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Heegaard splittings and the combinatorics of three-manifolds

1. Results from prior NSF support

Schleimer was the Principal Investigator for a NSF postdoctoral fellowship, award num-

ber 0102069. This grant provided two years of full time support and was spent at the

University of Illinois, Chicago. In addition to running the three-manifold seminar and

teaching duties the PI wrote approximately nine mathematical research papers, while

collaborating with six mathematicians. The most important work done by the PI with

NSF support was his work on Heegaard splittings and the recognition problem for the

three-sphere.

The PI has shown in [28] that a three-manifold contains only finitely many full Heegaard

splittings. This was the first generally applicable finiteness result – K. Johannson’s earlier

work [13] required that the manifold be Haken. With D. Bachman in [3] the PI investigated

Heegaard splittings of surface bundles. Their work generalized results of M. Lackenby [16],

H. Rubinstein [24], and K. Hartshorn [8] by giving a simple relationship between the

monodromy of the surface bundle and the genus of strongly irreducible Heegaard splittings

contained in the surface bundle.

The PI has also shown, in [27], that the three-sphere recognition problem lies in the

complexity class NP. In order to do this he showed that an almost normal surface can

be normalized in time at most polynomial in the logarithim of the weight of the almost

normal surface in question. It seems likely that this result will have applications to other

questions in algorithmic topology, such as the minimal Heegaard genus problem.

Schleimer also has an active interest in computer science. His work on document finger-

print selection, with A. Aiken and D. Wilkerson [29], is used in the engine of MOSS [1],

an online plagiarism detector. Their paper has been widely cited and not just in the

computer science literature – for example it appears in the second declaration of R. Davis

in the SCO vs. IBM case [6]. Finally, some applications of this work have been patented

by the Regents of the University of California [2].
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2. Overview of the proposal

The algorithmic topology of Heegaard surfaces can be explored in a manner directly

analogous to that of incompressible surfaces. This may be called the “Haken program for

Heegaard splittings”.

Recall that W. Haken’s normal form for incompressible surfaces is extremely important

to algorithmic three-manifold topology and to the study of three-manifolds in general. For

example, the theory proves the sphere and torus decompositions which are a prerequisite

for W. Thurston’s geometrization. Also, normal surfaces give the first and sometimes only

approach to algorithmic questions such as homeomorphism of Haken manifolds, recogni-

tion of Haken manifolds, counting incompressible surfaces in fixed genus, recognition of

the unknot, and computing the genus of homology trivial knots. It is also possible to

use Haken’s theory directly to give non-existence results: see Thurston’s discussion in

Chapter 4 of [32] showing that the figure-eight knot complement is small.

The above rich theory for incompressible surfaces may be modified to discuss Heegaard

surfaces. This is a very surprising idea. After all, Heegaard surfaces are as far as possible

from being incompressible. Nevertheless, Rubinstein [25] gives the required foundational

result: strongly irreducible Heegaard surfaces can be isotoped into almost normal form.

Strong irreducibility was defined by A. Casson and C. Gordon [5] and provides the correct

analogue of incompressibility.

We now see that for every result proved about incompressible surfaces there should be

a corresponding question about strongly irreducible splittings. For example, translating

the work of W. Jaco and U. Oertel [12] to this context, we have:

Question 2.1. How do almost normal strongly irreducible Heegaard splittings decompose

as Haken sums?

More precisely I make the following:

Conjecture 2.2. For any closed orientable triangulated three-manifold there is a finite

collection of pairs {(Hi, Bi)}i so that any strongly irreducible Heegaard splitting many be

isotoped to be an almost normal surface H which decomposes as H = Hi + Fi where Fi is

carried by the normal incompressible branched surface Bi.

(We adopt the convention that the empty branched surface carries only the empty

surface.) This is a translation of the work of W. Floyd and Oertel [7] to our situation.
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However the conjecture currently appears to be out of reach.1 In Section 4 we discuss

several easier goals – in particular we plan to attack Problem 1 which is good evidence

for Conjecture 2.2

The study of cut and paste constructions also leads naturally to a discussion of the

Hempel distance introduced in [10]. In particular I am interested in algorithmic results:

Question 2.3. Is there an algorithm which, given a Heegaard diagram, computes the

distance of the underlying Heegaard splitting?

This question is also quite difficult. For example, answering this would also solve the

much simpler Question 4.2 (below) that been has been heavily studied due to its con-

nection with the Poincare Conjecture. Nonetheless, computing reasonable upper bounds

is within reach. In this line we discuss two more of my ongoing research programs in

Section 5. Of particular interest is Problem 5. More speculative work on lower bounds is

also mentioned – here we plan to focus on resolving Question 5.9.

3. Definitions

Recall that a Heegaard splitting of a closed orientable three-manifold M is an embedded

surface H ⊂ M which cuts M into a pair of handlebodies V and W . These are necessarily

of the same genus. A disk D properly embedded in a handlebody V is essential if ∂D ⊂ ∂V

is not null-homotopic.

A cut system for a handlebody V of genus g is a collection of g disjoint essential disks

which cut V into a three-ball. A Heegaard diagram of a Heegaard splitting of (H,V,W )

is a choice of cut system for each of V and W .

A splitting H ⊂ M is reducible if there are essential disks D ⊂ V and E ⊂ W with

identical boundaries. Casson and Gordon extend this notion: H ⊂ M is weakly reducible

if there are essential disks D ⊂ V and E ⊂ W with disjoint boundaries. If H is not

(weakly) irreducible we say H is (strongly) irreducible.

Thompson has further extended this notion: H ⊂ M has the disjoint curve property if

there are essential disks D ⊂ V and E ⊂ W and an essential simple closed curve α ⊂ H

where ∂D ∩ α = α ∩ ∂E = ∅. If H does not have the disjoint curve property then we say

H is full. This because, for any pair of essential disks in V and W , their boundaries fill

the surface H

1The recent work of T. Li, [17] and [18], does not alter this fact, as discussed in the sequel.
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A triangulation T of M is a disjoint union of tetrahedra, all modeled on the regular

Euclidean three-simplex of sidelength one, together with face-pairings giving a three-

manifold homeomorphic to M . We say an embedded surface S ⊂ T is normal if S is

transverse to the skeleta of T and inside every tetrahedron S consists of normal disks.

See Figure 1.

Figure 1. Two of the four normal triangles and one of the three quads.

We say an embedded surface S ⊂ T is almost normal if S is transverse to the skeleta

of T and inside every tetrahedron S consists of normal disks except there is exactly one

tetrahedron also containing an almost normal piece. See Figure 2.

Figure 2. One of the three almost normal octagons and one of the 25 annuli.

4. Cut and paste techniques

In his 1978 survey paper [33] F. Waldhausen asked a sequence of questions about the

structure of Heegaard splittings of three-manifolds. Rephrased in modern language they

are:

Question 4.1. Does every three-manifold contain only finitely many irreducible Heegaard

splittings?
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Question 4.2. Is there an algorithm which, given a Heegaard diagram, decides whether

or not the underlying splitting is irreducible?

Question 4.3. Is there an algorithm which, when given a Heegaard diagram, lists all

irreducible splittings of the represented three-manifold?

Note that the answer Question 4.1 is “No”; manifolds with infinitely many irreducible

splittings were first given by Casson and Gordon [4]. This construction, which uses pretzel

knots with nice properties, has been generalized by M. Lustig and Y. Moriah [19] and

T. Kobayashi [15].

The PI, together with Moriah and Sedgwick [23], has given new examples based on

an essentially different construction. We find a (actually many) manifold containing a

Heegaard surface H and an incompressible surface K, both of genus three. Higher genus

splittings are obtained by taking many copies of K and performing a Haken sum with H.

A small neighborhood of the intersection H ∩K is removed and other annuli are added

to form a closed surface as illustrated in Figure 3. After discovering these examples we

then proved (also in [23]) that the examples of Casson and Gordon are also of this form.

PSfrag replacements

H

H + nK

Figure 3. Cross sectional view before and after the Haken sum.

Note that, in general, the Haken sum includes the choices of new annuli. However

in the presence of a background such as a triangulation, branched surface, or transverse

orientation the Haken sum becomes canonical.

We remark that the decomposition of normal surfaces is one of their important features:

on the one hand there is a connection to linear algebra, yielding finiteness results, on the

other hand there is a connection to cut and paste constructions, yielding topological

results.

In the same paper we asked if all high genus Heegaard splittings are obtained this way.

Immediately after our paper was posted Li gave extremely strong evidence for a “yes”
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answer. In [17], for any atoroidal manifold he finds a finite collection of branched surfaces

which carry all strongly irreducible Heegaard splittings of genus at least two. As these

branched surfaces further only carry surfaces of negative Euler characteristic he deduces

that any atoroidal manifold has only finitely many splittings in any genus. In [18], Li

shows that an non-Haken manifold contains only finitely many irreducible splittings (as

previously conjectured by Sedgwick in [23]). Thus Question 4.1 is in fact true if one

assumes fixed genus or the absence of incompressible surfaces.

In line with the examples noted above, the I believe that I can solve:

Problem 1. Find a manifold M containing surfaces H,K, J so that H + nK + mJ is a

strongly irreducible Heegaard splitting for all positive integers n and m.

Such examples would definitely show that the results in Li’s papers [17] and [18] are

more general than those of [23]. To briefly outline the proposed construction: Double a

high genus handlebody across its boundary. Decompose the interior of the handlebody

into several regions which alternate between being I-bundles and being handlebodies.

Also a curve in the boundary of the handlebody will be chosen. After twisting along this

curve at least six times we will obtain a new manifold with the desired properties. See [23]

for a detailed discussion of the H + nK case.

We also note that Li uses compactness in an essential way in both of his arguments.

Thus effective bounds are still lacking:

Problem 2. Show that, for any H,K,H + K ⊂ M with genus(K) > 1, there is a

positive integer n so that if H + nK is a strongly irreducible Heegaard splitting then K

is incompressible.

Theorem 1.1 of [23] draws a similar conclusion but requires a sequence of n’s tending to

infinity. Li’s second paper [18] also requires arbitrarily large genus splittings. So Problem 2

points towards an effective version of “Haken’s program for Heegaard splittings.” As a

brief indication of why Problem 2 is within reach recall that the proof of Theorem 1.1

in [23] examines a possible compressing disk D for K and discusses D’s intersection with

H and H + nK. It should be possible to apply complexity bounds similar to the ones

found in [9] to control the size of the disk D. This, and a careful examination of cases,

will solve Problem 2. However this is just the beginning of a richer theory.

For example, a carefully analysis of Li’s work may solve:
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Question 4.4. For any closed orientable three-manifold M there is a number n > 0 so

that any strongly irreducible Heegaard splitting H ⊂ M with genus greater than n has a

two-sided incompressible surface as a Haken summand.

Even better from the algorithmic point of view would be:

Question 4.5. There is a computable function f : N → N so that if H ⊂ (M,T ) is

a strongly irreducible Heegaard splitting with genus greater than f(|T |) then H has a

two-sided incompressible surface as a Haken summand.

Here T is a given triangulation of M and |T | is the number of tetrahedra in T . It is

difficult to imagine this result following from Li’s work due to the compactness arguments

he relies on. As is usual in normal surface theory, I suspect that this function is at worse

exponential. As evidence for a positive answer to Question 4.5 we turn to my paper [28]

on Thompson’s disjoint curve property. There I investigated the “thick/thin” structure of

an almost normal surface of sufficiently high genus which did not have the disjoint curve

property. This, after a great deal of work, leads to an incompressible surface summand.

From this a contradiction is deduced and we have:

Theorem 4.6. Suppose (M,T ) is a closed, orientable, triangulated three-manifold. Sup-

pose H ⊂ M is an almost normal Heegaard splitting with genus g(H) > exp(216|T |2).

Then H has the disjoint curve property.

Here exp(x) = 2x. This theorem, when combined with [17], has an interesting corollary:

Theorem 4.7. In any closed, orientable three-manifold there are only finitely many full

Heegaard splittings, up to isotopy.

Returning to the main theme: one way to resolve Question 4.5 is to carefully analyze

the argument proving Theorem 4.6. Instead of assuming high genus and fullness assume

only high genus and strong irreducibility. If the argument can be made direct (instead

of relying on a contradiction) then a stronger theorem will be obtained. In particular

answering Question 4.5 this way would give an effective version of Li’s second paper [18].

An even more delicate analysis is required to deal with:

Conjecture 2.2. For any closed orientable triangulated three-manifold there is a finite

collection of pairs {(Hi, Bi)}i so that any strongly irreducible Heegaard splitting many be

isotoped to be an almost normal surface H which decomposes as H = Hi + Fi where Fi is

carried by the normal incompressible branched surface Bi.
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What is called for here is an understanding of how a collection of incompressible surfaces

meet a fixed Heegaard splitting – converse to the examples desired in Problem 1. Again,

the thick/thin decomposition of [28] should give an approach.

We end this section by noting that the structure which Conjecture 2.2 imposes on the set

of Heegaard splittings should have some implications for the Stabilization Conjecture [26].

As a first step in this direction we propose:

Problem 3. The Heegaard splitting H + nK, after one stabilization, destabilizes to any

splitting H + mK with m ≤ n.

Note that this has been verified by Sedgwick [30] for Casson and Gordon’s original

examples in [4].

5. The Hempel distance

We now turn to Questions 2.3 and 4.2. These are quite difficult, as evidenced by

the many failed attempts to find a recognition algorithm for the three-sphere and false

proofs of the Poincare Conjecture. The common theme to many of these was to define

a complexity measure of a Heegaard splitting (or some other combinatorial presentation)

of the manifold in question. Then a finite collection of local simplification moves would

be given and a proof assayed to show that these moves, when applied to splittings of the

three-sphere, led to some standard splitting.

Successful proofs required a global simplification tool: thin position in the case of three-

sphere recognition and (apparently) Ricci flow for the Poincare Conjecture. The catch is

that neither has been computed algorithmically.

Similarly, Hempel’s distance is a global complexity which is difficult to compute. Again

this is not surprising as an algorithm to compute the Hempel distance of a splitting

would resolve several long standing questions in the theory of Heegaard splittings. Before

discussing these we require a few definitions:

Definition 5.1. Fix H a closed orientable surface of genus at least two. Define the graph

of curves of H, C1(H), to be the graph with vertices being isotopy classes of essential

simple closed curves. There is an undirected edge for every pair of vertices which can be

realized disjointly and all edges have length one.

Definition 5.2. If V is a handlebody with boundary H define the handlebody graph,

C1(V ), to be subgraph with vertices those curves which bound disks in V .
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Definition 5.3. If H is a Heegaard splitting separating M into handlebodies V and W

then the Hempel distance of H, dC(H), is the minimal distance in C(H) between C(V )

and C(W ).

The Hempel distance was introduced in [10]: a splitting H is irreducible if and only

if dC(H) > 0, is strongly irreducible if and only if dC(H) > 1, and is full if and only if

dC(H) > 2. J. Hempel has conjectured that the existence of a full splitting in M implies

that M is hyperbolic. Indeed, this follows from the Geometrization Conjecture and the

classification of Heegaard splittings of non-hyperbolic geometric manifolds.

Note that the graph of curves is locally infinite. It is immediately clear that algorithmic

questions will be challenging. For example, it is non-trivial to give a method to determine

distance between given vertices in the graph of curves.

A simple result in this direction is found by Hempel (see also Lemmas 2.1 and 4.11

of [22]):

Lemma 5.4. If α and β are essential simple closed curves in H then

dC(α, β) ≤ 2 log(|α ∩ β|) + 2.

This result can be greatly improved using the theory of subsurface projections developed

by H. Masur and Y. Minsky [20], N. Ivanov [11], and others. We will return to this theme

in Section 5.2

In light of the above it is not a surprise that that the following question is very difficult:

Question 2.3. Is there an algorithm which, when given a Heegaard diagram of H ⊂ M ,

computes dC(H)?

In particular, an answer to this also solves Waldhausen’s second Question 4.2.

5.1. Upper bounds. A method for finding upper bounds on distance, refining work of

Kobayashi [14], is given by Hartshorn [8]:

Theorem 5.5. If F ⊂ M is a two-sided incompressible surface and H ⊂ M is a Heegaard

splitting then dC(H) ≤ 2 · genus(F ).

To see this, use H to sweep out the manifold. Any generic level of the sweep-out

intersects F in a collection of simple closed curves. As H moves the collection transforms

via band-sums. An argument shows that the number of band-sums required is bounded

by the topology of F . A question immediately arises:
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Question 5.6. Find an upper bound for the distances of Heegaard splittings contained

in a non-Haken manifold.

Note that Theorem 4.7 implies that for every non-Haken manifold there is some bound.

Furthermore, recent work of J. Brock and J. Souto (in preparation) suggests that for any

genus g there are constants a and b, given by a compactness argument, so that the related

pants distance of a Heegaard splitting is bounded below by vol/a− b and bounded above

by avol + b, where vol is the volume of the hyperbolic three-manifold. In any case the

question of an effective bound persists. To be more specific:

Problem 4. Find an explicit constant K so that for any closed orientable triangulated

three-manifold (M,T ) and for any Heegaard splitting H ⊂ M the inequality dC(H) ≤

K · |T | holds.

As an idea of how to proceed, we may assume that dC(H) ≥ 2 and apply the almost

normalization theorem of Rubinstein [25] and M. Stocking [31]: with respect to any

triangulation H may be isotoped to be an almost normal surface. Each tetrahedron of

the triangulation is now divided into core and product pieces. Here a product piece is a

component of a tetrahedron cut by H which is cobounded by exactly two normal disks of

the same type. See Figure 4.

Figure 4. A tetrahedron cut by H. Note that there are two product blocks.

Recall that H cuts M into a pair of handlebodies V and W take VI to be a regular

neighborhood (in V ) of all of the product blocks in V . Set VC = V rVI and define WI ,WC

similarly. Then VI is an I-bundle over some surface and is relatively simple, topologically.

On the other hand, VC is build out of a bounded number of pieces (linear in |T |) each

of uniformly bounded complexity. After we understand how these two submanifolds fit

together we will find an essential disk (D, ∂D) ⊂ (V,H) as do J. Hass et al.in [9], following

Haken. Now, if ∂D had uniformly bounded complexity, and the same situation held in
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W then we would be done by Lemma 5.4. In fact, the truth may be slightly more

complicated: it seems difficult to bound the length of ∂D in the subsurface H ∩ VI .

However, it seems likely that a bound on ∂D∩∂(H∩VI) may be obtained. This, together

with three applications of Lemma 5.4, should solve Problem 4 and thus give a first answer

to Question 5.6. We remark that the appearance of the curves ∂(H ∩VI) is likely not just

an ad hoc device. See Section 5.2 below.

There is a second important approach to Question 5.6 which I am pursuing with Marc

Lackenby. The idea is to replace the incompressible surface of Hartshorn’s theorem by

another Heegaard splitting:

Problem 5. Suppose that H and K are Heegaard splittings of M and K is not a stabi-

lization of H. Show that dC(H) ≤ 2 · genus(K).

Notice that the assumption on K cannot be removed: Hempel has found a sequence

of splittings (of distinct manifolds) of fixed genus with increasing distance [10]. On the

other hand, the assumption is extremely useful after making the standard reduction to the

strongly irreducible case. Now isotope H and K close to disjoint spines. After labeling

the components of MrH by V and W we may assume that K ⊂ V . An argument proves

that every compressing disk of H contained in V must meet K.

This should be thought of as the base case of an inductive process analogous to Stock-

ing’s proof that strongly irreducible Heegaard splittings can be made almost normal [31].

The spines of H replace the one-skeleton in Stocking’s proof, and the sweep-out by surfaces

isotopic to H replace the two-skeleton. Using the sweep-out by surfaces isotopic to K,

and an inductive procedure, will put K into “almost normal position” with respect to the

spine and sweep-out of H. This position of K should replace Hartshorn’s incompressible

surface.

As an application of Problem 5 we would have: If H is a genus g splitting of M with

dC(H) > 2g then H is a minimal genus splitting of M .

5.2. Lower bounds. This section describes work in progress with H. Masur. Finding

lower bounds for the Hempel distance is more difficult than the upper bounds described

above. More difficult still is computing the distance exactly. Nonetheless there are hints

on how to proceed in a paper by Masur and Minsky [21]:

Theorem 5.7. Suppose that V is a handlebody with genus at least two. Suppose that

H = ∂V . Then the handlebody graph C(V ) is quasiconvex inside of C(H).
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This is more meaningful in a broader context, also due to Masur and Minsky [22]:

Theorem 5.8. The graph of curves C(H) is Gromov hyperbolic.

We now apply this to Heegaard diagrams. Suppose that (H,D,E) is a Heegaard dia-

gram, with D a cut system for V and E a cut system for W . There is a hierarchy (similar

to a geodesic) from D to E, DE, in CH. By quasiconvexity combined with hyperbolicity,

the hierarchy DE travels from D along C(V ) then towards C(W ) then along C(W ) until

it reaches E – see Figure 5. It may be possible to estimate the length of the hierarchy

algorithmically. What is not known is how to estimate the distance between a point of

DE and, say, C(V ). If this was done, then we could compute the closest approach between

C(V ) and C(W ). This would answer Question 2.3 as the closest approach between two

handlebody graphs is the distance of the corresponding splitting.

PSfrag replacements

C(V )

C(W )

D

E

D′

Figure 5. The hierarchy DE travels near the closest approaches between

C(V ) and C(W ).

Suppose that D′ is a cut system for V which is as close as possible (in C(H)) to C(W ).

Then any hierarchy DD′ between D and D′ fellow travels DE, at least while the latter

remains close to C(V ). The hope, then, is to analyze the curves making up DD′. Any

properties found in the curves of DD′ should appear in the fellow-traveling segment of

DE.

As hinted above, in Section 5.1, a curve which does not bound a disk in V may appear

in DD′ if it is half of the boundary of an essential annulus in V . Specifically this annulus

is part of the vertical boundary of an I-bundle VI where V = VI ∪ VC . It is easy to see

how a disk in V may be altered by changing the way it meets VI . This is closely related

to the machinery of subsurface projections, which we now recall.

Suppose that T is a subsurface with essential boundary of the closed orientable surface

S. Here we assume that 3 · genus(T ) + |∂T | > 3. (We are ignoring technical issues
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regarding annuli.) Let α ⊂ S be an essential curve, isotoped to meet ∂T efficiently: so

that Sr(∂T ∪ α) has no bigon components. Let the subsurface projection of α to T be

πT (α): the curves of ∂η(∂T ∪ (α∩T )) which are not peripheral in T . If α can be isotoped

to lie in SrT then πT (α) is undefined.

Now if α and β are a pair of curves in S define dT (α, β) to be the distance in C(T )

between πT (α) and πT (β), if both are defined. The Masur-Minsky theory states that a

hierarchy between α and β can be essentially predicted from the set of large subsurface

projections.

Returning to handlebodies we have:

Question 5.9. What are the essential subsurfaces of H = ∂V which control the hierarchy

DD′?

Note that the answer “all” is incorrect because by Theorem 5.7 the graph C(V ) is quasi-

convex in C(H). It follows that a subsurface T ⊂ H with dH(C(V ), ∂T ) large does not

appear in DD′.

We require a more refined answer than this to obtain algorithmic results. There is an

immediate list of subsurfaces T which must be allowed. Choose an I-bundle structure

on V fibring over a connected surface with a single boundary component. Let T be the

horizontal boundary of this I-bundle structure. Also, let α be the core curve of the vertical

boundary (which is a single annulus). If D and D′ have large subsurface projection to T

then α must appear in the hierarchy DD′. As a secondary output we find:

Lemma 5.10. The subgraph C(V ) is not quasi-isometrically embedded in C(H).

It appears reasonable that other I-bundle structures may arise, as hinted at in Sec-

tion 5.1. Surfaces T ⊂ H bounding subhandlebodies Z ⊂ V . In any case, once Ques-

tion 5.9 is resolved, an algorithm for Question 2.3 may be within reach. We first compute

the distance between D and E, the given cut systems for V and W . We now wish to find

D′, a closest approach of C(V ) to C(W ). To do this recall that DD′ and DE fellow-travel.

The Masur-Minsky theory tells us that any sufficiently large subsurface projection for

DD′ will also appear in DE. Thus we need only trace along DE until we find the first

subsurface projection which is of the incorrect type to appear in DD′.
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