomor phic.

Proof. Given an isomorphism of fundamental groups there exisis an equivariant map
between their universal covers :
f:E—-E"

since both orbifolds are X(w, 17s Then by applying the previous averaging argument and
adjusting the averaged maps by translations so the images of a basepoint converge we obtain

an equivariant homotopy from / w an affine equivariant map. [m]
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Remark 3.19.

The averaging argument also applies for certain other geometries. In the case of a spheri-
cal structure, we get the stronger result that every closed form in QXM ,3M ; V) is cohomo-
Jogous 10 zero in M, since f becomes constant afier averaging over the compact n-sphere. So

we oblain

Theorem 3.20. Let Q be a spherical orbifold and V a flar orthogonal vector bundle over
M = Q—1ntN(L). Then image(HYM , 8M; V)~ H{M;V))=0.

Remark 3.21.

In the above argument we need an invariant metric such that vol(3B,)/ vol(B,)— O as
r— oo. This condition can alsu be sousfied for nilpotent groups However, the proof doesn’t
apply 1n the hy perbolic case, and in fact there can be non-trivial harmonic forms on compact
hyperbulic manifoids But the result with coeficients Adp certainly follows for hyperbolic
orbifolds by the rigidity theorem of [We2] (GR]) (or Mostow's rigidity theorem) The recent
results of Rivin on rigidity of convex polyhedra in H? may lead to a proof for hyperbolic cone
manifolds

If the result is true for hyperbolic cone manifolds with cone angles €, then it would
probably follow from the techniques of [Th3) that hyperbolic cone manifolds (of fixed com-

binatorial 1ype) with cone angles < form a connected space.

Remark 3.22.

The above argumert bas been generalized by Thurston to the case of Euclidean or spheri-
cal cope man:folds, with cone angles less than or equal to w. The proof involves averaging of
1-forms over €-balls not meeting the singular locus I, then using harmonic extensions over an

€-neighbourhood of I. Ir such an averaging step, the norm of the covariant derivative of a 1-
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form is reduced by a constant factor c< 1 so by iterating this procedure a paraliel 1-form is
obtained. In the spherical case, every 1-form becomes trivial.
This gives the following results, which are used in the proof of the orbifold theorem

(Tn3}

Theorem 3.23 (Thurswon). Let Q be @ Euclidean or spherical cone manifold with cone
angles &w along the singular locus L. Let V be a flar orthogonal vector bundle over
M = 0—iruN(T), where N is a tubular neighbowrhood of L in Q. Then every cohomology
class in the image of the natural map (HYM .3M ; V)~ HYM;V)) can be represented by a
parallel 1-formon M.

If Q is a spherical cone manifold as above, then image (H'M , oM ; V)= H (M ; V)

is zero.

Remark 3.24.

When cone angles greater than w are allowed these results are no longer true in general
The proof outlined above fails because of the behaviour of the harmonic extensions (they no
longer satis{y the maximum principle in general). The following are concrete examples of 1he

failure.

(a) Consider a2 Euclidean cone manifold structure S on a surface of genus 2, oblained by
taking the 2-fold cover of a Euclidean 1orus branched over 2 points Mlore explicitly, take two

copies of the torus cut open along a geodesic arc and glue together as indicated below.
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Glue!

\

ary

Thben S has 2 cone points with cone angie 43. Now & XS; R)SR* (using trivial coefficienist),
but parallel 1-forms correspond 1o linear maps : 7.5~ R so make up only a 2-dimensional vec-
lor space.

(b) Consider spherical cone manifold structures on the two sphere with 4 cone points By
gluing together paurs of triangles along an edge we obtain a S-dimensional family of quadrila-
terals, parametrized by edge lengihs of the triangles Bui the angles form the 4-dimensional
manifold, consisuing of angles with sum greater than 2.

By doubling these quadrilaterals we obum a S-dimensional manifold of sphencal
metrics on $? with 4 cone poinls So these cone manifold structures can be deformed, keeping
the cone angles fixed Note that the sum of the cone angles is greater than 4w, so some cone

angle is greater than r in these examples
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17. Cohomology of link complements

In this section, we compute some cohomology groups for complements of links in 3
manifolds, giving Zariskj tangent spaces for certain spaces of representations This will be used
in chapier 4, to deform foliations associated with some non-hy perbolic geometric structures on
3-manifolds 10 nearby hyperbolic siructures.

Let A be an orientable 3-manifold and I a link 1n M, with components I,, _ , E,. Let
p:m(M)— G =PSLAC) be a represcntation and let p:m(M-I)— G be obuined by compos-
ing p with the surjection 7,(M—E)— w,(M), induced by inclusion. We will siudy tbe coho-
mology H(M—X; E(p)). Here and in the following calculation, E(p) denotes 1he fiat g vec-
tor bundle associated with p on M or restricted 10 a subset of M.

It follows, in a standard way, from Poincaré duality for manifolds with boundary that
there is also Lefschetz duality isomorphism : H{M~Z; E(p)=H, {M,T; E(p)). Using the

exact Mayer-Vietoris sequence (with £(p) coefficients):

‘i

0 HAMY— HAM, T— H(D— H,(M)




™ 3 Cohomology Theory of Deformauons

s (M, D H{Tr— HdM)

we oblain

Lemma 3.25. With MDT as above,
HYM-L: E(pDEHAM  E; E(pW=HAM; Ep)) @ kerlid)

HAM-X; E@NZH(M.E; E(p))Ecoker(i,)ekzr(io)

o]

The simplest case is when HYM)=0. Then HYM-L)EHXIL if G=PSLLC, then
HXM—E)ZC has dimension equal to the number of componenis of I Let N be the compact
manifold obtained by removing &n open tubular neighbourhood of T from M. Theo in the

exact !qUCnCt

H\N,aN)—™ HYNYy—— H'aN)

the second map IS an injection, so ihe fist map is the zero map. By duality,

HAN, aN)— HXN) is also the zero map. By theorem 3.6, we obain :

Theorem 3.26. i, H'M; E(p))=0 then Rm(M-T),G)is a mani fold of dimension equal
1o nd+:- near p where 2 is the dimension of the in finitesimal cenuralizer of p. and

d=dimpiS*; Be))
s]

Now, HAM; EN=g/ <x—yx, yEmM(M)> (e appendiz) and HJ{E,; E(p))
=g/ <x—yx,yEm(E)> I follows that the inclusion £,CM induces 3 sur pction
HJL)— HdM)  Heoce, it Ho(D) = DHLL )~ HM) is surjective Moreover,

; ~ aw - :
HAM ; E@)ZEg” ™ 2nd HYT,: E(p))=g“"(x). where g¥ denotes the infinitesumal cen-
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tralizer of X in G. (See appendix.)

If G is a semi-simple Lie group. the Killing form gives a non-degenerate bilinear pairing
on g invariant under the adjuint action. This gives a patural identification g =g inducing an
jsomorphism of vector bundles E(p)' EE(p). Combining this With the Kronecker pairing i50-
morphism (section 14.2) shows that HLY ; E(p)) is canonically dual t0 HAY ; E(p)). In partic-
ular, dimension of H, is the smame as dimH° in the calculation above.

To study the mapiy: Hy(Z: E(p)— H (M ; E(p)) we look a1 the dual map
i HNM; E(pY)— HYT; Ep))= @H'L; E()).

Here, HYX; E(p)’) represents the colangent space W0 R(w{(X),G)/G and the map i is
induced by restriction of a representation of m,(M) 10 the subgroups (L)

Now we consider the case G = PSLAC). Then irreducible representations ¢:T— G are
determined up to conjugacy by the set of traces trig(y)), yEm. We can also parametrize
these represeniations by the complex lengihs KA) given by racel A) = 2cosh (LAY 2), for
A€ESLAC). These well are defined module 2m.  This gives an embedding
R(T, PSLAC) PSLAC)— (C/ 2mzY, ¢ —~UpyMyer- The differentials (dl{y))er then span
the (Zariski) cotangent space 10 R(T, PSLAC) PSLAC), which we identify Wwith
HYT; gagp’)  With  these identifications, the map i/ becomes the restriction
(dly)ye = (dUE ), - . dUTD

Thus, we are reduced 10 the geomeiric problem of understanding the variation of com-
plex lengths of the curves L, as the representation n{M)—Gis deformed.

In particular, if the lengths of Iy, - I, can be varied independently, then i is surjec-
twve, and i, is injective. Then HYM~L; E()EH(M; E(p)). This is the generic, unipterest-
ing case: every representation of w(M—T) near p factors through a representation of m(M).

Otherwise, there is some relatian between tbe differentials diT.) Zn,dl(t,)=0 at p.

This impcses 8 non-trivial geometric condition on p, which we will study in chapter 4, in
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some special cases.

Summarizing this discussion we have

Proposition 3.27. Ler ICM be a link with  components I,,i=1,_.n Let
p:m(M-I)~ PSLIC be a represeruation factoring  w(M) as above. Then
HNM—¥; E(p))=HYM; E(p)) if and only if there is a relation between the diflerentials

of the complex lengths of L ap.

CHAPTER 4

Examples

18. Introduction

Suppose we bave & family of hyperbolic structures on a8 3-manifold M with developing
maps D,:A?—- X=H converging to a submersion D,: M~ XoCH. We can classify the pos-
sibilities according to the submanifold X,

The limiting holonomy is a homomorphism pg: ,(M)— GyC G =PSLAC) where G, is
the subgroup of PSLAC) preserving X, If G, is non-trivial, then it is easy 10 see that X is
either a totally geodesic subspace of H? or a borosphere. The possibilities are the following:

(1) X, = point, G, = SO(3).

(2) X, = geodesic, G, = C'.

(3) X, = H% G, = PSL,R.

(4) X, = horosphere, G, = affine group.

We discuss examples of degeneration in each of the categories (143). 1o our examples
we begin with a closed 3-manifold or orbifold M having a non-hyperbolic geometric structure
and a link T in M. We find hyperbolic structures on M—E with Dehn surgery type singular-
ities degenerating to a folizton.

For (1), we begin with a Euclidean orbifold; for (2) a solv manifold; for (3) a Seifert

fibre space with hyperbolic orbifold as base, having an SL,R or H2xR geometric siructure.

Remarks:
For a non-degenerate hyperbolic structure the Zariski closure of p(I') 15 PSLAC). (Oub-

erwise, one of the cases (1)4) applies and the volume of the representation p would be zero;
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compare chapter 5.) In particular, this implies that the centralizer of p is trivial, so proposition
114 applies.

In each case, 2 nun-hyperbolic geometric structure on M arises as a kind of limit of the
hyperbolic structures on M—E: it can be reconstrucied from the way in which the hyperbolic
structures degenerate. In [Ho) we introduce a concept of deformation of geometries to study

such changes.

19. Geomerric structures on the Borromean rings complement

We first consider an example where degenerating hyperbolic structures can be con-
structed explicitly by gluing together hyperbolic polyhedra.

Let M=5'xS'xS! be a 3torus and let T consist of three simple closed curves in orthogo-
nal directions, 2y S'Xpxg, gxS'xp, pxgxS' where p,g are distinct poinws in S'. (Then

M=E is diffeomorphic 1o the Borromean rings complement)

ALY

These tave the

‘/ Same mrkﬂl\'! . : ]
liak ia S

i . 3

linh n T
We begin with a hyperbolic structure on the once punctured torus F with s cone angle y at
the puncture. Assume that F is “rectangular™: with the two horizontal curves of I projecting
10 geodesics in F meeting at an angle of 90°. (We will see below (theorem 4.4) that the hyper-

bolic foliation determined by projction Af — F can only be deformed if this condition holds)

4. Examples [}

For such a punctured torus, there are generators a,b for m,(F) whaose holonomies

prescrve two orthogonal geodesics 4, B in H2. Now bend H? up along A and down along 8 to

give a polybedron 0 as shown below, with angle %a along A and %B along B.

3/2 '/

Such a polybhedron can be constructed whenever a, B are less than 27 For example, the
polybedron can be obtained from four copies of a cube C having dibedral angles as shown

below; such a byperbolic cube exists by a theorem of Andreev [An]
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/g
C: )
Blg

(olker diked-of ongles = 1)

Here is & direct construction of Q. which also gives some idea of the variation in the shape of
Q as the angles a, B, y are varied Begin with a “vertical® geodesic in H® and two pairs of
planes one pair meeting in a ridge line with angle a/2, the other meeting along a valley line
with angle 8/2 Further, the geodesics defining the ridge and the valley should be orthogonal

to the vertical geadesic and to each other (after vertical translatian!)

wrﬁu]
geedesic

rid\,e

There is a one parameter family of planes orthogonal to the ridge meeting one side of the val-

ley; with angles of intermction varying monotonely from O to #/2—8/2 Hence, there is a

4. Exam ples se

unique such plane for which the angle is /2

Cross Sechon:

Similarly, we find three other vertical planes by symmetry these meet at the same angle y.
Finally, it is e2sy 10 see that the angle y varies from /2 10 O as the vertical distance from the

valley to ridge varies from O to ca.

The polyhedron ( can be glued up to give a hyperbolic structure on FxJ/ bent along a
on wop and bent 2long b on the bottom, with a vertical axis with cone angle y. Let Pla, 8; y)
denote this hyperbolic structure on FxJ.

By doubling o, 8; y) we obwun a hyperbolic cone manifold structure on M with cone

angles o, 8, y along the components of L

Proposition 4.1. There is @ 3-dimensional manifold of hyperbulic cone marni fold structures

on T? parametrized By cone angles (a, B, y)€[0, 2n).

Further, these structures degenerate as any angle approaches 2w.
(a) As o, B— 27, with y <2 fixed, the polyhedra flatten out 1o give limiting transverse

hyperbolic foliations. (In fact, we get HXR or SL,R geometry structures)
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Qoo — SO

(b) As a, B, y— 2, the geometric limit can be either a point, circle or 8 line, depending

on the exact mode of convergence. In each case there is a limiting Euclidean structure.

ey

S =
enlar‘,g

lue

2

@-—»f——-—'\":o

() If y— 27 with @, <2 fixed, then the hyperbolic structures bave diameter going to
infaity, while two tori (with cone angle y) become smaller and smaller, looking more and
more like Euclidean tori as y— 27. The Lmiting polyhedra give a hyperbolic structure on the
manifold obtained from T —two horizontal curves by splitting open along two incompressible

1oL

4. Examples 2]

——
( Srhts o pén

in Limik)

(The process is a three-dimensional analogue of the process of creating a cusp in & hyperbolic

surface by pinching a curve 10 a point, in going 1o the boundary of Teichmiller space.)
“

Remarks:
(1) Similarly, one can obtain cone manifold structures on S with the Borromean rings as
the singular Yocus, with arbitrary cone angles O<a, B, y<w. This can be done by taking 8

copies of the cube C, and gluing them up as follows
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f.\d

o\

o

The kinds of degeneratiup occurring are analogous to thase described above. In the case
corresponding to (c), there is splitting along an incompressible, Euclidean 4-punctured sphere
(with cone angles m).

(2) We can also start with different hyperbolic structures op two copies of FX0, 1)
Then we can reglue afier twisung along the bending curves @ and b by arbitrary distances
1,. 1, €R 10 obtain H’ and H®x® structures with Dehn surgery tVpe singularities about the
three menidians for L (With bolonomies (a, t,),(8,1,). (y, 1 )ERZ where 1,, 1,=0.) How-
ever, the hyperbolic structures on the pieces F>{0, 1] must be carefully chosep so that they fit
lugether, to give a hyperbolic structure on M.

When shearing type singularities are allow ed 1t is possible 10 obtain :

(e) geometric Limut = point or circle, with Iimiing N\1) geomeuy structure

(f) geometric lim:t = circle, with limiting solv geomeury structure.

It may be possible to obtain a complete description of the passible Lmiting geometric structures
arising from degenerating hyperbolic structures on the Borromeas rings using this approach.
(At least for the component of byperbolic structures containing the complete hyperbolic struc-

ture.) But we will not discuss the most general case here
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20. Deforming Euclidean orbifolds In this section we apply the theory we have
developed to the problem of deforming Fuclidean orbifold struciures to hyperbolic and spher-

ical structures The results are summarized ip the fellowing theorem.

Theorem 4.2. Let Q be a 3-dimensional Euclidean orbifold with singuar locus T and
M = Q—inN(L). Let p:T = m,(M)— SO(3) be the rotarional part of the holonomy of Q.
Assume that Q does not fibre over a circle with a Euclidean orbifold as pbre. Then the

representation spaces R(T, isom(E")), R(T, isom(H>)) and R(T, isom(5%)) are mani folds near
p of real dimension k+6 = %dimH YoM ; E(p))+6. Moreover, each representation near p is

determined by its restrictions to the fundamental groups of the boundary components of M.

1f Q is 3-dimensional, there are k{real) dimensional manifolds of hyperbilic and
spherical structures on the underlying space of Q with cone like singularities along L, and 2k
dimensional families of Euclidean, spherical and hyperbolic structures with Dehn surgery
type singularities along T whenever L is a link. Moreover, the hyperbolic and s pherical
Structures are determined locally by the cone angles or generalized Dehn surgery coordinates,
while the Euclidean structures are determined up to rescaling by these coordinates and form

a codimension one subspace of the space of Dehn surgery coor dinates

Proof. By theorem 3.17 (and 3.16), each class in im(H'(M , 6AM)— HYM)) (wih Adp
coefficients) is represented by a pair of parallel T.M-valued 1-forms on M (which extend over
@). Such a form is completely determined by a linear map f:T,M—T,M. There is always
a trivial 1-dimensional family of such 7.M-valued forms corresponding to multiples of the
identity map. (Geometrically these correspond to changing the Euclidean structure oo M by
rescaling the metric.) If @ is 2 pon-trivial form its kernel ker w or the orthogona) complement
of kerw gives a 2-plane field M tangent to a codimension-1 foliation of M. Then, we can use

the following topological result
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Proposition 4.3 (TischledTi). Jf a campact manifold M admits o codimension-1 foliation

de fined by a closed I-form, then M fibres over the cirde S'.

Proof. (Ouiline) Approximate the 1-form by a (nowhere vanishing) form w' representing a
rauonal cohomology class (ie in HXM; Q)CHNM; R)L Fix a base-point * in M and
integrate w’ along paths starting at *. Integrating slong different paths with the same endpoint

changes the result by a “period” of wt f & where y is a closed curve in M. But the last
h 4

integral is a rational number depending only on the homology class in H,(M; Z). So there is
an integer muluple w” of w’ all of whose periods are integers Then integrating w” gives a

well-defined map M— R/Z = §' which defines the desired fibration. u]

Moreover, ip our situation the same argument can be carried out equivariantly on the univer-
sil cover of Q, giving a fibration of Q such that the induced metric on each fibre is Euclidean.

If Q does not fibre over S' then we have im(HYM,3M; Ep))—~ HXM; E(p)=0,
im(HAM , aM ; E(p))—~ H¥M ; E(p))=0 and dunH M) =2k So by theorem 3.14, we con-
clude that R(T', G) is a manifold of dimension 2k+6 near p, and represeplations near p are
parametrized locally by complex angles or generalized Dehn surgery coordinawes (Here
G = isom(EY), isom(H?)) or isom(S>)})

Now, the represeptations near p have the property that their “translational” parts are
muluples of the Fuclidean translational distances to first order (by 3.16) It follows from
chapler 2, section 7, thal there are byperbolic and spherica) geometric siructures near the
Euclidean structure corresponding to all represeptations sufficiently close to p. (This can also
be seen directly using the geometric convergence of the enlarged hyperbolic and spberical
manifolds 1o the Euclidean structure.) Moreover, if T is a Link then all the nearby structures
have generalized Debn surgery type singularives (by 1.9). The k-dimensional subset of
R(T, G)/ G consisting of representations suck that each menidian is mapped to a pure roution

corresponds 1o cone-manifold structures near the onginal Euclidean structure (This also
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holds if I isa graph, using an argument similar to that 1n 1.9. Corzpare [Th3}) [m]

Remark : This proof is essentially due to Thursion and extends to the case where Q is a
Euclidean cone manifold with cone angles $w. This sironger result is used in the proof of

Thurston’s orbifold theorem [Th3}

21. Deforming Seifert fibre spaces

Let M be a Seifert fibre space over a 2-dimensional orbifold F, and let p: M— F be the
projction Then the fibres of p give a foliation F of M by circles Choosing a geometric struc-
ture Fg on F defines a transverse geometric structure for the foliation. Let LC M be a link
and let (F, Fy) depote the folation with transverse geometric structure resiricied o M—EI.
We want to investigate when (F, F) can be deformed to geometric structures on M—E.

Assume now that F admits a hyperbolic structure F¢. Then we begin with a holonomy
representation p:@(F)— PSLAR) for the byperbolic structure F, Here, m(F) denotes the
fundamenial group of F in the orbifold sense: p gives an isomorphism onto a discrete subgroup
of PSL,R and H?/p(m,(F)) is a hyperbolic orbifold, with cone points corresponding to the

exceptional fibres of M. Assume that M and F are orientable. Then w,(A) is a extension :
1I— 2 M) m(Fy—1

where Z is the central normal subgroup generated by a non-singular fibre in M. Every
representation ¢ : 7, (F)— G = PSLAC) near p has trivial centralizer, so the only extension of
¢ t a represemation m(M)— G is the trivial one : with ¢(Z)=1. Hence,
R(w (M), G)= R(w\(F),G) near p, and H'(M; g}= H)F; g)=C", where N is the dimen-
sion of the Teichmiller space of F.

Let £ project to closed curves Cy, . ,C, on F. Now it follows from proposition 3.27
that HY(M—E; g)=H"'(M; g) if and only if there 15 a relation berween the differentials res-

tricted w R(M, PSL{R)):
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0= ¥ adlC,) )

where a,€R If (*) holds, then the sum Y a(C,) defines a function on the Teichmiller space

of F having a critical point at the hyperbolic structure corresponding to p.
Suppose that the curves C, such that @70 All up the orbifold F, o each component of

i UC, is a disc (containing a1 most one cone point). If each a, bas the same sign, =y 4,>0,
a =0

then the work of Kerckhoff [K1] shows that p is the unique hyperbolic structure on F such

that ¥ a(C) is minimized. For such p, we have H'(M—I; g=HYM: g)

Further, if the curves C, such that a,=0 doo't fill up the surface F then any byperbolic
structure oo F can be deformed so that the length of each C, increases So (%) has no solutions
1o this case

Say that a represeniation m(M—L)— G is rrivial if it factors through #,(M). Then sum-

marizing th:s discussion, we obtain the resulu

Theorem 4.4. A hy perbolic foliation (F, Fg) as above can be de formed 1o hyperbulic struc-
twres on M with Dehn surgery type singularities clong L only if
(1) the projection UC, of TtoF fllsup F.

(2) T allC,) has a critical poird. a: the hy rbolic siructire Fo. for some a,€R. If all

0,50 then there is a unique such hyperbic struciure and the [unction is minimized ar this
pant.

In fact, the holonomy represen:ation w(M—E)— mw(M)— w,(F)—'pPSLZR can not be
afproxima:ed by non-trivial representazions w{M—E)— PSLJC unless condiions (1) and (2)

hold

4. E>amples 4

Remarks $

(1) If T has at most two components, then critical points of 3 a(C,) enly occur when all

the a, bave the same sign, sy a,>Q. This is clear in the case of one component For the case of
two components, it follows from z result of Kerchhoff [K2] that if two earthquake paths are
tangent at a point then their defining measured laminations coincide. For if ¢, ¢;>0 then
¢ dKC)) = c;d(C,) are tangent veciors o earthquakes along ¢,C, and ¢C, Hence by
Kerckhofl’s result C, =C; and ¢, =c, Further, in the case of two components the set of all

critical points of Za,!(C,) as a,>0 vary form an properly embedded copy of R in T (called a

“line of minima” by Kerckhofl)

When I has more than two components, then there are critical points of J afC,) with

ot all A, of the same sign. Examples can be easily be consirucied in the case of a punciured
torus. {(Compare example 4.9.)

(2) The condition that geodesics must fill up F also follows from the fact that M—L
must be atoroidal when M has a hyperbolic structure with cone type singularities along E.
(This follows from the fact that M—I admits a compleie metric of pegalive curvature;
oblained by modif ying the hyperbolic metric near L)

(3) It would be useful 1o bave a direct geometric argument showing that a linear combi-

nation of lengths of C, must be critical

We now begin to consider the converse question : are these sufficient for approximation

by hyperbolic structures?.

Lemma 4.5. Given a link EC M and a represeruation p satis fying (1), (2) there is a family
of representations p,: m(M—L)— PSL,C with py=p and p, non-trivial for t>0 : p(m)=1

for many meridian of L
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Proyf The space R of representations factoring through m,(M) locally form a complex mani-
fold of dimension equal w0 dimH XM ; Adpl Since dumH Y M~L; Adp)>dimH (M ; Adp),
there are representations of 7(M—E) which don't factor through (M) (The Zariski tangent
space agrees with the usual tangent space for a complex algebraic manifold.)

Hence there 1s a curve p, 120, of such representations and meeting R in a single point
(e.g- by Milnor’s curve selection lemma [Mi2])k By construction, these cannot be wrivial on any

menidian for (%0 D

Remark 4.6.

Given a family of represcntations as above, there is a corresponding family of (degenerat-
ing) hyperbolic structures provided the conditions REGEN1 and REGEN2 of section 9 are
satisfied (1n fact 5t 1s not hard to see that it suffices 1o check REGEN2 ib our situation.)

Often, when studying Dehn surgery spaces, the condition on axes can be immediately
verified as follows Suppose that we bave a family of byperbolic structures on a manifold
given by gluing together positively omented ideal hyperbolic simplices If all the simplices
simultaneously fatten out, with cross ratios becoming real, then there is a Lmiting hy perbolic
foliation obtained as in example 28(d) (or [Th1, chap4]). So we have a family of hyperbolic
structures degenerating o a hyperbolic foliation. If the limiting foliatiop occurs at a manifold
point on the boundary of hyperbolic Dehn surgery space, then the foliauon is non-singular.
Then a result of Thurston, [Thl, chap4] show tkat the Dehn surgered manifold is either a
Seifert fibre space or a torus bundle over S' witt Anosov monodromy. Further tbe foliation
has the form described in example 2.8(b) or 2.8{c) of chapter 2.

In practice this situatiop occurs quite frequently among the Dehn surgery spaces for
complements of knots in S3, at least when the number of crossings is small (See Weeks [We]
for detailed information on the Dehn mirgery speces for knots with up to 9 crasings.) The

case of the figure erght knot complement is consdered in detail in chapter 6, and in [Thl,
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chap.4}

In general the behaviour of the axes depends delicately on the geometry of the situation.
In the next sctions, we will consider some special cases where the the movement of axes
seems easier 1o understand. We hope 1o return to the general case in the future

In section 22, we construct families of hyperbolic foliations with Dehn surgery type
singularities on the products FXS', where F is a hyperbolic surface. In section 23, we give
some examples of hyperbolic structures with Dehn surgery singularities on F XS degenerating

10 foliations.

22. Hyperbolic foliations on Surface X circle

In this section we construct some byperbolic foliatiens and H?XR structures with Debn
Surgery type singularities on products of hyperbolic surfaces with S'.

Let F be a closed hyperbolic surface, M = FxS! and T a link in M consisting of horizon-
tal simple closed curves I, = C,xh,. at “heights” satisfying 0= h,<h,<_<h,_,<1=h, in R
maod Z=S'. We asume that each C,CF is essential : not contractible and not boundary paral-
lel

We ury 1o construct H*xR structures oo M—E (with Dehn surgery singularities) as fol-
lows Divide M up into slabs S, = Fx{h,. A, .} then S, meets T in two curves : a copy of C, on
top and a copy of C _; on bottom Begin with a hyperbolic structure F, on F; this gives a
H?XR structure oo S Now form a new hyperbolic structure F, on F by beginning with F,
and twisting (10 the left) by a disance 4, along the geodesic (c horsotopic 1p C, before reglu-
ing. (This change is a Fenchel-Nielsen deformation or earthquake along €,) Now the hyper-
bolic structures on Fo—él and F,—(f, are isometric; we use such an isometry 1o glue the slabs
So. 5, together along F—C,. This gives a H?XR structure on SqUS, with a shear type singular-
ity along L. The holonomy around a meridian for I, is a (hyperbolic) translation by distance

d; in 1he directian of é,.
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By repeating this construstion we obtain a H'xR structure on F>{0, 1} On the boundary
we have two byperbulic structures Fy and F,. We obuain a H2xR structure oo FxS' if and
only if these structures agree. The change of structures going from Fg 1o £, is a composition
of earthquakes Ec(d), i=1,_.n, where E{d) denotes a left earthquake by distance dER
along a simple closed geodesic (homotopic 10) C. We call the composition
h=Ec(d,)Ec, (d._))e—«Ec(d)) the holonomy for the H?xR structure on FxJ. This
holonomy should be regarded as a map on the Teichmiiller space T of hyperbolic structures on
F.

It is 8 classical result that T js an open ball diffeomorphic to RY, where N = —3(F).
Thurston (see [Th4, [FLP)) bas shown that T can be compactified to obtain a closed ball
T =TUPM by adding a sphere PM consisling of “propctive measured foliations” op F.
Further, each Ec(d)) gives a smooth (actually analytic) map T— T which extends 10 a con-
tinuous map T — T. Hence, the holonomy gives a conlinuous map h:T— T. By the Brouwer
fixed point theorem this map has a fixed poiot x€7T.

If x€T, this defines a hyperbolic structure Fg on F which is isometric to the structure
on F, given by the construcuon above Hence we obtain 2 H?xR structure on M with Dehn
surgery 13 pe singularities along L, such that the holonomy of a meridian of I, isa translation
by distance d-

If x€ PM then there 1s a foliauon of F = preserved by h” with transverse measure “mul-
uplied by a constant under h”. In parucular. this gives a wpological foliation of FxS! with
Dehn surgery 1vpe singulariues along I and some verlical curves corresponding 1o singular
points of the foliation of F.

In geperal, it is not clear whetber A will have a single fixed point in T; however this can
be seen easily 1o the case Where F is a punctured torus (Then h€SL.R acis on TSH? by
hyperbolic isometries See exaxple 4.9 oelow.) However, we can show that the fixed points of

h vary smoothly with h using the impi:zit function theorem.

4. B aamples R

We begin with a pon-singular H?xR structure oo FxS*, given by a hyperbolic structure
F, on F crosed with S'. We investigate when this can be deformed to obtain a family of
H?XR structures on FXS’—T with prescribed shear type singularities with a translation by c/
as the holonomy of & merid:an for E.

The “gluing map” A, for such a structure is a composition of earthquakes Ec‘(c,l).
i=1,_,n Now Teichmiiller space T can be parametrized by lengths of geodesics on F. This
gives an embedding [:T— RY, taking each hyperbolic structure to the set of lengths (yDyer,
where Ky) is the length of the closed geodesic in the homotopy class y€T = w (M) We will
pow identify T with its image in R]. We want to find a smooth path ([(y))€T satisfying the
“gluing equation™ h(L(y)) = {(y), for al} y€T, 120, with I{y) = Ky).

A first necessary condition is that
Aty = LE (ca)e-  Ec leqgXily))
ar ar atbn (S}
for all y€T. Using the chain rule the derivative att = 0 is given by :

0=Yc di‘ Ec(iXi(y)). Q)

=]

The work of Kerckhoff [K1] or Wolpert [Wa] shows that the first variation of geodesic lengths

under an earthquake along C is given by :
d
— EL(y)= T cos(8 (y—=C))
- Ay

where @ ,(y— C) denotes the positive (counterclockwise) angle from the geodesic representing

7y o the geodesic representing C at an intersection puint p. In particular, this shows that
L EeXty) = - L E(ixuc)
de % dr Y o

s0 (*) can be rewritten in the form :

0=} e LEuxuc) =)
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a
for all y€T. Thus 1s eaactly the condition that the function L = ¥ ¢/(C,) has a critical point at

(=1
the initial hyperbolic structure F, (since the tangent vectors to earthquakes along simple
closed curves in F span the angent space to Teichmiller space.)

Now assume that 2ll the ¢, have the same sign, sy c,>Q (Deformations are sometimes
possible when this fails, see example 4.9 below.) Then Kerckhoff (K1) has shown that L hasa
unique critical point Fy in T, giving a giobsl minimum of L. Moreover, the ame proof (or
Wolpert's second derivative formulae [Wo]) shows that L bas a non-degenerate critical point
at Fy (i.e. the second derivative of L has an invertible matrix)

Using this fact we can apply the implicit function theorem to conclude that the equa-
tions h(1{y)) = [{y) have a unique solution I{y), y€T, depending smoothly on ¢, for all ¢ near
0.

We can wnite h, = exp(tX,), where X, is a smooth family of vector fields on T. Then for
7)), x, €T is a fised pownt of A, if and only if x, is a zero of the vector field X Now a zero of

ih,I, ... 15 exacily a criucal point of L By the work of Kerckhoff [K1] there is a

Xo= -
unique such point x €T whenever C, fill up F and all ¢,>0. Further, x is & non-degenerate
crivcal pont of L {with pasitive definite Hess:an) by the work of Kerckboff [K1) or Wolpert
[Wol Hence, x 15 a non-degenerate zero of X, and it follows by the implicit function theorem

that there 15 a smootb family x, of zeroes of X, for £ €R near O, with x,= x. Then x, is also a

fixed point of A, so we obtain the following result

Theorem 4.7. Assume ¢,>0. Then an HH®R structure FoXS' can be deformed to obtain a

amily of H?XR structures on FXS'—L, with ct-shear singularities along L, (for t near 0)if
y o/ & £

and only if Fis the unique hyperbolic structure on F such that L= ¥ ¢XC,) is minimal
=
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Remark 4.8. Let p,: M—I~— PSL R be the holonomy represerutioes for the assoaated fam-
ily of hyperbolic foliatioms. Then if f is the homotapy cless of 2 fitxe painsXS' then p, /) is a
pasitive rotation or each 2>0. This can be seen as follows Let y be any horizontal aurve in the
slab So Then pL/y/ ") = plm;— m,y) where m, are ceran meridians corresponding 10 points
of intersection of y with UC,in F. In particular, k#0Q, and aince eack pfrm,) is a ranslauon w
e Jeft, it follows that the endpoknts of the axis of p{/y /') be 10 the keft of the endpoints
for pfy) Since ths holds far every v, it follows that pf/) meves all pomts an the arcle ax

infinity 10 the left; oo pff) isa positive rotation

Remarks:

A similar corstruction works far a puncwred surfwe be s case it 5 abo uxful w
allow hyperbolic structares with cone points icstead of cusps. In general the folialioes will
have additional singularsties along verucal aircles correspeading 10 15¢ cusps.

There is an acalogous construction giving Euclidear structures witk Dehn surgery type

singularities in the case where F is a torus.

Example 4.9.

When F is 2 once punctured torus, the space of ryperboli folizuons on FXS' wrth
shear singularities 2long I can be underswood giobally. iFurther, exacily the same approack
applies in the case whee F is a wrus to describe the T_chdezr sructures on 77xS! witt
shear type singularties zlong L)

In this czse the Teachmiller space of F czz be idec=fied witz H? so thar 2 taist defor-
mation about 2 sirmple chused curve C in F comesponds W1 paraociy someury of B, The fixes
Foint in the cirtle at infnity is a “rational™ point deterr=ned £ t2e slope of the curve C. kb
will be converieni w la=x] ik pornt of ST 0 C.

Let  h:T=H'-H be the boopomy for e B xR srocure

h= E;_(d.)-E;__l(;’, - e -E._—l(d"l Then F 1s a2 hyperoile isame=y so thers 1s 21 most one
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solution in H? to the gluing equation Alx) = x. Further, the solutions as h varies correspond
exactly to closed cycles made up of arcs of horocycles K, . , H, about the points of S'

corresponding to the curves C;, — , C,.

G

.
Mareover, criucal poinis of L= Zc,I(C,) correspond to intersections of horocycles
=1
H,._ ., H, such that some linear combination of tangent vectors v, 1o H, vanishes (This fol-
. = d z d . .
lows since 0= J ¢, T Ec(XlyD=-X ¢, IE,,(IX!(C,)). as discussed above) In particular,
=1 =]
critical points of &,{C,)+aXC,) are exacily the ponts on the geodesic joining the points
corresponding to C,, C; on the boundary of H’. Solutions 10 the gluing equations are given by

bigons as shown below.

)

Ui

! H,
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Cy

Ca C,

When I has three components then every point of H? lies on exacily one horocvcle
through the points C;. C;, Cy The tangent vectors v, w the horocyiles are linearly dependent

w satisfy Y v, =0 Orienting v, consisiently, w'e see that the signs of a are all the same only if
<

the point x lies in the triangle 1= B witk veruces C,, Ca, C,€S".

¢
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99. vy

(a ) w a,a,a,>0

(H a,,a,>o

= Qa
U 1<0

Sumilarly, one can see that there are global solutions to the gluing equations with

coefficients not all the same sign. We illustrate this below.

G

A selutor with
a, <0, Q <0,
Q;>0.

o %
3 %

&)

It 1s not hard to give a global descripuion of the space of solutions to the gluing equations, at

least when the number of components of I 1s small. For example, for two compopents the
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space consists of two copies of H? meeting along the geodesic prning the points C,, Cx (One
component consists of non-singular structures, the other one corTesponds to hyperbolx folia-

tions along L)

Ce

Cs

It is fun tw find the space of byperbolic foliatwns for the case of 3 components We leave this
as an exercise for the reader.

Remarks : The hyperbolic foliations in the punctured torus case will generally have
addiuona! vertical singularities along 3FXS’. Furtber hyperbolic foliations can be obtained
using hyperbolic structures on the torus with a single cone point, 1nstead of a cusp.

It 15 also instructive to study the kinds of degezerauon that occur apprexching the boun-
dary of the space of hy perbolic foliations.

This construczion can be used 10 “e1;lae” sorne of the planes of hyperbolic fohations
observed on the boundary of hyperbolic Dehr spaces A foliation with a shear singularity
alorg C with wanslation disiance equal to the lengtk of C gives & pen-singular hyperbolic fol-
jation oz a manifold otzamed by Detr surzery alozs C. (The new manifold is a bundie over

S' = 1th monodrozy changed by 2 Dehn taust along C.) This gives 2 Way to pass continuously
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from one surface bundle to another through hyperbolic foliations. We will discuss this

further 1o the future.

23. Hyperbolic structures on surface x ¢irels

We can try to construct hyperbolic (H?) structures on FXS' with Dehn surgery singu-
larities along I in an analogous way. The basic idea is 1o obuain hyperbolic structures on the
slabs S, so that the top of the slab is a copy of F, bens up along C, and the bottom of the slab is

a copy of F, bent down along C, _;.

Ce

C(‘_I

If the underlying hyperbolic structure on the top of S, _, is the same as that op the botom of

S5, Gignoring bending) for each i, then we can glue adjacent slabs together by isometries so that

the holonumy round each meridian of I isa pure rotation. \lore generally, we can allow the

structures on the top of §,_, and bottom of S, to differ by shearing as in our previous con-
struction of foliatons, then the slabs are giued together by rotations plus translations (In the

case where F is a punctured torus, this can sometimes be done directly as in section 19 above.)
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In the general case we will prove a local resul making use of our previous resulis on
byperbolic foliations Because of the complex structure on R= Rw, M-I), FSL,.C) the
tangent cone is & complex cone (see [Wh2)) Heoce if v is a tacgent vecwr in the cone o the
et of real points Ry = R(m(M—L), PSL,R) thez o 15 in the wogent ceae to R Now we an
check the positivity condition REGENT as followx

Since the holonomies far fbres are rotations by r >0 by remark 4.7, muluplying by
¢ = x+iy€C gives bolonomy with "complex lengih® (x+iyXr = —yr+ixr. So if » = imaglc) <0
then the bolonomy of the fibre has a- positive translational ert So condiuwon REGEN1 15
verified.

The condiion REGEN2 on the movement of a1es is pot 3o easy o check, and it will not
generally be satisfied even if REGEN1 holds (When 1t fuls we will genenally obuzn
developing maps for hyperbolic structures with fold type singularities, a: best) To understand
the moverment of axes it will ustally be pecessars o obtarn more detailed informzuon on the
families of representations constructed ic secuon 22 In parucular, we peed e know the
tangect veclor 1 to the curve x,€7 sausfving the “gluing equauias™ hlr,) =1 We will ot
connder the general case at the moment

In the special case, where I consists of two componects there s a clear geometric prere
ernabling us w0 construct the infinitesiral deformatio=s of representazio=s and geo=etric suuc-

tures quite explicitiy. This gives:

Theorem 4.10. Asswme thar LC FXS? consists of 1wo homzunial curves prosecing 1o a—es

2
C,.C; pling up F. La Fy be @ hyperbolic ssrucire suck chat L= Y a¥ C)is mirimal

=1
Then there are hy perbulic structures with Dehn surgery singiiz-ities cing L depnerating o
the hyperbolic foliczion de fired by F, For these siruciures the mericans ¢f I have hoi>-
nomies 2wi+c(e), (€C small with {0 =c and Im'c{r)) <0 “or X i There cv hypeb:ic

Jobzrons when all 1m{c{t)) =0.
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(The condition that 1m{c(t)) <0 says that the rotationa) part of the holonomy of the ith

meridian is less than 2m.)

Proof. The idea is as follows Begin with the initial hyperbolic structure on F and
corresponding representation p of m{(F). Now we can deform F and the representation p by

Thurston's bending construction. (See [J-M] for a detailed discussion) Bending F along C; by

(complex) angle alt gives a new representation p{i) of w (M) corresponding to a quasi-
1

Fuchsian manifold whose convex core has F bent by the angle %a.t on the wp. Similarly, we

can bend F by (complex) angle —%ag, giving a representation p{s) and a quasi-Fuchsian

mantfold with F bent by angle %ag on the botiom of its convex core.
If these representations pli), p{¢) were actually actually the same. then we would have

a hyperbolic structure on Fx{0, 1] bent up by angle %a,l on top and bent down by angle

%ag on the botom. Doubling this would give a hyperbolic structure on FxS' with the

desired holonomies a,, a» around the components of L This was done explicitly for the case
where F 1sa once punctured torus in section 19.

In general pl(r), p(e) will be different However the condition a,df(C,)+a-dlC,)=0,
implies that in Arutesimally the deformations o— p{t} and p— p{r) are the same (up 10 conju-
gacy). {This follows since equations (*) and (") of section 22 are equivalent) It follows that
the above picture 1s correct infinitesimally.

To make this rigorous, we can explicnly construct a Zariski tangent vector
z€Z4m (M=L),st;C). On the slab S, we ke z=z =p5(0r on slab S, we take
z2=1,=—p(0). Now z, and z, agrec on m(F—C,) (nothing changes on the complement of the
bending locus). Further, z; and :z; agree up to a coboundary on 7,(F~C;) since $(0) and p<u)

agree up to a coboundary. It follows that z,, z; extend to a cocycle for I'= o (A —I). (Here

oxiy

for 3G ’
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we ue Van Kampen's theorem and the description of ZXT,g) 10 zerms of generators and
relations see [We3] or the proof of theorerm 34.) We leave 1t 1o the reader to chech that the
bolonomies af the meridians have the form c(:) with ¢{0) = a,

We claum that = is & multiple ov, c€C of the real langent veclar obuuned in sctiop 22.
Ths follows from the fact that the vector v s uniquely deierre.ned by the @~ Hence z is a
tangent to a family of represestations I~ PSLAC)L Further, the wfin:tesimal movement of
axes is completely determined by the infiniteamal deformztior = o a, has negzuve 1ma-
ginary part {zmy), F is bent upward along Cj; in particuiar the airs corTesponding w C, in the

slab S, moves above the axis for C» Similarly for each pair of adpcent aies

-~
1]

o

axis for

Hezce 1he aves move apan = the desced direczuns 2ns FEGEN D 15 veifec. B

We conclude this seclion with ome exa=ples :llustratiog otaer possile simsular Joci for

by pertclic cone manifold sructures on FxS! degensrat=g to folations

Examples 4.21. Begin witk a hyperbolic structure £ oz a siwfaz arc 2 colectior C of clased
geodess on £ such that F~Cisa uzion of of nght 2ng’ed pemtzpons We =11 coosiruct some

fa—ihes of kypersolic cone mamifolds degenerzing w F, witk si=p_lar Jocs froesucg to C.
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(a) Begin with a pentagonal prism P. By Andreev's theorem [An) there are hyperbolic
structures P with dihedral angles a, b, ¢, d, e along the top edges and n/2 along the other

edges as shown below, whenever the anglesa,b,c,d, eare all less than w/ 2

( Dihedral angles T
except where indicated.)

Doubling such polyhedra along the top and bottom faces gives a hyperbolic structure on struc-
tures on pentagonxS’. By reflecting across the vertical faces, we obtain 2 hyperbolic structure
on FxS' with cone 1ype singularities along a graph C projecting homeomorphically to C in F.
As the cone angles 4a, 45, 4c, 44, 4e approach 2w, these hyperbolic structures flatten out,
giving F as the geometnc humit

(b) Begin with a pentagonal prism and add five extra edges, sloping upwards on the vert-
ical faces as shown below, to give 2 polyhedra Q having the same combinatorial type as a

dadecahedron.
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By Rivin [Ri} or a direct constructien, there are by perbolic suructures on Q with arbitrary
dibedral angles abcd.e<w along the five akled edges and other angles ¥/ 2 Again, these
polyhedra can be reflected around 1o give hyperbola: structures oa FXS' degenerating to F as
the cone angles approach 2. This ume, the saguler locus is a Lok comsisting of curves pro-
jecting o C. arranged 10 a weaving pattern. (If the sngular locus “slopes up” around the
boundary of a penzagonXS', then it “slops down” aroupd each adjpceat pentagonxS')

Lacally the sagular locus has the form showr below.
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1o particular, this example (suggesied by Thurston) shows that the singular locus need not be

isolopic to a union of geodesics in any Seifert fibred geometry.

An interesiing open problem is to characierize the possible singular loci for hyperbolic

structures on Seifert fibred spaces degenerating to foliations.

24. Deforming Solv geometry structures

Lev M be a torus bundle over the carcle with Anosov monodromy ¢ and let £ be the
“z¢ro secuon” of the bundle, so M—T 1s the corresponding bundle over S' with once punc-
tured torus as fibre. We begin with a representation p: 7w (M—I)— C' C PSL,C where C 1sa
subgroup of PSL,C preserving a geodesic LCH?, and a developing map D:MIE— LCH?
mapping the lift of each fibre of M—Z— S' 102 point. We wish to deform D to obtzin a fam-
ily of developing maps for hyperbolic structures on M—E degenerating to a circle as geometric
Lmit We begin by studying the space of representations R(w (M—E), PSLC) near p.

(1) First we consider the cohomology £ '(w,(M—E); Adp) using the approach of section

17. Now I'= (M) is an extension :
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1 =(T% (M7 =(S'y 1

Choasing generators g, g2 far #(T5Z° and a generator ¢ for w,(S')3Z, ['= =(M) has a

fresenlation

I=(gi. g tlgi.gd=1. 1827 =g),i=1,2)
There is an obvious family af representations of =, (Af) factoring through #,(S")=Z h fol-
lows that HYM)— HYI) is surjctive and secuon 17 shows that K (Af)— HYM—-I) is ao
somarphism. So it suffices 10 cansider B YN ; Adp) = HYT'; Adp).
Let ¢:T—~ g = d/C) be a cocycle in ZXI', Adp) Then c is completely determined by its

9

_; ,i=12 and (1l Such an assignment gives a

values on the generawors of T : lg)= t

cocycle if and ooty if ¢ suisfies the relauions cegy ™) =clgPgd) and legx™")=cfgfg)

where ¢ kas matrix ®= IZ Z . Using the cocycle cozdition, these reduce t0:

p(erg Yo} = adg,)+Bg,) (1)

pleyc(g-ple)™" = ye(g,)+6(g,)
This shows that () can be ar arbitrars element of s1{C), since (r) doesz’t occur o the egua-
uons (1). So the (comples) dimension of Z'is 3+cimix,, y,, z, stifving (1)}

Now' assume that p{t) 5 diagenaLizzble By COnjuzating p ¥ necessary we car assume that

. Then (1) redzices w the three mazr equations :

0 A O
P\’—OA—A

exr=a%x, 0= A7 = 2)

1 Y1
where x = =),

22,072, 1 if they ace not 2eT0

=1
» 2= I:.,l Thous, x1,y.z are eigenreciors of ¢ with eigenvalues
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Thus, f A% is an eigenvalue of @, then ==0 and xy lie 1o 1{complex)-dimensional
cigenspaces of ® so dimcZ (T, Adp)=3+1+1= 5. Moreover the centralizer of o(I) 15 the 1-
dimensional group of diagonal matrices, so  dimHYT, Adp)=1 and
dimH' = dimkerd'—dimimd®=5-2= 3

If A% 1s not an eigenvalue of ® then x =y =z =0 and dimeZ (T, Adp)=1

If p(r) = 1, the cohomology is just the usual cohomology of M with trivial (untwisted)
coeficrents 1o C. Thus, dimH°=3, dmH'=9,dimH?=9.dimH =3

(2) Next we find forms representing the cohomology classes in BN M)ZHNM-L)

We describe forms on the universal cover M of M, which we identify with RS Expli-
citly, let the covering transformations corTesponding 0 a =[g,1 8 =[g.l c=[t]em(M) be

given by :

a:ix,y, 2)—=(x+1,y.2)
b:lx,y, 2)—(x,y+1,2)

cilx, y,2)r—(®x, &y, 2 +1)
Let w be a g = si-C-valued form on R? with “constant coefficients™
w= p@dx+y Gdy+r @d=

where p.g¢,r€g Then w descends a form on M 1f and only if w sat:sfies the equivariance
condition ¢

wlyv) = Adp(ylls) (3)
for all v€TM, y€m(M). Now the cocycle 1o z€Z4 M, Adp) corresponding o w is given by
integration over cycles (see section 4.1}, 0 p==g), ¢=x(g), r= i) It is easy to check
that the equivariance condiuon (3) is exactly the condiuun that X(g,), Hg2), ={r) gives a cocy-

cle in Z'(M , Adp). Hence, every element of £ '(AM, A2p) can be represented by a form with

constant coeffficients. The coboundaries form a 2{complex}-dimensional space corresponding
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o cocyiles = such that Xy) = x—Adp{y)x for x€g exphcitly : Ae)==b)1=0, L) = r.) 0|,
'

Remark 4.12. Choosing coordinates ¢, €. on R*XD in the ergencirections of @, w can be writ-

ten in the more transparect form:

_00 Uz
@ = ,09"‘1" o

(3) We now compute the cup products [u, W€ H M-I, Adp) whick give the first

gde,+r8e:

obstruction 10 extending the Zariski tangent vector ¥ 0 a mth iz Rx(M—I). PSLICNL

Using the motation introduced aboie, we can represent k by a fam

w=p@diiq@dy+-@dz

0 x; 0 x;
where p= 5 ol g= , 0

[ J:H'xH!-H? s given by exterior product witk coefficier: pair'_ng[ R ]:‘Xg- g- Hence,

z x
r=L, ‘ I de R-am :obamology, the map

[e, u) & represeated by the 2-form:
[w,w!=20p. ¢ 3dxrdy+[p, rlgesrd=+lg. rlg s éz

Using the above potatiar, we have

Lemma 4.13. A 2-fom with constant coe ficc:s «8dxrdy+bgivrd-+c8dy d:z &
ezsrians if end only if a=Adpr)a. b=; ¢ =7 jor sore g.r as tbre Trisisa cown-

caryif and orivif b=c=0.

Proof. We leave the fir part as aa exercise for the reader. Tre form ¢ 8dx* dy 52 cobour-
dary since the volume form om a non-compect man:old (eg 1 punciered torus) o exact. To
check other classes are non-tr:vial take a wedge precuct wiik a (s_i27 ¥ chasen 1-form 1o

HMM,3M) usag Kolbo; for= as rairing, 2ad icilegrate over N. =
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Thus, we fint

Proposition  4.14. Let u€HYM-L;Adp) be represeued by a form
w=p@dx+y®dy+r ®d: as above. Then [u.u)=0in H?if and only if [p.r)=lg.r)=0,

ie. p=¢=0orr=0.

Remark 4.15. In the potation of the previous remark

00 u>
w= , 0 ®de,+ 0

represents b€ 4! such that [u u)=0eH? fuy=u;=00rr=0.

©de+r @dz

Remark 4.16.

We can describe the represeniations w(M)— PSLAC) near p quile explicitly as follows
Since p(t) is a non-parabolic element of PSLAC), p(c) is also non-parabolic for all p* near p.
Since p(T) 15 a solvable subgroup of PSLA{C) it follows easily that p* is a reducible representa-
ton

By conjugation. we can assume that

0

_ A
p(t) = o At

as above. Then for x€Z?

1 py(z) 1 0
plx)= 1 or pla)= £ 1

for some homomerphisms p, . py:Z°—~ C. Since txt ™} = ¢{x) for all x€Z? it follows that

pre® =1%p, and prd =17"p, (4)

4. Examples e

Extend p, to linear maps p,: R?2— C and let ¢, denote the exgenvector of ¢ with eigenvalue .,

fori=1, 2 Then (*) shows that

wple)=12ple)

and

mphe)=t"2pde)
Hence, p, = 0 unless 1% b an eigenvalue of ¢ and p, =0 unless 12 &5 an eigeo value of ¢, say
2=y, and 177 = u, Then p, is projectaon onto the ergenspace Ce, : ple ) =8, for some ¢, €C
Moreover, different choies of ¢,#0 give conpgaie represepuations s we can assume ¢,=1. Let
7:w(M)—~ PSIR denoe this representauon and kt 7) be the induced represeotauon of
T (M-Z)

More geometrically, there are Anosov foliations of the worus T2 = R/ Z? by curves paral-
le) 10 the eigenvectors of ¢, whih are invariant under T2 The natural (lineasr) wapsverse
measures m,, mz 1o thee foliations are multiplied by the eigecvalues u;, p, under the action
of ¢ Hepce, there is ar induced 1-dimensional foliztion on M. Further, the foliztions have
iransverse hyperbolic scuctures with holeaomy given by ¢ as above with ¢, €R Then the
maps p,: (77— C give the length of a curve with respect W the transverse measures m,
with suitable signs.

§t is wechrically easer to understand the represectation space Rom(M—E), PSLC) pear
7 than p. (Roughly, we are resolviag the singulanity al p oy “clowi=g v;” a poinL’ Furs: note
1hat the preceding remecks show that every repressiatiar i AwiM).G) near 7 is conju-
gate 0 M. Henee H{M:Adn)=G Ik iollows from kmma 3125 tha- H{M—E)SHYI) =C,
where n is the number of componexts of I Since 7 has tivial ceptralizer,
dim2{M-E)=dimH'+3I=n+3

Using thecrem 114 we obiz:n
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Proposition 4.17. R = R(n(M-I),G) is a complex manifold of dimension n+3 near 7.
Representations near 1) are parametrized up to conjugacy by the traces of meridians of the

componenss of T

[m]

In parucular, there are irreducible representations near 7). We now use this to show that
there are urreducible representations near p.
Let m,, 120 be a path of representations in R(m(M—-E), PSL,C) with mo=7 and 7,

i bl

4| where a;. b.c.d:m(M-L)=C Then ¢ = o)

ureducible for ¢>0. Write n,:t

for some k>0. (In fact it is not hard to see that we can assume k =1, since the inclusion of

L I
coefficient modules IO 0

Lo
4c=o‘—a

with p, = p. It follows that there 15 a component R of R(m(M-L), PSLL) such that p€R

€ s1,C induces an isomorphism on cohomology groups & (M—I)) Let

and p,= An.A7". Then p, is a continuous path of irreducible representations

and R con:iains ﬁeducxble representations. From 3.14, it follows that R has dimeansion
2143 = 4; bowever the tangent cone to R lies in the 4 dimensional subvariety of the Zariski
tangent space Z5m(M—L), Adp) determined by the equations [, u] = 0. Hence R is a mani-
fold of dimension 4 near p, with tangent space represented by forms

0 u;
o 0

w= gde;+ ®dex

0
u, O
It is now ezsy (o apply our previous resulis to obtain

Theorem 4.18. Let M be a torus bundle over the cirde with Anosov monodromy ¢ and
T C M the zero section Then D, p as above can be dcformed to a family of hyperbolic struc-

tires on M=L i/ and only if p(1) is a translation by log(A). where A>1 is the larger eigen-
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value of the mairix representing &

In foct, there is @ I{complexdimensivnal mani fold of conjugacy classes of represen-
tations near p. paramerized by the trace of a meridian for ¥. There is a submanufold of
(real) dimension one corresponding 1o hyperbolic fobations on M—T with Dehn surgery type
singulariries; all the ather represeniations near p carrespond to hyperbdlic struciuwres on

M~—TI with Dehn sirgery type singulariries.

Proof. All that remains is 10 verify the regeneratan condition from theorem 22 But this

00
can be dune directly bere, using the constant coeficaent forms w obtained above. Now L

;) O
ux
and o

horospheres tangent at a point. k follows easily thz1 the regenerauion cond:tion bols u and

give arabolic elements of si:C represesung infinitesimal trarslations anng two

only if v, u;€C are hinearly independent over R ]

Remark 4.19.

As discussed abose, there & hyperbolic feliat=on on M with holonomy M:I— PSL-R,
and coresponding developing map D:MN— HCH" Tben there are corespond.c3 MGaps
n:%,(M=L)— PSLLC and D: N—E— H' obizined via tae inclusion M—LC M. These maps
cas alse be deformed to obtain Evperbolic structures on M—I with Dehn surgery sagulan-

ties. This 15 ac c26v comsequence of the wors :f this sxucz: we leaie the dezils 1o the reader.




CHAPTER §

Variation of volume under deformations

25. The Schlafli Differential Formula
In this chapter we study the variation of volume under deformations of geometric struc-
tures on manifolds of constant curvature The basic ingredient used is the following theorem,

originally proved in the spherical case by Schlafl in 1358,

Theorem S.1. Ler X, be a smanth one-parameter family of polyhedra in a simply-cnnected
n-dimensional space of constars curvature K. Then the derivative of the volume of X,

saris fes the equation :
(hn—DKdVllX,) = F V, _LF)db (n
F

whiere the sum is over all codimension-2 faces of X, .V, _s denotes the (n ~2)-dimensional

volume, and 0 ; denotes the dihedral angle at F.
In the 2-dimensional case, the theorem is equivalent o the Gauss-Bornet theorem for
polygons The formula becomes
KdiAix,)) = ¥ 48, 2)
where 8, is the angle at vertex v and A denotes area Integrating this gives the Gauss formula
KA = 29_ + cunsient,

and the constant of integra:ion can be determined by considering the case where the polygon

flatiens out to a siraight line segment
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We now give a new, non<omputational proof of Thevrem 5.1 wsing the classical 2-

dimeasional version (2L

Prooj. First we oulline the argument then £ill tn some detarks at the end h sufbces to con-
sider the case where the polyhedra are smplces Choose an artxtrary toully geodesic, 2-
dimensional plane P and consider the intersecuon PNX,. Applying the 2-dumensional case (2)

glVﬁ
KdA(PNX,) = ¥ d6, (3)

summed over all vertices v of PNX, Now we just integrate (1) over all planes P o prove the
theorem!

For any smply connected space of consiart curvatuse X, there is a mezsure azn the set of
(1owally geodemc) 2-planes which is 1cvariast under the group of all msomeiries and this is
unigue up to scaling. We ictegrate (3) with respect 10 tis measue, using the noymalizaton
of {Sanuk]

Integratimg the cross sectional areas A(F X)) over all plazss grves ¢ Vol X,) where

ViV .
¢ = ——— az3d V, is the volume of the irnii kspiere. In 1ze Euclidesn case, this fol-

Vive
lows immediately from Fubiei’s theorem - integrate firss cver 2 facily of parellel planes then
over &ll drectaons See [Santald] for a proof in the gemers! case So :nlegrzuing the eft side of
Ngve

S LESG) = Kevor ¥) o)

New. corsider the right hand side of (3} The verties of cros seczions xcur exacily at
interecions of P with codimension-2 faces F of the pelvhedra X_ The aczle occurring at
eack pount v af FNP depends on the crienzaues of the ;lane P, x fir we average over all
plazes ttrought a point v. To And thr average angle. comsider the intersecixs of P and X

wits 2 s=all 7= —1 -dimensienal sphers cesired at the pest v. Troe sphere ~sets X. in a lune
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L whose angle 15 exactly the dihedral angle along face F, and meets P in a segment of a great
circle whose length is proportional to the angle of PNX, at v. Hence (after rescaling so the
sphere has radius one) the average angle at v is Lhe average length of intersections of great ¢ir-
cles with I, which is proportional to the (n —1}-volume of L so proportional to tbe dihedral
angle 0 5. In fact, by considering the case when L is the whole sphere we see that the average

angle at a vertex on F is the dihedral angle 8 ;. Moreover, the measure of 2-planes meeting a

codunension-2 face F is ;l V. _AF) where c is as in (4). It follows immediately that
g

J RHS(3) = € Y V. AF)déF 5)
n—1°F

completing the outline of the proof.
Io the argument outlined we have implicitly interchanged the order of differentiation

and integration, writing
2votx) = L[ ax,nprap = [ Lax,npap
a =g ' a i

where the integrations are over the set I of all 2-planes P. This nceds justification, since the
integrand A(P)= A(PNX,) can be non-difierentiable (even discontinuous!) for some P. We
now study the behaviour of A(P) 10 more dewail

It is easy ta see that A, 1s a differentiable function of 7 a1 £ =0 unless P is a support
plane for X =X, (ie PNX+@ and there are planes P arbitrarily close 0 P such that
POX =@) For P not a support plane, PNX, is the convex hull of a set of points (not neces-
sarily all disunct) varying smoothly with t. The area of this set is actually a C* function of ¢

at 1 =0 if the points stay distinct as t— 0. If two points coalesce as ¢— O we have the situation:
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¢t <o

LA 0D

and the area is still a twice differentizble funcion of 1 {but noe CL
If P is a suppont plane, then A ;an be d:xonunucis at £ =0 1f P rmeets 3 vertices of X,
and Lipschitz but not differentiable a1t = O of P mees 2 veruces of X. (A, isC' if P meetsa

single vertex of X.) The following figure il*ust-ates these sTuatians ;o the 3-dimensional case.
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Xo

< eV

ﬂuOZ’) A+ :
T "L——-’f

We now esumate the contribution made 1o f A(P)P by planes clese to support planes
of X. For this we give an exphait form for the 1z ariant measure described above One way
1o describe the measure on r-planes i1n an n-dimensional space of constant curvature X is as
follows Choose 2 basepoint *. Then a plane P is delermined by tbe n —r-plane [, _, perpen-
dicular 1o P at ®, and a point x=PNL,_, in L._- Let p be the length of a perpendicular
from ® w P, let do, _, denote the measure on n —r planes through ® and du,_, the measure
on L, _,. Then the invariant measure on r-planes is given by :

2

dl, = cos (K" %p)lo, _ Adu, ., *)
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(See [Sanuald, p.306JL

Now we maie some estimates. There is a cozstant k>0 suck that each vertex of X, 1s
within distance &x of the corresponcding vertex of X, for all ¢ suficiently small Let Bike)
denote the ball of radius €z about the itk veriel of X, Let Pft) derote the planes close to

support planes for X passing through exactly j of the balls Biks), j=1,2, 3

plore not in Py

Now, the planes of P{1) pess clow w a2 face [ of X, cectaineng j veruces Choosizg a
basepoint on f and usng (*) we see 1ha: meas(P i:))Seomsr ir}. (Thase planes have angslar
mezsure Ot/7!) when n23, by a —mezston ousing atf-Tent 2ol Jistances o base point
O:3) Noreover, A(PNX,)Scostlle P o the cictribuic: o f.‘. PAX 4P by 2l such
plzaes s of order O’

Lex 1. be the planes pn I whoch are pot ac 2=y Pir) =1, 2. 3 and whxt do no: pass

through a verex of X, Then the above estimzie Sows thet

Vol(.!',)=£A_.(P.:‘P+O:" ]

hezce
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Vol X,) = hm‘[iA.(P)dP
-0 IBI

2o

Now our previous arguments show that

) " 8
{ 5 APHP = };_ Vo AF) 0 r+E

where the term £ gives the error introduced by inlegrating d@ f over II, insiead of IL So

|E | €const kt and letiing 1~ O completes our proof of the Schlifli formula [a}

Remark : The theorem also applies to the case of hyperbolic polyhedra with some ideal ver-
tices. When n#3, no change in the statement or proof of the theorem is needed In the 3
dimensional case, some edge lengths V, _A{P) become infinite. However, the theorem remains
valid i we remove small horoball neighbourhoods of the ideal vertices before measuring edge
lengths ( The right hand side of (1) is easily seen 1o be independent of the choice of horo-
balls. using the fact that the sum of dihedra! angles a1 an ideal vertex is constant To prove
the result for ideal polyhedra, approximate the polyhedra truncaied along horospheres by
polyhedra truncated along towally geodesic planes. As the horospheres used are moved out 10
nfinsty, the difference in volumes of the two approximatioes approaches 2¢ero, and the result

follows by using the theorem for the truncated polyhedra with totally geodesic faces)

Application : Using the Schl1afli formula for 1deal simplices we can gi e a simple proof of the

follow ing.
Proposition 5.2. The regular ideal simplex is the unigue sim plex of meximal volume in H,

Proof. Since any simplex is contained in an 1deal simplex wuth all its veruces at infinity, it
suffices to consider 1deal simphices We will show that fer an ideal simplex of maximal

volume, horospheres about the 4 veruces can be chosen so tha: every pawr of horospheres meets
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angezually. It then follows frum elemeniary geemetry thy the smyiex = regular.
Notice that the Schlafl formula s valic using any set of borospoeres (if 1wo o: erlap, the
cortesponding edge length is negauve) We can always chome these horospmeres so that four of

the X edge lengths are zero. Then the Schlifl formula reduces 10:
=2V = 0d8 |+ 18 ;41,08

where [, are the non-zero edge lengihs @, the corresponding angles For 2 sumplex of maximal

volume, dV' =0 for all defarmatons of the simpler Bu: the angles @ can be vaned arbi-

3
uarily subjct to the copstramt } d6, = O Cheesing {d6,. d0 ;. d8 ) = (—I,—1;, I;. I;) shows

that we must have I = [; = Q, ie. all tbe horospheres merung wangertally. D

Remark : Thurston has observed that by using recent res !ts of R.»in [Ki) characterizing the
possitle dibedra) argles of convex polyvhed-a 1= HP this argumen: can Se exwended to other
rolybedre. For example, the convex pelvhecror of maxizal velume in 2 giver carcbinztorial
Lype 5 obrained by gluing together 1deal trizngs in 1he & mmeiri way : so that boroscheres

from adpcenl vertices meel Lingecuially.

26. Applications w cone manifolds

Lo ks sectior, we app!y the Sctlifii Form.la wo stucy the vo'-me of canifcids baving
metnss of copstant curvalure witk coze-lhe sizzalamues The fel  a:mz ibesrem shows thai
the vzriaton in volume for a family of cone mixifold strctures s compirie’s determized by

the ckzzges in geomewry alow; the singlar Lcu:

Thearem 53. Let C, be a smoxdi jamily of aoverre K) cone memu “ald strccures on &
manifold with fxed topologuml type ¢ f singil= loces Then the dernerie - f vaiime of C,

12tis fes

(-1 KSollC) = TV, _-T)ix;
I
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where the sum is over all components T of the singular locus of C, and 8 is the cone angle

along T

Proof. Divide C, into geometric simplices, varying smoothly with ¢. (This can be donpe as fol-
lows. Choose a (sufficiently) fine geodesic triangulation of Cy with the one skelellon containing
L Thus Lfts to a triangulation of Co mapped 1sometrically by the developing map for Co
Form a geodesic triangulation for C, using the images of the original vertices under the
developing map for C,)} Applying the Schiafli formula to each simplex and adding shows that

the vanation of volume is given by

(n-1D)KdVollC) = YV, F)dbF
F

summed over all codimension 2 faces of the triangulation of C, where 8 ; denotes the cone
angle along F. However, at any non-singular face F the cone angle is 27 for all ¢ s0 46 £=0.

So the right hand side reduces 10 a sum over faces F in the singular locus T o

As a corollary we see that the volume of cone manifolds satisTy the following remark-

able monotonicity properties

Corollary S.4. If K >0, then the volume increasc strictly monotonically as any cone angle is

increased. I f K <0, then the volume decreases monotonically as the cone angles increase. O

(Lo fact this result hoids, suitably interpreted even if the comhinatorial 1ype of the singular

loc s 1s allowed 1o chenge.)
27. Variation of volume in hyperbolic Dehn surgery space

Let M be 2 corplete hyperbolic manifeld of finite volume with a cusps Then M is

homeomorphic w the :ntenor of a compact mznifold with boundary coasisting of pntoriT,.
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By Mastow”s rigidity theorem, M has a unxjue complete by perbolic structure but if we con-
sider incomplete byperbolic sructures ap ¥ we obtam a deformation space which is a com-
plex manifold of dimension n pear the oomplewe structure called kyperbolic Dehn surgery
space. Thus space H(M) consists of byperbolic scructures on Af with generalized Dehn sur-
gery type singularities (see secnan 2). We now apply tbe Schlafli formula to describe the
variation of velume in hyperbolic Dehe susgery space.

This space can be parametrized localls as im section 2 Far each cusp 7,x[0,00) chaase a
tasis a, B8, for w(T ) Except at the complete suructure, the holonomies hafla,), hoX B )€
isom(H?) preserve 2 common axs tn HP, so a1 as wranshations plus rocations abaut this axis. Let
L Js and @, 8, denote the transiatior cisances and rotaton aggla for holla ), ho8,} Then
u, =L, + i, (orv, = o+ iO,_ ) give 2 omple1 amalytc coordinate systere on hyperbolic
Dehn surgery space. (Alternative'y, we co_id defne u, (respecuvels v, ) as the logarithm of
the ratio of the eigenvaluess of halle) irespectively hoXB) ) comsmdered as elements of
PGL (2.C) = isom(H?))

Theorem $.5. The derivative o volurme i hy pe—baic Dehn surgery space is given by:

Nz = —%}:( 1,48, ~1,48,) )
] Tldby

Here. the orieciations ave chosen m thas pers the it cusp, @,. 3 . n for 2 posuvely oriented

bzsis for T M, where a, s norma?  tor. 7 1ad persi owasds the cusp

Proof. Frrst we choose a topoiogcal ta=pulatuwn of A by ideal waahedra Thurston [ThS)
bas shown that this is pasible far 20y =0 7lete fnite solume byperolic man:Told with cusps.
Marecver, any (passibly incompise) hvpesdolic s=:mure mear the complete structure on Af
corTesponcs W a triang-laticr T geomesu ideal wiahecsa 1= HY e Thl. chapd]. (The
wdea of the proof is to consider tme volame of a funimental resion made up of ideal tetrahe-

c¢ra. We study the varation of iolume of these trt-ihedra, by usicg the vermon of Schldfis's
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theorem given in the remark following the proof of theorem 5.1. To do thus we first truncate
the tetrahedron along horuspheres.)

At each cusp of M we obtain an induced triangulation of the torus 7, by intersecting
with ideal tetrahedra. For the complete structure on M we can obtain a Euclidean structure
on T, by piecing together Euclidean triangles formed by intersecting the ideal tetrabedra at a
cusp with suitably chosen borospheres. ln the general (incomplete) case, we can choose the
horospheres 1o match up over a “fundamental domain™ D for each torus T, , but the horo-
spheres will move towards or away from the cusp as we move from one side of the funda-
mental domain o the other, by a distance determuned by the holonomy for the hyperbolic
structure. Suppose that the generators a, and B, for m(T ) correspond to face pairing wransfor-

mations gluing together “des™ of D to give T, . Then the horospheres move a distance I,

(respectively Iy ) towards the cusp as we move across D in the “direction” of a, (respectively

B.).

Horupl\grg,

are shaded.
delzdron lies
belon ’\orvxphru.

Now consider how the polyhedron formed by truncating along these horaspheres varies

as we deform the hyperbolic structure on M. The only changes in lengths and dihecral angles
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over the boundary of D. To see bow the angles change consider the following figure, showing

a projection of the polyhedron as viewed from the cusp.

%

™

0, = nw+ } dihedral angles

It follows that

summed over the sides of D paired by a,.and

—6, = mv+ F dibeda’ angles
summed over sidss of D paired by B, , for some integers n an m. It follow's that the deriva
uve of volume of the truncated pelyhedron is giner by ejuauon (°) , and since uhis is

independent of the choice of trunatling borospheres ibs alse gives the denvative of volume

for hyperbolic structures oo M. a

[t is enlzhrezing o ke _se of the compiex struczare <o ke perd. i Dehe surgery space and

rewrite this formula in terms of the complex lezgths u,3v, of a,B. For nouatianal
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convenience, we assume there is 3 single cusp and put u=I[, +if,, v=1I,+if, We will

compare the right hand side of (*) with udv—vdu. We have

Lm (udv—vdu) = (8 iy — 0 pdl,) + (1, d6 ,— 1pdB )

20 ,dly—0pdl,) +(1,d8 g —1d6 )~ (8 I, — 0 4dl,)

4dV — d(1m (u¥))
Since &, v are holomorphic functions, it follows that V() — V(0) — -:—Im(uF) is the imaginary

part of the ho.omorphic function %f(ud\'— vdu).

At a8 manifold point, we can choose a to be a meridian, and 8 a Tongitude for the sold
torus added in Dehn surgery. Then u = 2w and ui = 28 5 + i), s0 Im{(u¥), Relu¥) give the

length and “torsion” (1e. rotational part of holonomy) for the core circle of the added soud
torus. Writing Llu) = ZL Imuv for this analytic extension of this “core geodesic length®, we
w

have a result of Neumznn-Zagier [N-Z] :

Proposition 5.6. Near the complete hyperbolic structure, V(u) — V(0) — %L(u) is the ir=a-

ginery part of the holomor phic function %f(udv — vdu). ]

Remarks : (a) Since the night hand side of the formula (*) only derends on tie
regresentation not on the choice of developing maps 1t follows that the volume V' exwends 9y
analvtic continuation so that the formula (*) holds throughout ihe component of
R(m(M); PSLAC)) containing the holonomy of the complete structure For each s:h
represenuation, there is a map of an ideal triangulation of M into M determined by a solunon
10 tae hyperbolic gluing equations However, some simplices will be mapped 1n t¥ onesiai»n

revessing maps in general, so this will not yield a non-singular ®vperbolic strcture on M.
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We can still define the volume of such a representation to be the sum of signed volumes of the

ideal simplices By analytic continuauon, 1t follows that this volume agrees with
F k.4 1 . .
V(o) + ?L(u)+ 73 lmf (vdu — udv). In facy, this volume is independent of choice of triangu-

lauan o is 2 well-<defined geometric invariant for a manifold with Dehn surgery singularities.
Indeed, the volume only depends on the holonomy representation together with Dehn surgery
coordinates This can be seen by interpreting the volume in terms of sections of the associsted
X-bundl: with controlled (Dehn surgery type) bebaviour at infinity, and applying Stokes’
theorerm.

(Actually , there is po need to use analytic continuation bere; the same proof applies in
this situation, using maps of an ideal triangulation into M, rather than embeddings)

(b) Using analytic continuation, it follows that an analogous formula applies to spherical
and Fuclidean structures with Dehn surgery type singularities, obtzined by deforming hyper-
bolic structures To see this, consider the space GS(M) of constant curvature metrics on M
with Dehn surgery type singularities (We allow the curvature X to take any real value)
This space has a natural real analytic structure and volume is an analytic function of the

metric and the Dehn surgery coordinates on this space. Since the formuia

2KdVol = F(lsd6, —1,d0, )
4

holds for by perbolic structures near the complete structure, it follows that the formula bolds
tkroughout the component of GS(AM) containing the complete hyperbolic structure on M.

In particular, Euclidean structures satisfy the relation
0= ;( lgd6. —1.d0,)
5o the Dehn surgery coordinates lie in a codimension one submanifold E of & ,(3M ; RY From

chapler 4, it follows that near a Euclidean cone manifold with cone angles <, the set of

Dehn surgery coordinates for Euclidean structures in GS(Af) actually coincides with all of E.
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Moreover, E also agrees locally with the zero set of volume V = 0.

(c) 1t 1s natural to ask : what 1s significance of the real part of the function jud\—vdu?
In fact, this essenually gives the Chern-Simons invanant CS{x) of the hyperbolic structure on
M, when the parameter u corresponds to a manifold Precisely, the following relauonship

holds.

Theorem 5.7 (Yoshida).

= f udv = vau = [2(Vollu)-VorO)+ T 1] + {4CSu}-CSO) + T ) mod 232

where 1,0, give the length and iorsion of the geodesic added to comple:e the hxperbolic

structure on M(u).

Thus was conectured by Neumann-Zagier [N-Z) and proved by Yoshida in [Y]
It would be interesung to give a different proof of this result using integral georetry. It
would also be nice 1o have a geumetric interprezation of the analytic functioa CS + rarsion (or

7) for manifolds with Dehn surgery singulariues

28. Applications of the Schlifli formula

We give some applications of the Schlaf formula w hyperbolic Dehn surgery. Iz partic-
ular, we study the level sets of volume and show that in certamn cases, the Schldfh formula
zan te used to find the (local) boundary of hyperbolic Dehn surgery space. Througrout this

section M will dencee a hyperbolic manifold with boundary censisting of ¢ tori

Proposition 58. The level sets of volume are siar-shcped with respea to to the pont af
infinity fie. the complete struciure) using Dehrn swrgery coordinates. In fact, volume is

strialy decreasing along every ray from in finuy tomards the origin in H (&M ; RER. [u}
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Next, note that the level sets of volume sausfy the equation

2l d8g—1gd0, =0 (¢)]

This can be interpreted in terms of Dehn surgery coordinates as follows Recall that, using the
basis a, B, for H,(T,; R) the Dehn surgery coefiicients are given by (u,, A,) satis{ying the

equations

PRAES WA i)

O, +N0, =27 (3)

i=l,_,.n

For a vector (d6,.d64) in the line tangent 10 (31) (Leeping otber 8,,0, fixed),
ud ,+1d6 5 = 0. Hence (d6, , dB ¢) is proportional 1o (I, . ;) because of (2i). 1t follows that
l°‘d9 “=ln,d0,‘. Hence, the line defined by () is tangent to the level set of volume at the

point with Dehn surgery coordinates (u,, \,). Hence, the real n-dimensional subspace defined
by all the equations (2i), i=1, _ , n is tangent In fact the level set can be obtained as the

envelope of these subspaces
Proposition 5.9. Each level set of volume is an envelope of n-dimensianal planes de fined
by:
p,9°,+ A,Qﬁ'= 2m
d=1,- .0 @]
Here is an example, showing the level set volume =0 for hyperbolic Dehn surgery on
the figure eight knot complement. The second figure exhibits this set as an envelope of straight

lines corresponding to representations with zero volume. (See chapter 6, for an exact descrip-

Uon of tbese representations and of the level set) I thank Rob Johnson for his assistance in




135 5 Variaton of volume under deformatlons

preparing these figures.

hyperbolic

Incompressible
surfece

(0‘ n Vo(urae = O (4.1)
'Y , I
Solv T
SL,(R)

«— euclidesan

spherical -

(3.0)

Dehn surgeriles
on the Figure Eight Knot

( k.’nds of geometric structure

A .
at iateger points are alio shown

- Sc¢e c‘\apr‘;r [4 )
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EAV('aPc of lines corrupuluj to orthogonal
representations 3:'m Fhe curved part of
He leved set  volume= 0.

The level set volume =0 is of special interest Among simpler knot complements (at
least), the representions where volume is zero often correspond 10 rea] representations

I'— PSL.R or orthogonal representations I— SO(3). In these cases, the level set volume =0
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(in Dehn surgery coordinates) can be described quite explicitly as follows

(1) For real representations : holla) ={l,,8,)=({,, nm) and hol(B) = (l,, mm) for some
integers n, m€Z. It follows that the level set volume is locally given by the straight line :
ap+mih =2

(2) For orthegonal representations : holla) =(0, 8,), ho(8)=(0, 8 2). Then the level set
is given Jocally as the envelope of the lines u8 , + A8, = 2.

(Examples of both these phenomena are evident in the figure eight knot example.)

Schlafii’s formula can also be used to study the variation of volume pear various
“interesting” points in the representation space. For this, we need some information on the

relation between lengths and angles

(1) Behaviour of volume near the complete hyperbolic structure
Each of v and v gives bolomorphic coordinates on R 1in 2 neighbourhood of the complete
representation. with u =+ = 0 corresponding to p, (See 3.14, 3.15 and [Th1, chap5)) k fol-
lows that v/u =c + O(u) near po for some d€C, and Imo>0 by our choice of orientations.
Thurston show's in [Th1, chap.5] (see also [\-Z]) that o defines the shape of the Euclidean ton
at the cusp 7240, =) in the complete hyperbolic structure The holonomies poa), pB) are

parabolic elements. By conjugation we can assume that these elements fix the point at infinity

and that pofa) = ;then o is defined by py(B8) =

11 1 g
0 | 0 1

It then follows from proposition 5.5 that

V(W) — V(o) = — %L(u) +0uY)

In fact the error term is of order O(u*) since all functions involved are even in w.
It is also enlightening to rewrite the result ip terms of Dehn surgery coord:nates

(e N)=ce€H\(T2;R). Since uu+iv=2m, and v=ou+O0k? it follows that

u= 2o + _.and
B+ O
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— Imo4n

w= Im(@ P+ = — .
IS N

where the terms omitied are of order If we give T2 the Euclidean metric coming

WA
from the complete hyperbolic structure normalized so {a)= 1, then the Imo is the area
A(T?) of T2 while u? + |gIA? = XcP, where Xc) is the length of the geodesic in T2 represent-
ing the homology class c€ H,(M ; Z) Then we have :

A(T?)

Proposition 5.10. V(c)-V(0)= —#? {
.02

1 o 2.
+al(c)‘)./arcnear in H(T?%;R).

In particular, the level sets of volume near the complete siructure are close 1o circles when

the natural Euclidean metric is used on H\(T?; R)ZT2
(This gives new proofs of results of Neumann and Zagier in [N-21)

We can also obuin resulss as hyperbolic structures degenerate to foliations We now
describe the dependence of volume on cone angles for degenerations of the kinds discussed in
the last chapter. For simplicity, we resinict 1o the case of hyperbolic cone manifolds degen-
eraung. The behaviour of the “complex volume” for all hyperbolic or spherical manifolds
with Dehn surgery type singularities pear a limiting structure can be also described using the

same ideas

(2) Euclidean limits
In this case, the hyperbolic mamfolds shrink uniformly to a pont as t— 0. We can
parametrize as in chapter 4, so that at time 7 all lengths are of order r; then i) = Iy + O(r?)
and V(1) = Ve + O(*), where L, V, denote the length of singular locus and volume in the

- . - av _ 1, . d8(r) L
limiting Euclidean structure. Using ke 2l(£)~—'——d‘ gives
-V
2 =0()-6(0)= —>

2+ Or?), hence
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2

(48)¥3 4 _

V(l)=—?7—v—;

3

(Note that this is independent of the choice of Euclidean metric, since vo is invariant under
o

rescaling.)

(3) PSL,R and HIxR limits
In this case, we have byperbolic manifolds with distances shrinking linearly in the fibre
direction, converging to a 2-dimensional hyperbolic orbifold as limit We parametrize as in
chapter 4, so that at ume ¢ the fbres have leagth of order r. Then V{t) = ar + O(t?), and since
the singular locus is transverss to the foliation its lengih stisfies Ke) =l + O(t), where & is

the limiting hyperbolic length of the singular locus. It follow's that

Vi) = - %zow +0(e?)

(4) Solv geometry limits
Here the underlying manifold fibres over a circle with torus as fibre. We have a family of
byperbolic manifolds with metrics shrinking in the fibre direcuon, with a circle as the
geometric limit We parametrize so lengths along the fibres are of order £ at time I. Then
V(1) =ar?+ O(?), and Kt) = L, + OCr) since the singular locus is transverse w the fibres, where

L, 15 the lim:ung hyperbolic length of the singular locus. It follow's that
: 1
V() = —31\,_\9 +_

(5) Nil geomeury limits
Orbufolds (and manifolds) with Nil geometry structure can also occur as limits of hyperdolic
manifolds We d:d not consider this case in chapter 4, however it is discussed in [Th3] anc can
occur as foliows As b the spherical cas we have hyperbolic manifolds skrinking w a pownt

but after rescal:ng so that diameter remains consiant there 1s 2 2-dimenswnal Euclidean orbi-
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fold as geometric mit The underlying manifold is a Seifert fibre space wilh the Euclidean
orbifold as base, and the singular Jocus is transverse 10 the fibres We can parametrize so that
at time lengths in the fibre direction are of order ¢2, while lengths transverse 10 the fibres are
of order . Then V{(¢) = Vi + 03 and Kt) = Ly + O(t?), where Vg, I, are the volume and
length of geadesic in the limiting Nil geometry structure. (These are taken with respect to a

specific choice of metric oo Nil arising naturally from the degeneration of byperbolic metrics,

8V,
as explained in the remark below.) Hence, A8 = 6(:)—0(0) = —I 3100 ]-l’ and

43

a8

Vi) = ‘WT.-

Remarks : At firsi sight, the term may seem incorrecy, for dimensional reasons. This

W
term is pot independent of the choice of a mewric on il with full 4-dimensional isometry
group G. However, there is a particular equivalence class of G-invariant metrics determined
by the degeneratian of hyperbolic structures. To see this, first note that the space of G-
invariant metrics op Vil is 2-dumensional : the metric can only be aliered by rescaling ihe
Euclidean metric on the base and rescaling the metric on the fibres. (No other change gives a
metn¢ with 4-dimensional isometry group.)

We obtain a particular family of G-invariant metrics from the degeperation of hyper-
bolik structures M, as follows At time ¢, any fibres F of M, has length of the form c,2+0(z%)
wh.le the lenzih of any “horizonal™ geadesic CC M, has length of the furm car+O(c?), where
€. c;€R We can specify the limiting G-invariant metric on M by requiring that F bas
length ¢; and C bas length c» Here, ¢, ¢; are not uniquely determined. If the parameter ¢ is
charnged Lhey are replaced by €;52, ¢35 for some s>0. So the metric in the horizontal direction

is rescaled by s while the metric in the vertical direction is rescaled by s% Under such a

chzzge of metnc, L — s, and V— 5*V’,, so0 the ratio _VAT is unchanged.



CHAPTER 6

Finding the boundary of hyperbolic Dehn surgery

space

29. Ap Example : The figure eight knot complement

ln tus section, we study the Dehn surgery space for the complement of the figure eight
inot X in S 1n particular, we show how the results from previous sections can be usful for
finding the exact local boundary of the hyperbolic region

Throughout this section, M will denote the complement of an open tubular peighbour-
hood of the figure eight knot in §%. We will study the space H(M) of hyperbolic structures

on M with Dehn surgery type singulanities in some detail.

29.1. Representations
It will be consenient to use the fact that M fibres over S', with a once punctured torus

F as fibre. (F is a minimal genus Seifert surface for the knot as shown below.)
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The monodromy for the bundle can be represented by the matrix

11
12
To obtain a presentation for 7, (M), we can choosc generators a, b for the free group
m,(F) such that the isomorphism on ,(F) induced by the monodromy is :
¢ :arad, be—Dbab

(This choice is convenient since the commutator [a, 4] is ixed by the monodromy: for any

choice of generators [a, 8] is fixed up to conjugacy, since the monodrumy preserves 8F.) Then
w(M)= (a,b,t|tar™ =ab, bt~ = bab ) (1)

where ¢ represents a meridian for the knot and projects to a generator for S'.

There is also a presentation of m,(M) with two generators and one relation
m(M)= (¢, d |cdc™ =ded'edc™'d™" ) @

obuined from the Wirtinger presentation for the knot group with ¢, d as shown below :
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- \— Cdc-': t

/d

e

These sets of generators are related by :
t=ede™?, a=cd”}, b=dcd e
and
ce=b"Yb, d=a%ta

We want to study the representation space R(m(M), PSLAC)) however 1t will be more
convenient to work with representations into SLAC) rather than PSL)C). In fact, any
representation p : w,(AM)— PSLAC) lifts w a pair of representations =5 : (M)~ SLLC)
(This can be seen direcily from the second form of presentation for m,(Af) : Choose arbitrary
lifts of plc), p(d) to SLAC). If the relation of (2) holds this gives a representation into SLAC)
otherwise we obtain a representauon after changing the sign of the lift of p(c).)

We first describe the representations #,(F)— SLAC) which exiend to representations p
of m(M). Let A=pla), B=p(bl Then the resiriction plm,(F) is determined by the pair
(A, B). If plw,(F) is irreducible then (A. B) 1s completely determiped up to conjugacy by

the traces trA, {rB and trAB. Furtber, g ,,{F) 1s irreducible tf and only if t{A, Bl=L (See
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eg- IC-S]) Moreover, an irreducible represcntation 1o SLAC) has centralizer =1; so if
A AL B BESLAC) with trA=trA', irB=1rB,irAB=trA'F and 1{A, B}=2 then there is
3 CESLAC) such that CAC™ = A’and CBC™' = B and C is unique up to sign.

It follows that the irreducible representations p:ﬂl(M)—‘SLz(C)) can be parametrized

by triples (trp(a), trp(d), trplab))€C® sausfying the equations

erpla) = trp(¢la)) 3)
trp(B) = trp(p(5))

trp(ab) = trp(@¢{ab))

For any word w in A, B, trw can be expressed as a polynomial in tr4, trB and trAB

using the well known relations
t(XY) + er(XY ™) = er(X er(Y) and i XY)=1AYX)
for all X, Y €SLAC) In particular, using

t{BAB) +1{BAB™") = 1{BAMr(B)

and
tr(AB-BAB) + tr{(AB) ' BAB) = 1{ABr(BAB)
gives
tr{p(b)) = r(BAB) = tr{ BXr{AB) —1{A)
tr{plab)) = tr(ABXr(BAB)— 1{B)
Similarly,

(A, B)=tr{ABA™'B™)=(trA¥ + (tr BY + (trABY —trAtrBtrAB—2

Comtuning this with the previous remarks gives the following
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Lemma 6.1. The i~educible represeniations p: w(M)— SLAC) can be parametrized by the

points (a, B, Y)EC. a=trpla), 8 =1trp(d), y = trplab) satisfying the equations
a=y B=By-a y=yBy—a)B 4)
p restricts 10 an irreduable representasion of w\(F)if and onlyif

a’+ B2+ 9y’ —afy—2#2. a

Lo fact, the third equation is a consequence of the first two, and the solutions (&, 8, y) are
given by :
Yy=a a+B=af (€3]

Remarks : (a) The taces a, B,y parametrize the character variety for representations
m(M)— SLC).

(b) The parametrization used here is convenient for studying hyperbolic structures on a
punctured torus bundle. The metbod used here can be used to give another proof of the
results from chapter 4 in this case. The imporiant observation is that one of the equations in
(3) can always be elimmated Thus follows from the fact that [a, b] is fired up 10 conjugacy by

the monadromy; so

trola)+1rp(bY+trp(ab)—trplakrp(bXrplab)

= rrplaP +1rp(ebY+1rpldab Y —irpl¢adirp(pdlrp(pab)

From this 1t follows that any ome of the equations in (3} 15 2 consequence of the other twa

Hence, the character variety is of complex dimension 21.

29.2. Connection with idea) wiangulations
This description can be related 1o Thurston’s 10 [Th1, chap.4] as follows The commu:a-

tor I =la, bJ€m, (M) is the homotopy class of a (standard) longitude for the figure eight kot
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Let v=log HXI) be the logarithm of the derivative of the holonomy of £ in Thursion’s nota-

vi2 0

0 ‘-v;ziﬁl

ticn. Ther p{1)€ PSLAC) is represented by a matriz in SLC) conjugate to :“

trp(a, b)) = 22cosh(v/ 21 The complete hyperbolic structure on M corresponds 10 v =0;
since the corresponding holonomy representation is irreducible on w(F) we must have :
trp(ad]) = —2cesh (v/ 2).

Thurston constructs hyperbolic structures on M by gluing together two ideal simplices.
These structures are parametrized by cross ratios z, w describing the shapes of the ideal sim-

plices, subjpct to the equation
1—-2w(1—w)=1 6)

A solution to these equations gives a “simplicial developing map” D:M—H? defining a hyper-
bolic structure oo M if z, w have positive imaginary parts (ie the simplices are both posi-
tively orientedl D maps each simplex in a (topological) ideal wriangulation of M to a geodesic
ideal smplex i HY.

Without the positivity condition, a solution to (*) stll gives a representation
p:m(M)— PSLALC), and a developing map D:M—H® in the weak sense : satifying the
equivariance coedition Xym) = p(y}D(m). However D will not be an immersion if the sim-
Flices are not coasistently oriented; there will be “folds”™ along codimension one faces of sim-
plices In these cases, more work is needed to decide whether or not there is a hyperbolic
struczzre on M Witk p as the bolosomy representation.

h follows that solutions 1o the gluing equations parametrize developing maps rather than
repreentations. There are two solutions to the gluing equations corresponding to each
representation. (The two developing maps “spiral” in different directions around the geodesic
preserved by plw(63)) The Dekn surgery coordinates parametrize developing maps rather
ttap representzuons; (p. g) acd (—p, —g) give different developing maps corresponding 10 the

same point of the character variety for representations m{M)— PSLAC) ( Caution : The
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developing maps for (0,1) and (0,—1) have different (reducible) holonomy representations
cortesponding to the two different transversely hyperbolic foliations oo M, ,» However, the
characters of these representations are the same.)

In Thurston’s notation, the derivative of holonomy is given by H() =¢” = zX1—2F, m

(6) can be written
Hz—1)=¢"'? ww=1)=e—'2 m
The connection between Thurston's nowtion and ours is given by the equation

a_ : | 2 "
a‘=3a '+a'+4a-1 @®

2y, Dy = ) =
e/ T+e )= —tr{p(a . M) (a1F

In parucular, for reducible representations of m(F), tr(p(a, bD) = 2 = —2cosh(v/2), m

Az-1)=-1or

0 = a*~3a’-a?+8a—1=(a—2)a’+a-1)

The Arst equation has solutions : 2= l+£/5. 1_2‘/5. The scond has solutions :
a=2, :l;i_ 1';_'2 and corresponding 8 =2, l‘;.‘{i' 2_;£_

For the solution a =2, the corresponding Dehn surgery coordinates are (0, +1)
-=—0618_) and (0, ~1) (z=+1.618_). In both cases the limiting holonomy describes a
byperbolic foliation on the torus bundle M ;5 1wo different foliations are obrained

corresponding to the two eigenveciors of the matrix @.

—1-vV5 —1+V5

The solutions a = 3 R 2 occur when the Dehn surgery coord:nates are

(

5+V35  1+V5§
= )

7+ * )=(£3618033_, 20.809017_). The corresponding representations occur

at the intersection point between the curves of representations into SO(3) and inwo PSLARY

We will discuss this further below.
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293. The zero sct of volume

By a computer study of the hyperbolic Dehn surgery space for A (for instance using the
programs of Jeff Weeks described in [We]) one can easily determine approximaltely the zero set
of volume w Dehn surgery coordinates From this the zero set appears to consist of straight

line segments corresponding to representations into PSLAR), and curves corresponding to

representations into SO(3)

(Sulutions with all ssmplices flat (all cross ratios real) clearly give representations into PSI{R)
up 10 conjugacy. Solutions where the holonomy of each boundary torus consists of rotations
aze good candidates for orthogonal representations but further work is needed to confirm this
ie any example.)

This suggests that ezact zero sel corresponds precisely to the representalions conjugate o

czes with image contined in PSL;R or SO(3). (Equivalently, the real points of the complex
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algebraic character varniety : ie. representations such that trp{y)€R for all ye€m(M)) We pow
show that this i1s indeed the case; and give an exact description of the level set volume = 0.
For this we use an explicit form for the representations of m,(M)L We can conjugate so

'cosh P @mnhp

coshp e Tsinhp
that  pola) = lsinhp cashp| 20d plab) = pltdp(alp()™ =

‘sichp coshp i thea

a =1trp(a) = trplab) = 2cosh p, B=1rp(b)=2cosh?p — 2coshgsinh 2p = :Tl' Hence
2
2cosh -8 _ 2 B_ cYa
2sinh B io 1; a %a-2-
2

coshg =

(We won't need w find the exact form of p{t), but it could be determined as follows.

1
) . 2" 0 |[coshr sinhr
Since p(¢) tahes the axis of p(a) w the axis of plab), plt) = . _?,_' sinhr hs| andr
e

can be determined from p{zbr~!) = p(bab).)
Now the fized pownts of pla) and plab) in the sphere at infinity ClUw are given by :
{=1,1) and {—¢*, ¢} respectively. So the ares of pla), plab) have the following arrange-

ment in the upper half space mode! for H'.
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It follows that the restriction p|m(F) s conjugate 10 a representation into PSLLR) if

and only if
(1) e’€R.ie o €R

Further, p|m,(F) is conjugate to an orthogonal representation if and only if
(2) a€R and ¢€R is pure imaginary.

o

The last condition is equivalent to requiring that coshg = ._zgﬁ is in the interval
a‘ta—
[1.11 and holds for @ in the ipterval with enpoinis given by -—2—‘:'—“2=—1. ie
a‘+a—

“1-V3 . 143

7 SeS—p— Further, the real and orthogonal representations intersect at the
— +v5
ro - -

In facy, the conditions (1), (2) imply that p: m(M)~ PSLAC) is conjugate into PSLAR)
or SO(3) respectively. This follows easily from the fact that m,(F) is a normal subgroup of
w(M). (if plw(F) is an irreducible orthogoral representation, then there is a unigue point p

in H® fixed by p(m,(F)L Let g€p(m (M)). Then for all JeXm(Fi) g™ fgp=p, so gp is fixed
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by g~ /g for all fep(m(F) Since w,(F) is a normal subgroup of m,(M) it follows that the
point gp 18 fixed by all of p{m (Af)); hence gp = p. In the irreducible PSL,R case, there is &
unique plane HC H® invariant under m,(F). Again, this is invariant under p(ir,(M)) by nor-
mality.)

We conclude that the characters of real representations are given by the set of real solu-
tions to equations (5}

These representations can be divided into three kinds

(1) 1<a<w

<—1;\/5 or —14+V5 Sa<1

(2) ~=<a € 3

) :l;—ﬁﬁaﬁ#. One can find the trace coordinates a corresponding to

Thurswon’s Dehn surgery coordinates by analylic continuation from the complete solution

The curve corresponding to o €R is as shown below.
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LN

o4 - -
w5 o
Aty - 90
vs-..k
s - ley .
o=p — o« =0
(a:a-m_‘
e 4 Ty
<o X=3

29.4. Searching for the boundary of hyperbolic Dehn surgery space

We now discuss the geometric significance of the representations with volume equal to
zero. Using our previous results we will see, for example, that the zero set of volume is locally
the exact boundary of the space H(M) near each point with integer Dehn surgery coordinates

(ie corresponding to ar ortifold structure).

(1) Representations with 1 <a<oo and Dehn surgery coordinates (m, 1), -4 <m <4
These give real representations corresponding 10 hyperbolic foliations. The foliations can
be seen directly, since we have two positively oriented simplices flattening out simultaneously.

It was shown explicitly in [Th] that this is part of the exact boundary of hyperbolic Dehn sur-
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gery space.
Srecial cases :
(@)( 0, 1)surgery on A gives a torus bundle over S! with Aposov gluing map with matrix

1

1
®=1 2

- There are two hyperbolic foliations of the torus bundle M, ;) coming from linear

folaations of the torus by curves of irrational slope, paralle! to the cigenvectors of & Each of
these hyperbolic foliations can be deformed to obtain nearby hyperbolic structures at all
nearby points (x, y) with y>1 and nearby PSL.R structures with Dehn surgery singularities
for nearby pownts (x, 1). (Compare section 24.)

(6)(n, 1)surgery on M for —4 <n <4 gives Seifert fibred spaces over the sphere with 3 cone
ponts (Compare section 21.)

Example : ( -1, 1) surgery on figure eight knot This is the unit tangent bundle of the
(2.3,7) spherical orbifold and the singular locus is the horizontal Lift of geodesic through the

order 2 cone point (double covering a geodesic in base):

™~ 7

To see this, one can use Kirby calculus to reduce to ( 1,1 ) surgery op trefoil koot miuth
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singular locus transverse 1o the fibres as shown in the following diagram.

eI ()| L0
5 ; D ey

l‘a'vpj
l / A.Akrtkr,,‘:,}-

(um,x/vnh )

1)
["‘g}z &
)
N

2

~

/

This shows that the result is Seifert fibred over a sphere with exceptional fibres of orders 2, 3
and 7; it is not hard o check that the Seifert notanian is (000 : b= —1;(2, 1), (3, 1), (7, 1)

Since the Euler class is %4- l+l—1 ==1

Gilis 23 is the Euler characterisuc of the $3,7orbifold this

is the unit tangent bundle to this orbifold It is easy to see that the singular locus progcts to
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curve shown above

-1-v5

(2) Representations with ~oo <a < 5

=—1.618. with Deho surgery coordinates on

straight  lime  from (3618_,809-) to (4.1) and  representations with

—1+VS
‘—“:0.618_<a<1 with Dehn surgery coefficients on the straight line from

(=3.618—, 0.809-) o (—4, 1),

These are also real represe nuations since simplices are flat.
Questions Do all these representations correspond 1o hyperbolic foliations with Dehn sirgery
singularities, passibly degenerating tw a foliauon with transverse Fuclidean structure at
(3.618_, .809_) If so, can the foliations be deformed 10 hyperbolic structures?

We hope 10 resolve these questions o the future.

(3) Orthogonal representations with —1.616 <a <618 The corresponding Dehn surgery
coordinates lie on a curve from (3.618_, 0.809_) passing through (3,0 to (3.618_, ~0.809.).
This curve can be determined exactly as an envelope of lines corresponding to orthogonal
representations (compare proposition 5.9 and be following remarks).
Special case : The ortifold correspondi=g to (3, 0) has a Euclidean siructure obtained as
follows The Borromean rings labelled with 2's, has a well hnown Euclidean structure,

obtarned from a cube by folding up faces alo=g axes as shown below :
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//"?
Qaxis
2t
1ty 2

The Borromean rings have a 3-fold symmetry, giving the quotient orbifold :

The two components of the resulting link can be interchanged by an isotopy. Taking the 2-

fold covering over the component labelled 2 gives a Euclidean orbifold structure on $3 with

the figure eight knot, labelled 3, as the singular locus.
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The corresponding Euclidean holonomy group 1s generated by 120° rotations about dagonals of

two adpcent cubes as shown below :

------ e |

The theory from section 20 implies that near this pownt, vol =0 comresponsis to
Euclidean structures with Dehn surgery singulanties, and 15 locally the boundars of kvper-
bolic Dehn surgery space. Furthermore, the Fuchdean structure can zlse be asprowmazed by

spheriaal siructures with Debn surgery type singularities If we consider toe larger space
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GS(M) of all constant curvature geometric structures on M with Dehn surgery type singular-
ities then we Jocally obtain a manifold The Dehn surgery coordinates give a local
diffeomorphism from geometric structures in GS(M), up 1o rescaling of metrics, 10 a neigh-
bourhood of (3,0) in R%. The Fuclidean structures correspond to the codumension one sub-

space, where volume = 0.

Euclideaa

Ayperlaolfc

Question: Do all these orthogonal representations correspond to Fuclidean structures with
Dehn surgery type singularities, possibly degenerating at the endpoints?
One direct approach w this question would involve constructing a fundamenta) domain

bounded by minimal surfaces (Compare next section)

Remark : Cone manifold structures for the figure eight knot

Hyperbolic, Euclidean, and spherical cone manifold structures on S® with ihe figure
eight knot as the singular locus can be constructed explicitly as follows Begin wnh a Din-
chlet fundamental domain for the Euclidean cone manifold siructure with cope angle 2u/ 3;
one third of a rhombic dodecahedron is a good choice. Then one can deform thus polyhedra to
obtain hyperbolic and spherical polyhedra, with different dihedral angles, which can be glued
up to give hyperbolic and spherical cone mamfold structures. In fact, using some care, such
cone manifold structures can be obtained whenever the cone angle 8 1s in the open interval

(0, 47/3). These cone structures are hyperbolic for 8 <2w/ 3, Euclidean for 8 = 27/ 3 and
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spherical for 2n/ 3<@ <4n/ 3 In particular, one can see directly the continuous change from
hyperbolic to Euclidean to spherical structures near 6 =27/ 3

Further, there is no such cone manifold structure for 2w>0 24w/ 1 (This follows by
looking at the possible orthogonal represeniations) There is a limiting spherical cone suucture
on S? with cone angle 47/ 3, but the singular locus is o longer a figure eight knot : the cone
Jocus bumps into itself in the Lmit We expect that one could continue deforming this spheri-
cal cone structure continuously to obtain cone angles larger that 4w/ 3 provided one is willing
10 allow the singular locus to change. The argument of Thurston in [Th3] shows that the

singular locus cannot change combinatorial type in this way when the cone angle is €.

30. Speculation and Open Problems
It seems likely that by a slight extension of ideas introduced here, one could show that
the zero set of volume is locally the boundary of byperbolic Dehn surgery space, for the figure

eight kpot complement. More precisely, this would mean that for every point on the zero set

all pearby representations with positive volume correspond to by perbolic structures with .

Dehn surgery type singularities. In general, the boundary of hyperbolic Dehn surgery space
will be more complicated

For example, there can be points in the boundary of the hyperbolic Dehn surgery space
H(M) where the bolonomy representation has pusitive volumes This bebaviour can eccur,
for example, when some Dehn surgery on M gives an orbifold A containing an incompressible
Euclidean suborbifold F such that a component of N—F has 2 byperbolic structure. The pro-
cess is a 3dimensional vermon of the degeneration that occurs going to the boundary of
Teichmiller space for a surface, when a surface contzining a geodesic with length going to
infinity splits open to develop a cusp in the hmit (Compare section 19, p. 88)

Another 3dimensional example can be seen for (0, @), (5, 0) surgery on the Whitchead

link complement M as %+%+%—' 1. The Limiung surgered ortifold coniains an incompressi-
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ble 3punctured sphere F with cone angles of 21,2%. 2Z When l+l<l there are
a a

b b
hyperbolic sructures on M o). ,00 With representations “going w0 infinity” in

1,2
R(w (M), PSLLCY PSLLC as ;+ 3 1. Chocsing basepoints suitably, a geometric lumit exists

and is a “complete”™ hyperbolic structure on the cone manifold My o). . oy—F.

(b,0)

In this case, it is not hard to see that this complete structure can be Geformed to give hyper-

bolic structures on My, , (, o—F, with l<|-l + gy >1.

a b b
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M ‘P\“’ opea aloag F:

Complement

- of SMPL 4

In general, at least one other kind of degeneration can be expected to occur on the boun-
dary of Dehn surgery spaces the singular Jocus can “bump into itelf” changing the combina-
torial type of the singular locus (Thus happens for spherical cone manifold structures oo the

figure eight knot; see the remarks at the end of the last section.)

Many interesting global questions are open. For example, is the space H(Af) connected, or star
shaped? Is the map H(AM)—~ H (3¢ :R) taking a hyperbolic structure o its Dehp surgery
coordinate an ingction? When is a representation p:w(M)— PSLAC) the holonomy of &
hyperbolic structure in H{3M)? (Or more generally : find some kind of geometric structure,
with singularities, correspording to p.) Another impurtant problem s 1o find good geaera! esu-

mates on the size of the region of nor-hyperbolic Dehn surgeries

(1) One way 10 resolve these questions for fixed manifold M is 1o direcily comstruct byper-
bolic structures on M, corresponding -0 representations.

The approach, introdiced by Thurston {Thi), of construcung hyperbolx structures by
gluing together 1deal hyperoolic simyplces is very useful for studying examples The programs
developed Jefl Weeks (see [We] imp'ement this approach and g:ve az auiomated methed for

studying the hyperbolic Dehn surzery spaces for links in the 3-sphere. However, not all
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hyperbolic structures with Dehn surgery singularities can be obtained by gluing together posi-
tively orienred ideal hyperbolic simplices. For instance, a sequence of hyperbolic structures
degenerating to 3 point cannot be obtained in this way.

Another obvious approach to consiructing hyperbolc structures is by gluing together
non-ideal hyperbolic polyhedra With this method it should be possible 10 find the exact boun-
dary of H(M) along lines where the Dehn surgery coordinates have rational slope. Further,
ope can hope w pass continuously from hyperbolic to Euclidean to spherical cope manifold
structures in this way. We have discussed examples where this can be done 1n chapter 4 (sec-
tion 19), and in the remarks in the last secuon. The gluing equations in this approach are
somewbat more complicated than those obtained using ideal simplices, but the method is quite
feasible using a computer. However, only cone type singularities can be produced in 1his way
(at least if all polyhedra are compact).

Another method, suggested recently by Thurston, is to glue together objects bounded by
certain kinds of minimal surfaces, instead of polyhedra bounded by totally geodesic polygons.
For insiance, the faces of such a “minimal surface polyhedron” could be the minimal surface
spanned by a right angled hexagon in H* (or E’). With this approach it is possible 1o obtain
arbitrary Dehn surgery type singularities and it seems likely that every structure in H(M)

could be obtained in this way.

A better understanding of foliations (with Dehn surgery type singulariues) of 3
manifolds with transverse geometric structure would also help considerably in the problem of
finding the boundary of Dehn surgery spaces Computer studies using the programs of Weeks
{We) suggest that such hyperbolic foliations occur frequently on the boundary of Dehn sur-
gery spaces for knots and links in S°.

(2) Another approach to these questions is to extend the work of Thurston in [Th3} and

obtain 2 more global deformation theory. We outline some of the open quest:cns
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(a) Local theory. For hyperbolic cone mamifold M with cone angles €, it is not known
in general whether the space of representations R(m (M), PSLC) is locally a manifold of
dimension equal 1o the number of cusps of Af. Thus is equivalent to a local rigidity theorem :
there are no deformations of the hyperbolic structure M fixing the cone angles (or Dehn sur-
gery  coordinates).  Alternatively, this s a  cohomology problem : is
HYM , M ; E(p))— H'(M : E(p)) the zero map? See chapter 3 for further discussion. The
same questions are open for cone angles greater than w; it is likely that some restriction on the
combinatonial type of the singular Jocus is needed in this case. One possible approach to these
problems would involve developing a theory of harmonic deformations (e.g. Hodge theory) for
manifolds with cone-type and/or generalized Dehn surgery type singularities.

(b) Global theory. One of the main difficulties in extending the work of [Th3] w cone
angles greater than w, is the possibility of changes in the combinatorial 1ype of the singular
locus as geometric structures are deformaed. When cone angles are 2w, the singular locus can
bump into itself; Thurston shows in [T: 3] that this cannot happen for cone angles less than 7.
It scems possible that one can coniinue deforming geometric structures when this bumping
occurs, provided that singular locus is allowed to change.

The question of global rigicity for hyperbolic and other geometric structures with given

cone angles or Dehn surgery coefficients z1so seems interesting.

Finally, we point out that many of the techniques developed here apply in arbitrary
dimensions. There may well be interesting applizztions to problems 1o dimensions greater than

three

Appendix

1. Cohomology theory
In this appendix, we recall some standard deficitions and progerties of group cobomology
and de Rham cobomology with coefficients in a flat vecior bundle See [Brl [R] and [B-T] for

further details

1.1. Group cohomology

Let T be & group. A F-module {or ZI'-module) is given by an abelian group V wgether
with an action p:T— HomxdV) of T on V. Then the cohomology H'(I;V) of T with
coefficients in V is defined as follows Let C?=CATI,V) be the sex of 21l mam [’—V

(C°= V) Define d:C’~C’*' by

dfixy, ~ .x’)=p(x,}ﬂxz, - x’)

+'il(—1)’j(x,. ez .= )H-Y iz - x, )

Then d2=0 and H'(T, V) is the cohomology of the co=plex {C*,d}. Thus H'= % where

2'=ker{d:C'= C'*") are the icocycles and B = om{d:C' "'~ C*) are the i<obrondanes of T
with coefficients in V.

In particular the maps d°, d*, d? are given by:
d°flx)=plz)f—f
4 flx, y) = flxHplx)fy)- flxy)

diflx,y,2)=plzy Ry, 2 flay, 2)+ “x, 3z x, 3"
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Finally, we recall the definition of cup products 1n group cohomology Let U,V , W be
I-modules, and make U ®V into a [-module with the diagonal T action : yu ®v = yu@yv. Let
p:U@V—W be a T-module homomorphism. Then there is a cup product

U:HAT; U)RHNT; V)~ H?*(I; U @V) defined by :
alMx,_, x,.,)=(—l)”p(a(x,. - x,)@x,-z"b(x,.,. u | x,”))

for a€C2(I'; U), b€CAT; V)

1.2. De Rbam cohomology

The de Rham cohomology with coefficients in the flal vecior bundle E is the cohomology
of the complex {Q°, dg |, where Q' = (M, E) is the vector space of E valued i-forms on M,
and the differential dg: ©'= 0'*! arises from the flat connection on E. More precisely, let
;. — . ¢ be flar local sections of E(p) giving a basis for the fibre at each point of an open set

VCM. Theo an element w of ' can be represented locally as
Lue,
4

where w, 1s an (R-valued) i-form. Then df is given by

d;m=£dw,¢,

F
w here d is the usual exterior derivative. (See [B-T] or [R] for more details)
We will also be using relative de Rham cohomology 4 (A, A'; E) where N is a closed

submanifold of M and E is flal vector bundle on M. This is just the cohomology of the com-

restracr

plex Q' (M, N; E)=ker{Q'(M; E}— Q(N; E)) consisting of E-valued forms on M

vanishing on N. Then there 15 an exact sequence :

-— H(M N} H{M) H{NY H MM Ny— _
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13. Interpreting H"

The elements of HYXM ; E(p)) are exactly the glotal flat sections of E and can be ipter-
preted geometrically as global Killing vectar fields on M. HUT; g.4,) is the space of I
invariants, {x€g| Adp(y).x =0 for all y€I), and is Lic algebra of the centralizer of p(T) in
G.

Elements of HYM ; E(p))}SHYT; Adp} represent wangent veslors to spaces of represn-

tations. (See chapter 1 and 1)
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