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Abstract. We give a sequence of mapping tori Mn = M(ϕn), all
with genus two fibre, such that ϕn is pseudo-Anosov, vol(Mn) tends
to infinity with n, and yet all of the Mn have strongly irreducible
Heegaard splittings of genus two or three. This shows that the
main theorem of [1] cannot be altered to use translation distance
in the pants complex.

1. Introduction

Here is a quick sketch of the construction: we will take a fixed genus
two bundle over the circle and successively alter the monodromy via
powers of a partial pseudo-Anosov map. As shown in the last home-
work assignment [3] there is a simple condition which ensures that the
volumes increase without bound.
The resulting manifolds will all have a splitting of genus three. A bit

of work will prove that this splitting, or a related genus two splitting,
is strongly irreducible.

2. Construction of the examples

We first build the bundle M0 and define a few natural submanifolds.
Then we define the Mn’s.

2.1. Building M =M0 and the subsurface T . Let M̃ be the convex
polyhedron in R3 with vertices at the points

(cos ((2k + 1)π/8) , sin ((2k + 1)π/8) ,±1) .

Here k ranges from zero to eight. That is, M̃ is a regular octagon
crossed with an interval. Note that the faces are disjoint from the x,
y, and z-axes or meet them perpendicularly.
Construct M , a closed three-manifold, by identifying opposite ver-

tical faces via translation and by gluing the top to the bottom via a

one-eighth counterclockwise twist. Let q : M̃ → M be the natural
quotient map. Let πF :M → [−1, 1]/(−1 ∼ 1) be the map which takes
a point p ∈M to the z coordinate of q−1(p).
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Thus M is a genus two surface bundle over the circle with periodic

monodromy. Let F̃ be the intersection of M̃ with the x,y-plane. Let

F = q(F̃ ). We will think of the monodromy, ϕ, as a homeomorphism of

both F and F̃ . Note that ϕ acts on F̃ as an order eight counterclockwise
rotation.
Fix an small ε-neighborhood of the union of the x, y, and z axes

in R3. Set Ṽ equal to the intersection of this neighborhood with M̃ .

Then V = q(Ṽ ) is a genus three handlebody embedded in M .

Claim 2.1. The surface H = ∂V is a Heegaard splitting for M . In
fact, H is a stabilization of one of the vertical splittings of the Seifert
fibred space M .

Finally let T = V ∩F . Then T is homeomorphic to a once punctured
torus. Let V ′ ⊂ V be the intersection of a closed ε-neighborhood of
F with V (with ε as above). Then V ′ is homeomorphic to T×I and
B = V rV ′ is homeomorphic to a three-ball. Thus V ′ ∪ B realizes V
as T×I union a one-handle attached to either end of the T×I.
Let γ : T → T be any homeomorphism of T which restricts to the

identity map on ∂T . Define V (γ) to be the three-manifold obtained by
cutting V along T and regluing by the map γ. We have shown:

Claim 2.2. V (γ) is a genus three handlebody.

2.2. Checking Mn. Let W = MrV . Fix γ : T → T a pseudo-
Anosov automorphism of T restricting to the identity on ∂T . Define
Mn =M(γnϕ) =W ∪ V (γn). (This notation gives M =M0 =M(ϕ).)
That is Mn is a genus two surface bundle with monodromy γ

nϕ. We
remark that the gluing map between W and V (γn) is identical to the
one between W and V .
It is easy to check:

Claim 2.3. The curves ∂T and ϕ(∂T ) fill the surface F .

Thus by the arguments of [3], when n is sufficiently large, the maps
ϕn = γnϕ : F → F are pseudo-Anosov. (The map γ|(FrT ) is the
identity.) Also, by an earlier argument the volumes of Mn tend to
infinity with n.

Confession: I don’t really understand that last fact.

Let H = ∂W = ∂V (γn). Note that H is a Heegaard splitting, as
W and V (γn) are handlebodies. I suspect, but cannot show, that H is
strongly irreducible for n large. Instead we resort Lemma 3.2, stated
and proved below. This will complete the construction.
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3. The required facts about Heegaard splittings

We begin with a few general facts. Fix M , a closed orientable three-
manifold. Suppose H ⊂ M is a weakly reducible splitting of M which
is not reducible. Following Casson-Gordon [2] there are disjoint collec-
tions of compressing disks D and E for the two sides of H. Note that
D and E may be chosen any compressing curve in H is either parallel
to a component of ∂D∪ ∂E or intersects a component of ∂D∪ ∂E. (If
not we could enlarge one of the two disk systems.) Compressing the
splitting along these disks gives a surface G. The main result of [2]
shows that at least one component of G is incompressible.
For every disk D in D let D′ and D′′ be the two subdisks of G result-

ing from compressing along D. Let E ′, E ′′ ⊂ G be defined similarly.
Call these disks D′, E ′, etc, the remnants of D and E.

Lemma 3.1. Let G′ be any incompressible component of G. Then G′

meets exactly two remnants, one from D and one from E.

Proof. If G′ meets only one remnant then G′ may be isotoped into
one of the handlebodies determined by H. It would follow that G′ is
compressible, a contradiction. Suppose G′ contains a pair of remnants
D′

1 and D′

2, say. Choose an embedded arc in G′ connecting D′

1 to D
′

2

which avoids all other remnants. Use this arc to perform a band sum
of ∂D′

1 and ∂D
′

2. The resulting curve is a compressing curve for H, is
disjoint from ∂D∪∂E and is not parallel to any component of ∂D∪∂E.
This is a contradiction. ¤

We use the following fact, special to genus three splittings:

Lemma 3.2. Suppose that M is an irreducible, atoroidal orientable

closed three-manifold, which is not a lens space. Then any genus three

splitting H ⊂ M is either strongly irreducible or is stabilized. In the

latter case H may be destabilized to obtain a strongly irreducible genus

two splitting.

Proof. If H is reducible then, as M is irreducible, H is stabilized. In
this case we destabilize H to obtain H ′, a genus two splitting of M .
Note that H ′ cannot by reducible as then M would be a lens space.
Suppose H (or H ′) is weakly reducible. As above choose disjoint

collections of compressing disks D and E for the two sides of H (or
H ′). Compressing the splitting along these disks gives the surface G.
At least one component of G is incompressible.
Now, any compression at all of H ′ will yield a torus. Hence H ′

must not have been weakly reducible. So if H was reducible we are
done. The final case to consider is that G is obtained by compressing
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H. As G cannot contain a torus component there is a incompressible
component, G′, with genus two. By Lemma 3.1 G′ meets exactly two
remnants, one from D and one from E.
It follows that G′ may be obtained from H by compressing along

D1 and E1, say, and removing extraneous components. Let J be the
surface obtained by compressing H along D1 only. If J is disconnected
then we have an immediate contradiction; E1 must compress the genus
two component of J and G′ could not have had genus two. So J is
connected. Also, ∂E1 is not an essential separating curve of J . Nor
can ∂E1 be a nonseparating curve in J .
At the last ∂E1 is a nonessential curve in J . Let C be the disk

bounded by ∂E1 in J . If C is disjoint from the remnants of D1 then
∂E1 bounded a disk in H and E1 was not a compressing disk. If C
meets only one of the remnants of D1 then ∂E1 is parallel to ∂D1, a
contradiction (H would be reducible). So C contains both remnants.
Now compress J along E1 and note that G

′ meets no remnant on D1.
This final contradiction completes the claim. ¤

4. Exercises

Please obtain the current homework from fellow student H. Masur.
Note: no credit will be given for turning in a solution to the Poincare
Conjecture. That assignment was due on Mon, 11 Nov 2002.
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