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Abstract. The main content of this addendum is a more complete proof of The-
orem 6.3 from [Bac01]. We also take this opportunity to correct a few minor errors
that occurred in that paper.

We assume the reader is familiar with [Bac01]. The proof of Theorem 6.3 of that
paper contains the phrase “Note that ∂B cannot compress away to nothing outside
B, since M is not homeomorphic to S3” (page 167, lines 4 and 5). While, strictly
speaking, this statement is true it certainly requires further proof. This is the main
content of this addendum.

One additional point which we address here is that Theorem 6.3 is stated only for
1-manifolds, but is used later for 1-vertex graphs. Furthermore, some of this graph
may lie on ∂M , a point which was not emphasized in the original. The introductory
paragraphs to Section 8 of [Bac01] were meant to deal with these technicalities, but
some readers may find them somewhat unsatisfying. We will be much more precise
with these issues here.

Before getting started the author would also like to apologize for not referencing the
work of Yoav Reick and Eric Sedgwick [RS01] in [Bac01], since they had concurrently
obtained many of the same results. The author is also grateful to Eric Sedgwick and
Saul Schleimer for helpful conversations during the preparation of this note.

We begin by defining exactly what sort of graphs we will be dealing with.

Definition. A graph K embedded in a 3-manifold M is locally untangled if

(1) K has no vertices of valence one,
(2) the interior of each edge is either contained in ∂M or is disjoint from it, and
(3) for each ball B ⊂ M with incompressible frontier in MK there is a point

p ∈ K such that for all sufficiently small ε the frontier of B in MK is parallel
to the frontier of Nε(p) in MK .

It follows that a connected locally untangled graph has a single vertex. If not,
then let e be an edge connecting distinct vertices. A neighborhood of e in M will be
a ball violating the third condition of the definition.
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Examples of locally untangled graphs include 1-vertex spines of handlebodies
bounded by strongly irreducible Heegaard splittings [Sch98] and 1-skeleta of 0-efficient

triangulations [JR]. It is the latter application that we make use of in [Bac01].
We now define the complexity of a surface with respect to a locally untangled

graph. If F is a connected, properly embedded surface in M and K is a locally
untangled graph then we define cK(F ) to be |F ∩ K| plus

(1) 0 if F is a disk or sphere
(2) 1 − χ(F ) if F is closed
(3) 1

2
− χ(F ) otherwise

If F is not connected then we define cK(F ) to be
∑

i cK(Fi), where the sum ranges
over all components Fi of F . Maximal and minimal leaves (with respect to K) of a
singular foliation F are now defined in the obvious way, as well as the complexity
LmaxK(F).

Definition. Let F be a singular foliation arising from a height function h : M → I.
A locally untangled graph K with vertex v is in good position if v is a local extremum
of h|K. The graph K is mini-Lmax with respect to F if it is in good position, and
K cannot be isotoped to reduce LmaxK(F).

If K is in good position, P K is a maximal leaf of FK , and QK is the next minimal
leaf then the region of MK between P K and QK is a ∂-compression body W . One
ambiguity here is that for each ∂-compression body there are always many ways to
assign ∂+, ∂−, and ∂0. For the region between P K and QK we will always make
these assignments in the following way. If the vertex v of K is in W then let B be a
neighborhood of v in M , and let S denote the frontier of BK in MK . Now, let

(1) ∂+W = P K ,
(2) ∂−W = QK ∪ S,
(3) and ∂0W denote the remaining boundary of W .

It follows that ∂0W ⊂ ∂N(K) ∪ ∂0M . If M is closed then these assignments are
pictured schematically at the top of Figure 1. When M has boundary they are
pictured at the bottom. Note that with these assignments a ∂0-compression can run
over maxima and minima of K, but not over the vertex.

One final correction is to the definition of a locally mini-Lmax foliation. On page
164, line 16 of [Bac01] we say, “we shall even refer to F as locally mini-Lmax if the
maximal leaves are only quasi-strongly irreducible Heegaard surfaces.” This sentence
should be omitted. That is, a foliation is locally mini-Lmax only if it satisfies the
conclusion of Theorem 5.2 of [Bac01].

The correct statement of Theorem 6.3 is as follows.

Theorem 6.3. Let M be an irreducible 3-manifold other than S3. Let K be a locally

untangled graph in M with at least one edge whose interior is not on ∂M . Suppose

furthermore that K is mini-Lmax with respect to a locally mini-Lmax foliation F and

that no loop component of K can be isotoped onto a leaf of F . If K has a vertex then
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the maximal leaves of FK are quasi-strongly irreducible ∂-Heegaard surfaces for the

submanifolds of MK that arise when we cut along the minimal leaves. Otherwise,

they are strongly irreducible, and hence FK is a locally mini-Lmax foliation of MK .

We now proceed with the proof. Let P be a leaf of F such that P K is a maximal
leaf of FK . If P K is the first maximal leaf then let W be the region of M below P .
Otherwise, let Q be a leaf of F such that QK is the minimal leaf of FK which comes
just before P K , and let W be the region of M between Q and P . Similarly, if P K is
the last maximal leaf then let W∗ be the region of M above P . Otherwise, let Q∗ be
a leaf of F such that QK

∗
is the minimal leaf of FK which comes just after P K , and

let W∗ be the region of M between P and Q∗.
By way of contradiction, we assume that there are compressing or honest ∂0-

compressing disks D ⊂ W K and D∗ ⊂ W K
∗

for P K such that D ∩D∗ = ∅. Note that
W K is a ∂-compression body and ∂0W

K ⊂ ∂0M ∪ ∂N(K).

Definition. An honest ∂0-compressing disk for P K in W K or W K
∗

is a low disk or
high disk (respectively) if ∂D = α ∪ β, where β ⊂ ∂N(K).
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Definition. A compressing or honest ∂0-compressing disk for P K in W K or W K
∗

is
real if it is a compressing or ∂0-compressing disk for P . Otherwise it is fake.

Given this definition, we may now list all of the cases that will have to be considered
(up to symmetry).

(1) D and D∗ are real.
(2) D and D∗ are fake.
(3) D is fake and D∗ is real.

Case 1. The disks D and D∗ are real.

Then not only is P K a maximal leaf for FK , but also P is a maximal leaf of F . If
∂D ∩ ∂D∗ = ∅ then P fails to be a strongly irreducible Heegaard surface, and hence,
F is not locally mini-Lmax. Since the local mini-Lmaximality of F was a hypothesis
of the Theorem we have reached a contradiction. This concludes Case 1.

Following Case 1 we surmise that at least one of D and D∗ is fake. Hence, before
proceeding to the remaining cases we are forced to analyze all types of fake disks.
Assume D is fake.

(1) D is a compressing disk for P K . Then ∂D = α is an essential curve on P K ,
but is inessential on P . Hence, α bounds a disk E ⊂ P which is punctured
by K. As W is irreducible, D ∪ E bounds a ball B ⊂ W .
(a) B contains the vertex of K. Note that this can only happen when M is

closed. We will call such a disk a vertex compression.
(b) B does not contain the vertex. Then B contains an arc of K which is

parallel into P . Hence, there is a low disk in B. In this case the fake
disk D will be referred to as a cap. A low disk in B will be referred to
as being inside the cap D.

(2) D is an honest ∂0-compressing disk for P K . Then ∂D = α∪β, where α ⊂ P K

is essential on P K and β ⊂ ∂0W
K .

(a) β ⊂ ∂N(K). Then D is a low disk.
(b) β ⊂ ∂0M . Then there is a disk E ⊂ P punctured by K such that

∂E = α ∪ γ, where γ ⊂ ∂P . If β was essential on ∂0W then D ∪ E

would be a compressing disk for ∂0W , which is impossible. (To see the
contradiction, double W along ∂0W . The compressing disk D ∪ E then
turns into an essential 2-sphere in a compression body.) We conclude β

is inessential on ∂0W , and hence cobounds a disk V . If V ∩ K = ∅ then
D would not be an honest ∂0-compressing disk for P K . Hence, V either
contains a low disk or it contains the vertex of K. In the former case the
disk D will be referred to as a ∂-cap. In the latter it will be referred to
as a vertex ∂-compression. If D is a ∂-cap then a low disk in V is said
to be inside D.
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Case 2. D and D∗ are fake.

This case is organized into subcases as follows:

(2.1) D and D∗ are compressing disks.
(2.2) D∗ is a compressing disk and D is a ∂-compressing disk.
(2.3) D and D∗ are ∂-compressing disks.

Subcase 2.1. If D and D∗ are compressing disks then ∂D bounds a disk E in P

and ∂D∗ bounds a disk E∗ in P . As D ∩ D∗ = ∅ the following is a complete list of
the subcases that will have to be considered, up to symmetry.

(2.1.1) E ∩ E∗ = ∅
(2.1.2) E∗ ⊂ E

High Disk

Low Disk

Figure 2

Subcase 2.1.1. E ∩ E∗ = ∅. If D and D∗ are caps then there is a low disk inside
D which is disjoint from a high disk inside D∗. We can then do the move depicted
in Figure 2 to reduce LmaxK(F). On the other hand, if one of D or D∗ is a vertex
compression then we can perform the move depicted in Figure 3 to lower LmaxK(F).

Figure 3

Subcase 2.1.2. E∗ ⊂ E. Then ∂D and ∂D∗ cobound an annulus A ⊂ P . We
assume that D∗ is outermost, in the sense that there does not exist a compressing
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disk D′

∗
⊂ W∗ for P K such that ∂D′

∗
⊂ A, but is not parallel to ∂D∗ in P K . Let

S denote the sphere D ∪ A ∪ D∗. We now claim that SK is incompressible in MK .
Suppose not.

Claim 1. There exists a K ′ ⊂ K such that ∂K ′ ⊂ A and such that there is an

isotopy of K which fixes K\K ′, and sends K ′ into A.

Proof. Compress S as much as possible in MK , to obtain a collection of spheres, R,
in M . If any component of R bounds a ball which contains a single unknotted arc of
K, then there is an innermost such, R′. The situation is now similar to the proof of
the main result of [Tho97]. Inside R′ there is a disk, T , such that ∂T = δ ∪ γ, where
δ ⊂ ∂N(K) and γ ⊂ R′. We now reverse the compressions used to obtain R from
S. Each time a compression is reversed, we attach a tube to some components of R.
These tubes may intersect T , but only in its interior. The arc δ is parallel in N(K)
to an arc K ′ ⊂ K. We can now use T to guide an isotopy of K which sends K ′ into
S. As S is made up of two disks, D and D∗, which are disjoint from K\K ′, and the
annulus, A, we may do a further isotopy of K ′ in S to bring K ′ into A.

Since K is locally untangled, the other possibility is that every component of R is
parallel in MK to the boundary of a neighborhood of the vertex of K. This case is
similar to the main argument of [BS03], and the author is greatly indebted to Saul
Schleimer for his collaboration on that work.

To fix notation, let {Di}
n
i=1 be a sequence of disks, and {Si}

n
i=0 the sequence of

surfaces, so that S0 = S, Sn = R, and Si is obtained from Si−1 by compressing along
Di in the complement of K. That is, remove a small neighborhood, Ai, of ∂Di from
Si−1. Construct Si by gluing two parallel copies of Di onto ∂Ai. Denote these by Bi

and Ci. So An ∪ Bn ∪ Cn bounds a ball homeomorphic to Dn × I. Finally, let α be
the image of {pt} × I ⊂ Dn × I by such a homeomorphism. The arc α is a co-core

for the compression Dn.
Let V be the component of Sn−1 which meets Dn. Let {Rj}

n
j=0 denote the compo-

nents of R = Sn, numbered consecutively, so that R0 is innermost (i.e. farthest from
the vertex of K). Then there is a j such that compressing V along Dn yields Rj and
Rj+1. Let N denote the submanifold of M bounded by Rj and Rj+1. Note α ⊂ N .

Choose a homeomorphism h : S2 × I → N such that K ∩ N is a collection of
straight arcs and π(h−1(Bn)) = π(h−1(Cn)). Here a straight arc is one of the form
h({pt} × I) and π : S2 × I → S2 is projection onto the first factor.

The usual lightbulb trick (see [Rol76], for example) implies that there is an isotopy,
f : M × I → M , fixing the complement of N pointwise such that f1(α) is a straight

arc (where ft(x) is shorthand for f(x, t).) Let U = V ∩ S (= V \ (
⋃n−1

i=0
Bi ∪ Ci)).

Let K ′ = K ∩ N . Let g : M × I → M be an isotopy which fixes the complement of
N pointwise, such that g1(K

′) ⊂ f1(U). Such an isotopy exists since the arcs of K ′

are straight, and since f1(U) follows the boundary of a neighborhood of f1(α), which
is also straight (see Figure 4.) Note that f−1

1

(

g1(K
′)
)

⊂ U ⊂ S. As before, we may
now do a further isotopy of K ′ in S to bring K ′ into A. �
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If the interior of K ′ met at least one maximal leaf of FK then the isotopy of
Claim 1 produces a foliation with smaller LmaxK . Furthermore, since we have only
done an isotopy of K we have not disturbed the foliation F , so we have reached a
contradiction.

If the interior of K ′ does not meet any maximal leaves of FK then it also must not
meet any minimal leaves. Hence, every arc of K ′ lies in W or W∗. If some such arc, γ

were in W then it would also be in the ball bounded by D∪E. As it is isotopic to an
arc in A there is a low disk L ⊂ W such L∩P ⊂ A. But then this low disk is disjoint
from E∗, and we may do one of the moves depicted in Figure 2 or 3, according to
whether D∗ is a cap or a vertex compression.

We conclude γ ⊂ W∗. As it is isotopic to an arc in A there is a high disk H ⊂ W∗

such H ∩ P ⊂ A. Let H ′ be a cap in W∗ whose boundary is in A, such that the
high disk H is inside H ′. Let s be any arc in AK joining ∂H ′ to ∂D∗. Then there is
a component of the frontier of a neighborhood of H ′ ∪ s ∪ D∗ in W∗ which is a cap
which is “more outermost” than D∗, contradicting our assumption.

We are now faced with the possibility that SK was incompressible to begin with.
As the only such spheres are parallel to the vertex of K we may now isotope K to
look like Figure 5 in the ball bounded by S. As this isotopy necessarily reduced the
number of intersections of K with P , the complexity LmaxK has gone down.

Subcase 2.2. If D∗ is a compressing disk and D is a ∂-compressing disk then ∂D∗

bounds a disk E∗ ⊂ P and ∂D = α ∪ β where α ⊂ P . There are now three further
subcases.

(2.2.1) D is a ∂-cap
(2.2.2) D is a low disk
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D

D∗

Figure 5

(2.2.3) D is a vertex ∂-compression

Subcase 2.2.1 If D is a ∂-cap then there is a low disk D′ inside D which is disjoint
from E∗. If D∗ is a cap then there is a high disk inside D∗, which is then disjoint
from D′. We can now do the Lmax lowering move depicted in Figure 2. Similarly, if
D∗ is a vertex compression then we can do the move depicted in Figure 3.

Subcase 2.2.2 If D is a low disk then there is a cap D′ such that D is inside D′

and D′ ∩ D = ∅. This case now reduces to Subcase 2.1.

Subcase 2.2.3 The disk D is a vertex ∂-compression, and hence β ⊂ ∂0W . Fur-
thermore, there are disks V ⊂ ∂0W and E ⊂ P such that V contains the vertex of
K, ∂V = β ∪ γ, and ∂E = α ∪ γ, where γ ⊂ ∂P . It follows that D∗ is a cap, since
the vertex of K is in W .

If E ∩ E∗ = ∅ then there is a high disk inside D∗ which we can use to perform
the LmaxK lowering move depicted in Figure 3. Hence, E∗ ⊂ E, and we are in
a situation similar to Subcase 2.1.2 (see Figure 6 left). Let A be the closure of
E − E∗. We assume that D∗ is outermost, in the sense that there does not exist a
compressing disk D′

∗
⊂ W∗ for P K such that ∂D′

∗
⊂ A, but is not parallel to ∂D∗ in

P K . Let S denote the disk D ∪ A ∪ D∗. We now claim that SK is incompressible
and ∂0-incompressible in MK . Suppose not.

Claim 2. There exists a subarc K ′ ⊂ K such that ∂K ′ ⊂ A and such that there is

an isotopy of K which fixes K\K ′, and sends K ′ into A.

Proof. Let B denote the ball in M cobounded by S and a subdisk of ∂0M . Compress
and ∂0-compress S as much as possible in MK to obtain a collection of disks and
spheres, R, in M . If any component of R is a sphere which bounds a ball containing
a single unknotted arc of K, then there is an innermost such, R′. Inside R′ there
is a disk, T , such that ∂T = K ′ ∪ θ, where K ′ is a subarc of K and θ ⊂ R′. We
now reverse the compressions used to obtain R from S. Each time a compression is
reversed, we attach a tube to some components of R. These tubes may intersect T ,
but only in its interior. We can now use T to guide an isotopy of K which sends K ′
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into S. As S is made up of two disks, D and D∗, which are disjoint from K\K ′, and
the annulus, A, we may do a further isotopy of K ′ in S to bring K ′ into A.

Since, if there are any sphere components of R we are done, we now assume that
only ∂-compressions were done to obtain R from S. As K is locally untangled we
conclude that R is made up of possibly several trivial disks (i.e. disks which cobound
a ball, with a disk in ∂0M , containing an unknotted arc of K) and at least one copy of
a vertex-linking disk (i.e. a disk which is parallel to the frontier of a neighborhood of
the vertex of K). Note that there must be at least one vertex-linking disk component
of R, since otherwise S would meet K only in points on the boundary of M . This,
in turn, implies that all of the edges of K are on ∂M , which is not the case.

Let R′′ denote an outermost vertex-linking component of R. Let K ′′ denote the
subarcs of K which join the vertex of K to the points of K∩R′′ that lie in the interior
of M . Then the subarcs of K ′′ are all parallel to an arc α ⊂ ∂0M joining the vertex
of K to a point of ∂U ∩ ∂P . Furthermore, undoing all of the ∂-compressions used to
obtain R from S does not disturb this parallelism. Hence, we may isotope these arcs
to be vertical in B, and lie near α (see Figure 6 middle).

If any of the arcs of K ′′ met E∗ then the isotopy we have just described lowers the
complexity LmaxK . If not then we see there is a fake compressing disk, D′, whose
boundary is disjoint from D∗ (see Figure 6 right), and we are reduced to Subcase
2.1.2. �

D∗

D D′

Figure 6

If the interior of K ′ met at least one maximal leaf of FK then the isotopy of
Claim 2 produces a foliation with smaller LmaxK . Furthermore, since we have only
done an isotopy of K we have not disturbed the foliation F , so we have reached a
contradiction.

If the interior of K ′ does not meet any maximal leaves of FK then it also must not
meet any minimal leaves. Hence, K ′ lies in W or W∗. If K ′ were in W then it would
also be in the ball bounded by D ∪E ∪ V . As it is isotopic to an arc in A there is a
low disk L ⊂ W such L∩ P ⊂ A. But then this low disk is disjoint from E∗, and we
may do one of the moves depicted in Figure 2.
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We conclude K ′ ⊂ W∗. As it is isotopic to an arc in A there is a high disk H ⊂ W∗

such H ∩ P ⊂ A. Let H ′ be a cap in W∗ whose boundary is in A, such that the
high disk H is inside H ′. Let s be any arc in AK joining ∂H ′ to ∂D∗. The there is
a component of the frontier of a neighborhood of H ′ ∪ s ∪ D∗ in W∗ which is a cap
which is “more outermost” than D∗, contradicting our assumption.

We are now faced with the possibility that SK was incompressible and ∂0-incompressible
to begin with. As the only such disks are parallel to the vertex of K we may now
isotope K to look like Figure 5 in the ball bounded by S ∪ V . As this isotopy neces-
sarily reduced the number of intersections of K with P , the complexity LmaxK has
gone down.

Subcase 2.3. If D and D∗ are ∂-compressing disks then the following table lists all
subcases, up to symmetry.

D\D∗ ∂-cap high disk vertex ∂-compression
∂-cap (2.3.1) (2.3.1) (2.3.4)
low disk (2.3.2) (2.3.3)
vertex ∂-compression Not possible

Subcase 2.3.1. If D is a ∂-cap and D∗ is either a high disk or a ∂-cap then there
is a low disk inside D which is disjoint from D∗, and we can do one of the moves
depicted in Figures 2 or 7.

Subcase 2.3.2. If D is a low disk and D∗ is a high disk then may perform one of
the moves depicted in Figures 2 or 7.

Figure 7

Subcase 2.3.3. If D is a low disk and D∗ is a vertex ∂-compression then there is a
cap D′ in W such that D is inside D′, and ∂D′ ∩ ∂D∗ = ∅. We are now reduced to
Subcase 2.2.

Subcase 2.3.4. The final case is when D∗ is a vertex ∂-compression and D is a
∂-cap. Then ∂D and ∂D∗ cut off subdisks E and E∗ of P . Inside D there is a low
disk. If E ∩ E∗ = ∅ then we may use this low disk to perform the move depicted
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in Figure 3. We conclude E ⊂ E∗ or E∗ ⊂ E. Both possibilities are handled by an
argument similar to that in Subcase 2.2.3.

Case 3. D is fake and D∗ is real.

The disk D∗ represents some compression or ∂0-compression of the leaves of F . If D

is a low disk then we may use it to isotope a subarc of K so that we pass through the
corresponding minimum of K before we see the compression/∂0-compression which
corresponds to D∗. Such a move reduces the complexity LmaxK .

If D is a compression then we now let B be the ball bounded by D and some
subdisk of P . If D is a ∂-compression then let B be the ball bounded by D, a
subdisk of P , and a subdisk of ∂0W . In either case we can use B to define an isotopy
of K so that any minimum or vertex of K which is inside B gets pushed past the
compression/∂0-compression which corresponds to D∗. Again, such a move reduces
the complexity LmaxK .

In summary, we have shown that if D is any compressing (or honest ∂0-compressing)
disk for P K in W K , and D∗ is a compressing (or honest ∂0-compressing) disk for P K

in W K
∗

, then ∂D ∩ ∂D∗ 6= ∅. Hence, P K is a quasi-strongly irreducible ∂-Heegaard
surface for (W K) ∪ (W K

∗
). Furthermore, the only times the assumption of honesty

was used was in cases where K had a vertex. Hence, if K has no vertex then we
conclude P K is strongly irreducible.
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