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Abstract. Every cusped, finite–volume hyperbolic three–manifold has a ca-

nonical decomposition into ideal polyhedra. We study the canonical decom-
position of the hyperbolic manifold obtained by filling some (but not all) of
the cusps with solid tori: in a broad range of cases, generic in an appropriate

sense, this decomposition can be predicted from that of the unfilled manifold.

0. Introduction

Let M be a complete cusped hyperbolic 3–manifold of finite volume, and endow
the cusps c1, . . . , ck of M with disjoint simple horoball neighborhoods H1, . . . ,Hk.
The Ford–Voronoi domain F ⊂ M consists of all points of M having a unique
shortest path to the union of the Hi. The complement of F is a compact complex
C of totally geodesic polygons. By definition, the canonical decomposition D of M
with respect to the Hi has one 3–dimensional cell (an ideal polyhedron) per vertex
of C, one face per edge of C, and one edge per (polygonal) face of C; we say that
D is dual to C. Other names for D are the geometrically canonical decomposition,
or Delaunay (or Delone) decomposition. In [EP], Epstein and Penner give a precise
description of D in terms of convex hulls in Minkowski space R3+1. Weeks’ program
SnapPea [We] will compute D for most manifolds of moderate size.

Akiyoshi [A2] proves that, as the volumes of {Hi}1≤i≤k vary, only finitely many
decompositions D arise. By Mostow-Prasad rigidity, the resulting collection of De-
launay decompositions is a complete topological invariant of M . When M has a
single cusp there is a unique Delaunay decomposition. When M has multiple cusps
one may take all of their volumes to be equal; SnapPea uses the resulting decom-
position for rigorous computation of isometry groups and detection of isometric
manifolds [We2].

Thus canonical decompositions lead to an interplay between hyperbolic geometry
and the combinatorics of cell–decompositions. This motivates the study of D and
suggests that it is a difficult problem in general. General results are known only
when M is restricted to belong to certain classes of manifolds: punctured–torus
bundles, two–bridge link complements, certain arborescent link complements and
related objects, or covers of any of these spaces [J2, A1, La, ASWY1, ASWY2, GF,
G2, G3]. In fact, the combinatorics underlying all the above examples are to a large
extent the same. More examples, often using symmetry, are compiled in [SW].

The present paper offers a relative result: we are interested in how the canonical
decomposition D changes when the last cusp ck (where k ≥ 2) undergoes a Dehn
filling along the slope s. Recall that filling along s removes the interior of ck from
M and glues a solid torus Xs to the resulting boundary component, yielding the
filled manifold Ms. Thurston showed that the metric on Ms Gromov–converges,
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with appropriate choices of basepoints, to the metric on M as the length of the
filling slope s goes to infinity. Consequently, a Margulis tube (region where the
injectivity radius is less that the Margulis constant) appears about the core curve
of Xs [Th].

Experimentation with SnapPea suggests that, for many manifolds, cusps, and
slopes, after filling ck the polyhedra of D outside the Margulis tube undergo only
a small geometric perturbation while the combinatorics of Ds inside the tube has
a predictable structure. To ensure such good behavior we choose the reference
horoball neighborhoods {Hi}1≤i<k of the remaining cusps after filling to have the
same volumes as before filling. Moreover, we take the horoball neighborhood Hk

before filling to be very small and we make two “genericity” assumptions:

(I) The decomposition D (before filling) consists only of ideal tetrahedra.

(II) There exists a unique shortest path from Hk to
⋃k−1

i=1 Hi in M .

Of course, this notion of genericity is problematic as there are only countably
many complete finite–volume cusped hyperbolic 3–manifolds; infinitely many of
these are non–generic. Still, SnapPea verifies that of the fifteen twice–cusped man-
ifolds from the five–tetrahedron census [CHW] (m125, m129, m202, m203, m292,
m295, m328, m329, m357, m359, m366, m367, m388, m391, m412), eleven are
generic. The Whitehead sister m125 fails (I), while the Whitehead link m129, as
well as m203 and m412, fail both (I) and (II). All 15 admit involutions switching
the cusps. All 15 except m412 are obtained by filling a cusp of the census manifold
s776, itself generic.

It is a corollary of Theorem 1 that if a generic manifold M has k cusps, if the
horoball Hk−1, like Hk, has a unique shortest path to H1 ∪ · · · ∪Hk−2, and if both
Hk−1 and Hk are small, then all but finitely many fillings on ck are again generic
with respect to ck−1. In short, almost all fillings of generic manifolds (such as s776)
are again generic.

Theorem 1. Under the genericity assumptions (I–II) above, if the volume of the
cusp neighborhood Hk is small enough, then the decomposition D (before filling)
contains exactly two ideal tetrahedra ∆,∆′ that have a vertex in the cusp ck. The
tetrahedra ∆,∆′ are isometric, each of ∆,∆′ has exactly one vertex in ck, and
∂(∆∪∆′) is a once-punctured torus. For all but finitely many filling slopes s in the
cusp ck, the canonical decomposition Ds of the manifold obtained by Dehn filling
along s is combinatorially of the form

Ds = (D r {∆,∆′}) ∪ T
where T = {∆1, . . . ,∆N} is a triangulation of a solid torus minus one boundary
point, and the combinatorial gluing of the ∆i is dictated by the continued fraction
expansion of the slope s, with respect to a certain basis of the first homology of the
cusp ck depending only on D.

As set out in Section 2, the combinatorics of the triangulation T are identical to
a procedure found in the SnapPea kernel [We], called the layering construction by
Jaco and Rubinstein [JR]. Each integer α near the middle of the continued fraction
expansion gives rise to α adjacent tetrahedra, to one edge of degree 2α + 4, and
to α − 1 edges of degree 4 (the average degree of edges is always 6 by an Euler
characteristic argument). See Section 2 for details.

Geometrically, the tetrahedra of Ds rT are small deformations of the tetrahedra
of Dr{∆∪∆′}. To predict Ds when genericity is not satisfied, or even to estimate
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the number of slopes s which fail to be sufficiently large in the sense of Theorem 1
(their number may not be universally bounded), remains very challenging.

We will prove Theorem 1 in Section 4. Moreover, an analogous statement (The-
orem 26) will still hold when more than one cusp is filled. In Section 5, we will
treat a real–life family of examples by showing

Theorem 2. If M is a hyperbolic Dehn filling of one cusp of the Whitehead link
complement in S3, the canonical decomposition of M is dictated by the continued
fraction expansion of the filling slope.

The Whitehead link complement actually violates both conditions (I–II) of the
genericity assumption, but its symmetry compensates this inconvenience. In fact,
we will construct a certain triangulated solid torus, also denoted T , that serves as a
proxy for the Margulis (filling) tube: in the case of the Whitehead link complement,
it turns out that the filled manifold consists only of T with some exterior faces
pairwise identified, i.e. no combinatorics outside T need to be remembered from the
unfilled manifold. However, T can be slightly more complicated than in Theorem
1 — see Section 5 for details.

Historically, the first avatar of the triangulation T of Theorem 1 seems to go
back to [J1] where Jørgensen briefly described the Ford–Voronoi domain of the
quotient of H3 by a loxodromy, with respect to an ideal point p. Full proofs of his
results were given by Drumm and Poritz [DP], who also allow p to be non-ideal. For
ideal p, we use angle structures and ideal triangulations (combinatorially dual to
the Ford–Voronoi domain) to obtain new and quite different proofs of these results.
Additionally, this technique provides the following improvements over the existing
literature:

• Suppose that Γ is a Kleinian group and Z ⊂ Γ an infinite cyclic subgroup
resulting from a Dehn filling. Then the canonically triangulated solid torus
corresponding to Z is incorporated into the canonical triangulation of H3/Γ.
Under the genericity assumption this incorporation explains how, in the
program SnapPea, the picture of a triangulated cusp neighborhood changes
under Dehn filling.

• In Section 5.4, we sketch an extension to the case where Z is only virtually
cyclic.

• The convex hull in H3 of an ideal loxodromic orbit always admits a canonical
triangulation by the Epstein–Penner construction (extended to the infinite–
covolume case by Akiyoshi and Sakuma [AS]). However, some of the out-
ermost tetrahedra may be timelike or lightlike, and not spacelike, in which
case they do not correspond to vertices of the Ford–Voronoi domain (which
indeed may have no vertices at all, e.g. for loxodromies with very small
rotation number). Although this case does not arise in the context of Dehn
fillings because the covolume stays finite [EP], it is covered at no extra cost
by our methods, and apparently eludes those of [DP].

The plan of the paper is as follows. In Section 1 we recall the definition of
the space W of angle structures on a combinatorial ideal triangulation, and explain
(following Rivin [R1]) how to find the hyperbolic structure by maximizing a volume
functional V on W ; as an application we prove a rigidity result for solid tori. In
Section 2 we recall the combinatorics of the Farey graph in H2 and use it to describe
an ideal triangulation of a solid torus T . In Section 4, using results from [G2], we
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check that the decomposition of T is geometrically canonical, and describe how
to insert T as a proxy Margulis tube of a filled manifold, under the genericity
assumptions (I–II). In Section 5, we adapt the method to treat all Dehn fillings on
one component of the Whitehead link complement.

Acknowledgements. We are very grateful to PCMI (Park City), where this work
originated during the summer of 2006. This project would have been impossible
without Jeff Weeks’ program SnapPea [We].

This work is in the public domain.

1. Angle structures and volume maximization

In Section 1.1 we give basic definitions and quote Theorem 5 (due to Rivin),
the cornerstone of our method to find positively oriented ideal triangulations. In
Section 1.2, we parametrize the deformation space of certain hyperbolic solid tori;
the method, while not a direct application of Theorem 5, follows from the same
ideas and from the concept of “spun” triangulations [Th].

1.1. Rivin’s theorem.

Definition 3. A (combinatorial) ideal tetrahedron is a space diffeomorphic to an
ideal tetrahedron of hyperbolic space H3 (i.e. with vertices at infinity); the faces of
such an ideal tetrahedron are called ideal triangles.

Consider an oriented combinatorial ideal tetrahedron ∆, and copies ∆1, . . . ,∆N

of ∆: the ∂∆i naturally receive consistent orientations. A gluing of the ∆i is an

equivalence relation on
⊔N

i=1 ∆i generated by orientation–reversing identifications
φFG : G→ F of pairs of faces F 6= G of the ∆i, in such a way that

• For each face F of each ∆i, there is at most one face G (resp. G′) of some
∆j such that ϕFG (resp. ϕG′F ) is defined; moreover G exists if and only if

G′ exists and one then has G = G′ and ϕG′F = ϕ−1
FG;

• Whenever ϕ := ϕF1F2
◦ ϕF2F3

◦ · · · ◦ ϕFn−1Fn
◦ ϕFnF1

is well–defined on an
edge ǫ of ∆i, then ϕ is the identity of ǫ.

The last condition is called the trivial holonomy condition.

Let ∼ be a gluing: then M :=
⊔N

i=1 ∆i

/
∼ is a manifold (possibly with bound-

ary). We say that the ∆i endow M with an ideal triangulation. The 6N edges of
the ∆i define edges in M , which we call boundary edges if they belong to ∂M , and
interior edges otherwise.

Let us denote by ǫ1i , . . . , ǫ
6
i the six edges of ∆i (before gluing), and by E the

set of all ǫκi (so |E| = 6N). We say that ǫ ∈ E is incident to an edge e of M if ǫ
projects to e under the gluing “∼”. Fix a map α : {boundary edges of M} → R+.

Definition 4. An angle structure on M with respect to α is a map θ : E → R∗
+ such

that

• If the edges ǫ, ǫ′, ǫ′′ of ∆i share a vertex, then θ(ǫ) + θ(ǫ′) + θ(ǫ′′) = π;
• If ǫ1, . . . , ǫn ∈ E is the full list of edges incident to an interior edge e of M ,

then
∑n

i=1 θ(ǫi) = 2π;
• If ǫ1, . . . , ǫn ∈ E is the full list of edges incident to a boundary edge e of
M , then

∑n
i=1 θ(ǫi) = π−α(e). (This is a convexity condition on M , since

α ≥ 0.)
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The θ(ǫ), for ǫ ∈ E, are called the dihedral angles of the ∆i. Given an angle
structure, we can realize each ∆i by an ideal hyperbolic tetrahedron δi of H3 with
dihedral angles θ(ǫ1i ), . . . , θ(ǫ

6
i ); however, when the face identifications ϕFG are

the corresponding hyperbolic isometries, the trivial holonomy condition may be
violated. The following theorem tells us exactly for which angle structures this
problem disappears.

Theorem 5 (Rivin, [R1]). Suppose the space W of angle structures is non–empty.
Then every critical point θ ∈W of the volume functional

V(θ) := −1

2

∑

ǫ∈E

∫ θ(ǫ)

0

log |2 sinu| du > 0

defines a complete hyperbolic metric with polyhedral boundary on M , with exterior
dihedral angle α(e) at each exterior edge e. Conversely, if M admits such a complete
hyperbolic metric in which the ∆i are realized by totally geodesic ideal tetrahedra δi
with disjoint interiors, then the dihedral angles of the δi define a critical point of V.

(In [R1], Rivin mainly treats the case where M is a ball and all tetrahedra have
a common vertex [see especially Lemma 6.12 and Theorem 14.1 there]: however,
the general case requires only minor adjustments. A nice treatment can be found
in [CH]; see also the proof of Lemma 6.2 in [GF], where each interior edge e is
associated a natural direction ve ∈ TW so that the holonomy around e is trivial if
and only if dV(ve) = 0.)

Note that in an angle structure, the dihedral angles at opposite edges of any tetra-
hedron ∆i are equal; if θ1, θ2, θ3 are the dihedral angles at the edges coming into one

(and therefore any) vertex of ∆i, then V0(θ1, θ2, θ3) := −∑3
i=1

∫ θi

0
log |2 sinu| du

is the volume of the ideal tetrahedron of H3 with those dihedral angles, by the
Lobachevski formula (this tetrahedron is unique up to isometry of H3). Thus V(θ)
can be interpreted as the sum of the volumes of the tetrahedra ∆i.

Fact 6. The function V0 is continuous and convex on Θ := {(θ1, θ2, θ3) ∈ R3
+ | θ1 +

θ2 + θ3 = π}, strictly convex on the interior of Θ, and vanishes on ∂Θ. For any
x ∈ (0, π) and any ω ∈ R one has

d

dt |t=0+

V0(π − x− ωt , x− (1 − ω)t , t) = +∞.

This expresses the fact that if exactly one of the three angles of an ideal tetrahedron
∆ is 0, increasing that angle to ε ≪ 1 yields a volume increase much greater than
ε; note that the same statement is false when two angles of ∆ are 0. For proofs,
refer e.g. to Propositions 6.6. – 6.7 of [GF] (strict concavity follows from an easy
discussion of the second derivative computed there).

Fact 6 implies that the volume functional V : W → R of Theorem 5 is concave
and positive, and extends continuously to a concave function on the (compact)
closure W of W . It moreover implies

Proposition 7 (Rivin, [R1]). Suppose W 6= ∅ and let θ0 ∈ W be a point where V
reaches its maximum. Either

• θ0 belongs to W , i.e. θ0(E) ⊂ R∗
+, in which case θ0 is a (necessarily unique)

critical point for V in W ; or
• there exists a non–empty list of tetrahedra ∆i1 , . . . ,∆is

that have an edge ǫ
such that θ0(ǫ) = 0: then, each ∆ik

also has an edge ǫ′ such that θ0(ǫ
′) = π.
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1.2. Rigidity of solid tori. In this section we prove a rigidity result for hyperbolic
polyhedral solid tori with given dihedral angles (and one ideal vertex). The method
is a special case of a generalization of Theorem 5 to spun triangulations.

Consider a once–punctured torus τ with three ideal edges e, e′, e′′ running from
the puncture to itself: these edges divide τ into two ideal triangles. Let γ be a
non–oriented free homotopy class of simple closed curves in τ , and let n, n′, n′′ ∈ N
be the minimal intersection numbers of γ with e, e′, e′′ respectively. It is well–
known that the triple (n, n′, n′′) determines the class γ, and that the largest among
n, n′, n′′ is the sum of the other two terms.

Let a, b, c ∈ [0, π) be such that a+b+c = π, and consider coprime positive integers
na, nc. We aim to construct a punctured solid torus X (namely a solid torus minus
one point of its boundary) with the following properties: the punctured torus ∂X
has three ideal edges with exterior dihedral angles a, b, c, and the meridian of X
intersects these three edges minimally in na, na + nc, nc points respectively. We
write nb := na + nc.

Proposition 8. A hyperbolic solid torus X as above exists if and only if ana +
b nb + c nc > 2π. This solid torus is then unique up to isometry.

Remark 9. The left member of the inequality is the sum of exterior dihedral angles
met by a meridian in ∂X: the inequality can thus be seen as a sort of Gauss-Bonnet
condition for the compression disk of the solid torus X (see [FG] for a more general
construction). In Section 2, we will check that the same condition is also enough
for a certain (non–spun) ideal triangulation of X to have angle structures (with
respect to a, b, c), and indeed to be geometrically realized.

Proof. If X exists, we can consider its universal cover U which is a complete hyper-
bolic manifold with locally convex boundary and is thus, by a standard argument,
naturally embedded in H3. This space U is the convex hull of the orbit of an ideal
point of ∂∞H3 ≃ S2 under a certain loxodromic ϕ (corresponding to the core curve
of X). We can cone all faces of U to the attractive fixed point of ϕ: this yields
a ϕ–invariant decomposition of U (minus the axis of ϕ) into tetrahedra, hence,
quotienting out by ϕ, a decomposition of the solid torus X (minus the core axis)
into two ideal tetrahedra ∆,∆′. Note that this decomposition has only one interior
edge L, originating at the puncture of ∂X and spinning towards the core of X.
Thus, constructing X in general amounts to finding positive dihedral angles for
∆,∆′ such that

(i) The holonomy around L is the identity of H3, i.e. the six angles around L
sum to 2π and the six associated tetrahedron shape parameters in C r {0, 1}
have product equal to 1. (a definition of holonomy was sketched when we
described gluings in Section 1.1 above; for a more precise one, refer e.g. to
Definition 6.3 of [GF].)

(ii) The boundary of ∆ ∪ ∆′ has interior dihedral angles π − a, π − b, π − c.
(iii) The holonomy around the core curve of X is also the identity of H3.

Condition (i) above is automatically satisfied because each dihedral angle of ∆
and ∆′ is incident to L exactly once. To study Condition (ii), let us fix some
notation: let ABC and ACD be two counterclockwise oriented triangles in C ⊂
P1C ≃ ∂∞H3; we identify ∆ with the tetrahedron ∞ABC and ∆′ with ∞ACD,
gluing the ideal triangles ∞AB and ∞DC (resp. ∞AD and ∞BC) together. The
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interior angles at A,B,C of ∆ are denoted δa, δb, δc respectively. The interior angles
at A,C,D of ∆′ are denoted δ′c, δ

′
a, δ

′
b respectively (see Figure 1).

A

B C

D

δa

δb δc
δ′a

δ′bδ′c

λa

λc

Figure 1. The cusp shapes of ∆ and ∆′.

Condition (ii) can then be written

δa + δ′a = π − a ; δb + δ′b = π − b ; δc + δ′c = π − c.

(indeed, the triangles in Figure 1 represent a triangulation of the punctured torus
∂(∆ ∪∆′), and each interior dihedral angle there is the sum of one angle in ∆ and
one angle in ∆′). This implies

(1)

{
(δa, δb, δc) =

(
π−a

2 + α , π−b
2 + β , π−c

2 + γ
)

(δ′a, δ
′
b, δ

′
c) =

(
π−a

2 − α , π−b
2 − β , π−c

2 − γ
)

where

(2) |α| < π−a
2 , |β| < π−b

2 , |γ| < π−c
2 , and α+ β + γ = 0.

The space of solutions (α, β, γ) to (2) is the interior of a centrally symmetric affine
hexagon P whose edges are given by

(3) α = π−a
2 , β = −π−b

2 , γ = π−c
2 , α = −π−a

2 , β = π−b
2 , γ = −π−c

2

in that order. (It is easy to check that these edges are all non–empty segments if
a, b, c > 0, and that e.g. the first and fourth edges are reduced to points if and only
if a = 0.) See Figure 2.

α = π−a
2

α = −π−a
2

β = π−b
2

β = −π−b
2

γ = π−c
2

γ = −π−c
2P

S

Figure 2. The hexagon P of solutions (α, β, γ) to (2), and the
segment S of spun angle structures. At most one pair of opposite
sides of P can be reduced to points, because a, b, c < π.

Condition (iii) has two components: first, an angular component (linear in terms
of the dihedral angles of ∆,∆′) which will narrow down the space of solutions
(α, β, γ) to the intersection of the interior of P with a certain line. This intersection
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will be non–empty (namely, an open segment S) exactly when the inequality of
Proposition 8 is satisfied. Second, a scaling component which we will solve by
seeking a critical point of a volume functional on S.

Angular component. Following the notation above (and Figure 1), we refer to
the three exterior edges of X as AB,BC,CA: the corresponding exterior dihedral
angles are c, a, b respectively. The angular holonomy map is a group homomorphism
h : H1(∂X,Z) → R. Let the oriented closed curve λa (resp. λc) be a boundary

component of a regular neighborhood of the oriented edge
−−→
BC (resp.

−−→
BA), as in

Figure 1. By the conventions (1) above, h([λa]) = δa − δ′a = 2α and h([λc]) =
−δc + δ′c = −2γ. The meridian µ of X is homotopic to nc[λa] + na[λc] (where
na, nc > 0), because this class intersects na times the edge BC, nb = na +nc times
the edge AC, and nc times the edge BA. Hence,

h([µ]) = 2(ncα− naγ).

Using (3), and considering the appropriate vertex of the space P of angle structures,
the largest (resp. smallest) possible value of h([µ]) on the closure of P is therefore
2
(
nc

π−a
2 + na

π−c
2

)
= ana + bnb + cnc (resp. the negative of that number), where

we used a+ b+ c = π and nb = na +nc. We conclude that h([µ]) = 2π is satisfiable
on the interior of P if and only if ana + b nb + c nc > 2π, as wished.

Scaling component. The scaling holonomy map is a group homomorphism

η : H1(∂X,Z) → R∗
+. The sine formula for triangles yields η([λa]) = sin δb

sin δc

sin δ′

c

sin δ′

b

and

η([λc]) = sin δb

sin δa

sin δ′

a

sin δ′

b

, hence

η([µ]) = η([λa])ncη([λc])
na =

(
sin δb
sin δ′b

)na+nc
(

sin δc
sin δ′c

)−nc
(

sin δa
sin δ′a

)−na

.

On the other hand, let S be the open segment defined by the intersection of the
interior of P with the condition h([µ]) = 2π, i.e. ncα − naγ = π. The tangent

space of S is generated by the vector (α̇, β̇, γ̇) = (na,−na − nc, nc). Let Λ be the
Lobachevski function defined by Λ(x) = −

∫ x

0
log |2 sin t| dt. The volume functional

is by definition

S −→ R+

V : (α, β, γ) 7−→ V0(δa, δb, δc) + V0(δ
′
a, δ

′
b, δ

′
c)

where V0(x, y, z) = Λ(x) + Λ(y) + Λ(z) is the volume of one ideal tetrahedron, and
δa, . . . , δ

′
c are given by (1). By Fact 6, V is strictly concave on the segment S and

achieves its maximum in S (indeed, the endpoints of S belong to the perimeter of
the hexagon P , but at any point of ∂P , at least one of the tetrahedra ∆,∆′ has
exactly one angle whose value is 0: therefore, V has unbounded derivative near
each endpoint of S). As a result, V has a unique (critical) maximum in the open
segment S.

At that critical point, since (α̇, β̇, γ̇) = (na , −na − nc , nc), we have

0 = dV(α̇, β̇, γ̇) = α̇Λ′(δa) + β̇Λ′(δb) + γ̇Λ′(δc) − α̇Λ′(δ′a) − β̇Λ′(δ′b) − γ̇Λ′(δ′c)

= −α̇ log |2 sin δa| − β̇ log |2 sin δb| − γ̇ log |2 sin δc|
+α̇ log |2 sin δ′a| + β̇ log |2 sin δ′b| + γ̇ log |2 sin δ′c|

= log

[(
sin δa
sin δ′a

)−na
(

sin δb
sin δ′b

)na+nc
(

sin δc
sin δ′c

)−nc

]
= log η([µ]).
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At the critical point of V in S, we therefore have the following values for the
holonomy maps: h([µ]) = 2π (rotational component) and η([µ]) = 1 (scaling com-
ponent). This precisely means that the metric completion of ∆∪∆′ is the solid torus
X endowed with a spun triangulation of two tetrahedra whose tips spin around the
core curve. Moreover, any realization of X with the prescribed dihedral angles
yields a spun triangulation into positively oriented tetrahedra (∆,∆′), because we
can always cone the faces of the (convex) universal cover U ⊂ H3 of X = U/ϕ to
the attracting fixed point of ϕ. Since the critical point of V in S is unique, we have
therefore proved that X itself is unique up to isometry. �

2. Farey combinatorics in solid tori

Let X be a compact solid torus, minus one point of its boundary; call this
removed point the puncture.

In this section we will first describe a certain combinatorial decomposition D
of X into ideal tetrahedra, relative to a given ideal triangulation of ∂X (into two
ideal triangles). This is essentially similar to a construction for closed manifolds
that appears in the function standard torus form() in [We, close cusps.c]. This
layering construction is analyzed in great detail by Jaco and Rubinstein [JR]. We
next go on to find a geometric realization of D, using the ideas of Section 1.

2.1. The Farey graph. Identify the boundary at infinity of the hyperbolic plane
H2 to the circle P1R, endowed with the action of PSL2(Z). We assume that 0, 1,∞
lie counterclockwise in that order on ∂∞H2 ≃ P1R. Consider the subset P1Q of

P1R. We measure the “proximity” of two elements q = y
x and q′ = y′

x′
of P1Q (given

as ratios of coprime integers) by computing their wedge

(4) q ∧ q′ :=

∣∣∣∣
∣∣∣∣
y y′

x x′

∣∣∣∣
∣∣∣∣ ∈ N (absolute value of the determinant).

If we draw a straight line in H2 from q to q′ each time q∧q′ = 1, we obtain the Farey
triangulation of H2. Alternatively, this triangulation can be defined by reflecting
the ideal triangle 1∞0 in its sides ad infinitum.

Fix an identification (homeomorphism) between the punctured torus ∂X and
T := (R2 r Z2)/Z2. We assume that the canonical orientation of T (induced by
R2), followed by the outward–pointing normal of ∂X, coincides with the positive
orientation on X. The segment from (0, 0) to (x, y) in R2 (where x, y are coprime
integers) projects to a properly embedded (open) arc γ in ∂X: we say that y

x ∈
P1Q is the slope of γ. An edge E of the Farey triangulation (or: a Farey edge)
corresponds to a pair of disjoint arcs γ, γ′ in ∂X, whose slopes are the two ends
of E in P1Q, and whose complement in ∂X is an ideal quadrilateral. Similarly,
Farey triangles (such as 1∞0), having three vertices in P1Q, correspond to triples
of disjoint arcs γ, γ′, γ′′ in ∂X which define a decomposition of ∂X into two ideal
triangles. Finally, note that we can also associate a slope in P1Q to the meridinal
closed curve µ of the solid torus X: namely, the slope of the unique properly
embedded arc µ′ which (possibly after isotopy) does not intersect µ.

Let pqr be a Farey triangle, and suppose m ∈ P1Q r {p, q, r} is the slope of the
meridian of X. By convention, we will suppose that the Farey edge pq separates r
from m, and that pqm is not a Farey triangle (som is “far enough” from the triangle
pqr). Endow the punctured torus ∂X with the ideal triangulation associated to
pqr (which we call the pqr–triangulation). In Section 2.2, we will be preoccupied
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with decomposing X into ideal tetrahedra with faces (ideal triangles) glued in
pairs, in such a way that exactly two ideal triangles remain free, and give the
pqr-triangulation of ∂X.

2.2. An ideal triangulation of the solid torus. The idea is to follow a path ℓ
in the Farey triangulation, transverse to the Farey edges, from the ideal vertex r
to the ideal vertex m. We assume that the path ℓ crosses each Farey triangle at
most once, i.e. never backtracks. The sequence of Farey triangles that ℓ encounters
is then completely determined (so we can take ℓ to be e.g. a geodesic ray): these
triangles are

(T0, T1, . . . , TN ) = (pqr, pqr′, . . . ,mst)

where s, t belong to P1Q and the symmetry of axis pq takes r to r′. Note that by
assumption, N ≥ 2.

For each 0 < i < N , we can then consider a properly embedded punctured torus
τi ⊂ X isotopic to ∂X (properness here means that by intersectiong τi with a basis
of neighborhoods of the puncture of X, we get a basis of neighborhoods of the
puncture of τi). We can assume that the τi are disjoint and that τi separates ∂X
from τi+1 (i.e. τi+1 lies in the solid torus X “inward” from τi). Endow τi with the
triangulation associated to the Farey triangle Ti — for that purpose we also count
∂X as τ0. Note that two consecutive punctured tori τi−1, τi always have two edge
slopes in common (these slopes are the ends of the Farey edge Ti−1 ∩ Ti). Thus,
we can isotope τ1 until its edges of slopes p, q coincide with those of τ0 = ∂X; then
isotope τ2 until two of its edges coincide with the edges of similar slopes in τ1; then
isotope τ3 until it intersects τ2 along two edges, etc.

At the end of this process, the space comprised between τi−1 and τi, for each 0 <
i < N , is a (combinatorial) ideal tetrahedron ∆i with four of its edges identified in
opposite pairs. These tetrahedra ∆i, with the combinatorial gluing that arises from
the construction above, are by definition those of our decomposition D of X. (Since
N ≥ 2, there is at least one tetrahedron ∆i. Our “half–shift” convention ∂∆i =
τi−1 ∪ τi, or equivalently τi = ∆i ∩ ∆i+1, is arbitrary). In order to homotopically
“kill” the meridian of the solid torus X, it only remains to describe the gluing of
the last surface τN−1 to itself.

If TN = mst is the last Farey triangle, let TN−1 = m′st be the next-to-last,
associated to the surface τN−1. We fold τN−1 along its edge of slope m′, gluing
the two adjacent faces (ideal triangles) F ′, F ′′ to one another to obtain a single
ideal triangle F . Intrinsically, F is an ideal Möbius band, i.e. a compact Möbius
band minus one point of its boundary. Indeed, from an (ideal) triangle ABC, one
can construct an (ideal) Möbius band F with boundary AC, by gluing the oriented
edge AB to BC: the (punctured) torus τN−1 = F ′ ∪ F ′′ then just wraps around
this (ideal) Möbius band F , like the boundary of a regular neighborhood of an
embedding of F in R3. See Figure 3.

2.3. Angle structures. We proceed to describe positive angle structures for the
tetrahedra ∆i, where 1 ≤ i ≤ N − 1 (the argument is reminiscent of [GF] and [G2],
although the solution space will look quite different). More precisely, consider reals

(5) θp, θq, θr such that





θp + θq + θr = π ;
θp , θq ≥ 0 ;
π > θr > 0 .
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A

B

C

µ

Figure 3. Left: a punctured torus (shown are 3 folded copies of a
fundamental domain; arrows are identified) wraps around an ideal
Möbius band. The meridian arc µ, of slope m, becomes homotopi-
cally trivial. The dotted folding edge AC has slope m′. Right:
part of the universal cover of the same Möbius band (shaded) and
the tetrahedron ∆N−1 glued to it.

We will look for angle structures on the ∆i such that the interior dihedral angles
of X at the edges of slope p, q, r in ∂X are π − θp, π − θq, π − θr respectively.
Note that we do not allow θr to vanish: indeed, π − θr will be a dihedral angle of
the first tetrahedron ∆1. (If the solid torus X admits a geometric realization in
which θr = 0, we can always remove this flat tetrahedron ∆1 and see ∂X as being
endowed with the pqr′–triangulation, where r′ ∈ P1Q is the symmetric image of r
with respect to the Farey edge pq.)

Proposition 10. An angle structure satisfying (5), also called a (θp, θq, θr)–angle
structure, exists if and only if (m ∧ p)θp + (m ∧ q)θq + (m ∧ r)θr > 2π.

Remark 11. It is easy to check thatm∧r = (m∧p)+(m∧q) — e.g. by reducing to the
case (p, q) = (0,∞) and using the PSL2(Z)–invariance of the ∧–notation. Thus, by
(5), the inequality of Proposition 10 is automatically true unless min {m∧p,m∧q} =
1. For example, if (m ∧ p,m ∧ q) = (1, 1), the condition is always false (recall we
required that pqm not be a Farey triangle); if (m∧ p,m∧ q) = (2, 1), it amounts to
θr > θq. The equilateral triangle in Figure 4 shows the full parameter space for the
triple (θp, θq, θr): shades indicate how many slopes m fail to satisfy the condition
of Proposition 10, where we allow m to range over all of P1Q rather than just over

the arc
⌢
pq (when m belongs to one of the arcs

⌢
qr,

⌢
rp, we construct the same ideal

triangulations, up to a permutation of p, q, r).

Proof. (Prop. 10). The tetrahedra ∆i are naturally associated to the Farey edges
ei = Ti−1 ∩ Ti that the path ℓ crosses. Orient ℓ from T0 to TN . If ei and ei+1

share their Right (resp. Left) end with respect to the orientation of ℓ, we say that
ℓ makes a Right (resp. a Left) between ei and ei+1 (or: at Ti). Thus, ℓ defines a
word Ω = RLL...R of length N−1 in the letters R,L: for each i ∈ {1, 2, . . . , N−1}
there is a tetrahedron ∆i and a letter Ωi ∈ {R,L}. If (p, q, r) = (0,∞,−1), then
the lengths of the syllables Rn and Ln of Ω are exactly the integers in the continued
fraction expansion of the rational m, as referred to in Theorem 1.
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(π, 0, 0)

(0, π, 0)

(0, 0, π) 9

10

11

12

13

14

15

16

17

18

19 or more

Figure 4. Parameter space for the triple (θp, θq, θr), and numbers
of “forbidden” slopes m (the brighter, the fewer).

Note that no letter R or L is associated to the very first Farey triangle T0 = pqr,
because the line ℓ does not “enter” T0 through pr rather than through qr. We
nevertheless decide to place an extra letter Ω0 ∈ {R,L} in front of the word Ω, so
that Ω becomes of length N and starts with either RR or LL. This convention is
totally artificial (the other choice would be equally good), but making a choice here
will allow us to streamline the notation in our argument. Up to switching p and q,
we can now assume that ℓ enters the Farey triangle T0 through the edge pr, and
leaves through pq. See Figure 5.

p

q

r

r′

m

s

t

m′

T0

T1

TN

TN−1

RRRR LL
ℓ

Figure 5. The Farey graph. The 5 thick lines Ti−1 ∩ Ti (where
1 ≤ i ≤ 5) correspond to the tetrahedra ∆i.

Definition 12. If Ωi−1 6= Ωi, we say that ∆i is a hinge tetrahedron. Otherwise, we
call ∆i non–hinge. For example, following our convention, ∆1 is non–hinge.
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To compute angle structures, it will be useful to describe the cusp triangulation
associated to the ideal triangulation {∆i}1≤i≤N−1 of X. Since each pleated punc-
tured torus τi has one ideal vertex and three edges, each with two ends, the link
of the ideal vertex of τi is a hexagon Hi (the pleating angles of τi are the exterior
angles of Hi). We are going to define the dihedral angles of the ideal tetrahedra
∆i in terms of the pleating angles of the τi. Note that the hexagon Hi has a cen-
tral symmetry induced by the hyperelliptic involution of the punctured torus τi
(rotation of 180◦ around the puncture, which exchanges the ends of each edge of
τi).

Let ξηζ = Ti−1 and ξηζ ′ = Ti be two consecutive Farey triangles, so that the
Farey vertex ξ (resp. η) lies to the right (resp. left) of the oriented axis ℓ. The
tetrahedron ∆i has:

• two opposite edges carrying the same dihedral angle xi and identified to
just one edge, of slope ξ, in the triangulation of the solid torus (for the time
being, xi is just a formal variable);

• two opposite edges carrying the same dihedral angle yi and identified to
just one edge, of slope η, in the triangulation (similarly, yi is formal);

• two opposite edges which carry the same (formal) dihedral angle zi, and
which coincide with the edges of slope ζ and ζ ′ in the triangulation.

As in any angle structure, the relationship xi + yi + zi = π must hold between the
formal variables.

The vertices of the hexagon Hi−1 (resp. Hi) are the links of edges of slopes ξ, η, ζ
(resp. ξ, η, ζ ′). We can write these labels ξ, η, ζ, ζ ′ at the vertices of Hi−1 and Hi:
see Figure 6 (left).

Observation 13. By construction, the vertex of the hexagon Hi−1 labelled ζ has an
interior angle of zi, while the vertex of the hexagon Hi labelled ζ ′ has an interior
angle of 2π − zi. This comes from the fact that the boundary of the tetrahedron
∆i is exactly the union of the two pleated punctured tori τi−1 and τi (with vertex
links Hi−1,Hi).

As a consequence, we can determine the three interior angles of the hexagon Hi

(each angle occurs twice, by central symmetry of Hi):

(6) 2π − zi ; zi+1 ; zi − zi+1 .

Indeed, the first two of these numbers are given by Observation 13 (shifting indices
by one for zi+1); the third is given by the property that the six angles of Hi should
add up to 4π. See Figure 6, (right).

We can in turn write the numbers (6) in the corners of the Farey triangle Ti:
namely, 2π− zi is in the corner opposite the Farey edge Ti−1 ∩ Ti; similarly zi+1 is
in the corner opposite the Farey edge Ti ∩Ti+1; and zi − zi+1 is in the third corner,
at the Farey vertex Ti−1 ∩ Ti+1. See Figure 7.

The above operation can be performed for all indices i ∈ {1, . . . , N − 2}. For
i = N−1, there is no tetrahedron “∆N”; hence, a priori, no parameter zN . However,
if m′ ∈ P1Q is the vertex of the Farey triangle TN−1 opposite the Farey edge
TN−1∩TN in TN−1, then the interior angle of the (collapsed) hexagon HN−1 at the
vertex labelled m′ is precisely 0, by definition of our folding of the pleated surface
τN−1 onto itself. This folding thus corresponds to asking that

zN = 0 .
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z2
z2

z1

z1

H0

H0

H1

H1

H2

ξ

ξ

η

η

ζ

ζ

ζ ′

ζ ′

Figure 6. Left: two consecutive hexagonsH0,H1 in the cusp link,
with vertices labelled by elements of P1Q. The four (similar) grey
triangles are the vertex links of the ideal tetrahedron ∆1. Right:
the full sequence of hexagons H0, . . . ,H3, where H3 is collapsed to
a broken line of 3 segments. The angles z1 and z2 of the tetrahedra
∆1 and ∆2 are marked; together they determine the interior angles
(6) of H1.

Under this convention, the other angles of the collapsed hexagon HN−1 are then
given by the same formulas (6), with i = N − 1.

Finally, we perform an analogous construction at i = 0 (our assumptions imply
that H0 is convex, with angles π−θp, π−θq, π−θr). There is no tetrahedron “∆0”;
hence, a priori, no parameter z0. However, the interior angle of H0 at the vertex
labelled r is π − θr, which entails z1 = π − θr. Similarly, the interior angle of H0

at the vertex labelled q is π − θq, which entails z0 = 2π − (π − θq) = π + θq. To
summarize,

Proposition 14. Under the full set of assumptions

(7)
( z0 , z1 , z2 , . . . , zN−1 , zN )

= ( π + θq , π − θr , z2 , . . . , zN−1 , 0 )

(where the values of (z2, . . . , zN−1) remain to be chosen), the angles of the hexagons
{Hi}0≤i≤N−1 given by (6) define all the (θp, θq, θr)–angle structures. �

To get angle structures, we must only choose the z2, . . . , zN−1 in the interval
(0, π) so that all dihedral angles of ∆i are positive for 1 ≤ i ≤ N − 1, which we do
now.

Denote by ξ (resp. η) the right (resp. left) end of the Farey edge Ti−1 ∩ Ti. By
construction, xi (resp. yi) is half the difference between the angles of hexagonsHi−1

and Hi at the vertex labelled ξ (resp. η) in the cusp link, i.e. half the difference
between the numbers written in the ξ–corner (resp. the η–corner) of the Farey
triangles Ti−1 and Ti in the Farey diagram. (The factor one–half comes from the
identification of pairs of opposite edges in the ideal tetrahedron ∆i.) In Figure 7
we show what these numbers are, according to whether the line ℓ makes Rights or
Lefts at the Farey triangles Ti−1 and Ti: we use only (6) and the shorthand

(8) (a, b, c) := (zi−1 , zi , zi+1) .
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ξ
ξ

ξ
ξ

η
η

η
η

R

R

R

R L

LL

L

bbbb

2π-b2π-b2π-b2π-b

2π-a2π-a 2π-a2π-a
cccc
a-ba-ba-ba-b

b-cb-cb-cb-c

Figure 7. The Farey triangles Ti−1 (lower) and Ti (upper), with
corner labels.

It follows that the values of xi and yi in terms of the zi are given by Table (9)
— in the first line of the table, we recall the nature of the tetrahedron (or cell) ∆i,
and the natural positions of a, b, c, interspersed with the letters of the word Ω.

(9)

zi-1 zi zi+1

Ωi−1 , Ωi︸ ︷︷ ︸
Cell ∆i is...

a b c

R , R︸ ︷︷ ︸
Non–hinge

a b c

L , L︸ ︷︷ ︸
Non–hinge

a b c

R , L︸ ︷︷ ︸
Hinge

a b c

L , R︸ ︷︷ ︸
Hinge

xi
a− 2b+ c

2
π − a+ c

2

a− b− c

2
π − a+ b− c

2

yi π − a+ c

2

a− 2b+ c

2
π − a+ b− c

2

a− b− c

2

zi b b b b

From Table (9), we can read off the condition for all xi and yi and zi to be
positive. Still using the notation (a, b, c) = (zi−1 , zi , zi+1) (and recalling that
the values of z0, z1 are forced by 7), these conditions are

(10)





• a > b+ c if ∆i is a hinge cell (hinge condition);
• a+ c > 2b if ∆i is not a hinge (convexity condition);
• 0 < zi < π for all 2 ≤ i ≤ N − 1 (range condition);
• z2 < π − θq (follows from the case i = 1, a non–hinge index).

The last condition is needed for π− z0+z2

2 (namely, x1 or y1) to be positive, because
z0 = π + θq (unlike other zi) is larger than π. Note that by (7), the convexity
condition at i = 1 also implies z2 > π − θq − 2θr. This is compatible with the last
condition of (10) since θr > 0 by (5).

To actually find (z2, . . . , zN−1) satisfying (10), thus proving Proposition 10, we
now distinguish two cases.

• Case 1: none of the ∆i are hinge cells. In this case, we are reduced to
finding a sequence of the form (7) that is convex, decreasing, and satisfies
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z2 < π − θq. This is clearly possible if and only if

(π + θq) −N(θr + θq) < 0 ,
i.e. (N − 1)θq +Nθr > π ,
i.e. θp +Nθq + (N + 1)θr > 2π ,

where the last line follows from (5). It is easy to check that under the nor-
malization (p, q) = (∞, 0) and r ∈ {+1,−1} (one of which can be assumed
up to applying an element of PSL2(Z)), the slope m ∈ P1Q is, up to sign,
the integer N : indeed, all the letters of the word Ω are equal and the Farey
triangle Ti has vertices ∞, i, i − 1 if r = 1 (and ∞,−i,−i + 1 if r = −1).
The last line of the computation above thus becomes

(m ∧ p)θp + (m ∧ q)θq + (m ∧ r)θr > 2π ,

proving Proposition 10 in this case.
• Case 2: some ∆i are hinge cells. By Remark 11, the inequality of

Proposition 10 is vacuous in this case. Let us therefore just construct a
sequence of the form (7) that satisfies (10). Let h ∈ {2, 3, . . . , N − 1} be
the smallest hinge index. We can easily choose a strictly convex, positive,
decreasing sequence

( z0 , z1 , z2 , . . . , zh−1 , zh )
= ( π + θq , π − θr , z2 , . . . , zh−1 , zh )

satisfying z2 < π−θq. We construct the rest of the sequence (zi) backwards,
descending from the index i = N down to i = h. First set z′N = 0 and
z′N−1 = 1. For each i such that N − 2 ≥ i ≥ h + 1, pick (inductively)
a value of z′i such that (a, b, c) := (z′i, z

′
i+1, z

′
i+2) satisfies the concavity or

hinge condition of (10), according to whether ∆i+1 is a hinge cell or not
(for example, z′i = 3z′i+1 will always do). The sequence (z′h+1, . . . , z

′
N−1) is

clearly positive and decreasing. We then set

zi := εz′i for all h+ 1 ≤ i ≤ N :

it is immediate to check that the hinge condition “a > b + c” of (10) is
verified by the triple (a, b, c) = (zh−1, zh, zh+1) as soon as

0 < ε <
zh−1 − zh

z′h+1

.

Thus, by choosing such an ε, we have found a sequence (zi) of the form (7).

Proposition 10 is proved. �

2.4. Volume maximization. Denote by (10’) the system (10) in which all strong
inequalities have been replaced by weak ones, and let W denote the compact poly-
hedron of solutions (zi) of the form (7) to the system (10’) — so the interior of
W is the space of angle structures. The volume functional V : W → R+ associates
to every point z of W the sum of the volumes of the ideal tetrahedra ∆i with
non-negative angles xi, yi, zi given by Table 9.

Suppose that θp, θq, θr satisfy (5) and the inequality of Proposition 10 (hence
W 6= ∅). We henceforth assume that the point z = (zi) ∈W realizes the maximum
of V over W , and we aim to prove

Proposition 15. The point z is a solution of (10), not just (10’) — i.e., all ∆i

have only positive angles.
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Proof. Observe that the sequence (z0, . . . , zN ) is non-negative and non-increasing.
This follows from (10’) by an immediate downward induction (starting at zN ).

By Proposition 7, we know that if ∆i is flat, i.e. has a vanishing dihedral angle,
then its triple of angles is of the form (0, 0, π), up to permutation. Thus, by Table
(9), ∆i is flat exactly when zi ∈ {0, π}. By monotonicity, since z1 = π − θr < π,
the only flat tetrahedra ∆i actually satisfy zi = 0. Still by monotonicity, it then
follows that zi+1 = 0 as well. Let i be the smallest index such that zi = 0. An easy
discussion, using Table (9), shows that the only possible value of zi−1 that implies
{xi, yi} = {0, π} is zi−1 = 2π (recall here the a-b-c–notation 8). This is impossible:
only z0 = π + θq is allowed to be larger than π, but we have θq < π by (5). �

Corollary 16. The point z defines a complete hyperbolic structure on the punctured
solid torus X = ∆1 ∪ · · · ∪ ∆N−1, with exterior dihedral angles θp, θq, θr on ∂X.

Proof. By Theorem 5, this follows from the fact that z is critical for the volume
functional V : W → R. �

An alternative proof would closely follow that of [GF, Lemma 6.2]: to each
interior edge E of X is associated a certain line LE in the tangent space TzW ,
such that the vanishing of the derivative of V along LE expresses the fact that the
hyperbolic metric near E is complete.

3. Handedness

In this section, we discuss the handednesses of certain elements in the funda-
mental group of the (complete, hyperbolic) punctured solid torus X. These results
will be useful in establishing the inequalities leading to Theorem 1 (which is proved
in the next section).

Definition 17. For any g ∈ GL2(C), define the handedness of g by

hand (g) :=
(Tr g)2

Det g
.

Note that hand (g) = hand (g−1) = hand (rg) for all r ∈ C∗. Therefore, hand factors
through a map PSL2(C) → C, also noted hand. Call a loxodromy of H3 left–handed
(resp. right–handed) when it is conjugate to z 7→ αz with |α| > 1 and Im (α) > 0
(resp. |α| > 1 and Im (α) < 0). Left–handed loxodromies are “corkscrew” motions,
the motion of a dancer who jumps upwards while spinning to her left. It is easy to
check that the Möbius transformation associated to g is left– (resp. right–) handed
if and only if Im (hand (g)) is positive (resp. negative).

Let U be the universal cover of the solid torus X =
⋃N−1

i=1 ∆i. Since U is a
complete hyperbolic manifold with locally convex boundary, the developing map
U → H3 is an embedding. Thus U ⊂ H3 is the convex hull in H3 of the orbit of an
ideal point v under a certain loxodromy

ϕ ∈ Isom+(H3) ≃ PSL2(C)

(typically extremely short, corresponding to the core curve of the solid torus). Make
the attractive (resp. repulsive) fixed point of ϕ coincide with the North pole P+

(resp. the South pole P−) of S2 ≃ ∂∞H3; assume that v lies on the Equator at
longitude 0, and orient the Equator along increasing longitudes. As a cover of the
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space X which is triangulated, U comes with a natural, ϕ–invariant decomposition
into ideal tetrahedra.

The projection with respect to the center of Poincaré’s ball model sends ∂U
homeomorphically to S2 r {P+, P−} r {ϕn(v)}n∈Z. For each edge vv′ of ∂U (be-
tween ideal points v, v′ ∈ S2), this projection sends vv′ to the short great–circle arc
⌢

vv′ in S2. If vv′′ is another edge of ∂U , this allows us to speak about the angle

v̂′vv′′ ∈ (−π, π] between v′ and v′′, as seen from v (i.e. in TvS2).
The punctured torus τ0 = ∂U/ϕ has three ideal edges, each endowed with a

positive dihedral angle. Therefore the ideal vertex v of U is connected to six other
vertices of U by edges of ∂U , and there is a natural cyclic order on these six
vertices. The equatorial plane intersects ∂U along a broken line J from v to v
which is properly embedded in ∂U (with both its endpoints ideal). We can orient
J along increasing longitudes.

Definition 18. Let v1, . . . v6 (with indices seen modulo 6) denote the six neighbors
of v that are met, in that order, when turning counterclockwise around v, starting
in the direction of the initial segment of J . For each i in Z/6Z, there is an integer
ni ∈ Z such that ϕni sends the following points to one another:

vi+2 7→ vi+1

ϕni : vi±3 7−→ v 7−→ vi

vi−2 7→ vi−1.

Of course, ni = −ni±3. See Figure 8.

Claim 19. The longitudes l1, l6 of v1 and v6 are both in (0, π). The latitude of v1
(resp. v6) is positive (resp. negative).

v
vv1 v1

v2

v2

v3

v3

v4 v4

v5

v5
v6

v6

Equator

P+ P+

P− P−

ϕ(v)

S2 ≃ ∂∞H3

Figure 8. Left: one cannot have l6 ≤ 0 < l1. Right: the actual
situation (only some ideal vertices of U are shown).

Proof. Since a half-turn around v sends each vi to vi+3, no angle ̂vi−1vvi in the
tangent space to S2 at v can exceed (or even reach) the value π; therefore ̂vi−1vvi ∈
(0, π). Taking i = 1, this proves the statement about latitudes. Therefore v1
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(resp. v6) lies above (resp. below) the equatorial plane, and it also follows that
n6 < 0 < n1.

Let li ∈ (−π, π] denote the longitude of vi: clearly, li < π since no edge of ∂U can
cross the North-South axis. The longitudes l1 and l6 cannot be both ≤ 0, because
v̂6vv1 ∈ (0, π) and the East direction (increasing longitudes) lies between v1 and v6
as seen from v. Therefore, to show that l1, l6 are positive, we only need to assume

l6 ≤ 0 < l1

and aim at a contradiction.
Note that on S2, for each n > 0, the transformation ϕn increases latitudes,

and adds a constant angle to all longitudes (modulo 2π). Recall the relationships
v3 = ϕ−n6(v) and v2 = ϕn1(v3) = ϕ−n6(v1): they imply that v2 has highest latitude
among v1, v2, v3 (all three latitudes being positive; see the left panel of Figure 8).
They also imply l2 ≡ l1 − l6 [mod 2π]: but l2 cannot belong to (π, l1 + π) + 2πZ
since the ideal triangle vv1v2 ⊂ ∂U cannot meet the North-South axis. Therefore,
l2 = l1−l6 = l1+l3 belongs to (l1, π), and the point v2 also has the largest longitude
among v1, v2, v3, possibly tying with v1 (and all three longitudes belong to [0, π)).

Let v′2 be the projection of v2 to the Equator (along meridians), v′′2 the projection
of v2 to the zero meridian (along parallels), and consider the circle C through
v, v′2, v2, v

′′
2 . By the latitude and longitude inequalities above, we see than v1, v3

both lie inside C on S2 (i.e. on the side of C that does not contain P+ and P−).
This contradicts the convexity of U near the edge vv2: absurd. See Figure 8. �

Remark 20. Claim 19 implies that ϕ±n1 and ϕ±n6 are, respectively, left– and right-
handed.

Recall the sequence of Farey triangles pqr = T0, T1, . . . , TN = mst. The ideal
edges vv1 and vv6 project (in ∂X) to the ideal arcs of slope p and q (up to order).

Also, every Ti for i ≥ 1 has its vertices in the arc
⌢
pq ⊂ P1Q that does not contain

r (in particular, the meridinal slope m belongs to that arc). Therefore, for every
i ∈ {1, 2, . . . , N} and every vertex x of the Farey triangle Ti, we can draw a properly
embedded intrinsic geodesic gx of slope x in the punctured torus ∂U/ϕ: this gx has
a lift ĝx ⊂ ∂U that connects the ideal vertex v to some ϕ–iterate of v, and whose
initial (ideal) segment is contained in the ideal triangle vv1v6 of ∂U . We orient ĝx

from v to its other end. (As a particular case, ĝm is isotopic in ∂U to the oriented
equatorial curve J .)

Definition 21. When x ∈ P1Q is a vertex of some Farey triangle Ti as above, define
νx ∈ Z as the integer such that the oriented curve ĝx runs from the ideal vertex v
to ϕνx(v).

We also define λx ∈ R as the integral of the longitude 1–form in S2 r {P+, P−}
along the closure of π(ĝx), where π : ∂U → S2 is the central projection.

Proposition 22. Suppose 1 ≤ i ≤ N − 1 so that Ti = abc and Ti+1 = bcd are two
consecutive Farey triangles. Then νd = νb + νc and λd = λb + λc.

Moreover, if x ∈ P1Q is a vertex of Ti for some i ∈ {1, . . . , N}, then 0 < λx ≤ 2π,
with equality (for the upper bound) if and only if x is the meridinal slope m.

Proof. Consider the ideal quadrilateral Q := (∂U/ϕ) r (gb ∪ gc). The orientations
of gb and gc induce orientations on the four edges of (the metric completion of)
Q. Observe that gd runs diagonally across Q, from the vertex with two outgoing
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edges, to the vertex with two incoming edges: as a result, the closure of π(ĝd) in
S2 r {P+, P−} is isotopic, with endpoints fixed, to the closure of

π (ĝb ∪ ϕνb(ĝc)) or, indifferently, of π (ĝc ∪ ϕνc(ĝb)) .

The exponent identity νd = νb + νc follows and, since ϕ increases longitudes by a
constant, so does the longitude identity λd = λb + λc.

By Claim 19, we have λp, λq ∈ (0, π), so an immediate upward induction on i
now implies λx > 0 for each vertex x of Ti (with 1 ≤ i ≤ N). But λm = ±2π,
because the meridian curve ĝm runs exactly once around the infinite polyhedron U :
therefore, λm = 2π. Downward induction on i finally yields λx < 2π for x 6= m. �

Proposition 23. Suppose 1 ≤ i ≤ N−1. Let x ∈ P1Q be the Farey vertex common
to Ti−1, Ti, Ti+1. Then,

(i) one has λx ∈ (0, π);
(ii) if the Farey triangle Ti carries an L (resp. an R), then νx > 0 (resp. νx < 0);
(iii) if Ti carries an L (resp. an R), then ϕνx is left–handed (resp. right–handed).

Proof. We name the vertices of the Farey triangles so that Ti = xyz and Ti+1 = xzt.
By Proposition 22, one has λz = λx +λy and 2π ≥ λt = λx +λz = 2λx +λy. Since
λx, λy > 0, this yields (i).

Assertion (ii) follows from the following claim: if li, ri ∈ P1Q are the left and
right endpoints of the Farey edge Ti−1 ∩ Ti (for the transverse orientation towards
m), then νri

< 0 < νli . This is clearly true for i = 1 (in that case, νli = n1 and
νri

= n6, in the notation of Definition 18). For i > 1, observe that

• one has νm = 0 because the curve ĝm is a closed curve around the ideal
polyhedron U ;

• by Proposition 22, the number νm is always a linear combination of νli and
νri

with positive integer coefficients;
• one has νli 6= 0 and νri

6= 0 because the curves ĝli and ĝri
are not closed

curves in ∂U .

These observations put together imply νri
< 0 < νli or νli < 0 < νri

. The first is
clearly the case by induction on i, because one always has li = li+1 (resp. ri = ri+1)
if the Farey triangle Ti carries an L (resp. an R).

Assertion (iii) is an immediate consequence of (i)–(ii). �

4. Canonical decomposition of a generic Dehn filling

In this section we prove Theorem 1: to show that a given triangulation is De-
launay (or geometrically canonical), we essentially must prove a certain number of
inequalities, which will boil down to statements of handedness as given by Propo-
sition 23.

Consider a hyperbolic manifold M with k ≥ 2 cusps, endowed with horoball
neighborhoods, such that the genericity assumptions of Theorem 1 are satisfied.
Let D denote the canonical triangulation of M . We assume that Hk, the horoball
neighborhood of the k–th cusp ck, has much smaller volume than some other Hi.

4.1. A generic small cusp. First we prove that D contains exactly two ideal
tetrahedra ∆,∆′ that have a vertex in ck.

Consider a universal covering π : H3 → M such that (in the upper half–space
model) the point at infinity lies above the cusp ck. Let Λ be the rank–2 lattice
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of deck transformations of the form z 7→ z + λ. Let {ηi}i∈I be the collection of
all horoballs of H3 lying above some Hj with j < k (the ηi are Euclidean balls
tangent to the boundary C of the model half–space.) By the genericity assumption

of Theorem 1, there is a unique shortest path in M from Hk to
⋃k−1

j=1 Hj : therefore

the largest ηi (for the Euclidean metric) is unique modulo Λ.
We can assimilate Λ to a lattice of C, and assume that the largest ηi’s are

centered exactly at the points of Λ.
The Delaunay decomposition DΛ of C with respect to the vertex set Λ consists

either of isometric rectangles (all belonging to the same Λ–orbit), or of isometric
triangles (belonging to two Λ–orbits) with strictly acute angles. We claim that the
latter is the case: indeed, let P ⊂ C be a convex polygon of DΛ: the vertices of
P , which are points of Λ, are on the boundary of a disk that contains no other
points of Λ. Using the fact that the horoball η∞ centered at infinity stays very high
above C in the half–space model (because Hk has very small volume), it is easy to
construct a ball of H3 that is tangent to the horoballs ηi centered at the vertices
of P , disjoint from all other ηi, and tangent to the horoball η∞. The center of
this ball is a vertex of the Ford domain. Hence, there exists a cell of the Delaunay

decomposition D of M (more precisely, a lift ∆̂ of such a cell to H3) whose vertices

are exactly ∞ and the vertices of P . By the genericity assumption (I), ∆̂ must
be an ideal tetrahedron, so P is a triangle, and has strictly acute angles. The two
(isometric) Λ–orbits of triangles in the Delaunay decomposition DΛ of C correspond
to two ideal tetrahedra ∆,∆′ in D. Note that ∆∪∆′ is a neighborhood of the cusp
ck.

The space T = ∂(∆ ∪ ∆′) ⊂ M is the quotient by Λ of the union of all ideal
triangles of H3 that project vertically to triangles of DΛ (contained in C): therefore,
T is a hyperbolic once–punctured torus bent along three lines, and its interior
dihedral angles are twice those of ∆ (or ∆′).

4.2. Triangulation of the Dehn filling. It is well–known that almost all (hyper-
bolic) Dehn fillings Ms of M at the cusp ck admit a spun decomposition Dspun

s into
ideal, positively–oriented tetrahedra: namely, Dspun

s is obtained from D by letting
the tips of ∆ and ∆′ (formerly in ck) spin asymptotically along the geodesic core
of the filling solid torus of Ms — actually, there are two such spun triangulations,
spinning in opposite directions (see e.g. [Th], Chap. V). Moreover, the cross–ratios
of the tetrahedra of Dspun

s become (uniformly) close to those of D as the slope s
goes to infinity (i.e. “gets more and more complicated”, eventually exiting any
finite set). In particular, the punctured torus T , equal to the union of the bases of
∆ and ∆′, is still embedded in Ms, with bending angles close to those in M .

Therefore, we can remove the solid torus ∆ ∪ ∆′ from the spun triangulation of
Ms, and replace it with the solid torus X constructed in Section 2 (with the same
dihedral angles as T ). By Proposition 8 (rigidity), X is isometric to the closure of
∆ ∪ ∆′, so after replacement we obtain a geometric ideal triangulation Ds of the
filling Ms (as in Theorem 1). In the remainder of Section 4, we check that Ds is
Delaunay.

4.3. Minkowski space. Our pictures (e.g. of the cusp link in Figure 6) are drawn
in the upper half-space model of H3, but we will check geometric canonicity through
a computation in the Minkowski space model. This section is only a quick reminder
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of the formulas relating the two models, and of Epstein–Penner’s convex hull con-
struction.

Endow R4 = R3+1 with the Lorentzian product 〈(x, y, z, t)|(x′, y′, z′, t′)〉 := xx′+
yy′ + zz′ − tt′. Define

X := {v = (x, y, z, t) ∈ R4 | t > 0 and 〈v|v〉 = −1}.
Then 〈.|.〉 restricts to a Riemannian metric on X and there is an isometry X ≃ H3,
with Isom+(X ) a component of SO3,1(R). We will identify the point (x, y, z, t)

of X with the point at Euclidean height 1
t+z above the complex number x+iy

t+z in
the Poincaré upper half-space model. Under this convention, the closed horoball
Hd,ζ of Euclidean diameter d centered at ζ = ξ + iη ∈ C in the half-space model
corresponds to {v ∈ X | 〈v|vd,ζ〉 ≥ −1}, where

(11) vd,ζ =
1

d

(
2ξ, 2η, 1 − |ζ|2, 1 + |ζ|2

)
.

We therefore identify the horoball Hd,ζ with the point vd,ζ of the isotropic cone
(check 〈vd,ζ |vd,ζ〉 = 0). Similarly, the closed horoball Hh,∞ of points at Euclidean
height no less than h in the half-space model corresponds to {v ∈ X | 〈v|vh,∞〉 ≥
−1} where vh,∞ = (0, 0,−h, h), so we identify Hh,∞ with vh,∞.

Consider the following objects: a complete, oriented, cusped, finite–volume hy-
perbolic 3-manifold M , a horoball neighborhood Hc of each cusp c, a universal
covering π : H3 → M , and the group Γ ⊂ Isom+(H3) ⊂ SO3,1(R) of deck trans-
formations of π. The Hc lift to an infinite family of horoballs (Hi)i∈I in H3,
corresponding to a family of isotropic vectors (vi)i∈I in Minkowski space, by the
above construction. The closed convex hull C of {vi}i∈I in R3+1 is Γ-invariant, and

its boundary ∂C comes with a natural decomposition D̃ into polyhedral cells. In
[EP, A2], Epstein, Penner and Akiyoshi proved

Proposition 24. The simplicial complex D̃ defines a decomposition D of M into

convex ideal hyperbolic polyhedra, by projection of each face of D̃ to X ≃ H3 (with
respect to 0 ∈ R3+1) and thence to M . The decomposition D of M is dual to the
Ford–Voronoi domain; D depends only on the mutual volume ratios of the Hc, but
only a finite number of decompositions D arise as these volume ratios vary. �

Conversely, given a decomposition D of the manifold M (still endowed with the
cusp neighborhoods Hc) into ideal polyhedra with vertices in the cusps, in order
to prove that D is the Epstein–Penner decomposition, we only need to consider

the decomposition D̂ := π∗(D) of H3 with vertex set the centers of the horoballs

{Hi}i∈I , lift D̂ to an infinite simplicial complex D̃ in Minkowski space R3+1 (the

vertices {vi}i∈I of D̃ lying over the Hi in the isotropic cone, and the faces of D̃
being affine polyhedra), and show that D̃ is locally convex at each (co)dimension–2
face: indeed, the projection with respect to the origin provides a homeomorphism

between X ≃ H3 and Dr{vi}i∈I ; the disjoint union
⋃

t≥1 tD̃ is then automatically

a convex body, and its faces are exactly the cells of D̃. In that case, we call D
geometrically canonical.

Proposition 25. The codimension–one polyhedral complex D̃ ⊂ R3+1, defined by
a decomposition of M into polyhedra, is locally convex if and only if for every 2–

dimensional facet F = A1 . . . Aσ of D̃ (a planar polygon in R3+1), there exists a

vertex P /∈ F of a 3–dimensional face of D̃ containing F , and a vertex Q /∈ F of
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the other 3–dimensional face of D̃ containing F , such that an identity of the form

(12) ρP + (1 − ρ)Q =
σ∑

i=1

λiAi where ρ ∈ (0, 1) and
σ∑

i=1

λi > 1

holds (some λi’s can be negative, however).

Proof. A more geometric way of stating the identity is as follows: if the hyperplane
Π ≃ R3 is the linear span of the Ai’s, then the affine span of the Ai’s separates (in Π)
the origin from the intersection of Π with the segment PQ. This clearly expresses
local convexity at the facet A1 . . . Aσ, since P and Q are always on opposite sides
of Π (indeed their projections to ∂∞H3 ≃ S2 are on opposite sides of the projection
of Π to H3 which is a plane). We express (12) by saying that A1 . . . Aσ lies below
PQ (as seen from the origin). �

4.4. Proving convexity in R3+1. We now return to the ideal triangulation Ds

of our Dehn filling, with the solid torus X = ∆1 ∪ · · · ∪ ∆N−1 ⊂ Ds. For each
(triangular) face F of Ds we must prove the convexity inequality (12) of Proposition
25 (applied to adjacent tetrahedra only, hence σ = 3).

If F does not belong to X, recall that cross–ratios of tetrahedra outside X in
the filling Ds are close to what they were before filling in D, while the volumes of
the (remaining) cusp neighborhoods in the filled manifold Ms are the same as in
the unfilled manifold M : therefore, the convexity inequality (12) in Ds, for all but
finitely many s, just follows from the analogous inequality in D.

If F is one of the two faces of ∂X, the inequality in Ds again follows from the
geometric canonicity of D. Indeed, check first that the two faces of X are not glued
to one another: if they were (by an orientation–reversing isometry), then the sum
of angles around one of the three edges of ∂X would be less than or equal to π.
Therefore, the face F separates a tetrahedron of X from a tetrahedron outside X.
Next, consider a cover π : H3 → M sending infinity to ck (in the upper half–space

model), and the induced decomposition D̂ := π∗(D) of H3 into ideal tetrahedra.

Consider a tetrahedron ∞ABC of D̂, and the neighboring tetrahedron ABCD
(where A,B,C,D ∈ C and ABC is an acute triangle whose circumscribed circle
loops around D). Define A′ := B +C −A, the symmetric image of A with respect
to the midpoint of B and C, and similarly B′ = A+ C −B and C ′ = A+B − C.
The triangle ABC, together with A′BC (or AB′C or ABC ′), forms a fundamental
domain of ∂X. Recall the tetrahedra of the solid torus X are obtained by successive
diagonal exchanges, beginning at the ideal triangulation of ∂X. If the very first
diagonal exchange kills the edge BC (resp. CA, resp. AB), the new edge must
therefore be AA′ (resp. BB′, resp. CC ′). Hence, up to a permutation of A,B,C,
the neighbor across ABC of the tetrahedron corresponding (combinatorially) to
ABCD in Ds, is the tetrahedron corresponding (combinatorially) toABCA′. Recall

the infinite simplicial complex D̃ ⊂ R3+1. If a, b, c, d, a′, f ∈ R3+1 are the isotropic
vectors lying above the horoballs centered at A,B,C,D,A′,∞ (respectively), then

abcf and abcd are neighboring faces of D̃ (in particular, abc lies below the segment

fd as seen from the origin). But by convexity of D̃, the facet abc of D̃ also lies below

any segment between vertices of D̃, provided this segment intersects the linear span
of a, b, c. In particular, abc lies below a′d (because A′,D lie on opposite sides of

the hyperbolic plane through A,B,C). This is still true for the lift D̃s of the filled
triangulation Ds if the filling slope s is chosen outside some finite set, because the
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cross–ratios in Ds are close to those in D. Local convexity at the face F = ABC
of Ds is proved.

The only cases remaining are those when F is an interior face of the solid torus
X. We postpone to the end of the section the (easier) case of the “last” face, along
which ∆N−1 is glued to itself, and focus on the other faces inside X.

Consider consecutive tetrahedra ∆i and ∆i+1 of the filling solid torus of the
manifold Ms, and their (adjacent) lifts ∆,∆′ in H3. We must check the convexity
criterion of Proposition 25, the role of the 2-dimensional facet “F” being played by
the intersection of the lifts of ∆ and ∆′ to R3+1.

We will assume that the letter Ωi on the Farey triangle Ti is an L and proceed
to a careful description of the cusp link, in Figure 9. Let us describe the figure.

α

α

αα

α

β

β

β

β

γ

γ

γ
γ

γ

δ

δ

δδ

δ

ǫ
ǫ

ǫ

ǫ

∞

L

Farey graph:

equator

ϕνα

ϕνα

ϕνα

∆i
∆i+1

Figure 9. A “Left” in the Farey graph corresponds to a left–
handed power of ϕ.
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• The top panel of Figure 9 shows a portion of the Farey graph; we name
the Farey vertices α, β, γ, δ, ǫ so that Ti−1 = αβγ, Ti = αγδ, Ti+1 = αδǫ
(enumerating the vertices of each triangle counterclockwise).

• The left (resp. right) panel shows four adjacent lifts of the ideal tetrahedron
∆i (resp. ∆i+1) in H3. The vertices are ideal. The direction of the equator
of S2 ≃ ∂∞H3 is materialized by a grey line. The directions α, β, γ, δ, ǫ
of some of the ideal edges are shown. The tetrahedra in the right panel
lie glued behind the tetrahedra in the left panel; the triangulation in front
of the right panel thus agrees with the triangulation in the back of the
left panel. In each panel, the central ideal vertex v, assumed to lie on the
equator, has been blown up (or truncated) to depict its link, which consists
of four similar Euclidean triangles drawn in grey.

• The bottom panel puts these two ideal links together in one diagram con-
sisting of three nested hexagons (we artificially draw each hexagon a tiny
bit apart from the next one, even though they share four vertices). Each
vertex of this figure corresponds to an ideal edge issued from v, and is
marked with the slope (α, β, γ, δ or ǫ) of that ideal edge. (Also compare
these labels with the first panel of Figure 6 page 14.) The four triangles
between two consecutive hexagons have the same triple of angles.

• The bottom panele quivalently represents, up to a similarity, the endpoints
in C of ideal edges whose other endpoint is ∞ in the upper half–space
model of H3 (the point ∞ corresponds to the central, blown–up vertex v of
the previous two panels). Each triangle of the bottom panel is the vertical
projection to C of an ideal triangle of H3 which, once coned off to ∞,
yields a tetrahedron of H3 isometric to ∆i (outer triangles) or ∆i+1 (inner
triangles).

• In the left (resp. right) panel we have decorated edges of slope α and
γ (resp. α and δ) with arrows. In the notation of Proposition 23, the
loxodromy ϕνα is left–handed (because Ωi = L). In these two panels, ϕνα

acts by sending the central vertex v (tail of the edge marked α) to the head
of the edge marked α, and by translating all other vertices along the same
direction: for example, the head of the edge marked γ goes to the head of
the edge marked δ.

• This last observation allows us to understand the action of ϕνα on the
Riemann sphere C ∪ {∞}: in the bottom panel, where v has been sent
to ∞, the arrows indicate how ϕνα acts on the vertices of the Euclidean
hexagons (and ∞). For example, ∞ goes to a vertex marked α and the
bottom–most vertex marked γ goes to a vertex marked δ. In the sequel,
we must make sense of the left–handedness (Prop. 23) of this loxodromic
action.

In order to shift to the “Minkowski space” aspect, we must take yet a closer look
at the geometry of the link of the cusp (the following argument is taken from [G2]).
In the link of the cusp, up to a complex similarity, the link of the pleated surface
τi between ∆i and ∆i+1 is the centrally–symmetric hexagon (−1, ζ, ζ ′, 1,−ζ,−ζ ′)
in C, as in Figure 10 (which reproduces the bottom panel of Figure 9): we assume
that the vertices −1, 1 both belong to the base segments of the Euclidean triangles
just inside and just outside the hexagon.
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(−1) (1)

(ζ)

(ζ ′)

(−ζ)

(−ζ ′)

−→a −→
b

−→c

−→a = a exp (A
√
−1)−→

b = b exp (B
√
−1)

−→c = c exp (C
√
−1)

Figure 10. Adjacent tetrahedra ∆i and ∆i+1 (cusp view). The
hexagon corresponding to τi is in bold.

Let us introduce the notation

ζ + 1 = −→a = a eiA

ζ ′ − ζ =
−→
b = b eiB

1 − ζ ′ = −→c = c eiC

where a, b, c ∈ R>0 (so far A,B,C are only defined modulo 2π). The map f := ϕνα

now satisfies f(−1) = ∞ ; f(∞) = 1 ; f(ζ) = ζ ′: namely,

f : u 7→ 1 +
(ζ + 1)(ζ ′ − 1)

u+ 1
= 1 +

−→a −→c
u+ 1

.

Therefore, using the notation Hdiameter, center for the horoballs of the upper half–
space model (as in Section 4.3), we have f(H1,∞) = H|−→a −→c |,f(∞) = Hac,1. In
other words, the Euclidean diameter of the horoball centered at the vertex 1 of the
hexagon is ac, the product of the lengths of the adjacent edges of the hexagon. (By
an easy argument, this relationship persists if the hexagon is scaled up or down,
as long as the horoball centered at infinity is H1,∞.) For the same reason, the
following horoballs are all sent to one another by deck transformations (in fact, by
appropriate powers of ϕ):

(13) H1,∞ ; Hac,−1 ; Hab,ζ ; Hbc,ζ′ ; Hac,1 .

If ζ = ξ + η
√
−1 and ζ ′ = ξ′ + η′

√
−1, the isotropic vectors in Minkowski space

corresponding to these horoballs are respectively, using (11):

(14)

v∞ = ( 0, 0, −1, 1 )
v−1 = 1

ac ( −2, 0, 0, 2 )
vζ = 1

ab ( 2ξ, 2η, 1 − |ζ|2, 1 + |ζ|2 )
vζ′ = 1

bc ( 2ξ′, 2η′, 1 − |ζ ′|2, 1 + |ζ ′|2 )
v1 = 1

ac ( 2, 0, 0, 2 ).
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To check the convexity criterion of Proposition 25 at the codimension–two face
(in R3+1) projecting to (ζζ ′∞), it is enough to show that if λvζ + µvζ′ + νv∞ =
ρv1 + (1 − ρ)v−1 then λ + µ + ν > 1 (moreover, this will in fact take care of both
faces along which ∆i touches ∆i+1 in the filling solid torus X). One easily finds
the unique solution

λ =
bη′

c(η′ − η)
; µ =

−bη
a(η′ − η)

; ν =
η′(1 − |ζ|2) − η(1 − |ζ ′|2)

ac(η′ − η)

(we will not need the value of ρ), hence

λ+µ+ν = 1+
Z

ac(η′ − η)
where Z = abη′−bcη+η′(1−|ζ|2)−η(1−|ζ ′|2)−ac(η′−η).

Observe that η′ > η because the triangles −1ζζ ′ and 1ζ ′ζ are counterclockwise
oriented. So it is enough to prove that Z > 0. Endow C ≃ R2 with the usual scalar
product, denoted “⋄” to avoid confusion with scalar multiplication, and observe

that 1 − |ζ|2 = −→a ⋄ (
−→
b + −→c ) and 1 − |ζ ′|2 = (−→a +

−→
b ) ⋄ −→c . Hence

Z = η′(ab+ −→a ⋄ −→b ) − η(bc+
−→
b ⋄ −→c ) − (η′ − η)(ac−−→a ⋄ −→c )

= abc

[
η′

c
(1 + cos(A−B)) − η

a
(1 + cos(B − C)) − η′ − η

b
(1 − cos(A− C))

]

= −abc[sinC(1 + cos(A−B)) + sinA(1 + cos(B−C)) + sinB(1 − cos(A−C))]

= −4abc sin
A+ C

2
cos

B −A

2
cos

B − C

2
by standard trigonometric formulae. Observe that the last expression is a well–
defined function of A,B,C ∈ R/2πZ (although each factor is defined only up to
sign). Next, however, we will be careful which representatives of A,B,C in R we
pick. First, we choose for B the smallest positive representative. Since the triangles
−1ζζ ′ and 1ζ ′ζ are counterclockwise oriented, it follows that B ∈ (0, π) and we can

pick A,C in (B − π,B). Since −→a +
−→
b + −→c = 2 must also have an argument in

(B − π,B), one necessarily has

(15) −π < min {A,C} < 0 < B < π and A,C ∈ (B − π,B).

In particular, to prove that Z > 0, it only remains to show that

(16) −π < A+ C

2
< 0 .

For the deck transformation f : u 7→ 1 +
−→a −→c
u+1 studied above, Definition 17 yields

hand (f) = 4
−→a −→c

. But f is left–handed by Proposition 23, so Im (−→a −→c ) < 0 i.e.
A+C ∈ (−π, 0) + 2πZ. By (15), we have −2π < A+C < π a priori, hence in fact
−π < A+C < 0. Therefore (16) must hold. Geometric canonicity at the interface
of tetrahedra ∆i and ∆i+1 is proved (the argument is similar if the Farey triangle
Ti carries an R instead of an L).

It remains to prove geometric canonicity at the core of the filling solid torus
itself, where the last tetrahedron ∆N−1 is glued to itself along an ideal triangle.
The “hexagon” HN−1 of C has two opposite interior angles equal to 0 and is there-
fore collapsed to a broken line of three segments. In (14) (and Figure 10), this
simply translates as the identity ζ ′ = −1; the collapsed hexagon is the broken line
(ζ,−1, 1,−ζ). The radii of the horoballs centered at these vertices are computed
exactly as in (13), under the extra assumption ζ ′ = −1.
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The tetrahedra with ideal vertices (∞, 1,−1, ζ) and (∞, 1,−1,−ζ) are glued
along the face (∞, 1,−1), and the isotropic vectors in Minkowski space correspond-
ing to their vertices are, following (14):

(17)

v∞ = ( 0, 0, −1, 1 )
v1 = 1

2|1+ζ| ( 2, 0, 0, 2 )

v−1 = 1
2|1+ζ| ( −2, 0, 0, 2 )

vζ = 1
|ζ+1|2 ( 2ξ, 2η, 1 − ξ2 − η2, 1 + ξ2 + η2 )

v−ζ = 1
|ζ+1|2 ( −2ξ, −2η, 1 − ξ2 − η2, 1 + ξ2 + η2 ) .

The equation ρvζ +(1−ρ)v−ζ = λv∞+µv1 +νv−1 has a unique solution, namely
ρ = 1/2 and

λ =
|ζ|2 − 1

|ζ + 1|2 and µ = ν =
1

|ζ + 1|.
Clearly, one will have λ+µ+ ν > 1 if and only if |ζ|2 − 1+2|ζ +1| > |ζ +1|2, or

equivalently, |ζ|2 > (|ζ + 1| − 1)2: but this relationship follows from the triangular
inequality in the Euclidean triangle (0,−1, ζ). Therefore, by Proposition 25, the
convexity inequality in Minkowski space is satisfied. Theorem 1 is proved.

4.5. Filling on several cusps. An analogue of Theorem 1 holds when several
cusps undergo Dehn filling. The genericity assumptions (I–II), however, must be
suitably extended.

Let M be a complete hyperbolic 3–manifold with cusps c1, . . . , ck, endowed with
horoball neighborhoods H1, . . . ,Hk (where k ≥ 2). Let ℓ be an integer, 1 < ℓ ≤ k.
Make the following assumptions:

(I) The decomposition D (before filling) consists only of ideal tetrahedra;
(II) For each integer j such that ℓ ≤ j ≤ k, there exists a unique shortest path

from Hj to
⋃ℓ−1

i=1 Hi in M .

Theorem 26. Under the assumptions (I–II) above, if the volumes of the neighbor-
hoods Hℓ, . . . ,Hk are much smaller than one of H1, . . . ,Hℓ−1, then for each integer
j such that ℓ ≤ j ≤ k, the canonical decomposition D of M (before filling) contains
exactly two tetrahedra ∆j ,∆

′
j with a vertex in the cusp cj; the tetrahedra ∆j and ∆′

j

are isometric and have each exactly one vertex in cj and three vertices in
⋃ℓ−1

i=1 ci.
Moreover, for each ℓ ≤ j ≤ k there exists a finite set of slopes Xj in the cusp

cj such that for any choice of slopes sℓ, . . . , sk in cℓ, . . . , ck satisfying sj /∈ Xj for
each j, the canonical decomposition Ds obtained by Dehn filling along the slopes
sℓ, . . . , sk is combinatorially of the form

Ds =


D r

k⋃

j=ℓ

{∆j ,∆
′
j}


 ∪

k⋃

j=ℓ

Tj

where Tj = {∆(j)
1 , . . . ,∆

(j)
Nj−1} is a triangulation of a solid torus minus one bound-

ary point, and the combinatorial gluing of the ∆
(j)
i (for j fixed) is dictated by the

continued fraction expansion of the slope sj, with respect to a basis of the first
homology of the cusp cj depending only on D.

In other words, as long as the cusp neighborhoods Hℓ, . . . ,Hk are small enough
and the slopes sℓ, . . . , sk are long enough, Theorem 1 applies “simultaneously” to
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all cusps cℓ, . . . , ck. The proof of Theorem 1 transposes without major changes to
Theorem 26, using the multicusped version of Thurston’s hyperbolic Dehn surgery
theorem (see e.g. Theorem 5.8.2 and the discussion immediately following it in
[Th]).

As a corollary, if (I) and (II) are satisfied and the horoballs Hℓ, . . . ,Hk are small
enough compared to one of H1, . . . ,Hℓ−1, then any sufficiently long filling of some
of cℓ, . . . , ck is generic with respect to the surviving unfilled cusps among cℓ, . . . , ck.

5. Fillings of the Whitehead link complement

In this section we describe the Delaunay decompositions of all hyperbolic Dehn
fillings of one cusp of the Whitehead link complement.

5.1. Canonical decomposition before filling. The following facts are classical;
we refer to [Th] or to Weeks’ program SnapPea [We] for further background. More
material on the Whitehead link can be found in [NR].

Let ABCD and DCB′A′ be two adjacent unit squares of C (vertices enumerated
clockwise and belonging to Z[i], as in Figure 11). Let Q,Q′ be the convex hulls
of ∞, A,B,C,D and of ∞,D,C,B′, A′ respectively, taken in the upper half–space
model of H3. ThenQ∪Q′ is a fundamental domain of the hyperbolic Whitehead link
complement M (census manifold m129); the face identifications are the translations

of vector
−−→
AB = i,

−−→
AA′ = 2, and the hyperbolic isometry sending A,B,C,D to

D,A′, B′, C respectively. Let c1, c2 be the two cusps of M , with c2 being the cusp
at infinity. Note that the decomposition Q∪Q′ = M is the Delaunay decomposition
on M when the horoball neighborhood of c2 has volume less than half that of c1.

Note that M has isometries that exchange c1 and c2, but has no orientation–
reversing isometries (so the Whitehead link is chiral).

Note also that the decomposition Q ∪ Q′ of M does not satisfy the first and
second “genericity” assumptions of Theorem 1: the cells are not tetrahedra, and the
horoballs centered at B and C, while belonging to different orbits of the stabilizer
2Z ⊕ iZ of ∞ in the group of deck transformations, are at the same distance from
c2. Thus, Theorem 1 does not apply directly.

As a bit of notation: if k, l are coprime integers, let s = l/k denote the slope in

the cusp c2 represented by the vector k
−−→
AA′ + l

−−→
AB. That is, we chose the shortest

possible basis for H1(c2,Z). Let Ms = m129(l, k) be the manifold obtained by
filling c2 along the slope s. The following result is a consequence of Theorem 1.2 of
[MP].

Proposition 27. The Dehn filling Ms is hyperbolic if and only if

±(k, l) /∈ {(0, 1), (1, 0), (1,±1), (1,±2)}.
In the remainder of this section we assume (k, l) satisfies the condition of Proposi-

tion 27 and adapt the argument of Sections 1–4 to describe the Delaunay decompo-
sition of Ms (thus reproving, in particular, the “if” direction). This decomposition
will always consist in replacing Q ∪Q′/〈z 7→ z + 2, z 7→ z + i〉 with a triangulated
solid torus Y whose exterior faces are two (triangulated) ideal quadrilaterals, which
we then identify.

5.2. First case: l is odd. If l is odd, then the vector k
−−→
AA′ + l

−−→
AB = 2k+ il ∈ C is

irreducible in the lattice Z[i]. For that reason, we can take for Y the double cover
of the solid torus X constructed in Section 2.
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A

B C

D A′

B′

Figure 11. Left: the (chiral) Whitehead link, the mirror image
of the census manifold m129. Middle: cusp view of m129 from
the common tip of the square–based pyramids Q and Q′, i.e. from
the cusp that will be filled. The ̥–shaped symbol drawn on the
bases of Q and Q′ shows their identification. Right: view of the
canonical decomposition from the other cusp of m129, before (top)
and after (bottom) a Dehn filling with (k, l) = (11, 8). In the top
panel, the centers of the two squares project to the cusp that will
be filled. In the bottom panel, we see that the tetrahedra in the
decomposition of the filling become very close to flat, very quickly.

More precisely, let m ∈ P1Q be the Farey vertex l
2k (irreducible fraction). Then

m does not belong to {0,±1,±2,± 1
2 ,∞}: the first three are ruled out because m

has even denominator; the last two because we assumed ±(k, l) /∈ {(0, 1), (1,±1)}.
According to the value of m, choose (p, q, r) as follows:

if m < −2 −2 < m < −1 −1 < m < −1/2 −1/2 < m < 0
(p, q, r) = (∞,−1, 0) (−1,∞, 0) (−1, 0,∞) (0,−1,∞)

if 0 < m < 1/2 1/2 < m < 1 1 < m < 2 2 < m
(p, q, r) = (0, 1,∞) (1, 0,∞) (1,∞, 0) (∞, 1, 0)

The relative positions of p, q, r,m are then exactly as in Section 2: namely, pq
separates r from m; the point m is not the other common Farey neighbor r′ of p
and q; and the line rm crosses pr′ (not qr′). In particular, using the wedge notation
(4) one has m ∧ r ≥ 3.

Let θ ∈ (0, π) be a parameter and define

(18) (θp, θq, θr) :=

{
(0, θ, π − θ) if p = ±1 i.e. |m| ∈ (1/2, 2);
(θ, 0, π − θ) if q = ±1 i.e. |m| /∈ (1/2, 2).

This choice will cause the “diagonal” edges of slope ±1 to be flat, while the edges
of slope 0 and ∞ will be bent. Since m ∧ r ≥ 3, it is straightforward to check
that (θp, θq, θr) satisfies the hypothesis (m ∧ p)θp + (m ∧ q)θq + (m ∧ r)θr > 2π of
Proposition 10 if and only if θ belongs to some sub–interval Θ = (0, θmax) ⊂ (0, π).

Apply now Proposition 10 and Corollary 16 with θ ∈ Θ. We obtain an ideal
hyperbolic solid torus X with dihedral angles θ, 0, π− θ. Let P be the fundamental
domain of ∂X defined as the ideal quadrilateral cut out by the edges of slope 0 and
∞. Let Y be the double cover of X. Since the meridian slope is m = l

2k and the

determinant
∣∣1
0

l
2k

∣∣ is even, the curve of slope 1
0 = ∞ in ∂X is homotopic to an even

power of the core, and therefore lifts to a closed curve in Y , while the curve of slope
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0
1 = 0 does not (because

∣∣0
1

l
2k

∣∣ is odd). Therefore, a fundamental domain of ∂Y is
obtained by gluing two copies P, P ′ of the ideal quadrilateral P side by side along
the edge of slope ∞. We view P, P ′ as immersed in the twice–punctured torus ∂Y .

We now glue P to P ′ by an orientation–reversing isometry, in the same way the
square bases of the pyramids Q,Q′ were glued together to yield the Whitehead link
complement M (Figure 11, left). By construction, the quotient of Y under this
identification is homeomorphic to the Dehn filling Ms. The angular part of the
gluing equation is automatically satisfied, since the two flat edges of ∂Y (diagonals
of P, P ′) are identified, and all four non-flat edges of ∂Y are identified to one edge
at which the sum of dihedral angles is θ + (π − θ) + θ + (π − θ) = 2π.

Therefore, the space W of angle structures associated to our triangulation of
Ms (as in Theorem 5) is described by setting (θp, θq, θr) as in (18) and finding
all (θp, θq, θr)–angle structures in the sense of Proposition 10 as θ varies freely in
Θ ⊂ (0, π).

Proposition 28. The volume functional has a critical point, namely a maximum,
on W .

Proof. Exactly as in Proposition 15, the maximum of the (extended) volume func-
tional is achieved at some point z = (zi)0≤i≤N of the closure of W . Using (18), the
system of constraints (7) satisfied by z now becomes

( z0 , z1 , z2 , . . . , zN−1 , zN )
= ( π , θ , z2 , . . . , zN−1 , 0 )
or ( π + θ , θ , z2 , . . . , zN−1 , 0 )

according to whether |m| ∈ (1/2, 2) or not.
In the first case, suppose θ = π. By the convexity condition of (10), one then has

z0 = z1 = · · · = zh = π where ∆h is the first hinge tetrahedron. The hinge condition
of (10) then implies zh−1 ≥ zh + zh+1, hence zh+1 = 0. That in turn implies zi = 0
for all i > h (we observed in the proof of Proposition 15 that the sequence (zi) is
non–increasing). Therefore all tetrahedra ∆i are flat, and the volume is certainly
not maximal.

In the second case, suppose θ = π. Table (9) implies π− z0+z2

2 ≥ 0 hence z2 = 0
and zi = 0 for all i > 1: again, all ∆i are flat, so the volume is certainly not
maximal.

Therefore, θ < π. The argument of Proposition 15 now follows through un-
changed to show that no parameter zi for 0 < i < N belongs to {0, π}. By
Proposition 7, all tetrahedra ∆i have only positive angles (i.e. z ∈W ). �

Theorem 5 applies: we have found a complete hyperbolic structure on the tri-
angulated space Ms. To check that the triangulation is canonical, we only need to
check the Minkowski convexity relationship (12). For interior faces of the solid torus
Y , this is already done (Section 4.4). For the boundary faces, we must describe
more precisely the cusp triangulation of Ms.

Each of the two ideal vertices of the solid torus Y (projecting to the single ideal
vertex of X) has a cusp triangulation made of nested, centrally symmetric hexagons
(as in Figure 6, right). However, by (18), two opposite angles of the outermost
hexagon H0 are equal to π, so the general cusp shape is a 4–sided parallelogram.
Moreover, the edges vv′, vv′′ of H0 adjacent to a flat vertex v have the same length:
indeed, the ideal quadrilateral ∞v′vv′′ must be a square (i.e. its diagonals cross at
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a right angle), because it is a face of Y and the gluing of the two isometric faces
of Y that yields the Dehn filling Ms sends horizontal edges of one face to vertical
edges of the other (e.g. as in Figure 11).

The universal cover of the cusp triangulation ofMs is a union of translated copies
of the cusp triangulation of Y . For example, up to a plane similarity, the outermost
hexagons in two adjacent translates can be taken to be (for some ζ ∈ C r R)

( 2ζ − 1 , ζ − 1 , −1 , 1 , ζ + 1 , 2ζ + 1 )
and ( −2ζ − 1 , −ζ − 1 , −1 , 1 , −ζ + 1 , −2ζ + 1 )

so the cusp triangles (−1, 1, ζ + 1) and (−1, 1,−ζ − 1) share an edge (−1, 1). We
apply Proposition 25 to the ideal triangle (∞, 1,−1) — by symmetry this will
deal with all four triangular faces of the solid torus Y (note that for proving the
Minkowski convexity relationship (12), we do not care whether or not the two
adjacent hexagons above are in the same orbit of the stabilizer of ∞).

Following the method of Section 4.4 (especially (13) and the discussion that
precedes it), if ζ = ξ + iη, the isotropic vectors in R3+1 corresponding to the
horoballs centered at ∞, 1,−1, ζ + 1,−ζ − 1 are respectively

v∞ = ( 0, 0, −1, 1 )
v1 = 1

2|ζ| ( 2, 0, 0, 2 )

v−1 = 1
2|ζ| ( −2, 0, 0, 2 )

vζ+1 = 1
|ζ|2 ( 2ξ + 2, 2η, 1 − |ζ + 1|2, 1 + |ζ + 1|2 )

v−ζ−1 = 1
|ζ|2 ( −2ξ − 2, −2η, 1 − |ζ + 1|2, 1 + |ζ + 1|2 ) .

The solution to ρvζ+1 + (1 − ρ)v−ζ−1 = λv1 + µv∞ + νv−1 satisfies (λ, µ, ν) =(
1
|ζ| ,

|ζ+1|2−1
|ζ|2 , 1

|ζ|

)
, hence λ + µ + ν = 1 + |ζ+1|2−(|ζ|−1)2

|ζ|2 > 1 according to the

triangular inequality in the triangle (0, ζ,−1): by Proposition 25, the convexity
inequality in Minkowski space is satisfied.

5.3. Second case: l is even. If l is even, then the vector k
−−→
AA′+l

−−→
AB = 2k+il ∈ C

is twice the irreducible vector k + i l
2 in the lattice Z[i]. For that reason, the ideal

solid torus Y cannot be taken to be simply a cover of X. Instead, we must introduce
a variant of the construction of Section 2. To give a preview of the difference with
Section 2, if U ⊂ H3 is a universal cover of the solid torus Y we will construct
below and 〈ϕ〉 ≃ Z is the group of deck transformations of U , then for each ideal
vertex v of U , the symmetric image v′ of v with respect to the axis of ϕ is also a
vertex of U . Moreover, vv′ will be an edge of the ϕ–invariant triangulation of U ,
and vv′ϕ(v)ϕ(v′) will be one of its ideal tetrahedra.

Let m ∈ P1Q be the Farey vertex l/2
k (reduced fraction). We have m /∈

{∞, 0,±1}: indeed, ∞ is ruled out becausem has odd denominator k (coprime to l);
the other possibilities are ruled out because we assumed ±(k, l) /∈ {(1, 0), (1,±2)}.
According to the value of m, choose (p, q, r) as in Section 5.2, with the four extra
possibilities

if m = −2 m = −1/2 m = 1/2 m = 2
(p, q, r) = (∞,−1, 0) (0,−1,∞) (0, 1,∞) (∞, 1, 0)

(in fact we may switch p, q in these four cases). One then has m ∧ r ≥ 2. Note
that, unlike in Section 2, m is now allowed to be the common Farey neighbor of p
and q opposite r.
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Below we describe an ideal triangulation D for a solid torus Y (with two ideal
points); Proposition 29 will then be the analogue for D of Proposition 10. For
convenience, we will first describe a family of tetrahedra of H3 whose vertices are
points of Z

[√
−1

]
⊂ P1C ≃ ∂∞H3, then only remember the combinatorics of the

gluing of these tetrahedra.
The sequence of Farey triangles crossed by the oriented line ℓ from r to m is

pqr = T0, T1, . . . , TN = mst (for some Farey vertices s, t, and with N ≥ 1 — note
that in Section 2 we had N ≥ 2). For every index 0 ≤ i ≤ N , let xi, yi, zi ∈ P1Q be
the vertices of Ti. Consider the triangulation Ti of C with vertex set Z

[√
−1

]
and

whose edges are precisely all segments of slopes xi, yi, zi between points of Z
[√

−1
]
.

Each triangle of Ti is the vertical projection of an ideal triangle of H3 with the same
triple of vertices. The union of all these ideal triangles, modulo G := 2Z ⊕

√
−1Z,

is a twice–punctured torus τi in H3/G. If 0 < i ≤ N then the space between τi−1

and τi is the union of two ideal tetrahedra ∆̇i and ∆̈i (glued together along some
of their edges). Note that the index i = N is now allowed, unlike in Section 2, so

that e.g. the tetrahedron ∆̇N (belonging to the last pair) has an edge of slope m,

the meridian. Also note that since m = l/2
k and k+ l

2

√
−1 /∈ G (because k is odd),

this edge of slope m runs from one of the punctures of τN (or τ0) to the other.

Consider now the triangulation {∆̇i, ∆̈i}1≤i≤N as a combinatorial object only.

To “kill” the slope m, we identify the edges of slope m in ∆̇N and ∆̈N , and fill
the remaining space with a single tetrahedron ∆N+1 all of whose four faces are

glued to the inner faces of ∆̇N ∪ ∆̈N . This ∆N+1 is the tetrahedron referred to as
“vv′ϕ(v)ϕ(v′)” at the beginning of Section 5.3. We denote by D the triangulation⋃N

i=1{∆̇i, ∆̈i} ∪ {∆N+1} and by Y its underlying space, a twice–punctured solid

torus. Note that D admits a combinatorial involution ι exchanging ∆̇i with ∆̈i for
all 1 ≤ i ≤ N (and fixing ∆N+1 setwise): this ι extends the translation of ∂Y that
shifts one puncture to the other.

The ideal link of each of the two ideal vertices of Y (which are exchanged by
ι) consists of nested hexagons as in Figure 6, but the innermost hexagon is now
HN (not HN−1), and is not collapsed to a broken line of three segments. Instead,
the effect of identifying the edges of slope m has been to identify a pair of opposite
vertices of HN (namely the inward–pointing vertices); the inside of HN is the union
of two triangles joined by a vertex. These two triangles are two vertex links of the
tetrahedron ∆N+1 (the other two are in the other ideal vertex of Y ). See Figure
12.

We will not consider the full space of angle structures for our triangulation D
of Ms: rather, we will restrict to ι–invariant angle structures (i.e. angle structures

in which for each 1 ≤ i ≤ N , the tetrahedra ∆̇i and ∆̈i have the same dihedral
angles). Note that if there is an angle structure, we can always average it with its
push–forward by ι to get a ι–invariant angle structure.

Proposition 29. Consider non–negative reals θp, θq, θr satisfying (5), namely 0 <
θr < π = θp + θq + θr. The space of ι–invariant angle structures on D that induce
exterior dihedral angles θp, θq, θr at the edges of slope p, q, r of ∂Y (also called
(θp, θq, θr)–angle structures) is non–empty.

Remark 30. Proposition 29 requires no inequality like Proposition 10, but that is
only because “problematic” slopes (k, l) have already been ruled out.



34 F. GUÉRITAUD, S. SCHLEIMER
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2
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2
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Figure 12. The innermost hexagon HN along with HN−1 and the

links (Euclidean triangles) of the tetrahedra ∆N+1, ∆̇N , ∆̈N . The
angles around each interior vertex sum to 2π.

Proof. As in Section 2.3, we introduce an angle parameter zi ∈ (0, π) for every pair

of ideal tetrahedra ∆̇i, ∆̈i (where 1 ≤ i ≤ N). In what follows, ∆̇i and ∆̈i will
always be assumed to have the same dihedral angles (they are exchanged by the
combinatorial symmetry ι). We also denote by zN+1 the dihedral angle of ∆N+1

at the edge whose slope is the only rational (Farey vertex) in TN ∩ TN−1 r TN−2.
Using these conventions and writing (a, b, c) := (zN−1, zN , zN+1), it is easy to see
that the triples of dihedral angles of the ideal tetrahedra are as follows:

(19)
∆̇N , ∆̈N : ( b , π − a+c

2 , a−2b+c
2 )

∆N+1 : ( c , π − b , b− c )

(see also Figure 12). For 1 ≤ i < N , the dihedral angles of ∆̇i, ∆̈i are simply
given by Table (9). In keeping with Table (9), we consider zN to be a non–hinge
parameter.

Recall that N ≥ 1: analogously to (7) – (10), we are thus looking for sequences
of the form

( z0 , z1 , z2 , . . . , zN , zN+1 )
= ( π + θq , π − θr , z2 , . . . , zN , zN+1 )

subject to the conditions



zi−1 > zi + zi+1 if zi is a hinge parameter (hinge condition);
zi−1 + zi+1 > 2zi if not (convexity condition), e.g. i = 1 or N ;
0 < zi < π for all 2 ≤ i ≤ N (range condition);
0 < z2 < π − θq as in (10) above;
0 < zN+1 < zN which follows from (19).

To find such a sequence, the argument that finishes Section 2.3 follows through
essentially unchanged: we construct a convex positive decreasing sequence (zi)0≤i≤h
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where h is the smallest hinge index (or h = N + 1 if there are no hinges), then set
e.g. zi+1 = εzi (inductively) for all i ≥ h and a fixed small ε > 0. �

Finally, we must glue the faces of the solid torus Y together to form the Dehn
filling Ms of the Whitehead link complement. This is performed exactly as in
Section 5.2: we set (θp, θq, θr) as in (18) for 0 < θ < π, so that the faces of ∂Y
become two ideal quadrilaterals P, P ′ with edges of slopes 0 and ∞; then glue P to
P ′ by an orientation–reversing homeomorphism sending the edges of slope 0 of P
to the edges of slope ∞ of P ′ (and conversely). The angular gluing equations are
automatically satisfied.

Therefore, the full space W of ι–invariant angle structures for D is obtained by
letting θ range over (0, π) and finding all (θp, θq, θr)–angle structures in the sense
of Proposition 29.

Proposition 31. The volume functional has a critical point, namely a maximum,
on W .

Proof. As in Proposition 15, the maximum of the (extended) volume functional
is achieved at some point z of the closure W of W . Using (18), the system of
constraints (7) becomes

( z0 , z1 , z2 , . . . , zN , zN+1 )
= ( π , θ , z2 , . . . , zN , zN+1 )
or ( π + θ , θ , z2 , . . . , zN , zN+1 )

according to the value of m.
The assumption θ = π leads to a contradiction exactly as in the proof of Propo-

sition 28. Therefore θ < π.
By (19), ∆̇N and ∆̈N have a dihedral angle equal to b := zN , while ∆N+1 has an

angle π − b. On the other hand, a tetrahedron of D is flat at z ∈ W if and only if
one (and therefore all) of its angles belong to {0, π} (Proposition 7). Thus, ∆̇N , ∆̈N

are flat if and only if ∆N+1 is flat (i.e. b ∈ {0, π}). The argument of Proposition 15
then follows through: at z, if some tetrahedra were flat, all would be flat and the
volume would be 0; absurd. Thus z ∈W . �

To apply Theorem 5, we only need to make sure that the critical point (maxi-
mum) of V on the space W of ι–invariant angle structures is also critical (maximal)
in the space of all angle structures: but that is clear since by concavity of the
volume functional (Fact 6), the volume can only go up when we average an angle
structure with its push–forward by ι. Theorem 5 does apply: we have found a
complete hyperbolic structure on the triangulated space Ms. To check that the tri-
angulation is canonical, we only need to check the Minkowski convexity relationship
(12). For boundary faces of Y , the situation is exactly the same as in Case 1 (odd
l). For interior faces of Y not bounding the “extra” tetrahedron ∆N+1, we proceed
as in Section 4.4: the only new argument needed is an analogue of Proposition 23
(predicting the handednesses of powers of the core curve of Y ), namely

Proposition 32. Let Ti be a Farey triangle such that 0 < i < N and let x ∈ P1Q
be the Farey vertex Ti−1∩Ti∩Ti+1. Consider a properly embedded line γx of slope x
in ∂Y (running between two cusps), and a lift γ̂x of γx to a universal cover U ⊂ H3

of Y (running between two ideal points). The deck transformation of U that sends
the initial point of γ̂x to the final point is left–handed (resp. right–handed) if and
only if the Farey triangle Ti carries a letter L (resp. R).
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Proof. The proof is exactly as in Section 3. The key argument that the integral λx of
the longitude 1–form along γ̂x stays less than π is only easier, because the “longest”
curve γm runs only around one half, not all, of the meridian of U (connecting some
ideal vertex to its symmetric image with respect to the axis of U); thus λm = π
and λx < π. �

The only remaining case of the Minkowski convexity relationship (12) is at the
faces of ∆N+1. According to our picture of the cusp triangulation (Figure 12), we
can assume that the innermost hexagon HN has vertices at

−1 , 0 , ζ , 1 , 0 , −ζ
and look at the interface ζ∞0 between ideal tetrahedra 1ζ∞0 and −1ζ∞0.

Following the method of Section 4.4, if ζ = ξ + iη, the isotropic vectors in R3+1

corresponding to the horoballs centered at ∞, 0, ζ, 1,−1 are respectively

v∞ = ( 0, 0, −1, 1 )
v0 = 1

|ζ| ( 0, 0, 1, 1 )

vζ = 1
|ζ||ζ−1| ( 2ξ, 2η, 1 − |ζ|2, 1 + |ζ|2 )

v1 = 1
|ζ−1| ( 2, 0, 0, 2 )

v−1 = 1
|ζ−1| ( −2, 0, 0, 2 ) .

The solution to ρv1+(1−ρ)v−1 = λv∞+µv0+νvζ satisfies (λ, µ, ν) =
(

1
|ζ−1| ,

|ζ|
|ζ−1| , 0

)
,

hence λ + µ + ν = |ζ|+1
|ζ−1| > 1 according to the triangular inequality in the triangle

(0, 1, ζ): by Proposition 25, the convexity inequality in Minkowski space is satisfied.

5.4. Delaunay decompositions and elementary Kleinian groups.

Remark 33. If U ⊂ H3 is a (triangulated) universal cover of the solid torus Y and
〈ϕ〉 is the group of deck transformations of U , we mentioned at the beginning of
Section 5.3 that for each ideal vertex v of U , the symmetric image v′ of v with respect
to the axis of ϕ is also a vertex of U , and ∆ := vv′ϕ(v)ϕ(v′) is an ideal tetrahedron
of U (projecting to ∆N+1). By duality between the Ford–Voronoi domain and the
canonical triangulation, the last computation of Section 5.3 amounts to checking
the following (easy) fact: if all vertices of U are endowed with horoballs of the same
size, then the center of ∆ is nearer to the horoballs centered at the vertices of ∆
than to any other horoballs.

More generally, if n ≥ 3, let G := 〈ϕ,ψ〉 ⊂ Isom+(H3) be an elementary group
generated by a loxodromy ϕ and an order–n rotation ψ with the same axis δ (note
that Section 5.3 amounted to the case n = 2, and Section 2 to the case n = 1). Let
O := Gp ⊂ ∂∞H3 be a generic ideal orbit of G; if hp is a horoball centered at p,
all horoballs in the G–orbit of hp come equally close to the line δ. The convex hull
of O projects modulo ϕ to an n–times punctured solid torus X whose boundary is
pleated along a certain ideal triangulation in which all vertices have the same degree
(generically 6, exceptionally 4; for simplicity let us assume the generic situation).
The convex hull construction in Minkowski space R3+1 yields a decomposition of
X into ideal polyhedra with respect to the horoballs Ghp. The central polyhedron
is the convex hull Q of 〈ψ〉p ∪ ϕ(〈ψ〉p), namely an ideal hyperbolic antiprism with
regular n–sided bases (glued together via ϕ): indeed, it is easy to check that the
center of Q is closer to the horoballs centered at the vertices of Q than to any other
horoballs of the G–orbit.
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It is possible that Q is the only cell of X. Otherwise, we claim that the remain-
ing cells between Q and ∂X are tetrahedra glued together according to diagonal
exchanges and Farey–type combinatorics: namely, ∂X/ψ is a once–punctured torus
with ideal edges of slope p, q, r ∈ P1Q for some arbitrary marking (these slopes
are mutual Farey neighbors). The meridian of X defines the n-th power of an ir-
reducible element of H1(∂X/ψ,Z), and therefore also a slope m ∈ P1Q. Since m
is the slope of the base edges of the antiprism Q, if Q is the only cell in X then
m ∈ {p, q, r}. Otherwise, we may as in Section 2 assume that the Farey edge pq
separates m from r and follow the line ℓ from r to m to construct a (combinatorial)
ideal decomposition D of X.

In fact, the following “Gauss–Bonnet type” result (left as an exercise) is a simple
generalization of the method worked out in this paper. It uses the fact that the
antiprism Q (like any convex ideal hyperbolic polyhedron, see [R2, G1]) is uniquely
determined up to isometry by its dihedral angles.

Theorem 34. Consider non–negative reals θp, θq, θr satisfying (5), namely 0 <
θr < π = θp + θq + θr. There exists a hyperbolic n-times punctured solid torus X,
decomposed into convex ideal polyhedra according to the combinatorics of D and
with exterior dihedral angles θp, θq, θr at the edges of slope p, q, r, if and only if

(m ∧ p)θp + (m ∧ q)θq + (m ∧ r)θr >
2π

n
.

Moreover, X is then unique up to isometry and D is the Delaunay decomposition
of X. �
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