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Abstract. For any positive integers t and b we find a tunnel num-
ber t knot in the three-sphere which has no (t′, b′)-decomposition
for any t′ ≤ t and b′ ≤ b. This result was known only for (t, b) =
(1, 2). Our technique relies on finding knot complements with high
distance splittings.

1. Introduction

In this paper we address the problem of generating knots with high
distance, in the sense of J. Hempel [7]. Note that it is easy to find three-
manifold/knot pairs (M,K) where the exterior E(K) = M − n(K)
admits a Heegaard splitting of high distance. Fix any splitting (V,W )
of high distance: that these exist is due to Hempel, refining a technique
of T. Kobayashi [9]. Remove an unknotted solid torus from V to obtain
a compression body V0. Clearly the distance of the Heegaard splitting
(V0,W ) is at least the distance of (V,W ). See Section 2 for definitions.

The problem becomes more challenging if the ambient manifold M
is specified beforehand. For example, the above argument cannot be
used if M does not admit any high distance splitting. The case of the
three-sphere is of particular interest: here every Heegaard splitting is
isotopic to the standard one. Hence the disk complexes of V andW have
distance zero and indeed infinite-diameter intersection. This makes
finding an appropriate compression body more difficult. Nevertheless,
by refining Kobayashi’s techniques we prove:

Theorem 3.1. For any integers g > 1, n ≥ 0 there is knot K ⊂ S3

and a genus g splitting S ⊂ E(K) having distance greater than n.

Now we consider another measure of complexity of a knot: K ⊂
M has a (g, b)-decomposition if K may be isotoped to have exactly b
bridges with respect to a genus g Heegaard splitting of M . When b = 0
we further insist that K be a core of one of the handlebodies.
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For example, the unknot in S3 has a (0, 1)-decomposition and is
the unique such. By definition, a 2-bridge knot in S3 has a (0, 2)-
decomposition. After a moment’s reflection it is possible to find (1, 1)
and (2, 0)-decompositions for such knots.

Any knot K with tunnel number t = t(K) (again, see Section 2)
has a (t + 1, 0)-decomposition. The corresponding splitting surface of
E(K) has minimal genus. We note (Lemma 6.5) that K has a (t, 1)-
decomposition if and only if K is µ-primitive. It has been known for
about ten years that there are knots which are not µ-primitive. For
example, see the papers of Moriah and Rubinstein [12], Morimoto,
Sakuma, and Yokota [15], and Eudave-Munoz [5]. In each case, prov-
ing the knots in question are not µ-primitive is a highly non-trivial
task. Notice that the knots described in [12] have (t, 2)-decompositions.
The knots in [15] are all tunnel number one knots and have (1, 2)-
decompositions. The knots in [5] are all tunnel number one and some
are known to be (1, 2) while the rest have unknown optimal (1, b)-
decomposition.

Recently J. Johnson and A. Thompson have shown, improving on
earlier work of Johnson’s in [8], that for every n there is a tunnel number
one knot which are not (1, n). Independently, M. Eudave-Munoz has
claimed the existence of tunnel number one knots in S3 which are not
(1, 2). His examples are either (1, 3) or (1, 4) knots but exactly which
is not yet known.

Using the work of M. Scharlemann and M. Tomova (see [17] and [19])
and using Theorem 3.1 above, we prove:

Theorem 5.3. For any positive integers t and b there is a knot K ⊂ S3

with tunnel number t so that K has no (t, b)-decomposition.

The question of determining the (g, b)-decomposition of a knot in
S3 has risen in other contexts as well. For example Kobayashi and
Reick ask, as Question 1.9 of [10], whether there are knots in S3 with a
(1, n)-decomposition for n ≥ 3. Theorem 5.3 answers in the affirmitive.
Additional discussion is deferred to Section 6.
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wish to thank the Technion, Rutgers, and Yale University for their
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2. Preliminaries

Two-dimensional. Fix S a compact connected orientable surface.
Suppose that α and β are simple closed curves in S.

Definition 2.1. The curves α and β are tight if no component of
S − (α ∪ β) is a bigon: a disk B with |B ∩ α| = |B ∩ β| = 1.

Let PML(S) be the space of projectively measured laminations on
S. References on PML include Casson and Bleiler’s book [3], Penner
and Harer’s book [16], and Bonahon’s article [2].

We note that tightness may also be obtained for measured lami-
nations; this is somewhat difficult to see combinatorially but can be
proved using a hyperbolic structure on S and geodesic realizations of
the laminations in question.

A discussion of train tracks may also be in order.

Three-dimensional. Recall that a handlebody V is homeomorphic to
a closed regular neighborhood of a finite, connected, polygonal graph
Γ embedded in R3. The image of Γ in V is called a spine for the
handlebody. Suppose now that Γ′ ⊂ Γ is a subgraph of the spine of
V and take V0 = V − n(Γ′). Then V0 is a compression body. The
boundary of V0 is naturally partitioned: ∂V0 = ∂+V0 ∪ ∂−V0 where the
positive boundary ∂+V0 equals ∂V and the negative boundary ∂−V0

equals ∂V0 − ∂+V0.
A Heegaard splitting of a 3-manifold M is a decomposition M = V ∪S

W where V,W are compression bodies so that S = ∂+V = ∂+W = V ∩
W . The surface S will be called the Heegaard surface of the Heegaard
splitting.

Complexes. Let CS be the one-skeleton of Harvey’s curve complex [6].
That is,

Definition 2.2. Fix S a closed connected orientable surface of genus
at least two. Then CS is the graph whose vertices are isotopy classes of
essential simple closed curves and whose edges connect distinct classes
with disjoint representatives.

We remark that CS is connected. We place a metric d(·, ·) on CS by
setting the length of every edge to be one. For subsets X,Y ⊂ CS we
define d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y }.
Definition 2.3. Fix V , a compression body. A curve α ⊂ S = ∂+V is
a meridian of V if α bounds a disk in V .

We have a variant of a definition due to McCullough [11]:

Definition 2.4. The subcomplex DV ⊂ CS spanned by meridians is
called the disk complex.
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The following definition is due to Hempel [7]:

Definition 2.5. Suppose that M is given a Heegaard splitting V ∪SW .
Define the distance of the splitting to be

d(V,W ) = d(DV ,DW ).

We will need the following lemma, essentially due to Hempel [7], who
in turn adapted an argument of Kobayashi [9].

Lemma 2.6. Suppose that X,Y ⊂ CS and that X,Y are the closures in
PML(S). Fix a pseudo-Anosov map Φ with stable and unstable lami-
nations λ±. Assume that λ− /∈ Y and λ+ /∈ X. Then d(X,Φn(Y ))→∞
as n→∞. ¤

This statement is virtually identical to that of Theorem 2.4 in Abrams-
Schleimer [1] and the same holds for the proof.

Multi-curves. Recall that pair of pants is another name for the three-
holed sphere. A seam in a pair of pants is an essential properly em-
bedded simple arc connecting distinct boundary components. A wave
has all the same properties except the last: it connects one boundary
component to itself. There is a matching between waves and seams
determined by which pairs have non-trivial geometric intersection. We
call such seam/wave pairs dual.

Definition 2.7. Suppose that S is a compact orientable surface of
genus two or more. A multi-curve M ⊂ S is a collection of essential
simple closed curves which are disjoint, non-parallel, and not boundary
parallel. If M is maximal in size we call it a pants decomposition.

The seams (waves) of a multi-curveM are exactly the seams (waves)
of the pairs of pants in S −M. Suppose β ⊂ S, a simple closed curve,
and M are tight. Then β has a seam (wave) with respect to M ⊂ S
exactly when β has a seam (wave) in one of the pairs of pants of S−M.
Fix now some multi-curve M⊂ S.

Definition 2.8. We say that a curve or lamination λ is traverses all
seams of M if

• λ and M are tight and
• λ runs over every seam of every pair of pants in S −M.

No requirement is placed on the non-pants components of S −M.

“Traverses all seams” is a slight generalization of Kobayashi’s notion
of “full-type”, given in [9]. This is because we allow curve systems
where he only allows pants decompositions. We do this in order to
work with compression bodies.
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Definition 2.9. Fix a compression body V with S = ∂+V . A cut
systemM⊂ S is a maximal multi-curve which contains only meridians
of V .

A standard outermost bigon argument proves the following:

Lemma 2.10. Suppose V is a compression body and M is a cut sys-
tem. Suppose α is a meridian of V and M and α are tight. Then
either α is parallel to a component of M or α has a wave with respect
to M. ¤

Again following Kobayashi [9], we conclude:

Corollary 2.11. Suppose V is a compression body and M is a cut
system. Assume that |M| ≥ 2. Then no lamination λ ∈ DV traverses
all seams of M.

Proof. SinceM has at least two components, S −M contains at least
one pair of pants. Suppose now, for a contradiction, that λ traverses
all seams ofM. Fix βi ∈ DV , a sequence of meridians converging to λ.
Passing to a subsequence we may assume that none of the βi are parallel
into M. It follows from Lemma 2.10 that all of the βi have a wave in
some pants of S −M. Passing to subsequences again we may assume
that all of the βi have the same wave in the same pair of pants. Since
the βi become increasingly parallel to λ, for sufficiently large index I
the curve βI runs parallel to the given wave and to the dual seam. It
follows that βI is not simple. This is the desired contradiction. ¤
Decompositions. We now present a well-known generalization of bridge
position.

Definition 2.12. Suppose A ⊂ V is a disjoint collection of properly
embedded arcs in a compression body V where ∂A ⊂ ∂+V . We say A
is unknotted if A can be properly isotoped, rel boundary, into ∂V .

We now have a definition due to Doll [4]:

Definition 2.13. Suppose that M = V ∪S W and K is a knot in M .
The knot K is in bridge position with respect to S if:

• K is transverse to S,
• K ∩ S 6= ∅, and
• both K ∩ V and K ∩W are unknotted.

In this situation, if g = g(S) and b = |K ∩ V |, we say that K admits a
(g, b)-decomposition.

We adopt a non-standard version of this when b = 0. Recall that, if
K ⊂M then the knot exterior is E(K) = M − n(K).

Definition 2.14. Suppose that K ⊂ M . Any Heegaard splitting of
E(K), of genus g, gives a (g, 0)-decomposition of K.



6 YAIR MINSKY, YOAV MORIAH, AND SAUL SCHLEIMER

There is a well-known way to add structure to a (g, 0)-decomposition:

Definition 2.15. Fix a closed orientable manifold M and suppose
K ⊂M is a knot. A disjoint collection of arcs {τi} properly embedded
in E(K) is a tunnel system for K if E(K) − n(∪τi) is a handlebody.
The size of a smallest such collection is t(K), the tunnel number of K.

Thus the tunnel number of K and the minimal Heegaard genus of
E(K) measure the same quantity. We end this introductory material
with some standard observations: If K has a (g, b)-decomposition then
K also has (g, b + 1) and (g + 1, b)-decompositions. It is also easy to
check that, as long as b ≥ 1, any knot with a (g, b)-decomposition also
has a (g + 1, b− 1)-decomposition.

Thus our interest lies in moving in the opposite direction: turning
a (g, b)-decomposition into a (g− 1, b′)-decomposition, with b′ as small
as possible. Theorem 5.3 exactly says if b = 0 then we cannot bound
b′ by a function of g, even for knots in S3.

3. High distance

The purpose of this section is to prove the following theorem:

Theorem 3.1. For any integers g > 1, n ≥ 0 there is knot K ⊂ S3

and a genus g splitting S ⊂ E(K) having distance greater than n.

Equip S3 = V ∪S W with the standard genus g Heegaard splitting.
Let CS, DV , and DW be the corresponding curve and disk complexes.
Let D ⊂ V be a disk cutting V into a solid torus X and a handlebody
Y with genus g−1. Take K0 to be the core of X. Thus V0 = V −n(K0)
is a compression body and V0 ∪W equals E(K0).

We must find a sequence of compression bodies Vn ⊂ V each home-
omorphic to V0 so that

d(DVn ,DW )→∞
as n → ∞. The corresponding knots Kn ⊂ S3 will satisfy the conclu-
sion of the theorem.

To this end, set δ = ∂D. As shown in Figure 1 extend δ to a
pants decomposition P whose boundary curves are all meridians of V .
Likewise, as shown in Figure 1, choose a pants decomposition Q whose
boundary curves are meridians of W .

Set S0 = ∂Y ∩S. It is the once-punctured genus g− 1 surface to the
right of δ. Let P0 = P ∩ S0 be the pair of pants decomposition of S0

induced by P . The important feature of our chosen decompositions is
that the curves of P0 traverse every seam of Q in S0.

The construction of Vn consists of several steps:
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δ
Q:

P:

Figure 1. The pants decompositions P of V and Q of
W . Each component of Q (except the littlest and the
biggest) has a symmetric “partner” on the underside of
V .

Step 1. Find a meridian curve a ∈ DV such that

a1: a traverses all seams of Q and
a2: a traverses all seams of P0.

Step 2. Use the curve a to construct a pseudo-Anosov map Φ: S → S
which extends over V and whose stable lamination λ+ and unstable
lamination λ− have

λ1: λ+ traverses all seams of Q and
λ2: λ− traverses all seams of P0.

Step 3. Show that d(DW ,Φn(DV0))→∞ as n→∞.

Conclusion. Since Φ extends over V we may define Vn = Φn(V0).
This is again a compression body embedded in V . Thus (Vn,W ) is a
Heegaard splitting of a knot exterior E(Kn) where Kn = Φn(K0) ⊂ S3.
As desired in the conclusion of the theorem we have:

d(DVn ,DW )→∞

4. Proof of Theorem 3.1

We now carry out the steps outlined above.

Step 1. We will first find a useful curve γ ⊂ S0. We will then use two
copies of γ to build the desired meridian a. So consider a train track τ
modeled on P0 and described in Figure 2.

Two important features are:

(1) τ contains P0 − δ and additional branches. These branches
contain all seams of P0, with the exception of the two seams
incident to δ.
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Figure 2. The train track in S0. Only the first few
segments are drawn.

(2) The entire picture is invariant under a 180◦ rotation about the
horizontal line meeting V in g + 1 arcs. This will be important
when dealing with the pair of pants (of P0) adjacent to δ.

Let γ be a simple closed curve carried by τ with the property that it
traverses every branch at least twice and goes around each component
of P0−δ at least once. (One can obtain γ by starting with an arational
measured lamination carried on τ , and then taking a nearby rational
approximation.) Note that γ has the following properties:

(1) It traverses every seam of P0, again excluding the two seams
incident to δ.

(2) It traverses every seam of Q, excluding the four seams in X.
This is because γ follows every curve of P0−δ and these traverse
the relevant seams of Q.

To build the meridian a we add two loops to the train track τ as
shown in Figure 3. Each loop begins inside one of the switches of τ
nearest to X, enters X, goes once around the meridian disk, and then
returns to the same switch. We define an integer measure on this new
train track τ ′: Let µ be the measure on τ that defines γ. Hence 2µ
defines two copies of γ. Now subtract 2 from the weight that 2µ puts
on the branch of τ closest to δ, and put a weight of 1 on each of the
new loops. This measure on τ ′ defines a. By construction a satisfies
conditions (a1) and (a2).

Step 2. Choose two meridians b, c ∈ DV so that b and c together fill
S. Let τa and τb and τc denote the Dehn twists about a and b and c
respectively. Set

Φ0 = τb ◦ τ−1
c .

It follows from Thurston’s construction [18] that Φ0 is a pseudo-Anosov.
Since Φ0 is a composition of Dehn twists along meridian disks it extends
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Figure 3. The meridian a is constructed via a band-
sum. The surface here shows the leftmost 1-holed torus
and pair of pants from Figure 2 – the curve δ separating
them has not been drawn, and the shape is somewhat
distorted for convenience. The loops are the purple arcs.
Note that each loop takes care of two of the seams among
the four pictured (blue) curves of Q. To check that all
intersections are essential, note that there are no bigons
in the picture.

to V . Define
ΦN = τNa ◦ Φ0 ◦ τ−Na .

Note that ΦN also extends to V . The stable and unstable lamina-
tions λ±N of ΦN are just τNa (λ±). Since a meets λ±, as N → ∞ the
laminations λ±N converge to [a] in PML(S). Hence eventually both
laminations satisfy conditions (a1) and (a2). Take Φ = ΦN for such a
large N and take λ± = λ±N . Thus conditions (λ1) and (λ2) are satisfied.

Step 3. We must show that d(DW ,Φn(DV0)) → ∞ with n. Step 2
above proves that λ± are of full-type with respect to Q and P0. Thus,
by Corollary 2.11, λ− /∈ DVO and λ+ /∈ DW . The desired conclusion now
follows from Lemma 2.6. This completes the proof of Theorem 3.1.

5. Ruling out simple decompositions

In order to prove Theorem 5.3 we rely first on a Theorem of Scharle-
mann and Tomova [17] and then on a considerable refinement due to
Tomova [19].

Theorem 5.1. Let M be a three-manifold and suppose that S and Q
are Heegaard splittings of M . Suppose that the genus of Q is less than
the genus of S. Then the distance of the Heegaard splitting S is at most
2g(Q). ¤
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Theorem 5.2. Let K ⊂ S3 be a knot and S be a Heegaard splitting
surface of the exterior of K. Suppose that Q is Heegaard splitting
surface of S3 so that

• K is in bridge position with respect to Q and
• the genus of Q is less than the genus of S.

Then the distance of the Heegaard splitting S is at most 2 − χ(Q −
K). ¤

We are now in postion to prove Theorem 5.3:

Theorem 5.3. For any positive integers t and b there is a knot K ⊂ S3

with tunnel number t so that K has no (t, b)-decomposition.

Proof. Fix t and b. Choose Kn ⊂ S3, as constructed in Theorem 3.1,
so that the associated splitting E(Kn) = V ∪S W has genus t+ 1. We
choose n sufficiently large to ensure that the distance d(V,W ) is greater
than 2t+ 2b+ 2.

We first prove that the tunnel number t(Kn) equals t. Clearly
t(Kn) ≤ t. Suppose t(Kn) is strictly less. Then let Q be the splitting
associated to some minimal tunnel system. We find that g(Q) < g(S)
and so, by Theorem 5.1, the distance satisfies d(V,W ) ≤ 2g(Q) < 2t+2,
a contradiction.

We now consider the possibility of a (t, b)-decomposition of Kn. Let
Q be the associated splitting of S3. Then the genus ofQ is less than that
of S. Applying Theorem 5.2 we find that d(V,W ) ≤ 2 − χ(Q−K) =
2− (2− 2g(Q)− 2b) = 2t+ 2b, again a contradiction. ¤

6. Conjectures, questions, and applications

6.1. Other manifolds. To the general fun I will add the following
conjecture:

Conjecture 6.1. Fix M , an orientable compact manifold. Suppose
that M = V ∪S W is a twice stabilized Heegaard splitting. For any n
there is a core curve K ⊂ V so that the splitting E(K) = (V −n(K))∪S
W has distance greater than n.

Yee-hah!

6.2. Addetivity. It seems that Theorem 5.3 is relevant to the question
of addetivity of tunnel number of knots under connected sum. We first
need a few definitions:

Definition 6.2. Let K ⊂ S3 be a knot and (W,V ) a Heegaard splitting
of S3 −N(K) with ∂(S3 −N(K)) ⊂ V . Let µ denote a simple closed
curve on ∂−V . We say that µ is primitive if there is a vertical annulus
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A in the compression body V such that ∂A = µ ∪ γ where γ ⊂ ∂+V
meets an essential disk D of W in a single point.

Definition 6.3. We say that a knot K ⊂ S3 has a primitive meridian
if S3 − N(K) has a minimal genus Heegaard splitting with a primi-
tive meridian. The knot K is not µ-primitive if there is no Heegaard
splitting for E(K) which has a primitive meridian.

Definition 6.4. Given a knot K in a 3-manifold M , a tunnel system for
K is a collection T = {t1, ..., tn} of unknotted arcs such that MrN(T ∪
K) is a handlebody. It will be called a minimal tunnel system if n is
minimal over all possible tunnel systems. We will then say that the
knot K has tunnel number n and denote t(K) = n. Tunnel number
can be similarly defined for a general 3-manifold.

This following lemma is well-known; we give the the proof for the
sake of completeness.

Lemma 6.5. Let K ⊂ M be a knot with t(K) = t. Then K has a
(t, 1)-decomposition if and only is K is µ-primitive.

Proof. Let (V,W ) be the Heegaard splitting of genus t of M which
realizes the (t, 1)-decomposition. Hence K = t1 ∪ t2 where t1 ⊂ V, t2 ⊂
W are unknotted arcs. Consider a regular neighborhood of t2 ⊂ W .
We can think of it as a a 1-handle containing t2. Remove it from W
and add it to V to obtain a handlebody V ′ of genus t + 1. Since t2
was unknotted the drilled out manifold W ′ is also a handlebody. The
cocore disk of the 1-handle meets an essential disk of W ′ in a single
point. The one which is determined by the given isotopy of t2 into
∂+W . Hence when K ⊂ V ′ is removed we get a compression body V ′′.
Thus (V ′′,W ′) is a Heegaard splitting of minimal genus g = t+ 1 and
by the construction is µ-primitive.

If (V,W ) is a minimal genus Heegaard splitting for M−N(K) with V
being the compression body then add a solid torus neighborhood of K
to V to obtain a handlebody V ′. It has an essential disk D which meets
K in a single point and since (V,W ) is µprimitive and essential disk E
of W in a single point. If we remove a regular neighborhood N(D) of
D from V ′ and add it to W along an annulus as a 2-handle we obtain
handlebody V ′′ and W ′′ and hence a Heegaard splitting (V ′′,W ′)′ of
genus g − 1 = t(K) for M . Now K ∩ N(D) is and arc t2 ⊂ W ′′ and
K ∩ V ′′ is an arc t1 and they are clearly unknotted. So we have a
(t, 1)-decomposition for K ⊂M . ¤

If the knots K1, K2 ⊂ S3 have tunnel number t(K1), t(K2) respec-
tively then we have the following conjecture by Morimoto (see [14]):
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Conjecture 6.6. If K1 and K2 are knots in S3 then t(K1#K2) =
t(K1) + t(K2) + 1 if and only if neither of K1 and K2 are µ-primitive.

Remark 6.7. The conjecture is known to be true for tunnel number
one knots [13] and for m-small knots [14].

However there is some evidence for the converse:

(1) It is a theorem (see [10]) that if there exists a knot K ⊂ S3

such that both K and 2K = K#K are not µ-primitive then the
above Conjecture 6.6 is false. Where nK = K#K#, . . . ,#K,
n times.

(2) It is also a theorem [10] that if a knotK has a (t, n)-decomposition
then the knot nK is µ-primitive. Since all known examples of
knots which are not (t, 1) are (t, 2) they fail as candidates for
the above theorem.

Note that (1) follows from (2) if we add the additional condition that
mK is not µ-primitive for m ≤ n−1 and n ≥ 3: Assume Conjecture 6.6
is true. Since nK is µ-primitive we have:

t((n+ 1)K) = t(nK) + t(K) =

nt(K) + (n− 1) + t(K) = (n+ 1)t(K) + (n− 1)

However, for m < n both mK and (n+ 1)K are not µ-primitive so we
have:

t((n+ 1)K) = t(mK) + t((n+ 1−m)K) =

mt(K) + (m− 1) + (n+ 1−m)t(K) + (n−m) =

(n+ 1)t(K) + (n− 1 + 1) = (n+ 1)t(K) + n

This a contradiction. We give a proof for (2) below.
Hence:

Question 6.8. (1.9 of [10]): Are there knots which are (t, n) For n ≥ 3?

Remark 6.9. Theorem 5.3 gives a positive answer to Question 6.8.
However showing that a knot K which is a non-trivial connected sum
has a (t(K), b)-decomposition must be very tricky since these knots
contain essential tori so all their Heegaard splittings are distance at
most 2 by [7].

Though the above Remark 6.9 shows that we are far away from find-
ing a counterexample to the Morimoto Conjecture using these tech-
niques it is the belief of the second author that the conjecture is in fact
false. A better conjecture would be:

Conjecture 6.10. If K1 and K2 are prime knots in S3 then t(K1#K2) =
t(K1) + t(K2) + 1 if and only if neither of K1 and K2 are µ-primitive.
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Theorem 6.11. (2) If the knot K has a (t, n)-decomposition then
nK = K#, ....#K n-times, has a Heegaard splitting of genus nt(K)+n
which is µ-primitive.

Proof. Let K ⊂ S3 be a knot with a (t(K), n) decomposition. Then
there is a Heegaard splitting (V1, V2) of ES3(K) of genus t(K)+n so that
∂ES3(K) ⊂ V1. It is obtained by taking n 1-handles which are regular
neighborhoods of the n arcs {t1, . . . , tn} from one handlebody W2 in
the (t(K), n) decomposition and adding them to the other handlebody
W1. Then removing a smaller regular neighborhood of K from the
modified W1 to obtain a compression body V1 and a handlebody V2

both of genus t(K) + n.
The boundary of the cocore disks of the tunnels now determine

a collection of n curves {γ1, . . . , γn} ⊂ ∂V2 which are by definition
primitive. They have the additional property that the essential disks
{D1, . . . , Dn} ⊂ V2 that each curve {γ1, . . . , γn} ⊂ ∂V2 intersect in a
single point can be chosen to be pairwise disjoint.

Now consider (U 1
1 , U

1
2 ), . . . , (Un−1

1 , Un−1
2 ) n − 1 copies of a minimal

genus Heegaard splitting for ES3(K) so that ∂ES3(K) ⊂ U1. For each
i cut U i

1 along a vertical annulus Ai so that ∂Ai = α1 ∪ α2 with α1 ⊂
∂ES3(K). This operation leaves two images Ai

1 A
i
2 of the annulus on

the resulting handlebody. Similarly cut V1 along n−1 vertical annuli Bi

corresponding to the cocore disks of the tunnels {t1, . . . , tn−1} . Attach
a copy of U i

1 to V1 by identifying the images of Ai
1 and Bi

1 and Ai2 and
Bi

2 to obtain a compression body.
Attach a copy of U i

2 to V2 by identifying the image of an annulus
neighborhood of α2 in ∂U i

2 with the annulus neighborhood of γi. Since
γi is primitive we obtain a handlebody of genus t(K)+n+(n−1)(t(k)+
1)−(n−1) = nt(K)+n which determines a Heegaard splitting (H1, H2)
of ES3(nK). The meridian corresponding to the tn arc is clearly prim-
itive from the construction meeting the essential disk Dn of H2 in a
single point. ¤

6.3. Other manifolds. What can be said about other manifolds?
That is, for which 3-manifolds M is the following statement true:

For any g > 2 and n > 0 there exists a knot K in M
such that M −K has a genus g Heegaard splitting with
distance greater than n.

I would conjecture that it’s false for M a connected sum of S2×S1’s,
and true if M and g such that M has a genus g splitting of distance at
least 3. (Is 3 the right number?)
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For a connected sum of S2 × S1’s: If we start with the standard
splitting, then M is the double of V so DV = DW , and no version of
the construction can work: DVn is always in DV , and so can’t be a large
distance from DW . A general splitting is (is this right?) a stabilization
of the standard splitting. What can we say in this case?

6.4. Geometry. Given the construction in this paper, what can we
tell about the hyperbolic geometry of this knot complement? For ex-
ample, it seems that the distance lower bound we get should mean
that the complement of the cusp in S3rK would still contain a “deep”
handlebody. In particular it should hold that:

Conjecture 6.12. For any D > 0 there is a hyperbolic knot K in S3

such that the D-neighborhood of the standard (Margulis tube) cusp of
K does not cover all of S3 −K.

And if this is true, is it interesting? Do we know other ways of
building knots with this property?

A way to analyze the geometry of this: Consider a fixed zn as in the
construction. Now use hn = τmzn as before, but let m→∞ while fixing
n. The geometric limit (using Dehn filling theorem) is the manifold
with two rank 2 cusps obtained from drilling both K (i.e. the torus
hn(Tn)) and zn. One can try to study this manifold. It has a cover
corresponding to the fundamental group of W (now no longer the whole
fundamental group) which has a cusp associated to zn. Now remember
that zn = Φn(z0) – so there should be a nice limit of this as n→∞. I
think it actually suffices to use Kleineidam-Souto to extract this limit,
and the structure of it is as in Hossein’s thesis. That is, the geometric
limit as zn →∞ is a handlebody with a simply-degenerate end.

That tells us that in the original manifold (provided mn is chosen
large enough) there will be a large handlebody that looks a lot like a
big compact core of this degenerate handlebody. As n → ∞ we get
larger and larger pieces like this and hence we get Conjecture 6.12.
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