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Abstract. Let Mφ denote the 3-manifold obtain by identifying the boundaries
of two small hyperbolic 3-manifolds by the homeomorphism φ. The genus of any
essential surface, other than the amalgamating surface, in Mφ is forced to be arbi-
trarily high by making the map φ sufficiently complicated.
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1. Introduction

In his thesis K. Hartshorn show that when a map identifying the boundaries of two
handlebodies is complicated then the genus of any essential surface in the resulting
3-manifold must be high [Har02]. Here we consider what happens when gluing two
small, hyperbolic 3-manifolds along their boundaries. Of course, we have no control
over the genus of the amalgamating surface. But we do show that when the gluing
map is complicated then the genus of any other essential surface must be high.

Our first task is to define the complexity of the map used to glue two 3-manifolds
together. Following Hempel [Hem01], we will make use of the curve complex to do
this. Let F be a 2-manifold. It’s curve complex is defined by the following relations:

• vertices ↔ isotopy classes of essential loops on F .
• n-simplices ↔ sets of n non-isotopic essential loops which can be isotoped to

be pairwise-disjoint.

Note that the path metric on the 1-skeleton of the curve complex gives a well-defined,
integer-valued metric on the 0-skeleton.

Let X and Y be 3-manifolds with homeomorphic boundaries. Fix triangulations
∆X and ∆Y of X and Y . Let CX and CY denote the sets of loops on ∂X and ∂Y

which intersect each edge of the respective induced triangulations at most once. Let
φ : ∂X → ∂Y be a homeomorphism. We define d(φ) to be d(φ(CX), CY ), the distance
between the sets φ(CX) and CY as measured in the curve complex of ∂Y .

Note that this definition depends on the choice of triangulations ∆X and ∆Y .
However, given any such choice the sets CX and CY are finite. It follows that as the
distance of φ gets large with respect to one choice, it must also become large with
respect to any other choice. In this sense results of the form “When the distance of
φ is sufficiently large then ...” do not depend on the choice of triangulations.

The main result of this paper is the following:
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Theorem 3.1. Let X and Y be small hyperbolic 3-manifolds and φ : ∂X → ∂Y

a homeomorphism. Let G be an incompressible surface in X ∪φ Y , other than the

amalgamating surface. There are constants c(X) and c(Y ) such that the distance

d(φ) is at most c(X) + c(Y ) − χ(G).

If tX and tY are the number of tetrahedra in ∆X and ∆Y , and each is at least 16,
then we will show that c(X) ≤ 15tX and c(Y ) ≤ 15tY .

Corollary 1.1. For every pair of small, hyperbolic 3-manifolds X and Y , every

number g, and every psuedo-Anosov homoemorphism φ : ∂X → ∂Y there is an N

such that for all n ≥ N the only incompressible surface in the 3-manifold X ∪φn Y

whose genus is possibly less than g is the amalgamating surface.

2. Normal Surfaces

In this section we discuss the necessary background material on normal surfaces.
A normal curve on the boundary of a tetrahedron is a simple loop which is transverse
to the 1-skeleton, made up of arcs which connect distinct edges of the 1-skeleton. The
length of such a curve is the number of times it crosses the 1-skeleton. A normal disk

in a tetrahedron is any embedded disk whose boundary is a normal curve of length
three or four, as in Figure 1.

Figure 1

A normal surface in a triangulated 3-manifold is the image of a proper embedding
p of some surface S such that p(S) is a union of normal disks. Normal surfaces were
first defined by Kneser in [Kne29] and later used extensively by Haken [Hak61].

According to Haken’s theory the set of normal surfaces in a particular 3-manifold
forms a finite union of finitely generated semigroups. A generator of such a semi-
group is referred to as a fundamental surface, and the semigroup operation is called
Haken sum. Haken sum always yields a normal surface that can be obtained from
the summands by a cut-and-paste operation. In particular, Euler characteristic is
additive. That is, if S1 and S2 are normal surfaces then

χ(S1 + S2) = χ(S1) + χ(S2)
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There is an important subset of the fundamental surfaces called the vertex surfaces.
We recall the following result of Jaco and Oertel [JO84].

Theorem 2.1. If G is an incompressible, boundary-incompressible, normal surface

then it is the sum of incompressible, boundary-incompressible vertex surfaces.

Each normal surface corresponds to a vector in Z
7t, where t is the number of

tetrahedra. If such a vector represents a normal surface then at most 5t of its entries
are non-zero. The sum of the entries tells one precisely how many normal triangles
and quadrilaterals are contained in the surface. The following is a result of Hass,
Lagarius, and Pippenger [HLP99].

Theorem 2.2. If S is a vertex surface and v(S) the vector in Z
7t representing S

then for each i the entry vi(S) is at most 27t−1.

From this we deduce the following theorem.

Theorem 2.3. If S is an incompressible, boundary-incompressible, vertex surface

then

|∂S| ≤ 15t27t−1

Proof. By Theorem 2.2 each coordinate in v(S) is at most 27t−1. As there are at most
5t non-zero coordinates the total number of normal triangles and quadrilaterals in S

is at most 5t27t−1. Each such normal disk has at most 3 edges on the boundary. (If
some quadrilateral had all four of its edges on the boundary then every face of the
tetrahedron which contains it would be on the boundary. This is a contradiction,
unless the entire manifold was a single tetrahedron.) Hence, the number of boundary
edges is at most 15t27t−1. But the number of boundary edges equals the length of
the boundary, so the result follows. �

3. Proof of Theorem 3.1

Recall the statement:

Theorem 3.1. Let X and Y be small hyperbolic 3-manifolds and φ : ∂X → ∂Y

a homeomorphism. Let G be an incompressible surface in X ∪φ Y , other than the

amalgamating surface. There are constants c(X) and c(Y ) such that the distance

d(φ) is at most c(X) + c(Y ) − χ(G).

We now begin the proof. Let F = ∂X = ∂Y . Isotope G so that |F ∩G| is minimal.
Note that this quantity must be non-zero, since X and Y are assumed to be small.
It follows from our minimality assumption that GX = G ∩ X and GY = G ∩ Y are
incompressible in X and Y .

We wish to bound the distance between G∩F and both CX and CY , in the curve
complexes of ∂X and ∂Y . Our argument will be symmetric, so henceforth we will
work completely in X.
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As X is hyperbolic, it has incompressible boundary. Hence, no component of GX is
a disk. It follows that χ(GX) is at least χ(G). Let {Gi}

n
i=0

be a sequence of surfaces
in X such that G0 = GX , Gi is obtained from Gi−1 by a boundary compression,
and Gn is incompressible and boundary incompressible. Since each such boundary
compression increases Euler characteristic by exactly one, and χ(Gn) ≤ 0, we have
n ≤ χ(Gn) − χ(GX).

Note that the distance between the set ∂Gi−1 and ∂Gi is at most one in the curve
complex of ∂X. Hence, the distance between ∂GX and ∂Gn is at most n. Putting
this together we have

(1) d(∂GX , ∂Gn) ≤ χ(Gn) − χ(GX)

As Gn is both incompressible and boundary incompressible in X it is isotopic to
a normal surface in the triangulation ∆X [Hak61]. As X is annannular, by Theorem
2.1 we may write Gn has a sum of vertex fundamental surfaces with negative Euler
characteristic. By Theorem 2.3 the length of the boundary of each such summand is
at most 15t27t−1, where t is the number of tetrahedra in ∆X . As Euler characteristic
is additive when summing normal surfaces, the number of summands of Gn is at
most −χ(Gn). We conclude

(2) |∂Gn| ≤ −15t27t−1χ(Gn)

Let γ denote the shortest representative among the isotopy classes of all loops of
∂Gn. Hence,

(3) |γ| ≤ |∂Gn|

Suppose γ meets some edge e of ∆X more than once. Then there is a subarc a ⊂ e

such that γ∩a = ∂a. Pick some orientation of γ. If this orientation is opposite at the
points of ∂a then we use a to surger γ as in Figure 2, left. This results in two curves,
γ′ and γ′′. Otherwise γ′ and γ′′ are obtained by the exchange depicted at the right
of Figure 2. In either case, it follows from our assumption that γ has minimal length
in its isotopy class that both γ′ and γ′′ are essential in ∂X. Assume that |γ′| ≤ 1

2
|γ|.

Figure 2

Continuing in this way we obtain a sequence of essential curves {γi}
l
i=0

on ∂X

such that γ0 = γ, γ1 = γ′, |γi−1| ≤
1

2
|γi|, and γl meets each edge of ∆X at most once.
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Hence,

(4) l ≤ log
2
|γ|

Note that for each i the curve γi−1 meets γi at most once. If they are disjoint then
they are at a distance of one in the curve complex of ∂X. If they meet once then
they are both disjoint from the boundary of a neighborhood of their union, so they
are at a distance of at most two from each other. We conclude that the distance
between γ and γl as at most 2l. As γ is isotopic to a loop of ∂Gn and γl ∈ CX , we
have

(5) d(∂Gn, CX) ≤ 2l

Combining Equations 2 through 5 gives us

d(∂Gn, CX) ≤ 2l(6)

≤ 2 log
2
|γ|(7)

≤ 2 log
2
(−15t27t−1χ(Gn))(8)

≤ 2 log
2
(15t) + 14t − 2 + 2 log

2
(−χ(Gn))(9)

≤ 2 log
2
(15t) + 14t + 2 log

2
(−χ(Gn))(10)

Combining this last inequality with Equation 1 yields

d(∂GX , CX) ≤ d(GX , Gn) + d(Gn, CX)(11)

≤ χ(Gn) − χ(GX) + 2 log
2
(15t) + 14t + 2 log

2
(−χ(Gn))(12)

≤ 2 log
2
(15t) + 14t − χ(GX)(13)

Let c(X) = 2 log
2
(15t)+14t and define c(Y ) similarly. Note that when t is at least

16, c(X) ≤ 15t. Inequality 13 then becomes

(14) d(∂GX , CX) ≤ c(X) − χ(GX)

Finally, this gives us

d(φ) = d(φ(CX), CY )(15)

≤ d(∂GX , CX) + d(∂GY , CY )(16)

≤ c(X) − χ(GX) + c(Y ) − χ(GY )(17)

≤ c(X) + c(Y ) − χ(G)(18)
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