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Essential loops in taut ideal triangulations

SAUL SCHLEIMER

HENRY SEGERMAN

In this note we combinatorialise a technique of Novikov. We use this to prove that, in
a three-manifold equipped with a taut ideal triangulation, any vertical or normal loop
is nontrivial in the fundamental group.

57M05; 57M20

1 Introduction

The notion of a taut ideal triangulation of a three-manifold is due to Lackenby [7].
He combinatorialised the angle structures introduced independently by Casson and
by Rivin [12]. They in turn linearised the geometric triangulations of Thurston [13].
Each of these structures plays an important role in modern low-dimensional topology.
In particular, taut ideal triangulations have a strong connection to the subject of taut
foliations, introduced by Gabai [5], and to that of taut branched surfaces, due to
Oertel [10]. In addition to the results of Lackenby, taut ideal triangulations play a
central role in the theory of layered triangulations. One spectacular contribution has
been as a prerequisite for Agol’s theory of veering triangulations [1].

Novikov [9, Theorem 6.1] gives one of the early applications of foliations to the study
of the fundamental group of a manifold. He starts with a loop ı in good position with
respect to a foliation F. He further supposes that H W D!M is a null-homotopy of ı ,
also in good position. Pulling back, he obtains a singular foliation H�1.F/ on the
disk D. The Poincaré–Hopf theorem gives combinatorial control of the singularities,
which translates to topological control over the homotopy. Morally, the positivity of
the Euler characteristic of the disk constrains the position of ı . We refer to Candel and
Conlon [4, Chapter 9] for a history of the subject and for detailed proofs.

We introduce a combinatorial version of the Novikov technique; instead of pulling back
a foliation we pull back a taut ideal triangulation. This gives a train track with stops in
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the disk D. We so obtain a very simple proof of a variant of one of Novikov’s results.
That is, suppose that M is a three-manifold, equipped with a taut ideal triangulation T .
Let B D T .2/ be the resulting branched surface in M.

Theorem 3.2 Any loop ı in M which is vertical with respect to B is nontrivial
in �1.M /.

There is also an indirect proof of this using Novikov’s original technique — see Calegari
[3, Theorem 4.35(3)] — once we observe that B carries an essential lamination which
extends to a taut foliation of M (see Gabai and Oertel [6, Example 5.1] as well as
Lackenby [7, page 373]).

Using our techniques we also obtain a new result, as follows:

Theorem 5.1 Any loop 
 in M which is normal with respect to B is nontrivial
in �1.M /.

The proof of Theorem 5.1 is more delicate than that of Theorem 3.2; new behaviour
near the boundary of D must be dealt with.

From Theorems 3.2 and 5.1 we deduce that vertical, and also normal, loops are of
infinite order in the fundamental group. Note that this is a bit weaker than the conclusion
in the comparable situation of a train track � in a surface — there, loops dual to, or
carried by, � are not only nontrivial but also nonperipheral.

We have a simple corollary of Theorem 5.1. Let �M be the universal cover of M and
let zB be the resulting branched surface.

1.1 Corollary Suppose that F is a connected surface (perhaps with boundary) carried
by zB and realised as a (perhaps finite) union of faces of zB. Then F is a disk.

Previous work Gabai and Oertel prove that laminations carried by essential branched
surfaces are �1 –injective [6, Lemma 2.7]. Our Theorem 5.1 is both more and less
general than their work. We do not require a lamination. They do not require the
manifold to be cusped.

Calegari [2, Remark 5.6] gives a very different combinatorial version of Theorem 3.2,
in the closed case. He introduces the notion of a local orientation; this is, in a sense,
dual to having a transverse taut branched surface B �M where all components of
M �B are taut balls.

Acknowledgements We thank Marc Lackenby for helpful conversations. Segerman
was supported in part by National Science Foundation grant DMS-1708239.

Algebraic & Geometric Topology, Volume 20 (2020)



Essential loops in taut ideal triangulations 489

2 Background

Throughout the paper we will use M to denote a compact connected manifold with
nonempty boundary. All boundary components will be tori or Klein bottles. Suppose
that T is a three-dimensional triangulation; that is, a collection of model tetrahedra
and a collection of face pairings. We will also call the faces of a model tetrahedron
model faces, and similarly for its edges and vertices.

Let jT j be the quotient space: that is, we take the disjoint union of the model tetrahedra
of T and identify model faces using the face pairings. Let T .k/ be the k –skeleton
of jT j. Let n.T .0// be an open regular neighbourhood of the vertices of T . We call T
a ideal triangulation of M if jT j � n.T .0// is homeomorphic to M.

A taut angle structure on T is an assignment of dihedral angles, zero or � , to each
model edge in T . The assignment is required to obey two conditions. The edge
equalities state that, for each edge e 2 T .1/ , the sum of the dihedral angles of its
models is 2� . The triangle equalities state that, for any model vertex, the sum of the
dihedral angles of the three adjacent model edges is � . We say that the tetrahedra
of T .3/ are taut. See Figure 1, left.

We deduce that every taut tetrahedron has four edges with dihedral angle zero. We call
the union of these four edges the equator of the taut tetrahedron.

Suppose now that e is an edge of T .1/ . There are exactly two model edges for e

with angle � ; all others are zero. Obeying these dihedral angles, we isotope the
two-skeleton T .2/ to obtain a smooth branched surface B . See Figure 1, right. Some
references would call B a nongeneric branched surface without vertices. See for
example [3, Section 6.3].

2.1 Definition Suppose that ı is a smooth embedded loop in M, transverse to B .
Suppose that for every tetrahedron t we have that every arc d of ı\ t links the equator
of t . (That is, the endpoints of d are separated in @t by the equator of t .) Then we
say that the loop ı is vertical with respect to B .

0

0

0

0

�

�

Figure 1: Left: a taut tetrahedron. Right: all faces meeting a single edge in B .
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2.2 Definition Suppose that 
 is a smooth loop immersed in B and transverse to the
edges of B . Suppose that for every model face f of B and for every component J

of 
�1.f /, the arc J is normal in f . (That is, the endpoints of J lie in distinct edges
of f .) Then we say that the loop 
 is normal with respect to B .

3 Combinatorics of null-homotopies

Suppose that ı is a loop in M which is transverse to the branched surface B . Let
D D D2 be the unit disk with the usual orientation. Suppose that H W D!M is a
null-homotopy of ı . We homotope H relative to @D to make H transverse to B .

We define � DH�1.B/. Thus � is a train track in D. The switches of � are exactly
the points of H�1.B.1//. The stops of � are exactly the points of .H j@D/�1.B/. The
standard reference for train tracks is [11]; we also rely on [8]. We note that our track �
does not satisfy the so-called “geometry condition” [11, page 5; 8, page 52].

We call a connected component R of D� � a region. Let cusps.R/ and corners.R/
count the number of (necessarily outwards) cusps and corners on the boundary of R.
As a bit of terminology, we divide @R into sides: these are the components of @R
minus all outward cusps and corners. Note that a side s of R may be a union of several
branches of � .

We define the index of R to be

ind.R/D �.R/� 1
2

cusps.R/� 1
4

corners.R/:

In Table 1 we give pictures of, and names to, all possible disk regions with nonnegative
index. Note that index is additive under taking the union of regions [8, page 57]. Thus
the sum of the indices of the regions of D�� is exactly �.D/, that is, one. We deduce
from this that there is at least one region R with positive index.

Let r.H / be the number of regions of D�� . Over all null-homotopies of ı , transverse
to B , we choose H to minimise r.H /. We call such an H minimal.

3.1 Lemma Suppose that ı is a loop in M transverse to B . Suppose that H W D!M

is a minimal null-homotopy of ı . Let � DH�1.B/. Then we have the following:

(1) All regions of D� � are disks.

(2) If s is a side of a region R, then the interior of s meets at most one switch.

Algebraic & Geometric Topology, Volume 20 (2020)
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corners
index

1 1
2

0

0

2

4

Table 1: Disk regions with nonnegative index, organised by the number of
corners. These are named as follows: nullgon, cusped monogon, cusped
bigon, boundary bigon, boundary trigon and rectangle.

(3) No region R of D� � is a nullgon.

(4) No region R of D� � is a cusped monogon.

Thus , all positive index regions of D are boundary bigons.

Proof (1) If there were a region with topology then we could compress it into the
containing tetrahedron and reduce r.H /.

(2) Suppose that the interior of s meets at least two switches. All such switches in the
interior of s are preimages under H of a single edge. Hence there is a branch b � �

such that H.b/ is a nonnormal arc. We homotope H in a neighbourhood of b to make
H.b/ simple. This done, H.b/ cuts a bigon B off of the face containing H.b/. We
then homotope H across B. This does not increase r.H /. If r.H / does not decrease,
then this move disconnects � , and creates a region with topology, contradicting (1).

(3) Suppose that R is a nullgon. If H.@R/ is disjoint from B.1/ then the region
adjacent to R is not a disk, contradicting (1). It follows that @R consists of an even
number of branches of � (alternating between the two faces of a tetrahedron t on either
side of a � –edge of t ). But this contradicts (2).

(4) Suppose that t is the taut tetrahedron containing H.R/. Let s be the boundary
of R. We deduce that the loop s crosses the equator of t exactly once, a contradiction.

Since there are no nullgons or monogons, the only possible positive-index regions are
boundary bigons.

Algebraic & Geometric Topology, Volume 20 (2020)
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Equipped with this we can now prove the following:

3.2 Theorem Any loop ı in M which is vertical with respect to B is nontrivial
in �1.M /.

Proof Suppose that H W D!M is a minimal null-homotopy of the vertical loop ı .
Applying Lemma 3.1, there must be a region R of D� � which is a boundary bigon.
Let t be the tetrahedron containing H.R/. Let d D @R\ @D and let s D @R� dı .
From the definition of vertical, we have that H.d/ links the equator of t . Therefore
H.s/ crosses the equator of t an odd number of times, and thus at least once. This
contradicts the fact that @R has no cusps.

4 Transverse taut

In order to prove Theorem 5.1, we will use the following strengthening of the notion
of a taut structure. A transverse taut structure on T is a taut structure together with a
coorientation on B with the following property. If model faces f and f 0 of a model
tetrahedron t share a common model edge e , then

� the edge e is part of the equator of t if and only if exactly one of the coorientations
on f and f 0 points into t .

See Figure 2, left. It follows that the coorientations on faces incident to an edge change
direction precisely twice as we go around an edge. See Figure 2, right.

Suppose that T is an ideal triangulation of a manifold M equipped with a taut structure.
We now construct a triangulation �T of a double cover �M of M. By construction, the
lift of the taut structure on T to �T will support a transverse taut structure.

0

0

0

0

�

�

Figure 2: Left: coorientations and angles in a transverse taut tetrahedron.
Right: coorientations around an edge.
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For each taut tetrahedron t of T , we arbitrarily label the two model edges with dihedral
angle � as e0 and e00. In �T , we have two taut tetrahedra t 0 and t 00 corresponding
to t . We assign a coorientation to the model faces of t 0 and t 00 in such a way that the
coorientation points into the tetrahedron on the two model faces of t� incident to e� .
Now suppose that ti and tj are tetrahedra of T , glued to each other along model faces
fi and fj . In �T we have tetrahedra t 0i , t 00i , t 0j and t 00j , with model faces f 0i , f 00i , f 0j
and f 00j , respectively.

We glue t 0i to either t 0j or t 00j as the coorientation on f 0i agrees with f 0j or f 00j . We
similarly glue t 00i to the remaining copy of tj . Having made all such gluings, the
resulting triangulation �T has a transverse taut structure by construction. It has one
component if and only if the taut structure on T does not support a transverse taut
structure.

5 Proof of the main result

5.1 Theorem Any loop 
 in M which is normal with respect to B is nontrivial
in �1.M /.

Proof Suppose, for a contradiction, that the normal loop 
 is null-homotopic. Thus

 lifts to a normal loop in any cover. Thus, without loss of generality, we may assume
that the taut structure on T supports a transverse taut structure. This gives us a local
notion of upwards. In particular, every model tetrahedron has two lower faces and two
upper faces, separated by its equator.

Lemma 3.1 does not apply directly to a normal loop 
 . So, let A be a model annulus
with horizontal boundary circles @0A t @1A. Let G be a small smooth homotopy
GW A!M, moving 
 slightly upwards. That is, G.@0A/ D 
 and we define ı D
G.@1A/. We ensure that G is transverse to B away from @0A; also, we arrange that
for each vertical interval J in A the tangents to G.J / point upwards. We will apply
Lemma 3.1 to ı .

We call ı a raised curve. We call the components of ı � B raised arcs. There are
six types of raised arc. These are shown in Figure 3. There is a cellulation of A with
one-skeleton @A [G�1.B/. Suppose that C is a two-cell. Let c D C \ @0A and
d D C \ @1A. Thus G.c/ � 
 and G.d/ � ı . We say that G.c/ is the lowering of
the raised arc G.d/. We record this by the lowering map, L, where L.G.d//DG.c/.
Note that G.c/ may be either a single vertex, a single normal arc or two normal arcs.
Again, see Figure 3.
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A3

A2

A1

B1

B2 C

Figure 3: A taut tetrahedron containing the six possible types of raised arcs
of ı . These are drawn in (solid) green. The normal arcs (or points) of 
 ,
namely the lowerings of the raised arcs, are drawn in (dashed) blue. Images
of the two-cells of the annulus A are shaded in light blue. Filled green dots
indicate endpoints of raised arcs on the top two faces of the tetrahedron; open
green dots indicate endpoints on the bottom two faces.

Suppose that H W D!M is a minimal null-homotopy of ı . Recall that � DH�1.B/.
Applying Lemma 3.1 implies that D� � has at least two boundary bigons. Applying
another small homotopy, we can retain minimality and also make H transverse to 
 .

Pulling back the transverse taut structure on B by H gives a transverse orientation on
the branches of � which is consistent across switches. Thus, for any region R of D��

and for any side s of R, the transverse orientation on s points either into or out of R.
This gives us a classification of boundary bigons. Suppose that R is a boundary bigon
and s D @R� @D is its side in � . If the transverse orientation on s points out of R

then we call R a min-bigon. If it points into R, we call R a max-bigon.

5.2 Min-bigons Suppose that R is a min-bigon. We move 
 up, across H.R/, to
obtain 
 0. We appeal to Lemma 3.1(2) to ensure that 
 0 is normal. Let ı0 be the
corresponding raised loop and let H 0 be the new null-homotopy. See Figure 4.
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Figure 4: Pushing over a min-bigon of type A3 .

The loop 
 0 may be shorter than, the same length as, or longer than 
 (see types
A1; A2 and A3 in Figure 3). However, H 0 has exactly one fewer region. That is,
r.H 0/D r.H /� 1. We repeat this process until there are no more min-bigons.

5.3 Max-bigons Suppose that R0 is a max-bigon. Unlike the situation of a min-
bigon, a max-bigon does not give us a simple move to reduce complexity. The
asymmetry stems from the fact that we raised 
 rather than lowered it. Instead,
our plan is to uniquely associate to R0 two small subregions of D � � , each with
index �1

4
. This will imply that the index of D is at most zero. This contradiction

finally proves Theorem 5.1.

We begin as follows. Let s be the side of R0 in � . Let d0 D @R0� s � @D. We give
d0 the (tangential) orientation it receives from D. In Figure 5, this orientation will
point left. Note that H.d0/� ı is a raised arc. Let c0 DL.H.d0// be its lowering.

5.4 Claim � The raised arc H.d0/ has type C .

� The side s meets exactly one switch c0
0

of � .

� The vertices c0 and H.c0
0
/ cobound a subedge �0 � B.1/ .

Proof Let t0 be the tetrahedron containing H.R0/. By the definition of a max-bigon,
the transverse orientation on s points into R0 . Thus each corner of H.R0/ is contained
in a lower face of t0 . Consulting Figure 3 we deduce that H.d0/ is of type C . Thus
each corner of H.R0/ is contained in its own lower face of t0 . We deduce that s

meets at least one switch of � . By Lemma 3.1(2) the side s meets exactly one switch,
which we call c0

0
.
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ı




a

d0 d1 d2 d3 d4 d5 � � � dK

b0 b1 b2 b3 b4 b5

bK�1c0
sF

�0

c0
0

c0
2

c0
3

c0
5

� � � c0
K

Figure 5: A possible picture of part of the annulus A (in back), the bigons Bk

(in front) and the homotopies Fk (bottom). To lighten the notation in this
figure, we have omitted applying H to labels of subsets of D. Transverse
orientations on the branches bi are shown with arrows. Note that �0 D �1 ,
c0

0
D c0

1
, c0

3
D c0

4
, and so on.

Since H is transverse to 
 , the vertices c0 and H.c0
0
/ are distinct. They are contained

in the same edge of B.1/ , namely the bottom edge e0 of t0 . In e0 they cobound a
subedge, which we call �0 .

Let a and b0 be the components of s� c0
0

, where b0 meets the right endpoint of d0 .
See the leftmost region on Figure 5.

Now consider a sequence of regions R0;R1; : : : ;Rn that meet @D in the sides
d0; d1; : : : dn as we move along @D to the right. Define ck D L.H.dk// � 
 , the
lowering of the raised arc H.dk/. Define 
k D

Sk
iD0 ci � 
 .

Let bi be the branch of � that meets @D at the right corner of Ri . We now choose
n D N such that bi�1 and bi have the same transverse orientation for 1 � i < N,
while they have opposite transverse orientations for i D N. Thus, RN is at a local
minimum of 
 , and we are going downhill to it from the local maximum at R0 . This
downhill condition implies that for i 2 Œ1;N /, the raised arc H.di/ is of type either
B1 or B2 . Again, see Figure 3.

Recall that all positive index regions are now max-bigons. Thus none of the Ri can
have positive index for i > 0. Let K be the smallest number for which RK has
negative index, or, if there is none, then set K DN .

5.5 Claim The region RK is not a boundary trigon.

Proof If K <N then, by definition, RK has negative index, and so is not a boundary
trigon. If KDN then RN cannot be a boundary trigon since the transverse orientations
on the two sides of a boundary trigon must agree, yet RN is at a local minimum of 
 .
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For all k2 Œ0;K/ we define the union BkD
Sk

iD0 Ri . Define 
 0
k
D@Bk�.a

ı[bı
k
[@D/.

(Unlike in Section 5.2, here 
 0
k

is a push-off of only a section of 
 .)

5.6 Definition Suppose that g; hW Œ0; 1�!B are paths. Suppose F W Œ0; 1�� Œ0; 1�!B
is a homotopy from g to h. Thus g.x/D F.x; 0/ and h.x/D F.x; 1/. We say that
F is transverse if whenever F.x0; t0/ is contained in a (1– or 2–) cell C of B , we
have that the trace F.x0; Œ0; 1�/ lies in C.

5.7 Claim For all k 2 Œ1;K/:

(1) The region Rk is a boundary trigon.

(2) The union Bk has exactly two corners and no cusps.

(3) There is a transverse homotopy Fk taking 
k to H.
 0
k
/.

Proof We will prove this by induction. Claim 5.4 implies the base case (for k D 1)
in a manner essentially identical to the general inductive step, so we omit its proof.

Suppose that the hypotheses hold at step k . Recall that H.dk/ has type B1 or B2 , so
it has precisely one lower endpoint. Let fk be the face that contains the lower endpoint.
Let p be the endpoint of 
k , and let ek be the edge of fk containing p . Let ˇ be the
normal arc of 
 immediately after p . Let fˇ be the face containing ˇ . Viewed in a
small neighbourhood of ek , the faces fˇ and fk are on the same side (say the right
side) of ek , and fˇ is below fk .

Let p0 be the endpoint of 
 0
k

meeting bk . By hypothesis (3), the transverse homotopy
Fk takes p to H.p0/, with trace lying in ek . Since H is transverse to ek at H.p0/,
we deduce that H.D/ meets both fk and fˇ at H.p0/. Thus p0 is a switch of � with
a cusp immediately below bk , to the right of p0, pointing at 
 0

k
(which extends to the

left of p0 ). This cusp lies in RkC1 , since bk is part of the boundary of RkC1 . See
Figure 5.

If RkC1 has negative index then kC1DK and we have nothing to prove. So suppose
that RkC1 has index zero. Consulting Table 1 we deduce that RkC1 is a boundary
trigon. This proves hypothesis (1). Note that hypothesis (2) follows because Bk

meets RkC1 along bk .

Let skC1D @RkC1� .dkC1[bı
k
/ be the remaining side of the boundary trigon RkC1 .

By Lemma 3.1(2) there is at most one switch in the interior of skC1 . Let c0
kC1
D

skC1� bı
kC1
� @D. Note that 
 0

kC1
D 
 0

k
[ c0

kC1
.

Algebraic & Geometric Topology, Volume 20 (2020)



498 Saul Schleimer and Henry Segerman




dkC1

bk bkC1

p0

p

�k




dkC1

bk bkC1

p0

p

c0
kC1

�kC1�k

Figure 6: Extending the transverse homotopy Fk when H.dkC1/ has
type B1 (left) and type B2 (right). As in Figure 5, we have omitted applying
H to labels of subsets of D.

The path H.skC1/ has endpoints H.p0/ and the lower endpoint of H.dkC1/. The
point H.p0/ lies on the edge ek . Recall that fkC1 is the face containing the lower
endpoint of H.dkC1/. There are two cases, depending on the type of H.dkC1/:

� Suppose that H.dkC1/ has type B1 . Then 
kC1 D 
k . In this case, ek is a
boundary edge of fkC1 . Since there is at most one switch in the interior of skC1 ,
there are in fact no such switches. So skC1D bkC1 and c0

kC1
is a single switch,

equal to p0. We deduce that 
 0
kC1
D 
 0

k
. Since 
kC1 D 
k and 
 0

kC1
D 
 0

k
, we

set FkC1 D Fk . See Figure 6, left.

� Suppose that H.dkC1/ has type B2 . Then 
kC1 D 
k [ ckC1 . Let tkC1 be the
tetrahedron containing H.RkC1/. In this case, the path H.skC1/ must cross
the bottom edge of tkC1 in order to get into fkC1 . Since there is at most one
switch in the interior of skC1 , there is exactly one. Let f be the other lower
face of tkC1 . Thus ckC1 is a normal arc in f . Note that H.c0

kC1
/ is a properly

immersed arc in f , with endpoints on the same edges as those of ckC1 . Thus
there is a transverse homotopy E taking ckC1 to H.c0

kC1
/. Reparametrising E,

we set FkC1 D Fk [E. See Figure 6, right.

This proves hypothesis (3).

Let BF D BK�1 . This is the right-bigon for R0 . We rerun the argument of Claim 5.7
to the left to obtain the left-bigon for R0 , denoted by BG .

The induction in the proof of Claim 5.7 extends to show that RK contains a cusp
pointing at 
 0

K�1
. The cusp lies between bK�1 and another branch on the boundary

of RK , which we call c0
K

. See the far right of Figure 5. Let QF be a small closed
regular neighbourhood of bK�1 in RK . The boundary of the subregion QF has four
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sides; we call it a right-quadrilateral. The four sides are dK \N , bK�1 , cK \N and
a fourth side, sF say. Note that sF is properly embedded in RK . The quadrilateral QF

therefore has one cusp and three corners, and so it has index �1
4

. An identical argument
builds the left-quadrilateral QG .

Let S.R0/DQG[BG[BF[QF .

5.8 Claim For any max-bigons R and R0,

(1) S.R/ is embedded in D,

(2) if R¤R0 then S.R/ and S.R0/ are disjoint, and

(3) S.R/ is a rectangle.

Proof Let BG and BF be the right- and left-bigons for R; define B0G and B0F similarly
for R0. Note that boundary trigons in BG have transverse orientations on their branches
that disagree with the tangential orientation on @D. On the other hand, boundary trigons
in B0F have transverse orientations that agree with the tangential orientation.

This proves that BG and BF share only one region — the max-bigon itself — and so
B D BG [ BF is again a boundary bigon. The same argument shows that B and
B0 D B0G[B0F have no regions in common if R¤R0.

We claim that @B and @B0 are disjoint. To see this, note that @B consists of an arc
in @D and an arc in � . The transverse orientation on the arc in � points into B, and
similarly for B0.

Let QG , QF , Q0G and Q0F be the quadrilaterals for R and R0. Since these are obtained
by taking subsets of small regular neighbourhoods of branches in @B and @B0, these
are all pairwise disjoint (if R¤R0 ). This proves parts (1) and (2).

Adding the subregions QG and QF replaces the two corners of B with four corners,
and thus S.R/ is a rectangle, and we obtain (3).

Let D0 DD�
S

S.R/, where the union ranges over all max-bigons R.

5.9 Claim The induced cellulation of D0 has no regions of positive index.

Proof Suppose that R0 is a region of D0 having positive index. If R0 were a nullgon
or monogon, then it would be a nullgon or monogon in D, contradicting Lemma 3.1.
The region R0 is not a boundary bigon since we removed all of them. Thus R0 was

Algebraic & Geometric Topology, Volume 20 (2020)
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created by cutting quadrilaterals out of some region R of D�� . Note that R0 meets � ,
meets @D and meets @QF (say) along some side sF . So R0 has at least three corners.
Since its index is positive, R0 has exactly three corners. Thus R D R0 [QF is a
boundary trigon, contradicting Claim 5.5.

Note that D0 has both outward and inward corners
�
a combinatorial version of the

exterior angle being 3�
2

�
. Again following [8, page 57], we generalise our definition

of index; each inward corner adds C1
4

to the overall index. Thus D0 has nonpositive
index. Since rectangles have index zero, from the additivity of index we deduce that D

has nonpositive index, a contradiction. This concludes the proof of Theorem 5.1.
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