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1. Introduction

G. McShane [8] described a remarkable identity concerning the lengths
of simple closed geodesics on a hyperbolic once punctured torus. This
identity was extended by B. Bowditch [5] to the following identity for
quasifuchsian punctured torus groups.

Theorem 1.1. Let T be a once-punctured torus and S the set of the
homotopy classes of the essential simple closed curves on T . Then for
any quasifuchsian representation ρ : π1(T ) → PSL(2, C), the following
identity holds; ∑

γ∈S

1

1 + el(ρ(γ))
=

1

2
,

where l(ρ(γ)) ∈ C/2πiZ denotes the complex translation length of ρ(γ).

Further, B. Bowditch [4] proved the following variation of the identity
for the punctured torus bundles over the circle:

Theorem 1.2. Let M be an orientable complete finite-volume hyper-
bolic manifold which fibres over the circle with fibre a once-punctured
torus. Let C be the set of the homotopy classes of the essential simple
closed curves on the fiber. Then the following identity holds:∑

γ∈C

1

1 + el(ρ(γ))
= 0.

Further, there is a natural partition of C into two subsets CL and CR,
such that the following identity holds;∑

γ∈CL

1

1 + el(ρ(γ))
= ±λ(∂M) = −

∑
γ∈CR

1

1 + el(ρ(γ))
,

where λ(∂M) denotes the mudulus of the cusp with respect to a suitably
chosen basis.
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In this preliminary report, we will point out that there is a variation
of McShane’s identity which applies to the groups in the Riley slice
(Theorem 3.1). We will also show that there is a variation of McShane’s
identity for some 2-bridge links, and propose a conjectural variation for
every hyperbolic 2-bridge link (Conjecture 4.1). We will also discuss
the relation with the conjecture and a certain problem for 2-bridge link
groups.

This study arose as a byproduct of the author’s joint work on punc-
tured torus groups and 2-bridge knot groups with Hirotaka Akiyoshi,
Masaaki Wada, and Yasushi Yamashita ([2], [3]). The author would
like to express his deepest thanks to B. H. Bowditch, G. Burde and K.
Oshika for their stimulating suggestions and T. Ohtsuki for his expla-
nation of his unpublished result with R. Riley [9].

2. Rational tangles and 2-bridge links

Let S be a 4-times punctured sphere. We identify S with the quotient
space (R2−Z2)/Γ, where Γ is the group of transformations on R2−Z2

generated by π-rotations about points in Z2. For each r ∈ Q̂ :=
Q ∪ {∞}, let αr be the simple loop in S obtained as the projection of
the line in R2 − Z2 of slope r. Then αr is essential, i.e., it does not
bound a disk in S and is not homotopic to a loop around a puncture.
Conversely, any essential simple loop α in S is isotopic to αr for a
unique r ∈ Q̂. Then r is called the slope of α, and is denoted s(α).

A trivial tangle is a pair (B3, t), where B3 is a 3-ball and t is a union
of two arcs properly embedded in B3 which is parallel to a union of two
mutually disjoint arcs in ∂B3. A meridian m of (B3, t) is an essential
simple loop on ∂B3 − t which bounds a disk in B3 separating the
components of t. A rational tangle is a trivial tangle (B3, t) endowed
with a homeomorphism from ∂B3 − t to S. The slope of a rational
tangle is defined to be the slope of the meridian. We denote a rational
tangle of slope r by (B3, t(r)).

The fundamental group π1(B
3 − t(r)) is identified with the quotient

π1(S)/ < αr >, where <> denotes the normal closure, and is a free
group of rank two freely generated by meridians m1 and m2 of the com-
ponents of t(r). Here, a meridian of a component of t(r) is an element
of π1(B

3 − t(r)) which is represented by a based simple loop bounding
a disk intersecting t(r) transvesely in one point in the component.

Let D be the modular diagram, that is the tesselation of the upper
half space H2 by ideal triangles which is obtained from the ideal sim-
plex with the ideal vertex set {0/1, 1/1, 1/0} by repeated reflection in

the edges. We identify Q̂ with the ideal vertices of D. For each r ∈ Q̂,
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let Λ(r) be the group of automorphisms of D generated by reflections
in the edges of D with an endpoint r. Then Theorem 1.2 of Komori
and Series [7] can be paraphrased as follows:

Proposition 2.1. (1) For each s ∈ Q̂, αs is null-homotopic in B3−t(r)
if and only if s = r.

(2) Let s and s′ be elements of Q̂−{r}. Then αs and αs′ are homo-
topic in B3 − t(r) if and only if s and s′ lies the same orbit of Λ(r).

If we choose r = ∞, then the above proposition implies a bijective
correspondence between Q∩ [0, 1] and the set of the homotopy classes
in B3 − t(∞) of essential simple loops in ∂B3 − t(∞) which are not
null-homotopic in B3 − t(∞).

For each r ∈ Q̂, let L(r) be the 2-bridge link of slope r, i.e., (S3, L(r)) =
(B3, t(∞)) ∪ (B3, t(r)) is obtained from the rational tangles of slopes
∞ and r by identifying their boundaries through the identity map. [It
should be noted that since the boundaries of the rational tangle comple-
ments are identified with S, the term “identity map” has a well-defined
meaning.] L(r) has one or two components according as the denomina-
tor of r is odd or even. Then the link group G(L(r)) := π1(S

3 − L(r))
is identified with π1(S)/ < α∞, αr >. Let Λ(∞, r) be the group of au-
tomorphisms of D generated by the reflections in the edges of D which
has ∞ or r as an endpoint. Then there are two rational numbers r1 and
r2 with 0 < r1 < r < r2 < 1 such that the region bounded by the four
edges < ∞, 0 >, < ∞, 1 >, < r, r1 >, and < r, r2 > is the canonical
fundamental domain of Λ(∞, r). We can obtain the following result:

Proposition 2.2. Let s and s′ be elements of Q̂ which lies in the same
orbit under Λ(∞, r). Then αs and αs′ are homotopic in S3 − L(r).

Corollary 2.3. Suppose s belongs to the orbit of ∞ or r under Λ(∞, r).
Then αs represent the trivial element of G(L(r)). In particular, there
is an epimorphism from G(L(s)) to G(L(r)) sending the meridian gen-
erators of G(L(s)) to that of G(L(r)).

The above corollary is essentially equivalent to an unpublished result
of Ohtsuki and Riley [9]. By studying the “Markoff maps” associated
with 2-bridge knots (see [5] and [2]), we can prove that the converse
to the first assertion of the above corollary holds when r is 2/5, 2/7,
or 1/p for some integer p. Therefore, we would like to propose the
following conjecture:

Conjecture 2.4. (1) (Strong version) αs and αs′ are homotopic in
S3 − L(r) if and only if they belong to the same orbit under Λ(∞, r).

(2) (Weak version) αs represents the trivial element of G(L(r)) if
and only if s belongs to the orbit of ∞ or r under Λ(∞, r).
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3. Variation of McShane’s identity for the Riley slice

For each ω ∈ C, let ρω be the representation of π1(B
3−t(∞)) defined

by

ρω(m1) =

[
1 1
0 1

]
, ρω(m2) =

[
1 0
ω 1

]
.

We denote the image of ρω by Gω. Let R be the space defined by:

R = {ω ∈ C|Ω(Gω)/Gω is homeomorphic to a four times punctured sphere}.
This has been called the Riley slice of Schottky groups [KeS, KoS].

Theorem 3.1. Let ρ = ρω be the representation corresponding to a
group Gω in the Riley slice. Then the following identity holds:

2
∑

0<r<1

1

1 + el(ρ(αr))
+

1

1 + el(ρ(α0))
+

1

1 + el(ρ(α1))
= 0.

Further, the parameter ω is determined by the following identity;

1/ω = 2
∑

0<r<1/2

1

1 + el(ρ(αr))
+

1

1 + el(ρ(α0))
+

1

1 + el(ρ(α1/2))
.

Proof. This theorem can be easily proved by using (a refinement of)
Proposition 3.13 of Bowditch [5] and the fact that each representation
ρω corresponds to a Markoff map sending ∞ to 0 (see Section 6 of
[2]).

4. Variation of McShane’s identity for 2-bridge links

Hyperbolic 2-bridge links have the following nice characterization
modulo the Poincare Conjecture (see [1]): A discete subgroup G of
PSL(2, C) generated by two parabolic transformations is of cofinite
valume if and only if it is isomorphic to the fundamental group of the
complement of a hyperbolic 2-bridge link.

In this section, we propose a conjectural variation of McShane’s iden-
tity for 2-bridge links. To do this, note that even if L(r) has two compo-
nents, the Euclidean structures of the boundary of the cusp neighbour-
hoods of the hyperbolic manifold S3−L(r) are unique up to similarity.
This follows from the fact that L(r) has a Z2 ⊕ Z2-symmetry, some
element of which interchanges the components of L(r) when L(r) has
two components. Let � be a longitude of L(r) constructed from a stan-
dard alternating diagram of L(r) as illustrated in Figure 4.1. We may
assume that the boundary of a cusp neighbourhood of S3 − L(r) is
represented by the quotient of C by the lattice Z ⊕ λZ, generated
by the translations [z → z + 1] and [z → z + λ] corresponding to
the meridian and the longitude �. We define λ(L(r)) to be λ/2 or
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λ/4 according as the denominator of r is odd or even, and call it the
modulus of L(r). [Explicitely, λ(L(r)) represents the “modulus” of the
boundary of a cusp neighbourhood of the quotient hyperbolic orbifold
(S3 − L(r))/(Z2 ⊕ Z2).]

Conjecture 4.1. Let ρ be a faithful disctere PSL(2, C) representation
of a hyperbolic 2-bridge link group G(L(r)). Then the following identity
holds:

2
∑

0<r<r1

1

1 + el(ρ(αr))
+2

∑
r2<r<1

1

1 + el(ρ(αr))
+

∑
r∈{0,1,r1,r2}

1

1 + el(ρ(αr))
= −1.

Here r1 and r2 are the rational numbers such that 0 < r1 < r < r2 < 1
and that the region bounded by the four edges < ∞, 0 >, < ∞, 1 >, <
r, r1 >, and < r, r2 > is the canonical fundamental domain of Λ(∞, r).
Further the modulus λ(L(r)) of the cusp of the hyperbolic manifold
S3 − L(r) is given by the following formula:

λ(L(r)) = 2
∑

0<r<r1

1

1 + el(ρ(αr))
+

∑
r∈{0,r1}

1

1 + el(ρ(αr))
.

By using the results and methods of Bowditch [4], [5], together with
the recent affirmative solution [3] of the conjecture that the topologi-
cal ideal triangulation of the hyperbolic 2-bridge link complemets con-
structed by [10] are the canonical geometric decompositions, we can see
that the above conjecture holds for 2-bridge knots of slopes 2/5 and
2/7. Further, we can see that Conjecture 4.1 is valid if and only if the
following two assertions hold:

(1) Conjecture 2.4 (2) holds.
(2) There are only finitely many rational numbers r ∈ [0, r1]∪ [r2, 1]

such that αr is peripheral.
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Late Addition.
(1) Conjecture 2.4 (2) for 2-bridge torus knot L(1/p) was also proved

by F. Gonzalez-Acuna. He also obtained beautiful results for these knot
groups.

(2) Conjecture 2.4 for the twist knot L(n/(2n + 1)) with 2 ≤ n ≤ 10
was confirmed by my former student Tomokazu Eguchi in his master
thesis.

(3) Conjecture 4.1 has a natural generalization to a conjecture for
hypebolic cone manifolds. I hope to solve Conjecture 4.1 by studing the
generalized conjecture for hypebolic cone manifolds, just as we proved
the conjecture in [10] by establishing its generalization for hypebolic
cone manifolds.

(4) In joint works with Hirotaka Akiyoshi and Hideki Miyachi, we
found other variations of McShane’s identity.

(5) Maryam Mirzakhani found a beautiful application of McShane’s
identity (and her own generalization of the identity) to Weil-Peterson
volumes of moduli space of Riemann surfaces.
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