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Abstract

In this paper we show that if a 3-manifold M which has infinitely
many strongly irreducible Heegaard splittings of arbitrarily high genus
all of the form H + nK i.e., taking the Haken sum of a given surface
h with n copies of another given surface K, then the surface K is
incompressible. This is true for all known examples of such manifolds.
We further use this result to obtain many more new examples of such
manifolds M .
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1 Introduction

The first examples of 3-manifolds with infinitely many strongly irreducible
were obtained by Casson and Gordon in 1985 using a result of Paris [Pa].
Their goal was to show that Waldhausen’s conjecture (see [Wa]) that mani-
folds had only finitely many unstabilized Heegaard splittings was false. Their
examples are obtained by surgery on certain pretzel knots and they are actu-
ally strongly irreducible. Their result is unpublished but a proof is given in
[MS]. Soon afterwards in 1988 in an unpublished paper Kobayashi obtained
such manifolds and his examples involve surgery on similar pretzel knots.

∗This research was supported by the USA Israel Binational Science Foundation grant
100-208 awarded to all three authors. We wish to thank the BSF.
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His method for showing that they are strongly irreducible is some what dif-
ferent. In later work the first author and Martin Lustig (see [LM]) showed
that indeed this phenomena is actually quite common and one can obtain
manifolds with infinitely many strongly irreducible Heegaard splittings of ar-
bitrarily large genus by surgery on a very large class of knots, much larger
than pretzel knots.

In this paper we want consider the reverse question: What do we know
about a manifold M that has an infinite collection of strongly irreducible
Heegaard splittings? We will show that if a manifold M has infinitely many
strongly irreducible Heegaard splittings of arbitrarily large genus which are
all obtained in a certain form (described below) then M contains a closed
incompressible surface i.e., M is Haken. To make a precise statement we
need the following notation:

Given any two closed orientable surfaces in a closed and orientable 3
manifold M we will denote by H + nK the Haken sum of H and n parallel
copies of the surface K. If K has negative Euler characteristic then the genus
of H+nK will be arbitrarily large as the Euler characteristic is additive under
Haken sum. For precise definitions of Haken sum see Section 2. We claim:

Theorem 1.1. Let M be a closed orientable and irreducible 3-manifold and
let H and K be two given closed and orientable surfaces in M . If Hn =
H +nK, are strongly irreducible Heegaard splittings for M , for all n = 1, . . .,
and K is not a 2-torus then the surface K is incompressible.

Remark 1.2. In particular we would like to stress that all known examples
are of this form.

Remark 1.3. The case when K is a 2-torus is of a different nature and will
be discussed in Section 3.

Theorem 1.1 was conjectured by the the Eric Sedgwick who in fact also
conjectured the following stronger statement:

Conjecture 1.4. Let M be a closed orientable and irreducible 3-manifold
with infinitely many strongly irreducible Heegaard splittings of arbitrarily
large genus. Then M is Haken.

Remark 1.5. The Heegaard splittings discussed here must all be of distance
two, since it was shown by the second author that any 3-manifold M has at
most only finitely many Heegaard splittings of distance three (see [Sc]).
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We will show, in Section 4, that all the known examples of manifolds
with infinitely many strongly irreducible Heegaard splittings of arbitrarily
large genus (i.e., the examples of Casson-Gordon, Kobayashi and Lustig-
Moriah) are indeed of the form H + nK. Finding the actual surface K of
the construction turned out to be extremely difficult. Using Theorem 1.1 we
conclude that they are all Haken. Thought it can be proved directly that
these manifolds are Haken the proof requires some non-trivial theorems e.g.
[FM], [Wu].

Using the ideas from the proof of the theorem we can generate new man-
ifolds with infinitely many strongly irreducible Heegaard splittings of arbi-
trarily large genus. This is done in Section 5.

Aknowledgements; We would like to thank Tsuyoshi Kobayashi for several
enlightening conversations which led directly to the examples in Section 5. In
particular for his papers [Ko1] amd [ ]. We would also like to thank DePaul
University UIC and the Technion for their hospitality.
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2 Preliminaries

Let M be a closed orientable 3-manifold. A Heegaard splitting for M is
a decomposition for M = V ∪ W where V and W are handlebodies and
V ∩ W = ∂V = ∂W = S. We call S the Heegaard surface. A Heegaard
splitting will be called reducible if there is a curve γ ⊂ S which bounds
essential disks D1 ⊂ V and D2 ⊂ W . If the 2-sphere D1 ∪ D2 bounds a
3-ball in M we say that the Heegaard splitting is stabilized. If there are
disjoint essential disks in V and W we say that the Heegaard splitting is
weakly reducible and if every essential disk on V meets every essential disk
in W ( necessarily in their boundary) we say that the Heegaard splitting is
strongly irreducible.

Given two surfaces H and K in M in general position their intersection, if
not empty, is a collection Γ of simple closed curves ∪γ. The regular neighbor-
hood of each curve γ ∈ Γ is a a solid torus T (γ) and ∂T (γ)− (H∪K) is com-
posed of four open annuli A1(γ)∪A2(γ)∪A3(γ)∪A4(γ) enumerated cyclically.
These annuli can be separated into opposite pairs A+(γ) = A1(γ) ∪ A3(γ)
and A−(γ) = A2(γ) ∪ A4(γ). We can now define the Haken sum of H and
K as follows:

Definition 2.1. For each curve γ ⊂ Γ choose a value e(γ) ∈ {+,−} and
consider the following surface

H + K = (H ∪K)− (∪γT (γ)) ∪ (∪γAe(γ(γ))

Definition 2.2. We define the surface H + nK to be the Haken sum of the
surface H and n copies of the surfaceK (see Fig. 1).

Figure 1

Remark 2.3. This surface H +K as described is not canonical and depends
on the choice of e(γ). Given more structure on M such as a triangulation
one can obtain a canonical construction.

In our situation we are assuming that the manifold M contains infinitely
many strongly irreducible Heegaard splitting which are of the form H + nK.
Hence the ambiguity of the possible choices of eγ) are already dealt with as
part of the input information.
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We further need:

Definition 2.4. Given a surface S and a simple closed curve γ on S a wave
with respect to γ is an arc ω such that ω ∩ γ = ∂ω. Further, ω meets γ from
the same side and is not isotopic into γ in S.

Remark 2.5. Note that this is a some what more general definition of a
wave than the standard one.

We also need the following lemmas:

Lemma 2.6. If K ⊂ is a compressible surface then there is a compressing
disk D so that ∂D is a separating curve on K or K is a 2-torus.

Proof. Consider the two copies D+ and D− of the disk D in the boundary
of a regular neighborhood. If D is non-separating on K then there is a curve
α outside the regular neighborhood connecting D+ and D−. Now band sum
D+ to D− along α to obtain a separating disk D′. If K is not a torus we can
always choose α so that the resulting disk D′ is essential.

Remark 2.7. The intersection H ∩ K ⊂ K is a collection of simple closed
curves. Each curve in the collection can be marked with a ”+” or ”− ” sign
depending on the configuration of the Haken sum. If D is a compressing disk
for K then the collection of n copies of K will intersect D in a collection Γ of
n concentric curves parallel to ∂D. These concentric curves will be connected
by l arcs ∪δk from the fixed intersection D∩H. Now the intersection ∪δk∩Γ
is a collection of points on D each with a ” + ” or ”− ” sign attached. These
points will disappear after we perform the Haken sun H + nK to obtain the
intersection D ∩Hn.

Lemma 2.8. Assume the notation of Remark 2.7 and that n is much larger
than l. If the number of points in ∪δk ∩ Γ marked by ” + ” signs is equal to
the number of points marked by ”− ” signs then the intersection D∩Hn will
be a collection of at least n − 2l concentric curves contained in an annulus
A in D plus at most l simple closed curves (not necessarily concentric in the
disk D − A plus l arcs located between the annulus A and ∂D.

Proof. To see this recall that the parallel curves of nK ∩D occur in a fixed
annulus A so that ∂A is the union of the intersections of the first and last
copies of K with D. Let D1 = D−A start on a point on one of the concentric

5



curves of nK ∩ D and travel in, say, a counter clockwise direction. We can
choose the convention so that every time we meet a ”+” sign we go towards
D1 and when we meet a ”− ” we go towards ∂D. If a component of Hn ∩D
meets D1 it must meet one of the l arcs of intersection of H ∩D and each of
the fixed l arcs on D1 can be umet at most once. Hence there can be at most
l non-concentric simple closed curves in D1. Similarly the 2l arcs of H ∩ ∂D
must be connected by l arcs. Now since we assume that n is ”much” larger
than l there are plenty of concentric curves which do not meet the disk D1 at
all. As the number of the +’s and −’s on the curve K ∩D is equal we must
end at the same level after winding around once and this situation repeats
itself for all curves of nK ∩D which are sufficiently ”interior” on the annulus
A.

Corollary 2.9. There are many concentric annuli A1, . . . , An−l−1 ⊂ A ⊂ D
so that ∂Ai, i = 1, . . . , n− l − 1 are curves on Hn.

3 Results

Proof. (Of Theorem 1.1). Assume in contradiction that the surface K is
compressible with compressing disk D. We can assume by Lemma 2.6 that
D is separating so that cl(K −N(D)) = K ′ ∪K ′′. Because ∂D is separating
all curves of H ∩K ′ (resp. H ∩K ′′) which meet ∂D are waves with respect
to the disk D. Hence along ω the Haken sum looks as indicated in Figure 1.
That is, if we assign a ” + ” and a ”− ” to each intesection point of ∂D ∩K
depending on the Haken sum configuration, the wave ω pairs a ′′+′′ sign with
a ′′−′′ sign. Hence there is an equal number of ′′+′′ signs and ′′−′′ signs. It
follows that Lemma 2.8 can be applied and that the intersection Hn ∩ D is
as described.

Let Ai be one of the annuli from Corollary 2.9 set ∂Ai = γi ∪ γi+1. We
want to show that for a large n the boundary curves γi of the annuli which
are away from ∂A (i.e., there is an integer k such that n > k >> l > 0 and
k < i < n− l − k − 1, are essential in the Heegaard surface Hn.
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More precisely:

(1) γi is essential for all i = k + 1, . . . , n− l − k − 1.

(2) The annuli Ai are not boundary parallel in the handlebodies Vn and
Wn.

(1) Let α′
j be the curves of H ∩ K ′ and α′′

j be the curves of H ∩ K ′′. They
are a collection of both arcs and simple closed curves. Choose a point ∗ on
∂D = ∂K ′ = ∂K ′′ and let β′

j (resp. β′′
j ) be a collection of arcs with end

points in ∗ so that K ′ − ∪α′
j ∪ β′

j (resp. K ′′ − ∪α′′
j ∪ β′′

j ) is a collection of
disks. We can define such curves for each of the copies K ′

i, K
′′
i of the surface

Ki = K ′
i ∪ K ′′

i . and they will be denoted by α′
j,i (resp. α′′

j.i) and β′
j,i (resp.

β′′
j,i). Where we use j as an index to enumerate the curves and the index i

to enumerate the copy (level) on which they are.
After Haken summing H and nK each of the α′

j (α′′
j ) will induce 2n

copies along vertical annuli in the Haken summed surface Hn. The curves
β′

j,i (β′′
j,i) will ”lift” to the surface Hn . In other words they will change

”level” between the copies of nK each time they meet a curve α′
j,i (α′′

j,i). If
we think of the curve β′

j,i (β′′
j,i) as paths then we define the shift of β′

j,i (β′′
j,i)

to be the difference in the i index between the beginning point and the end
point of the path β′

j,i (β′′
j,i). Note that since the beginning and end point of

the curves β′
j,i (β′′

j,i) occurs on different copies of the point ∗ the shift is well
defined. Also note that for each j the shift of β′

j,i (β′′
j,i) is fixed as we vary

the index i. There are several cases:

(a) The shifts for all the lifted curves of the β′
j,i (β′′

j,i) are 0. In this case the
surface Hn is not connected and hence cannot be a Heegaard splitting.
So this case cannot occur.

(b) Suppose that all shifts in, say, the K ′ side are 0 and some shift in the
K ′′ side is non zero. Since D is a compressing disk for K the surfaces
K ′ and K ′′ are not disks. Thus γi cannot bound a disk on the K ′ side
as K ′

i is a copy of K ′. If γ bounds a disk E on the K ′′ side then cap off
the surface on the K ′ side with this disk. We get a closed surface which
therefore must be Hn but its genus is too small. So this case cannot
happen as well.

(c) Assume that there are non-zero shifts r on the K ′ side and s on the K ′′

side. Let t = l.c.m.(r, s) and let δ′ be the union of paths β′
j,i, . . . β

′
j,i+t/r.

They exist because n is very large. Let δ′′ be the union of paths
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β′′
j,i, . . . β

′′
j,i+t/s. This union is a well defined path as for a fixed i all

β′
j,i and β′′

j,i begin and end at the same point. The loop δ = δ′ ∪ δ′′ is
curve on Hn which intersects γi is a single point.

Hence γi is essential for all i.

(2) Assume now in contradiction that some annulus Ai is boundary parallel
on the K ′ side. Then there must be some arc β′

j,i which has a shift of 1. Thus
β′

j,i+1 also has a shift of 1. Hence traveling along β′
j,i ∪ β′

j,i+1 we can get to
γi+2. This is a contradiction.

Let cl(M − Hn) = Vn ∪ Wn, where Vn, Wn are handlebodies. The curve
γi = Ai−1∩Ai is the boundary of a compressing sub-disk of D and by the ”no
nesting lemma” (see [Sch]) must bound a disk D′ either in V or in W , say,
W . We can assume that Ai is in W (otherwise just reverse the order of the
indices ). In this case the annulus Ai−1 cannot be compressible in V as then
Hn will be a reducible Heegaard splitting in contradiction. So the annulus
Ai−1 is an essential annulus in the handlebody V and boundary compresses
in V to give an essential disk E ′ which is disjoint from D′. Hence Hn is a
weakly reducible Heegaard splitting in contradiction.

Thus our assumption that the compressing disk D for K exist must be
wrong and K is incompressible.

If K is a 2- torus T then since the Euler characteristic of the Haken sum is
equal to the sum of the Euler characteristics (i.e., χ(H +T ) = χ(H)+χ(T ))
we obtain a sequence of Heegaard splittings all of the same genus. Hence we
have a variation on the Waldhausen conjecture, namely:

Conjecture 3.1. For any given genus g an atoroidal 3-manifold M has only
finitely many non-isotopic irreducible Heegaard splittings of genus g.

This conjecture is true for Haken manifolds by work of K. Johansen (see
[Jo]). For non-Haken manifolds it had been claimed by H. Rubinstein and
W. Jaco but no proof is available. If we remove the required condition that
the manifold be atoroidal then there are examples by K. Morimoto and M.
Sakuma of tunnel number one toroidal knots, each of whose exteriors admits
infinitely many isotopoy classes of genus two Heegaard splittings (see [MS1]).
Since these Heegaard splittings are all of genus two they are all strongly
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irreducible. Hence the situation in this case is clearly more delicate and we
will need more terminology and assumptions.

A surface F in a triangulated 3-manifold Mwill be called normal if it
meets any tetrahedron in the triangulation in triangles and quadrilaterals
who’s boundary meets edges in a single point only. A triangulation for a
closed and orientable M will be called 0-efficient if the only embedded normal
2-spheres are vertex linking. A closed orientable 3-manifold M with a 0-
efficient triangulation is irreducible not RP 3 and the triangulation has a
single vertex or it is S3 and the triangulation has two vertices.. We know by
Jaco-Rubinstein [RJ] that each orientable 3-manifold M which is not S3, RP 3

or L(3, 1) can be triangulated with a 0-efficient triangulation.
What we can prove is:

Theorem 3.2. Suppose M is a closed and irreducible 3-manifold with a 0-
efficient triangulation. Let Hn = H + nT , be strongly irreducible Heegaard
splittings for all n = 1, . . .. Suppose further that H and T are normal with
respect to the triangulation and that Hn 6= Hm, n 6= m. Then T is incom-
pressible.

Proof. The manifolds S3 and L(3, 1) RP 3??? have a unique stabilized Hee-
gaard splitting in each genus so they are not relevant. Assume in contradic-
tion that T is compressible then as M is irreducible T bounds a solid torus
V or a cube with a knotted hole.

Consider the first case. Let Γ = H ∩ T .

(a) Each curve γ ∈ Γ is inessential in T . Choose n to be larger than the twice
the cardinality c of the largest nested collection of curves. This number c will
be called the depth of Γ. In this case copies of T which are distance bigger
than c

2
from the first and last copy of T cannot be connected by that Haken

sum and hence Hn = H + nT is disconnected and not a Heegaard surface.

(b) Some curve γ ∈ Γ is essential in T . Let Γ∗
e ⊂ Γ be the collection of all

essential curves in Γ. They must all be parallel in T . Let Γ+
e denote those

curves on which the Haken sum gluing is positive and Γ−
e denote curves with

negative gluing. Let k = ||Γ+
e | − |Γ−

e ||. Hence Hn differs from Hn+1 by a
1
k

of a Dehn twist along T . Thus Hn+k is homeomorphic to Hn. In fact
since T bounds a solid torus V Hn+k is isotopic to Hn. This contradicts the
assumption that we have infinitely many different Heegaard splittings.
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In the second case if T bounds a cube with a knotted hole then compress
T to obtain a 2-sphere S. Since M is irreducible, S bounds a 3- ball and
this ball contains T . We may assume that S does not bound a 3-ball to the
other side, as then M would be the S3. In fact we can normalize S because
T being normal acts as a barrier in the 3-ball side so S cannot pass through
it when normalized. Nor can S be vertex linking, because a vertex linking
sphere does not contain a normal cube with knotted hole. The normalized
2-sphere S is demonstrates that the triangulation of M is not 0-efficient in
contradiction..

Recall that for any given M and a given triangulation the number of fun-
damental sufaces is finite. Denote them by K1, . . . , Km. By Rubinstein [Ru]
and Stocking [St] any strongly irreducible Heegaard splitting can be isotoped
onto an almost normal surface. Hence any strongly irreducible Heegaard sur-
face Hn can be written as a sum H +an.1K1, + . . . , +an.mKm. As Haken sum
is commutative we can assume up to taking subsequences of Hn that for all
i = 1, . . . ,m the sequences an,i are non bounded.

Corollary 3.3. If there is a sub-sequence Hnj
of Hn so that Hnj

= H +
nj(anj .1K1, + . . . , +anj .mKm) Then M is Haken.

4 examples I

In this Section we show that all known examples of manifolds with infinitely
many strongly irreducible Heegaard splittings have the property that these
Heegaard splittings are of the form H+nK for some closed orientable surfaces
H, K ⊂ M . These examples include manifolds of the following two types:

(a) Let M = K( 1
k
) be obtained by 1

k
, k ∈ ZZ , |k| ≥ 6 surgery on a pretzel

knot K(p1, . . . , pr) ⊂ S3, where pi, i = 1, . . . , r and r ≥ 5 are odd.

(b) Let M = K(1+k a(K)
k

), where k ∈ ZZ , |k| ≥ 6, be obtained by 1+k a(K)
k

surgery on K and K is the knot defined as follows: Let T be a general-
ized trellis and let K = K(A) ⊂ S3 be a knot carried by T with twist
matrix A. Assume that all coefficients ai,j of A satisfy |ai,j| ≥ 3 and that
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there is an interior pair of edges (ei,j, ei,h) of T with twist coefficients
|ai,j|, |ai,h| ≥ 4 and a(K) = 2Σai,j|ai,j ∈ A.

For precise definitions of the terminology we refer the reader to [MS],
[LM] and [Ko]. Note that Kobayahi’s method proves that M(l) has infinitely
many strongly irreducible Heegaard splittings for l > 1 which is somewhat
better than the results by [CG] and [LM].

Claim 4.1. Each of the manifolds M = K( 1
k
) and M = K(1+k a(K)

k
), of ex-

amples (a) and (b), has an infinite collection of strongly irreducible Heegaard
splittings of the form H + nK for some closed surfaces H and K.

Proof. The Heegaard surfaces of manifolds of type (a) are obtained by taking
the boundary of a regular neighborhood of a Seifert surface for the knot
K. The crucial property of the knots of type (a) and (b) is that the pair
(S3, K) contains a 2-sphere which meets the knot in four points. This 2-
sphere bounds two 3-balls the ”interior” ball will be denoted by B1 and the
”exterior” by B2. We can twist the knots around using the 2-sphere so that
K ∩ B2 is fixed and only K ∩ B1 changes. By considering these different
projections for each of the knots we obtain a sequence of Seifert surfaces.
Now we take the boundary of a regular neighborhood of these surfaces to
obtain a surface Σm of genus 2s + 2m where s is the genus of the original
Seifert surface and m is the number of twists. The knot K can be embedded
in these Heegaard surfaces is such a way so that the surface Σm − N(K) is
incompressible in the union of the two handlebodies M −Σm. The boundary
components of Σm−N(K) specify a specific framing on N(K). Since we are
twisting around the 2-sphere we obtain different surfaces however the framing
determined by their boundary stays constant. Fix some triangulation for
M − N(K). When considering the Haken coordinates of these surfaces in
that triangulation we see that the coefficients corresponding to the boundary
are equal for all Σm−N(K). Thus the surfaces obtained by taking the Haken
difference between any two of them will be a closed surface. We will denote
the closed surface which is the difference between Σ and Σ1 by K and rename
Σ as H. As the difference between any two consecutive surfaces is contained
in the interior 3-ball it follows that the difference Σ2 − Σ1 is also K and the
same is true for Σm+1−Σm for all m. Hence all surfaces obtained in this way
are of the form H + nK.

The only difference between the examples of type (b) and type (a) is that
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the Heegaard surfaces are not a regular boundary of a Seifert surface but they
could also be the twisted I-bundle over a non-orientable bounded surface.
Hence the same argument as above applies to those Heegaard surfaces as
well to show that they are of the form H + nK.

5 examples II
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