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1. Introduction

This is the greatest paper ever written.

2. Definitions

In this section, we give some of the standard definitions that will be
used throughout the paper.
A loop γ embedded in the interior of a surface F is called essential

if it does not bound a disk in F . If F is embedded in a 3-manifold, M ,
a compressing disk for F is a disk, D ⊂ M , such that F ∩ D = ∂D,
and such that ∂D is essential on F . If we identify a thickening of D in
MrF with D × I then to compress F along D is to remove (∂D)× I
from F and replace it with D × ∂I.
A properly embedded surface is incompressible if there are no com-

pressing disks for it. A properly embedded, separating surface is strongly
irreducible if there are compressing disks for it on both sides, and all
compressing disks on one side intersect all compressing disks on the
other.
Suppose F is either an orientable, (not necessarily connected) surface

embedded in R3, or a point. In the former case F separates R3 into
X and Y . In the latter case we let X = R3 and Y = ∅. Let Σ
denote a connected complex obtained from F by attaching arcs in X
with endpoints on F . Let C denote the closure of a neighborhood of
Σ. Any manifold W homeomorphic to C is called a compression body.
The image of Σ under such a homeomorphism is a spine of W . The
image of ∂C ∩ Y is denoted ∂−W and the image of ∂C ∩X is ∂+W .
A surface, F , in a 3-manifold, M , is a Heegaard surface for M if

F separates M into two compression bodies, W , and W ′, such that
F = ∂+W = ∂+W

′.
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3. Labelling sweepouts

In this section we prove the main technical lemma from which all
subsequent results will follow.

Lemma 3.1 (Scharlemann [1]). Let H be a strongly irreducible Hee-

gaard surface, and γ be an essential curve on H. If γ bounds a disk
then it bounds a compressing disk for H.

Definition. Two surfaces H and F embedded in a 3-manifold are
almost transverse is their only non-transverse intersection point is a
saddle.

Note that if H and F are almost transverse, and D is a compressing
disk for a component of HrF , then it follows from our definitions in
the previous section that ∂D does not go through the saddle point of
H ∩ F .

Lemma 3.2. Let M be a compact, irreducible, orientable 3-manifold

whose boundary, if non-empty, is incompressible. Suppose M = V ∪H

W , where H is a strongly irreducible Heegaard surface. Suppose further
that M contains an incompressible, orientable, closed, non-boundary

parallel surface F . Then H may be isotoped to be almost transverse

to F , with every component of HrF incompressible in the respective
submanifold of MrF , except for at most one strongly irreducible com-
ponent.

Remarks 3.3. (1) After applying the lemma every loop of H ∩ F
must be essential on both surfaces. Otherwise there is such a
loop that bounds a compressing disk D for a component H ′ of
HrF . As H ′ is thus not incompressible it must be strongly
irreducible. But there is no compressing disk on the opposite
side of H ′ which meets D.

(2) In the case where F ∼= T2 it will follow from the proof that H
may actually be isotoped to be transverse to F , while satisfying
the conclusion of the lemma.

Proof of Lemma 3.2. Choose spines ΣV of V and ΣW of W .

Claim. The surface F meets both ΣV and ΣW .

Proof. Suppose F ∩ΣV = ∅. Then F lies in a compression body home-
omorphic to W . As the only incompressible surfaces in W are com-
ponents of ∂−W , we conclude that F is boundary parallel in M . This
violates the hypotheses of Lemma 3.2. ¤

It is a standard result that there is a continuous map Φ : H×I →M
such that
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• H(0) = ΣV ,
• H(1) = ΣW , and
• the restriction of Φ to the open interval (0, 1) is a smooth home-
omorphism onto the complement of ΣV ∪ ΣW .

Here we are denoting the image of H × t under Φ as H(t). The map Φ
is a sweepout of M . Let V (t) and W (t) denote the compression bodies
bounded by H(t) (where ΣV ⊂ V (t)).
Perturb F so that π ◦ Φ−1|F is Morse on Fr(ΣV ∪ ΣW ), where π

denotes projection onto the second factor. Let {ti}
n
i=0 denote the set

of critical values of π ◦ Φ−1|F . It follows from Claim 3 that t0 = 0
and tn = 1. We now label each subinterval (ti, ti+1) with the letters V
and/or W by the following scheme. If, for some t ∈ (ti, ti+1), there is
a compressing disk for H(t) in V (t) whose boundary is disjoint from
F then label this subinterval with the letter V. Similarly, if there is a
compressing disk inW (t) whose boundary is disjoint from F then label
with the letter W.

Claim 3.4. If the subinterval (ti, ti+1) is unlabelled then the conclusion
of Lemma 3.2 follows.

Proof. Suppose t ∈ (ti, ti+1). First, we claim that all curves of H(t) ∩
F are essential on both or inessential on both. If not then, as F is
incompressible, there is a loop δ′ ⊂ H(t) ∩ F that is inessential on F
but essential on H(t). The loop δ′ bounds a subdisk D′ of F . Let δ
denote a loop of H(t) ∩D′ which is innermost among all loops which
are essential on H(t). Then δ bounds a subdisk D of D′. Furthermore,
every loop of D ∩H(t) is inessential on both surfaces. Hence, as M is
irreducible, we may remove all such loops by a sequence of isotopies.
We conclude that δ bounds a compressing disk for H(t). Finally, δ may
be pushed off of F on H(t), violating the assumption that (ti, ti+1) is
unlabelled.
As M is irreducible we may isotope H(t) to remove those loops of

H(t)∩F which are inessential on both surfaces, without effecting those
loops of H(t) ∩ F which were essential on both. We now claim that
after such an isotopy any essential loop of H(t)rF is essential on H(t).
We prove the contrapositive. Let γ be a loop which bounds a disk
E ⊂ H(t). All curves of E ∩ F must be inessential on both surfaces,
and hence there are now none. We conclude E ⊂ MrF , and hence γ
is inessential on H(t)rF .
Finally, we claim that the components of H(t)rF are incompressible

in the respective submanifolds of MrF . Suppose H ′ is a compressible
component. Then there is an essential loop γ ⊂ H ′ which bounds a
compressing disk for H ′. By the preceding remarks γ is essential on
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H(t) as well. By Lemma 3.1 the loop γ bounds a compressing disk for
H(t), which must be in V (t) or W (t). This now contradicts the fact
that (ti, ti+1) is unlabelled. ¤

Claim 3.5. If the subinterval (ti, ti+1) has both of the labels V and W
then Lemma 3.2 follows.

Proof. Suppose t ∈ (ti, ti+1). We begin as in the proof of Claim 3.4 by
asserting that all curves of H(t) ∩ F are either inessential or essential
on both. If not, then as in the aforementioned proof there is a loop
δ ⊂ H(t) ∩ F which bounds a compressing disk for H(t). Suppose δ
bounds a compressing disk in V (t). Since (ti, ti+1) has the label W
there is a loop γ on some component of H(t)rF which bounds a disk
in W (t). But then δ ∩ γ = ∅ contradicts the strong irreducibility of H.
As in the proof of Claim 3.4 it now follows that we may isotope H(t),

preserving the set of loops of H(t) ∩ F which are essential on both, so
that any loop which is essential on H(t)rF is also essential on H(t).
Let H ′ be the component of H(t)rF which contains the loop γ from

above. By strong irreducibility any essential loop of H(t)rF which
bounds a compressing disk in V (t) must meet γ, and hence must be
on H ′. Furthermore, since the subinterval (ti, ti+1) has the label V,
there is at least one such loop ρ. By identical reasoning we conclude
that any essential loop of H(t)rF which bounds a compressing disk
in W (t) must meet ρ, and hence must also be on H ′. We conclude
that there are no loops on any other component of H(t)rF which
bound compressing disks, and hence they are all incompressible in the
respective submanifolds of MrF . Furthermore, it follows from the
strong irreducibility of H that all loops bounding disks on opposite
sides of H ′ must intersect, and from the fact that both labels appear
that such loops exist. We conclude that H ′ is strongly irreducible. ¤

Claim 3.6. If the labelling of (ti−1, ti) is different from that of (ti, ti+1)
then the critical value ti corresponds to a saddle tangency between
H(ti) and F .

Proof. The only other option is a center tangency, which cannot intro-
duce a new compression for H(t) whose boundary is on a component
of H(t)rF . ¤

Claim 3.7. The subinterval (0, t1) is labelled V and the subinterval
(tn−1, 1) is labelled W.

Proof. For sufficiently small ε the surface H(ε) looks like the frontier
of a neighborhood of ΣV . By Claim 3 the surface F meets ΣV trans-
versely. Hence, F contains small compressions for H(ε) in V (ε). We
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can push these compressions off F , giving compressions with boundary
on a component of H(ε)rF in V (ε). Hence, the label of (0, t1) is V. A
symmetric argument completes the proof of the claim. ¤

Following Claims 3.4 and 3.5 we may assume that every subinterval
has a label, and that it is unique. It then follows from Claim 3.7
that there is some critical value ti where the labelling changes from V
to W. By Claim 3.6 this critical value must correspond to a saddle
tangency. Our goal now is to show that all components of H(ti) − F
are incompressible in the respective submanifolds of MrF , and hence
Lemma 3.2 follows.
First, we claim that every loop of H(ti) ∩ F is either essential or

inessential on both surfaces. If not, then as in the proof of Claim 3.4
there is a loop δ of H(ti) ∩ F which bounds a compressing disk for
H(ti). Near the loops of H(ti) ∩ F the surface H(ti) is identical to
the surfaces H(ti − ε) and H(ti + ε). If δ bounds a compressing disk
in W (ti) then we push δ off of F and see that there is a loop on a
component of H(ti−ε)rF that bounds a compressing disk inW (ti−ε).
This violates the fact that the subinterval (ti−1, ti) does not have the
label W. Similarly, if δ bounds a compressing disk in V (ti) then it
follows that there is a loop on a component of H(ti + ε)rF bounding
a compressing disk in V (ti + ε), violating the fact that the subinterval
(ti, ti+1) does not have the label V.
As in the proof of Claim 3.4 it now follows that we may isotope

H(ti), preserving the set of essential loops of intersection with F , to
remove those loops of intersection that are inessential. Now, let E be
a compressing disk for a component H ′ of H(ti)rF . It follows from
Lemma 3.1 and the fact that we have removed all of the inessential loops
of H(ti)∩F that E is also a compressing disk for H(ti). Furthermore,
as ∂E is essential on H ′ it misses the saddle point, and is hence present
on components of both H(ti − ε)rF and H(ti + ε)rF . If E ⊂ W (ti)
then this violates the fact that (ti−1, ti) does not have the label W. On
the other hand, if E ⊂ V (ti), then we contradict the fact that (ti, ti+1)
does not have the label V.
We conclude that the components of H(ti)rF are incompressible in

the respective submanifolds of MrF , as asserted by the lemma. ¤

We now use the above result to establish the following lemma.

Lemma 3.8. Let M be a compact, irreducible, orientable 3-manifold

whose boundary, if non-empty, is incompressible. Suppose M = X ∪F

Y = V ∪H W , where F is incompressible, orientable, connected, closed,
and non-boundary parallel and H is a Heegaard surface. Then either
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H is an amalgamation of splittings of X and Y or there are properly
embedded surfaces HX ⊂ X and HY ⊂ Y with boundaries on F such
that at least one of the following holds:

(1) The surfaces HX and HY are incompressible, non-boundary par-

allel, and satisfy ∂HX = ∂HY and χ(HX) + χ(HY ) ≥ χ(H).
(2) After possibly exchanging X and Y the surface HX is incom-

pressible and non-boundary parallel, the surface HY is strongly

irreducible, ∂HX = ∂HY and χ(HX) + χ(HY ) ≥ χ(H).
(3) The surfaces HX and HY are incompressible, non-boundary par-

allel, and satisfy ∂HX ∩ ∂HY = ∅ and χ(HX) + χ(HY ) − 1 ≥
χ(H).

Remark 3.9. If H is assumed to be strongly irreducible then we will
show that each of the above inequalities can be replaced by equalities.

Proof. By [?] we may untelescope the Heegaard splitting H. That is,
there is a sequence {Hi}

2n
i=0 of pairwise disjoint, closed surfaces in M

such that

• ∂M = H0 ∪H2n (if ∂M = ∅ then H0 = H2n = ∅),
• for each odd i, the surface Hi is a strongly irreducible Heegaard
splitting of the submanifold cobounded by Hi−1 and Hi+1, and

• for each i between 1 and 2n− 1 the surface Hi is obtained from
H by some number of compressions.

In addition, it is shown in [?] that for each even i the surface Hi is
incompressible in M . We will call the set of surfaces with even index
thin levels and the set with odd index thick levels.
Isotope F to meet the set of thin levels of {Hi} in a minimal number

of curves. Suppose first that for some i, the surface F is parallel to a
component of the thin level H2i. Then the components of {Hi} which
meet X form an untelescoped Heegaard splitting of X, and the com-
ponents which meet Y form and untelescoped Heegaard splitting of Y .
Telescoping (the operation which is the inverse of untelescoping) each
now produces Heegaard splittings of X and Y whose amalgamation is
H. Hence, the conclusion of Lemma 3.8 follows.
Now suppose F intersects the thin level H2i. Then F divides H2i

into subsurfaces HX ⊂ X and HY ⊂ Y . We claim that HX is incom-
pressible in X and HY is incompressible in Y . If not, then there is
some compressing disk D for HX (say) in X. As H2i is incompressible
in M , ∂D bounds a disk E in H2i. As M is irreducible we can now
do a sequence of isotopies to remove all curves of E ∩ F , reducing the
number of times F meets the set of thin levels.
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Since F meets all thin levels minimally it also follows that neitherHX

nor HY are boundary parallel. Finally, since H2i = HX ∪HY , and H2i

is obtained from H be some number of compressions, we have χ(HX)+
χ(HY ) ≥ χ(H). Hence, Case (1) of the conclusion of Lemma 3.8
follows.
We are now reduced to the case where F misses all thin levels, and

is parallel to none. Hence, F is completely contained in a subman-
ifold with incompressible boundary which has a strongly irreducible
Heegaard splitting, obtained from H by some number of compressions.
It suffices, then, to prove Lemma 3.8 in the case where H is strongly
irreducible.
Use Lemma 3.2 to isotope H so that it is almost transverse to F , and

so that every component of HrF is incompressible, except for possibly
one strongly irreducible component. If H is actually transverse to F
then letHX = H∩X andHY = H∩Y , and we are done. The remaining
case is that H meets F transversally, except at a single saddle tangency
at a point p ∈ H. Isotope H by pushing the point p slightly into Y , to
obtain the surface H ′. Hence, H ′ transverse to F . Furthermore, any
compressing disk for HX = H ′ ∩ X is a compressing disk for H ∩ X,
so there must be none. We conclude HX is a properly embedded,
incompressible surface in X. Similarly, by pushing p slightly into X
we may obtain from H a properly embedded, incompressible surface
HY ⊂ Y .
As H and F are orientable, it follows that HX ∩F may be made dis-

joint from HY ∩ F . Furthermore, the only essential difference between
HX ∪HY and H is a pair of pants, having Euler characteristic negative
one. Hence, Case (3) of the conclusion of Lemma 3.8 now follows. ¤

4. Amalgamating small manifolds

For convenience of the argument we will need to define relative com-
pression bodies. Let F be an orientable surface, possibly with bound-
ary components, and possibly disconnected. Let C be the manifold
obtained by forming the F × I and attaching one handles to the sur-
face F × 1. Then C is a relative compression body. We label the
boundary as follows: the negative boundary is ∂−C = F × 0, the
vertical boundary is ∂VC = ∂F × I, and the positive boundary is
∂+C = ∂C − ∂−C − ∂VC. The vertical boundary is a collection of
annuli. It is important to note that a given manifold may admit many
relative compression body structures. For example, if F is a surface
with boundary and C = F × I, then C can be thought of as a relative
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compression body with ∂−F = F ×0, or C can be thought of as a han-
dlebody with ∂−F = ∅. In fact, given a relative compression body C,
it is always possible to think of C as a (non-relative) compression body
by promoting all non-closed components of ∂−C and all components of
∂VC to positive boundary.
We can define a relative Heegaard splitting, as the union of two rela-

tive compression bodies, identified along their positive boundaries. The
splitting will be considered non-trivial if neither relative compression
body is a product, i.e., both compression bodies have 1-handles.

Lemma 4.1. Let X be a manifold that admits a strongly irreducible

non-trivial relative Heegaard splitting X = C1 ∪ C2. Then ∂−C1 and

∂−C2 are incompressible in X.

Proof. An examination of the proof of the Haken Lemma (see [?]) will
reveal that it applies directly to the case of relative Heegaard splittings.
In particular, if either ∂−C1 or ∂−C2 has compressible boundary, then
there is a compressing disk D for the boundary component that meets
the splitting surface is a single closed loop. The loop decomposes the
compressing disk into a vertical annulus in one compression body, say
C1, and a disk D2 ⊂ C2. Since C1 is not a product, we can find a
compressing disk D1 for ∂+C1 that is disjoint from the annulus, hence
disjoint from D2. The pair (D1, D2) is a weak reducing pair for the
splitting, a contradiction. ¤

Lemma 4.2. A connected, small, manifold with compressible boundary
is a compression body.

Proof. Let X be a connected small manifold with compressible bound-
ary. In an optimistic fashion, denote a compressible boundary compo-
nent by ∂+X and all other components by ∂−X. Since ∂+X is com-
pressible it bounds a compression body (which is not a product) C ⊂ X
so that ∂+C = ∂+X. Choose C to be maximal in this regard. Precisely,
choose C so that

∑
(1−χ(S)) is minimal, where the sum is taken over

all non-sphere components S ⊂ ∂−X. Since X is irreducible, we can
also choose C so that ∂−C contains no spheres.
Let S be a component of ∂−C. S is incompressible in C. By maxi-

mality of C, S is also incompressible in X−C. As X is small, S must in
fact be peripheral, and since C is not a product, it is parallel in X −C
to a component of ∂−X. The (possibly disconnected) surface ∂−C sep-
arates the components of ∂−X from ∂+X, so in fact each component of
∂−X is in fact parallel to a component of ∂−C. The parallelism yields
an isotopy between X and C. X is therefore a compression body. Note
that only one boundary component, ∂+X is compressible. ¤
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Proposition 4.3. Let F be a non-peripheral incompressible surface
that is properly embedded in a small manifold X. Then h(X) ≤
1 − χ(F ). If X has a single boundary component or F meets every
boundary component of X, then this applies to the tunnel number:
t(X) ≤ 1− χ(F ).

Proof. Let ∂1X denote those boundary components of X that meet F
and ∂2X denote those boundary components which do not meet F .
Let X1 = N(F ∪ ∂1X) and X2 = X − int(X1). This decomposes

X into X = X1 ∪F ′ X2, where F
′ is the closed surface that is the

common boundary of X1 and X2. See Figure ??. Note that ∂1X and
F are contained in X1 and ∂2X is contained in X2. While X1 is always
connected, X2 will contain two components if F separates.
Since X is a small manifold each component of F ′ must be either:

(1) compressible into X1,
(2) peripheral to a component of ∂1X,
(3) compressible into X2, or
(4) peripheral to a component of ∂2X.

Claim. No component of F ′ can be compressible into X1.

If so, we could choose a compressing disk for this component which is
disjoint from the incompressible surface F , and this component would
be compressible into the product X1 −N(F ), a contradiction.

Claim. No component of F ′ is peripheral into ∂1X.

If this occurred, X1 would be contained in a product neighborhood
of a boundary component. This in turn implies that F was peripheral.

Claim. X2 is small.

Suppose that X2 contains a closed essential surface G. Since X
is small, G is either compressible in X or peripheral to a boundary
component in ∂1X. Since F is incompressible, any compressing disk
D ⊂ X for G can be modified into a compressing disk D′ for G for
which ∂D′ = ∂D and so that D′ does not intersect F . As before,
this implies that the interior of D′ can be modified to be disjoint from
X1 and G is therefore compressible in X2. Since G is essential in
X2, if it is peripheral in X, it is peripheral to a component of ∂1X.
Again this implies that F is contained in product neighborhood of ∂X ,
contradicting the fact that F is not peripheral.
Each component of F ′ is therefore compressible into X2 or peripheral

to a component of ∂2X. In either case, by Lemma 4.2 or by parallelism,
F ′ = ∂+X2, where X2 is either one or two compression bodies.
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It is now straightforward to build a handle system for X (tunnel
system in the case that ∂1X = ∂X). Choose τ , a minimal collection
of arcs that are properly embedded in F and that cut F into a single
disk D. The collection τ contains 1 − χ(F ) arcs. Moreover, τ is a
handle system that induces a Heegaard splitting, X = C1 ∪ C2, where
C1 = N(∂1X ∪ τ and C2 = X − C1. Clearly C1 is a compression body.
C2 is a compression body because it is formed by attaching a handle
(the cocore of D to the positive boundary of the compression body
X2. ¤

Proposition 4.4. Let F be a non-peripheral, bi-compressible, strongly
irreducible surface that is properly embedded in a small manifold X.
Then h(X) ≤ 1 − χ(F ). If X has a single boundary component, then
this applies to the tunnel number: t(X) ≤ 1− χ(F ).

Proof. We may apply the previous theorem if X also contains an non-
peripheral incompressible surface with boundary and Euler character-
istic less than F . We may therefore assume that F is a separating
surface; if not we may compress F to obtain such an incompressible
surface. As before we will let ∂1X denote those boundary components
of X that meet F and ∂2X denote those boundary components which
do not meet F .
By compressing F maximally to both sides, we define a relative Hee-

gaard splitting of a submanifold X ′ ⊂ X, X ′ = C1 ∪C2. Since we have
compressed maximally, the negative boundary components of C1 and
C2 are incompressible outside X

′. They are incompressible inside X ′ by
Lemma 4.1. Each component of ∂−Ci, i = 1, 2 is therefore peripheral.
In particular, this implies that X ′ is isotopic to X.
As in the earlier theorem, this structure defines a handle system for

X. Choose τ , a minimal collection of arcs that are properly embedded
in F and that cut F into a single disk D. Now, τ is a handle system
for X that induces the Heegaard splitting, X = C ′1 ∪ C

′

2, where C
′

1 =

N(∂1X ∪ τ and C
′

2 = X − C1. Clearly C
′

1 is a compression body. C
′

2 is
a compression body because it can be obtained by first promoting the
vertical and non-closed negative boundary components of C1 and C2

and then joining the positive boundary of these (honest) compression
bodies with a 1-handle (the cocore of D).
The handle number of X is therefore h(X) ≤ 1− χ(F ). ¤

Corollary 4.5. Let M be a compact, orientable 3-manifold with in-

compressible boundary. If M can be obtained by gluing two small man-

ifolds along an incompressible surface, M = X∪F Y , then the following
statements hold:
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(1) g(M) ≥ 1/2(h(X) + h(Y ))
(2) if M is closed, g(M) ≥ 1/2(t(X) + t(Y ))
(3) g(M) ≥ 1/2(g(F ) + g(Y ))− g(F ).

Proof. Let H be a minimal genus splitting ofM . If H is an amalgama-
tion of splitting of X and Y , then the result holds trivially. Otherwise,
by Lemma 3.8 we can construct properly embedded non-boundary par-
allel surfaces HX ⊂ X and HY ⊂ Y so that each is either incompress-
ible or strongly irreducible. Furthermore, χ(HX) + χ(HX) ≥ χ(H) =
2− 2g(M), or equivalently, g(M) ≥ 1/2(2− χ(HX)− χ(HY )).
By either Proposition 4.3 or Proposition 4.4, X and Y admit handle

systems that are attached to components of F and so that the number
of handles is less than 1 − χ(HX) and 1 − χ(HY ), respectively. The
statements in the theorem follow. ¤

Remark 4.6. In both cases above, the splittings of X and Y that are
constructed have low distance. The 1-handles are the spanning arcs of
a surface and cut that surface into a disk D. In the resulting splitting
the disk D will meet each of the cocores exactly twice.

5. 3-Manifolds with no strongly irreducible Heegaard
splittings

Using some almost normal trickery and a nice result of Eric and Bus,
we blow people’s minds.
“How do you do that?”, I hear you cry. Well, it goes like this:

Theorem 5.1. Suppose that X and Y are knot manifolds and ϕ : ∂X →
∂Y is sufficiently complicated. Then the manifold M(ϕ) = X ∩ϕ Y
contains no strongly irreducible Heegaard splittings.

A knot manifold is a compact, orientable, irreducible three-manifold
with a single, toroidal, incompressible boundary component. To make
the theorem precise we must also define sufficiently complicated.
Fix, once and for all, triangulations on X and Y . Let ∆(X) be the

set of isotopy classes of essential curves as follows: the class of γ is in
∆(X) if and only if γ is a component of the boundary of some normal
or almost normal surface in X. Note that ∆(X) is finite, by a result
of Jaco and Sedgwick [?]. We define ∆(Y ) similarly.
Recall now the definition of the Farey graph, F(X). The vertex set of

F(X) is all isotopy classes of essential simple closed curves in ∂X. Two
vertices are connected by an edge if and only if they have geometric
intersection number one.
Suppose ϕ : ∂X → ∂Y is given. Now set dF(ϕ) = dF(∆(X), ϕ

−1(∆(Y )))
equal to the minimal number of edges required in a path connecting
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∆(X) to ϕ−1(∆(Y )) inside of F(X). The map ϕ is sufficiently compli-
cated if dF(ϕ) is greater than or equal to two.

Remark 5.2. Note that, as ∆(X) and ∆(Y ) are finite, “most” el-
ements of MCG(T2)∼= SL(2,Z) are sufficiently complicated, in the
above sense. In particular any sufficiently large power of a Anosov
map is sufficiently complicated. The same holds for all but a finite
number of Dehn twists.

Before giving the proof of Theorem 5.1 we must discuss boundary
compressions. Suppose G ⊂ N 3 is a two-sided surface properly em-
bedded in a compact, orientable, irreducible three-manifold N . We
suppose further that ∂N is incompressible in N . Suppose D ⊂ N is a
boundary compression for G. Define ∂+D = D∩G and ∂−D = D∩∂N .

Definition. The boundary compression D is honest if ∂−D is essen-
tial as a properly embedded arc in ∂Nr∂G. If D is not honest it is
dishonest.

Suppose now that ∂N ∼= T2. We now define the banding, D̂, of an
honest boundary compression D for G. Note that ∂−D meets dis-
tinct boundary components of ∂G, as G is orientable. These com-
ponents of ∂G cobound an annulus A ⊂ ∂N such that ∂−D ⊂ A.
Take D′, D′′ parallel copies of the disk D and form the disk D′′′ =
D′ ∪ D′′ ∪ (Arη(∂−D)). Isotope D′′′ to be disjoint from ∂N while

maintaining ∂D′′′ ⊂ G. The resulting disk is the desired banding D̂ of
D.
The following fact is well-known:

Lemma 5.3. If D is a boundary compression for G and ∂N = T2 then

G is either compressible or G contains boundary parallel annulus.

Proof. If D is honest then band to obtain D̂. If D̂ is not a compressing
disk then G is a boundary parallel annulus.
On the other hand, if D is a dishonest compression of G ⊂ N then

there is a subarc α ⊂ ∂G so that ∂−D ∩ α = ∂α = ∂∂−D. Also, this
arc α is isotopic to ∂−D inside ∂N relative to ∂α. So α ∪ ∂−D bound
a subdisk of ∂N , say E. Also interior(E) ∩G = ∅ since ∂−D is not an
essential arc in ∂Nr∂G. So D ∪ E is a compressing disk for G. ¤

We are now ready for the proof:

Proof of Theorem 5.1. Suppose that X and Y are triangulated knot
manifolds, as above. Fix a gluing ϕ : ∂X → ∂Y . Suppose that H ⊂
M(ϕ) = X ∪ϕ Y is a strongly irreducible Heegaard splitting surface.
Let F ∼= T2 be the image of ∂X inside of M(ϕ).
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Now apply Lemma 3.2 and Remark 3.3 to the pair H and F inM(ϕ).
Let HX be a component of H ∩X which is incompressible and not a

boundary parallel annulus, if such exists. If no such component exists
take HX to be the non-boundary parallel component of H ∩ X. In
this case HX is strongly irreducible. (Not all components of H ∩ X
are boundary parallel annuli as then we could isotope H into Y , a
contradiction.) Choose HY similarly and note that, by Lemma 3.2, not
both of HX and HY are strongly irreducible. Note that ∂HX is the
same slope as ϕ−1(∂HY ).
Suppose thatHX andHY are both incompressible. As ∂X ∼= ∂Y ∼= T2

it follows from Lemma 5.3 thatHX andHY are also boundary-incompressible.
So HX and HY may be normalized with respect to the given triangu-
lations [?]. It follows that ∆(X) and ϕ−1(∆(Y )) intersect and thus ϕ
is not sufficiently complicated.
Suppose now thatHX is incompressible and thus boundary-incompressible.

Suppose that HY is a strongly irreducible surface. Recall that by
strongly irreducible we mean a two-sided surface which compresses on
both sides and all pairs of compressing disks on opposite sides must
meet.
There are two possibilities for HY : either, applying work of the first

author [?], the surface HY is properly isotopic to an almost normal
surface or there is a disjoint pair of honest boundary compressions on
opposite sides of HY .
In the former situation ∂HX ∈ ∆(X) and ∂HY ∈ ∆(Y ). Thus ϕ is

not sufficiently complicated and we are done. So suppose the latter:
let D,E ⊂ Y be disjoint, honest boundary compressions on opposite
sides of HY .
Note that the bandings D̂ and Ê are both compressing disks for

HY (otherwise HY would either not be connected, or HY would be a
boundary-parallel annulus.)
We will now cut away a part of HY to find an incompressible surface

H ′

Y in Y with boundary meeting the boundary of HY at most once.
Proceed as follows.
Let K ∼= T2×I be a closed collar of ∂Y inside of Y . Isotope HY so

that HY ∩K is a regular neigborhood of ∂HY . Isotope D so that D∩K
is a regular neighborhood of ∂−D = D ∩ ∂Y in D and do the same for
E. Now we may use D to guide an isotopy of HY in Y which fixes
HY rη(∂+D) pointwise and moves ∂+D into K. We do the same for
E. Now, if there are four distinct curves of ∂HY meeting D ∪ E then
D̂ and Ê are disjoint compressions or HY contains a boundary parallel
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PSfrag replacements

HY ∩K

∂Y

Figure 1. The intersection of HY and K. Note that
the left-hand picture omits other components of HY ∩K.

annulus component. The first contradicts strong irreducibility and the
second contradicts the connectedness of HY .
There remains two possibilities for the resulting surface HY ∩ K.

Both are shown in Figure 1.
Note that, in either case, the surfaceHY ∩K compresses on both sides

via the disks D̂ and Ê. It follows from strong irreducibility that the sur-
face H ′

Y = HY rinterior(K) is incompressible inside of Yrinterior(K).
Thus, by Lemma 5.3 either H ′

Y is also boundary incompressible or H
′

Y

is a boundary parallel annulus.
Consider the latter possibility – if H ′

Y is a boundary parallel annulus
then it follows that all of HY can be isotoped into K ⊂ Y , the collar of
∂Y . As all other components of H ∩ Y were boundary-parallel annuli
we may properly isotope all of H ∩ Y into K. Thus H ⊂ X ∪ϕ Y may
be isotoped into X, a contradiction.
Now consider the former possibility – H ′

Y is both incompressible and
boundary incompressible in YrK. Now, YrK is homeomorphic to Y
and thus there is an incompressible, boundary incompressible surface
in Y and this surface has boundary slope meeting ∂HY at most once
(again, see Figure 1). It follows that ϕ was not sufficiently complicated,
and we have finished the proof of Theorem 5.1. ¤
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