READING ASSIGNMENT FOR GNF 101

SAUL SCHLEIMER

Abstract

We give a sequence of mapping tori $M_{n}=M\left(\varphi_{n}\right)$, all with genus two fibre, such that φ_{n} is pseudo-Anosov, $\operatorname{vol}\left(M_{n}\right)$ tends to infinity with n, and yet all of the M_{n} have strongly irreducible Heegaard splittings of genus two or three. This shows that the main theorem of [1] cannot be altered to use translation distance in the pants complex.

1. Introduction

Here is a quick sketch of the construction: we will take a fixed genus two bundle over the circle and successively alter the monodromy via powers of a partial pseudo-Anosov map. As shown in the last homework assignment [3] there is a simple condition which ensures that the volumes increase without bound.

The resulting manifolds will all have a splitting of genus three. A bit of work will prove that this splitting, or a related genus two splitting, is strongly irreducible.

2. Construction of the examples

We first build the bundle M_{0} and define a few natural submanifolds. Then we define the M_{n} 's.
2.1. Building $M=M_{0}$ and the subsurface T. Let \widetilde{M} be the convex polyhedron in \mathbb{R}^{3} with vertices at the points

$$
(\cos ((2 k+1) \pi / 8), \sin ((2 k+1) \pi / 8), \pm 1) .
$$

Here k ranges from zero to eight. That is, \widetilde{M} is a regular octagon crossed with an interval. Note that the faces are disjoint from the x, y, and z-axes or meet them perpendicularly.

Construct M, a closed three-manifold, by identifying opposite vertical faces via translation and by gluing the top to the bottom via a one-eighth counterclockwise twist. Let $q: \widetilde{M} \rightarrow M$ be the natural quotient map. Let $\pi_{F}: M \rightarrow[-1,1] /(-1 \sim 1)$ be the map which takes a point $p \in M$ to the z coordinate of $q^{-1}(p)$.

Date: December 7, 2002.

Thus M is a genus two surface bundle over the circle with periodic monodromy. Let \widetilde{F} be the intersection of \widetilde{M} with the x, y-plane. Let $F=q(\widetilde{F})$. We will think of the monodromy, φ, as a homeomorphism of both F and \widetilde{F}. Note that φ acts on \widetilde{F} as an order eight counterclockwise rotation.

Fix an small ϵ-neighborhood of the union of the x, y, and z axes in \mathbb{R}^{3}. Set \widetilde{V} equal to the intersection of this neighborhood with \widetilde{M}. Then $V=q(\widetilde{V})$ is a genus three handlebody embedded in M.

Claim 2.1. The surface $H=\partial V$ is a Heegaard splitting for M. In fact, H is a stabilization of one of the vertical splittings of the Seifert fibred space M.

Finally let $T=V \cap F$. Then T is homeomorphic to a once punctured torus. Let $V^{\prime} \subset V$ be the intersection of a closed ϵ-neighborhood of F with V (with ϵ as above). Then V^{\prime} is homeomorphic to $T \times I$ and $B=\overline{V \backslash V^{\prime}}$ is homeomorphic to a three-ball. Thus $V^{\prime} \cup B$ realizes V as $T \times I$ union a one-handle attached to either end of the $T \times I$.

Let $\gamma: T \rightarrow T$ be any homeomorphism of T which restricts to the identity map on ∂T. Define $V(\gamma)$ to be the three-manifold obtained by cutting V along T and regluing by the map γ. We have shown:

Claim 2.2. $V(\gamma)$ is a genus three handlebody.
2.2. Checking M_{n}. Let $W=\overline{M \backslash V}$. Fix $\gamma: T \rightarrow T$ a pseudoAnosov automorphism of T restricting to the identity on ∂T. Define $M_{n}=M\left(\gamma^{n} \varphi\right)=W \cup V\left(\gamma^{n}\right)$. (This notation gives $M=M_{0}=M(\varphi)$.) That is M_{n} is a genus two surface bundle with monodromy $\gamma^{n} \varphi$. We remark that the gluing map between W and $V\left(\gamma^{n}\right)$ is identical to the one between W and V.

It is easy to check:
Claim 2.3. The curves ∂T and $\varphi(\partial T)$ fill the surface F.
Thus by the arguments of [3], when n is sufficiently large, the maps $\varphi_{n}=\gamma^{n} \varphi: F \rightarrow F$ are pseudo-Anosov. (The map $\gamma \mid(F \backslash T)$ is the identity.) Also, by an earlier argument the volumes of M_{n} tend to infinity with n.

Confession: I don't really understand that last fact.
Let $H=\partial W=\partial V\left(\gamma^{n}\right)$. Note that H is a Heegaard splitting, as W and $V\left(\gamma^{n}\right)$ are handlebodies. I suspect, but cannot show, that H is strongly irreducible for n large. Instead we resort Lemma 3.2, stated and proved below. This will complete the construction.

3. The required facts about Heegaard splittings

We begin with a few general facts. Fix M, a closed orientable threemanifold. Suppose $H \subset M$ is a weakly reducible splitting of M which is not reducible. Following Casson-Gordon [2] there are disjoint collections of compressing disks \mathbf{D} and \mathbf{E} for the two sides of H. Note that \mathbf{D} and \mathbf{E} may be chosen any compressing curve in H is either parallel to a component of $\partial \mathbf{D} \cup \partial \mathbf{E}$ or intersects a component of $\partial \mathbf{D} \cup \partial \mathbf{E}$. (If not we could enlarge one of the two disk systems.) Compressing the splitting along these disks gives a surface G. The main result of [2] shows that at least one component of G is incompressible.

For every disk D in \mathbf{D} let D^{\prime} and $D^{\prime \prime}$ be the two subdisks of G resulting from compressing along D. Let $E^{\prime}, E^{\prime \prime} \subset G$ be defined similarly. Call these disks D^{\prime}, E^{\prime}, etc, the remnants of \mathbf{D} and \mathbf{E}.

Lemma 3.1. Let G^{\prime} be any incompressible component of G. Then G^{\prime} meets exactly two remnants, one from \mathbf{D} and one from \mathbf{E}.

Proof. If G^{\prime} meets only one remnant then G^{\prime} may be isotoped into one of the handlebodies determined by H. It would follow that G^{\prime} is compressible, a contradiction. Suppose G^{\prime} contains a pair of remnants D_{1}^{\prime} and D_{2}^{\prime}, say. Choose an embedded arc in G^{\prime} connecting D_{1}^{\prime} to D_{2}^{\prime} which avoids all other remnants. Use this arc to perform a band sum of ∂D_{1}^{\prime} and ∂D_{2}^{\prime}. The resulting curve is a compressing curve for H, is disjoint from $\partial \mathbf{D} \cup \partial \mathbf{E}$ and is not parallel to any component of $\partial \mathbf{D} \cup \partial \mathbf{E}$. This is a contradiction.

We use the following fact, special to genus three splittings:
Lemma 3.2. Suppose that M is an irreducible, atoroidal orientable closed three-manifold, which is not a lens space. Then any genus three splitting $H \subset M$ is either strongly irreducible or is stabilized. In the latter case H may be destabilized to obtain a strongly irreducible genus two splitting.

Proof. If H is reducible then, as M is irreducible, H is stabilized. In this case we destabilize H to obtain H^{\prime}, a genus two splitting of M. Note that H^{\prime} cannot by reducible as then M would be a lens space.

Suppose H (or H^{\prime}) is weakly reducible. As above choose disjoint collections of compressing disks \mathbf{D} and \mathbf{E} for the two sides of H (or $\left.H^{\prime}\right)$. Compressing the splitting along these disks gives the surface G. At least one component of G is incompressible.

Now, any compression at all of H^{\prime} will yield a torus. Hence H^{\prime} must not have been weakly reducible. So if H was reducible we are done. The final case to consider is that G is obtained by compressing
H. As G cannot contain a torus component there is a incompressible component, G^{\prime}, with genus two. By Lemma $3.1 G^{\prime}$ meets exactly two remnants, one from \mathbf{D} and one from \mathbf{E}.

It follows that G^{\prime} may be obtained from H by compressing along D_{1} and E_{1}, say, and removing extraneous components. Let J be the surface obtained by compressing H along D_{1} only. If J is disconnected then we have an immediate contradiction; E_{1} must compress the genus two component of J and G^{\prime} could not have had genus two. So J is connected. Also, ∂E_{1} is not an essential separating curve of J. Nor can ∂E_{1} be a nonseparating curve in J.

At the last ∂E_{1} is a nonessential curve in J. Let C be the disk bounded by ∂E_{1} in J. If C is disjoint from the remnants of D_{1} then ∂E_{1} bounded a disk in H and E_{1} was not a compressing disk. If C meets only one of the remnants of D_{1} then ∂E_{1} is parallel to ∂D_{1}, a contradiction (H would be reducible). So C contains both remnants. Now compress J along E_{1} and note that G^{\prime} meets no remnant on D_{1}. This final contradiction completes the claim.

4. ExERCISES

Please obtain the current homework from fellow student H. Masur. Note: no credit will be given for turning in a solution to the Poincare Conjecture. That assignment was due on Mon, 11 Nov 2002.

References

[1] David Bachman and Saul Schleimer. Surface bundles versus Heegaard splittings.
[2] A. J. Casson and C. McA. Gordon. Reducing Heegaard splittings. Topology Appl., 27(3):275-283, 1987.
[3] Yair N. Minsky. Problem set 1. 2002.
Saul Schleimer, Department of Mathematics, UIC, 851 South Morgan
Street, Chicago, Illinois 60607
E-mail address: saul@math.uic.edu

