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ABSTRACT
Cohomology fractals are images naturally associated to cohomology classes in hyperbolic three-manifolds.
We generate these images for cusped, incomplete, and closed hyperbolic three-manifolds in real-time by ray-
tracing to a !xed visual radius. We discovered cohomology fractals while attempting to illustrate Cannon–
Thurston maps without using vector graphics; we prove a correspondence between these two, when the
cohomology class is dual to a !bration. This allows us to verify our implementations by comparing our images
of cohomology fractals to existing pictures of Cannon–Thurston maps.
In a sequence of experiments, we explore the limiting behaviour of cohomology fractals as the visual radius
increases. Motivated by these experiments, we prove that the values of the cohomology fractals are normally
distributed, but with diverging standard deviations. In fact, the cohomology fractals do not converge to a
function in the limit. Instead, we show that the limit is a distribution on the sphere at in!nity, only depending
on the manifold and cohomology class.

1. Introduction

Cannon and Thurston discovered that Peano curves arise naturally in hyperbolic geometry [13]. They proved that for every closed
hyperbolic three-manifold, equipped with a !bration over the circle, there is a map from the circle to the sphere that is continuous,
!nite to one, and surjective. Furthermore this Cannon–Thurston map is equivariant with respect to the action of the fundamental
group. We review their construction in Section 3; Figure 1(a) shows an approximation.

In a previous expository paper [4], we introduced cohomology fractals; these are images arising from a hyperbolic three-manifold
M equipped with a cohomology class [ω] ∈ H1(M; R). See Figure 1(b). In that paper we gave an overview of the construction; we
also discussed some of the features of the three-manifold and cohomology class that can be seen in its cohomology fractal. We have
also written an open-source [5] real-time web application for exploring these fractals. This is available at https://henryseg.github.io/
cohomology_fractals/.

In the present work we give rigorous de!nitions of cohomology fractals, we relate them to Cannon–Thurston maps (see
Figure 1(b)), we give technical details of our implementation, and we discuss their limiting behaviour.

We now outline the contents of each section of the paper. Note that we include a glossary of notation in Appendix A. We begin
by reviewing the de!nitions of ideal and material triangulations, and their hyperbolic geometry in Section 2. In Section 3 we de!ne
Cannon–Thurston maps. In Section 4 we discuss the di"erences between vector and raster graphics. We also recall a vector graphics
algorithm (Algorithm 4.2) used in previous work to illustrate Cannon–Thurston maps.

In Section 5 we give several equivalent de!nitions of the cohomology fractal. It depends on choices beyond the manifold M and
the cohomology class [ω]: there is a choice of viewpoint p ∈ M and a choice of a visual radius R. The cohomology fractal is a function
"

ω,p
R : UTp M → R. Roughly, for each vector v ∈ UTp M we build the geodesic arc γ of length R from p in the direction of v and

compute "
ω,p
R (v) = ω(γ ). (Note that we repeatedly generalise the de!nition of the cohomology fractal throughout the paper; the

decorations alter to remind the reader of the desired context.)
In Figure 1, we see a cohomology fractal closely matching an approximation of a Cannon–Thurston map, as produced by

Algorithm 4.2. In Section 6 we prove the following.

Proposition 6.2. Cohomology fractals are dual to approximations of the Cannon–Thurston map.

Thus we have a new representation of Cannon–Thurston maps. We also compare cohomology fractals with the lightning curves
of Dicks and various coauthors. (The name is due to Wright [32, page 324].) We experimentally observe that the lightning curve
corresponds to some of the brightest points of the cohomology fractal.
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(a) Cannon–!urston map. (b) Cohomology fractal.

(c) Figure 1(b) in black and white. (d) Figure 1(a) overlaid on Figure 1(c).

Figure 1. Matching up Cannon–Thurston map images with the cohomology fractal for m004, the !gure-eight knot complement.
Compare our Figure 1(c) with Figure 10.11 of Indra’s Pearls [32, page 335], which was produced by paint-!lling a vector graphics
image [48].

In Section 7 we describe the algorithms we use to produce images of cohomology fractals. Adding the ability to move through the
manifold leads us to separate the viewpoint p from a basepoint, denoted b, of the cohomology fractal. We still trace rays starting at p,
but then evaluate ω on any path in M̃ from b to the endpoint of γ .

We also generalise the above material view (with vectors v in UTp M̃) to the ideal and hyperideal views (with vectors v being
perpendicular to a horosphere or geodesic plane, respectively). Each view is a subset D ⊂ UT M̃; our notation for the cohomology
fractal becomes "ω,b,D

R : D → R.
In Section 8 we discuss cohomology fractals for incomplete and closed manifolds. We draw cohomology fractals in the

closed case in two ways. First, we deform the cohomology fractal for a surgery parent through Thurston’s Dehn surgery space.
Second, we reimplement our algorithms using material triangulations. We also discuss possible sources of numerical error in our
implementations.

In Section 9 we give a sequence of experiments exploring the dependence of cohomology fractals on the visual radius R. For any
!xed R, the cohomology fractal is constant on regions with sizes roughly proportional to exp(−R). As R increases, these regions
subdivide, and intricate patterns come into focus. This suggests that there is a limiting object. The following shows that such a limit
cannot be a function.

Theorem 9.2. Suppose that M is a !nite volume, oriented hyperbolic three-manifold. Suppose that F is a transversely oriented surface.
Then the limit

lim
R→∞

"R(v)
does not exist for almost all v ∈ UT M̃.
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Indeed, experimentally, increasing R leads to noisy pictures. However, this is due to undersampling. A heuristic argument (see
Remark 9.7) shows that we can avoid noise if we increase the screen resolution as we increase R. We simulate this by computing
supersampled images. These, and further experiments, indicate that in contrast with Theorem 9.2, the mean of the cohomology
fractal, taken over a pixel, converges. Its values appear to be normally distributed with standard deviation growing like

√
R.

Motivated by this, in Section 10, we show that the cohomology fractal obeys a central limit theorem.

Theorem 10.7. Fix a connected, orientable, !nite volume, complete hyperbolic three-manifold M and a closed, non-exact, compactly
supported one-form ω ∈ $1

c (M). There is σ > 0 such that for all basepoints b, all views D with area measure µD, for all probability
measures νD ' µD, and for all α ∈ R, we have

lim
T→∞

νD

[
v ∈ D : "T(v)√

T
≤ α

]
=

∫ α

−∞

1
σ
√

2π
e−(s/σ )2/2 ds

where "T = "ω,b,D
T is the associated cohomology fractal.

That is, if we regard the cohomology fractal across a pixel as a random variable, divide it by
√

T, and take the limit, the result is a
normal distribution of mean zero. The standard deviation of the normal distribution only depends on the manifold and cohomology
class. The proof uses Sinai’s central limit theorem for geodesic #ows.

In Section 11, we prove that treating the cohomology fractals as distributions gives a well-de!ned limit. In this introduction, for
simplicity, we focus on the case where D is a material view. The pixel theorem (Theorem 11.4) states that the limit

"ω,b,D(η) = lim
T→∞

∫

D
"ω,b,D

T · η

is well-de!ned for any two-form η ∈ $2(D). Theorem 11.4 also states various transformation laws relating, for example, the
distributions corresponding to di"erent views. Thus there is a view-independent distribution related to the view-dependent
distributions via the conformal isomorphism iD from D to ∂M̃.

Corollary 11.5. Suppose that M is a connected, orientable, !nite volume, complete hyperbolic three-manifold. Fix a closed, compactly
supported one-form ω ∈ $1

c (M) and a basepoint b ∈ M̃. Then there is a distribution "ω,b on ∂∞M̃ so that, for any material view D
and for any η ∈ $2(D), we have

"ω,b,D(η) = "ω,b((i−1
D )∗η)

The above discussion addresses smooth test functions. We can also prove convergence for a wider class of test functions; these
include the indicator functions of regions with piecewise smooth boundary. However, we do not know whether or not the cohomology
fractal converges to a measure.

We conclude with a few questions and directions for future work in Section 12.

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under Grant No. DMS-1439786 and
the Alfred P. Sloan Foundation award G-2019-11406 while the authors were in residence at the Institute for Computational and
Experimental Research in Mathematics in Providence, RI, during the Illustrating Mathematics program. The fourth author was
supported in part by National Science Foundation grant DMS-1708239.

We thank François Guéritaud for suggesting we use ray-tracing to generate cohomology fractals. We thank Curt McMullen for
suggesting that Theorem 11.4 should be true and also for giving us permission to reproduce Figure 15. We thank Mark Pollicott and
Alex Kontorovich for guiding us through the literature on exponential mixing of the geodesic #ow. We thank Ian Melbourne for
enlightening conversations on central limit theorems. We thank the anonymous referee for many helpful comments and corrections.

2. Triangulations

We brie#y review the notions of material and ideal triangulations of three-manifolds.

2.1. Combinatorics

Suppose that M is a compact, connected, oriented three-manifold. We will consider two cases. Either

• the boundary ∂M is empty; here we call M closed, or
• the boundary is non-empty, consisting entirely of tori; here we call M cusped.
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(a) Tube around the "gure-
eight knot.

(b) Triangulation of the "gure-eight knot comple-
ment. !e colours and arrows indicate the gluings.

Figure 2. The !gure-eight knot complement. This manifold is known as m004 in the SnapPy census. The black lines in Figure 2(a)
cut the tube into triangles, corresponding to the eight green triangles in Figure 2(b).

Suppose that T is a triangulation: that is, a collection of oriented model tetrahedra together with a collection of orientation-
reversing face pairings. We allow distinct faces of a tetrahedron to be glued, but we do not allow a face to be glued to itself. The
quotient space, denoted |T |, is thus a CW–complex which is an oriented three-manifold away from its zero-skeleton. We say that
T is a material triangulation of M if there is an orientation-preserving homeomorphism from |T | to M. We say that T is an ideal
triangulation of M if there is an orientation-preserving homeomorphism from |T |, minus a small open neighbourhood of its vertices,
to M. Equivalently, |T | minus its vertices is homeomorphic to M◦, the interior of M.

Example 2.2. Suppose that M is obtained from S3 by removing a small open neighbourhood of the !gure-eight knot. See Figure 2(a).
As discussed in [42, Chapter 1], the knot exterior M has an ideal triangulation with two tetrahedra. See Figure 2(b). Here we have
not truncated the model tetrahedra. Instead we draw the vertex link; in this case it is a torus in M.

2.3. Geometry

We deal with the geometry of the two types of triangulations separately.

2.3.1. Ideal triangulations
We give each model ideal tetrahedron t a hyperbolic structure. That is, we realise t as an ideal tetrahedron in H3 with geodesic
faces. This can be constructed as the convex hull of four points on ∂∞H3. We require that the face pairings be orientation reversing
isometries. For these hyperbolic tetrahedra to combine to give a complete hyperbolic structure on the manifold M◦ requires certain
conditions to be satis!ed. Very brie#y: consider a loop in the dual one-skeleton of the triangulation. This visits the tetrahedra in
some order. The product of the corresponding sequence of isometries must give the identity if the loop is trivial in the fundamental
group. If the loop is peripheral then the product must be a parabolic element.

These conditions reduce to a !nite set of algebraic constraints. These are Thurston’s gluing equations, see [42, Section 4.2] and [35,
Section 4.2]. Using the upper half-space model of H3 we de!ne the shape of each ideal hyperbolic tetrahedron to be the cross-ratio
of its four ideal points. The gluing equations impose a !nite number of polynomial conditions on these shapes.

For our implementation, we also require that the shapes have positive imaginary part. This ensures that the ideal hyperbolic
tetrahedra glue together to give a complete, !nite volume hyperbolic structure on M◦. Furthermore, the model orientations of all of
the tetrahedra agree with the orientation on M. In particular, when a geodesic ray crosses a face, it has a sensible continuation.

2.3.2. Material triangulations
To !nd a hyperbolic structure for material triangulations, we replace Thurston’s gluing equations with a construction due to Andrew
Casson [8] and Damian Heard [20, 21]. To specify a hyperbolic structure on a material triangulation, it su$ces to assign lengths to
its edges. This is because the isometry class of an oriented material hyperbolic tetrahedron is determined by its six edge lengths.

There are two conditions that must be satis!ed. First, for each model tetrahedron, there is a collection of inequalities that must be
satis!ed for its edges. Second, for each edge of the triangulation, the dihedral angles about it must sum to 2π .

If these inequalities and equalities hold, then we obtain a hyperbolic structure on the three-manifold. See [19, Section 2] for further
details.
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3. Cannon–Thurston maps
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Figure 3. The various spaces and maps involved in constructing the Cannon–Thurston map + .

Here we sketch Cannon and Thurston’s construction; see Figure 3 for an overview. We refer to [13] for the details. See also [31].
Suppose that F = F2 and M = M3 are connected, compact, oriented two- and three-manifolds. Suppose that F◦ and M◦ admit

complete hyperbolic metrics of !nite area and volume respectively. In an abuse of notation, we will con#ate F with F◦, and similarly
M with M◦. We call a proper embedding α : F → M a !bre if there is a map ρ : M → S1 so that for all t ∈ S1 the preimage ρ−1(t) is
a surface properly isotopic to α(F).

Let F̃ and M̃ be the universal covers of F and M respectively. Since F and M are hyperbolic, their covers are identi!ed with
hyperbolic two- and three-space respectively. Let ∂∞F̃ ∼= ∂∞H2 ∼= S1 and ∂∞M̃ ∼= ∂∞H3 ∼= S2 be their ideal boundaries. We set

F = F̃ ∪ ∂∞F̃ and M = M̃ ∪ ∂∞M̃

Each union is equipped with the unique topology that makes the group action continuous. Note that F and M are homeomorphic to
a closed two- and three-ball, respectively.

We compose the covering map from F̃ → F with the embedding α and then li% to obtain an equivariant map α̃ : F̃ → M̃. We call
α̃ an elevation of F. Figure 4 shows an elevation of the !bre of the !gure-eight knot complement.

Cannon and Thurston gave the !rst proof of the following theorem in the closed case [13, page 1319]. The cusped case follows
from work of Bowditch [3, Theorem 0.1].

Theorem 3.1. Suppose M is a connected, oriented, !nite volume hyperbolic three-manifold. Suppose that α : F → M is a !bre of a
surface bundle structure on M. Then there is an extension of α̃ to a continuous and equivariant (with respect to the fundamental group
of M) map α : F → M. The restriction of α to ∂∞F̃ gives a sphere-!lling curve.

We will use the notation + : ∂∞F̃ → ∂∞M̃ for the restriction of α to S1
∞. We call this a Cannon–Thurston map. We now turn to

the task of visualising + .

4. Illustrating Cannon–Thurston maps

The standard joke (see [43, page 373] and [32, page 335]) is that it is straightforward to draw an accurate picture of a Cannon–
Thurston map; it is solid black.

The !rst (more instructive) illustration of a Cannon–Thurston map is due to Thurston. He gives a sequence of approximations to
the sphere-!lling curve in [43, Figure 8]. We reproduce the last of these in Figure 4(b). A striking version of this image by Wright also
appears in Indra’s Pearls [32, Figure 10.11]. In this example both M and F are non-compact; M is the complement of the !gure-eight
knot and F is a Seifert surface.

4.1. Vector and raster graphics

In this section, we outline the technique used by Thurston and Wright to generate images of Cannon–Thurston maps, in order to
contrast it with our algorithm.

Our algorithm generates an image by producing a colour for each pixel on a screen. In other words, its output is a map from a
grid of pixels in the image plane into a space of possible colours. We call such a map a raster graphics image.

In contrast, Algorithm 4.2 (below) produces vector graphics – that is a description of an image as a collection of various primitive
objects in the (euclidean) image plane. An example of a primitive is a line segment, speci!ed by the coordinates of its end points.
Other primitives include arcs, circles, and so on. Note that we generally need to convert vector graphics to raster graphics to make
a physical representation of an image. To rasterise a vector graphics image, we need to decide which pixels are coloured by which
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(a) An elevation o$he "bre. !e "bre
is a pleated surface made from two ideal
triangles. !e three pleating angles are
π 3, π , and 5 π 3.

(b) An approximation o$he Cannon–
!urston map, reproduced from Fig-
ure 8 of [43].

Figure 4. Views in the universal cover of the !gure-eight knot complement.

primitives. For example, a disk colours all of the pixels whose coordinates are close enough to the centre of the disk. Rasterisation
is necessary for most output devices, such as screens or printers. The exceptions include plotters, laser cutters, and cathode-ray
oscilloscopes. There are advantages to deferring rasterisation and saving the vector graphics to a !le (in the PDF, PostScript, or SVG
format, for example). For example, deferred rasterisation can take the resolution of the output device into account. Design programs
such as Inkscape and Adobe Illustrator allow editing the geometric primitives in a vector graphics image. Rasterisation is usually
carried out by a black-box general purpose algorithm, the details of which are hidden from the user.

Algorithm 4.2. (Approximate a Cannon–Thurston map) We are given a !bre F of the three-manifold M. We choose an elevation
F̃ ⊂ M̃ of F. As described in Section 3, the map

+ : S1 ∼= ∂∞F̃ → ∂∞M̃ ∼= S2

is sphere-!lling.
To approximate + , we !rst choose a large disk D ⊂ F̃. Typically, M is described with an ideal triangulation T , with F realised as

a surface carried by the two-skeleton T (2). Therefore F̃ is given as a surface carried by T̃ (2). The disk D then consists of some !nite
collection of ideal hyperbolic triangles in T̃ (2). The boundary of D consists of a loop of geodesics in H3 ∪ ∂∞H3. We now de!ne +D
to be the loop in ∂∞H3 obtained by projecting each arc of ∂D to an arc in ∂∞H3.

Note that the algorithm produces a circularly ordered collection of points in ∂∞H3 spanning geodesics in H3. However,
conventional vector graphics require primitives to be in the euclidean plane. Thus, we must make two choices of projections. The
!rst projection from H3 to ∂∞H3 takes the geodesics to arcs in ∂∞H3 and the second projection takes these arcs in ∂∞H3 to arcs in
the euclidean image plane.

We draw our pictures in the “ideal view”. That is, we use the upper half space model of H3 and project ∂D down to C (viewed as
the boundary of H3). The arcs between vertices now simply become straight lines in C. This is also the choice made by Thurston
in Figure 4, as well as Wada in his program OPTi [46]. Other depictions by McMullen [28] and Calegari [7, Figure 1.14] project
outward from the origin to the boundary of the Poincaré ball model of H3 (and then to the image plane using a perspective or
orthogonal projection).

Remark 4.3. The images in Indra’s Pearls [32] have been rasterised using a customised rasteriser that illustrates further features of
the Cannon–Thurston map. For example, one side of the polygonal path of line segments is !lled, or the line segments are coloured
using some combinatorial condition. See Figures 10.11 and 10.13 of [32].

4.4. Motivating raster graphics

Our work here began when we asked if we could avoid vector graphics when illustrating Cannon–Thurston maps. This is less natural,
but would allow us to take advantage of extremely fast graphics processing unit (GPU) calculation. We were inspired in part by work
of Vladimir Bulatov [6] and also of Roice Nelson and the fourth author [33], using re#ection orbihedra. (See also the work of Peter
Stamp#i [39].) They all use raster graphics strategies to draw tilings of H2 and H3.
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A number of others have also used raster graphics to explore kleinian groups, outside of the setting of re#ection orbihedra. They
include Peter Liepa [26], Jos Leys [25], and Abdelaziz Nait Merzouk [30] (also see [12]).

5. Cohomology fractals

We give a sequence of more-or-less equivalent de!nitions of cohomology fractals, beginning with the conceptually simplest (for us),
and moving towards versions that are most convenient for our implementation or our proofs. Fixing notation, we take M to be a
riemannian manifold and M̃ its universal cover. We also take X = XM = UT M and X̃ = UT M̃ to be their unit tangent bundles.
Take π : X̃ → M̃ to be the bundle map.

De!nition 5.1. Suppose that we are given the following data.

• A connected, complete, oriented riemannian manifold Mn,
• a cocycle ω ∈ Z1(M; Z),
• a point p ∈ M, and
• a radius R ∈ R>0.

From these, we de!ne the cohomology fractal on the unit sphere UTp M ∼= Sn−1. This is a function "R = "
ω,p
R : UTp M → Z

de!ned as follows.
Suppose that v ∈ UTp M is a unit tangent vector. Let γ be the unique geodesic segment starting at p with initial direction v and

of length R. Let q be the endpoint of γ . Choose any shortest path γ ′ from q to p (on a set of full measure γ ′ is unique). Thus γ ∪ γ ′

is a one-cycle. We de!ne "R(v) = ω(γ ∪ γ ′).

Our next de!nition moves in the direction of concrete examples:

De!nition 5.2. Here we further assume that M is a three-manifold. Let F ⊂ M be a properly embedded, transversely oriented
surface. We choose F so that p /∈ F. We de!ne γ and q as above. Now take γ ′ to be the shortest path from q to p in the complement
of F. We now de!ne "R(v) = "

F,p
R (v) to be the algebraic intersection number between F and γ ∪ γ ′.

We modify once again to obtain a de!nition very close to our implementation.

De!nition 5.3. We equip M with a material (or ideal) triangulation T . We properly homotope the surface F to lie in the two-skeleton
T (2). For each face f this gives us a weight ω(f ). This is the signed number of sheets of F running across f . We dispense with γ ′; we
take "R(v) to be the sum of the weighted intersections between γ and the faces of the triangulation.

To aid in comparing cohomology fractals to Cannon–Thurston maps (in Section 6), we li% to the universal cover, M̃.

De!nition 5.4. Since cochains pull back, let ω̃ be the li% of ω. Let p̃ be a !xed li% of the point p. Since ω̃ is a coboundary, it has a
primitive, say W; we choose W so that W (̃p) = 0. We form γ̃ as before and let q̃ be its endpoint. We de!ne "R(v) = W (̃q).

To analyse the behaviour of the cohomology fractal as R tends to in!nity, we rephrase our de!nition in a dynamical setting. Here,
the radius R is replaced by a time T.

De!nition 5.5. Suppose that ω ∈ $1(M, R) is a closed one-form. Let ϕt : UT M → UT M be the geodesic #ow for time t. We de!ne

"T(v) = "
ω,p
T (v) =

∫ T

0
ω(ϕt(v)) dt

In a slight abuse of notation, we also use ϕt to denote the geodesic #ow on UT M̃.
In Section 7 we will discuss how to calculate "R in practice. Before giving those details, we show the reader what "R looks like

for a few values of R. See Figure 5. The map "R maps into R; we indicate the value of "R(v) by brightness. For each value of R, we
draw the value of "R(v) for a small square subset of the unit tangent vectors, UTp M.

Here we are using De!nition 5.3, our manifold M is the complement of the !gure-eight knot, and the surface F is a !bre of M.
Note that when R is small, as in Figure 5(a), "R is constant on large regions of the sphere. As R increases, the value of "R on nearby
rays becomes less correlated, and we see a fractal structure come into focus.

Remark 5.6. This complicated behaviour is a consequence of the hyperbolic geometry of our manifold. Consider instead the example
where M is the three-torus S1 × S1 × S1 and the surface F is an essential torus embedded in M. Again, "R counts the number of
elevations of F the ray γ passes through. Since the elevations are parallel planes in M̃ ∼= R3, the value of "R is constant on circles in
UTp M parallel to these planes. Here "R is much simpler.
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(a) R = e 0.5 (b) R = e1

(c) R = e1.5 (d) R = e 2

Figure 5. Cohomology fractals for m004, with various values of R.

Remark 5.7. Some of the geometry and topology of the manifold M can be seen from the cohomology fractal "R. Our recent
expository paper on cohomology fractals [4] gives many such examples, including the appearances of cusps, totally geodesic
subsurfaces, and loxodromic elements of the fundamental group.

6. Matching !gures

In this section we compare our cohomology fractals to Cannon–Thurston maps.

Example 6.1. Suppose that M is the !gure-eight knot complement. Suppose that F is a !bre of the !bration of M. Suppose that + is
the associated Cannon–Thurston map. Figure 1(a) shows an approximation +D : S1 → S2 ∼= ∂∞H3 of + ; we produced this image
using Algorithm 4.2. (Note that the vector graphics image in Figure 1(a) has been converted to a raster graphics image to save on !le
size and rendering time.)

Figure 1(b) shows a cohomology fractal "R corresponding to F and looking towards the same part of ∂∞H3. Figure 1(c) shows
"R again, but with the contrast increased and colour scheme simpli!ed. Here the colour associated to a vector v is either white or
grey, according to whether "(v) is negative or not.

Figure 1(d) shows 1(a) overlaid on 1(c). We see that the red curve of +D is almost the common boundary of the white and grey
regions of "R. There are several small areas where +D does not track the boundary. These only appear close to fairly large cusps; they
exist because implementations of Algorithm 4.2 generally have trouble approaching cusps from the side. In the cohomology fractal
"R we see that there are chains of “octopus heads” that reach almost all the way towards each cusp.

This behaviour is generally true for !brations, as follows. Suppose p̃ ∈ M̃ and de!ne ρ : ∂∞M̃ → UT̃p M̃ to be the inward central
projection. Here we follow De!nition 5.4.
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Proposition 6.2. Suppose that M is a connected, oriented, !nite volume hyperbolic three-manifold. Suppose that α : F → M is a !bre
of a surface bundle structure on M. Fix p in F, and a li% p̃ ∈ M̃. Fix any R > 0 and let "R = "

F,p
R be the resulting cohomology fractal

for F. Let Z = "−1
R (R≥0).

Then there is a disk D ⊂ F̃, containing p̃, so that (the image of) the Cannon–Thurston map approximation ρ ◦ +D is a component
of ∂Z (with error at most exp(−R)).

Proof sketch. We assume we are in the setting of De!nition 5.3. Let ω be the one-cocycle dual to F. Let W be a primitive for ω̃.
Consider the two regions of H3 ∼= M̃ where W is negative or, respectively, non-negative. The common boundary of these is exactly
an elevation F̃ of the !bre F.

Let B3
R be the ball in H3 of radius R with centre p̃. Let S2

R be the boundary of B3
R. Thus the intersection F̃∩S2

R is a collection of curves;
these separate the points q̃ ∈ S2

R where W is negative from those where it is non-negative. Finally, note that π ◦ ϕR : UT̃p H3 → S2
R

is the exponential map. Thus "R = W ◦ π ◦ ϕR.
Recall that F̃ is a union of triangles. Assume that one of these contains p̃. Let E be the collection of triangles of F̃ having at least

one edge meeting the ball B3
R. Let D be the connected component of (the union over) E that contains p̃.

In a slight abuse of notation, let ρ : H3 − {̃p} → UT̃p H3 be the inward central projection. For any set K ⊂ H3 − {̃p} we call the
diameter of ρ(K) the visual diameter of K. This is measured with respect to the !xed metric on the unit two-sphere UT̃p H3.

Suppose that e is a bi-in!nite geodesic in H3. If e lies outside of B3
R then the visual diameter of e is small; in fact, for large R the

visual diameter of e is less than 2 exp(−R). Likewise, if e meets S2
R, then for either component e′ of e − B3

R the visual diameter of e′ is
less than exp(−R).

Now suppose that T is a triangle of E. Using the above, we deduce that the visual diameter of each component of T − B3
R is small.

Thus the inward central projections of ∂D and D ∩ S2
R have Hausdor" distance bounded by a small multiple of exp(−R).

So let +D be the curve in ∂∞H3 obtained by projecting ∂D outwards. By the above, each arc of the resulting polygonal curve has
small visual diameter. Also by the above, the Hausdor" distance between the curves ρ ◦ +D and ρ ◦ (̃F ∩ S2

R) is small.

Remark 6.3. Suppose that F is totally geodesic or, more generally, quasi-fuchsian. In this case, the Cannon–Thurston map + is a
circle or quasi-circle, respectively. Note however that di"erent elevations now give distinct Cannon–Thurston maps. It is natural to
take their union and obtain a circle (or quasi-circle) packing.

Now, if F is also Thurston-norm minimising then we still obtain matches. For example in [4, Figure 6], we see how, for a totally
geodesic surface in the Whitehead link complement, the cohomology fractal matches the associated circle packing. On the other
hand, if [F] is trivial in H2(M, ∂M) then the cohomology fractal "R is bounded and oscillates as R tends to in!nity.

6.4. Lightning curves

Suppose that M is a cusped, !bred three-manifold, with !bre F. Dicks with various co-authors de!nes and studies the lightning
curves [1, 9, 10, 14, 15, 17]; these are certain fractal arcs in the plane. In more detail; suppose that c and d are distinct cusps of an
elevation F̃ of F. Let [c, d] be the arc of ∂∞F̃ that is between c and d and anti-clockwise of c. The Cannon–Thurston map + sends the
arc [c, d] to a union of disks in ∂∞M̃ meeting only along points. The boundary of any one of these disks is a lightning curve.

Since the lightning curve is de!ned in terms of the Cannon–Thurston map, it is not too surprising that we can also see something
of the lightning curve in the cohomology fractal. In Figure 6(a) we show a segment of the lightning curve for the !gure-eight knot
complement generated by Cannon and Dicks [10, Figure 7] overlaid on Figure 1(b). The lightning curve seems to follow some of the
brightest pixels in the cohomology fractal. Figure 6(b) is a black and white version of Figure 1(b), with a relatively high threshold set
for a pixel to be white – the lightning curve seems to be there, but this is nowhere near as clear as it was for the approximations to
the Cannon–Thurston map. We do not fully understand the correspondence here.

We note that for clarity, Figure 6(b) shows only one segment of the lightning curve. There is another segment, symmetrical with
the shown segment under a 180 degree rotation about the centre of the image. This second segment seems to follow the darkest pixels
of the cohomology fractal.

7. Implementation

In this section we give an overview of an implementation of cohomology fractals. Our implementation is written in Javascript and
GLSL; the code is available at [5]. We have also made cohomology fractals available in SnapPy [11]. Note that SnapPy cannot !nd
hyperbolic structures on !nite triangulations.

We now follow De!nition 5.3. Suppose that M is a connected, oriented, !nite volume hyperbolic three-manifold. Let T be a
material or ideal triangulation of M. We are given a weighting ω : T (2) → R for the faces of the two-skeleton.

We represent the triangulation T as a collection {ti} of model hyperbolic tetrahedra. Each tetrahedron ti has four faces f i
m lying

in four geodesic planes Pi
m in the hyperboloid model of H3. Suppose that tj ∈ T is another model tetrahedron, with faces f j

n. If the
face f i

m is glued to f j
n, then we have isometries gi

m and gj
n realising the gluings. Note that gi

m and gj
n are inverses.
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(a) !e lightning curve superimposed
on the cohomology fractal.

(b) A black and white version of Figure
1(b) highlighting only the brightest pixels.

Figure 6. Matching up the lightning curve, reproduced from [10, Figure 7], with the cohomology fractal for m004.

We are given a camera location p in M; this is realised as a point (again called p) in some tetrahedron ti.

Remark 7.1. The reader familiar with computer graphics will note that we also require a frame at the camera location. To simplify
the exposition, we will mostly suppress this detail.

We are also given a radius R as well as a maximum allowed step count S.

7.2. Ray-tracing

For each pixel of the screen, we generate a corresponding unit tangent vector u in the tangent space to the current tetrahedron ti. We
then ray-trace through T . That is, we travel along the geodesic starting at p, in the direction u, for distance R, taking at most S steps.
Figure 7(a) shows a toy example, where we replace the three-dimensional hyperbolic triangulation T of M with a two-dimensional
euclidean triangulation of the two-torus.

It is perhaps most natural to think of ray-tracing as occurring in M̃, the universal cover of the manifold, as shown in Figure 7(a).
However, the naïve #oating-point implementation in the hyperboloid model quickly loses precision. We instead ray-trace in the
manifold, as illustrated in Figure 7(b). Thus, all points we calculate lie within our !xed collection of ideal hyperbolic tetrahedra {ti}.

For each pixel, we do the following.

1. The following initial data are given: an index i of a tetrahedron, a point p in ti, and a tangent vector u at p. Initialise the following
variables.

• The total distance travelled: r ← 0.
• The number of steps taken: s ← 0.
• The current tetrahedron index: j ← i.
• The current position: q ← p.
• The current tangent vector: v ← u.

2. Let γ be the geodesic ray starting at p in the direction of u. Find the index n so that γ exits tj through the face f j
n. Let tk be the

other tetrahedron glued to face f j
n.

3. Calculate the position q′ and tangent vector v′ where γ intersects f j
n. Let r′ be the distance from q to q′. Set r ← r + r′ and set

s ← s + 1.
4. If r > R or s > S then stop.
5. Set j ← k, set q ← gj

n(q′), and set v ← Dgj
n(v′).

6. Go to step (2).

This implements the ray-tracing part of the algorithm. In our toy example, this is shown in Figure 7(b).
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p
u

(a) !e desired ray path, starting from the pair (p,u) of length R.
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(b) !e implementation of the ray path. !e iterations of the loop are
labelled with integers.

Figure 7. A toy example of developing a ray through a tiling of a euclidean torus. Note that the geodesic segments passing through
a tile are parallel; this is only because the geometry is euclidean. In a hyperbolic tiling the segments are much less ordered.

7.3. Integrating

To determine the colour of the pixel, we also track the total signed weight we accumulate along the ray. For this, we add the following
steps to the loop above.

(1b) An initial weight w0 is given. Initialise the following.

• The current weight: wc ← w0.

(5b) Let f be the face between t and t′, co-oriented towards t′. Set wc ← wc + ω(f ).

At the end of the loop, the value of wc gives the brightness of the current pixel. (In fact, we apply a function very similar to the
arctangent function to remap the possible values of wc to a bounded interval. We then apply a gradient that passes through a number
of di"erent colours. This helps the eye see !ner di"erences between values than a direct map to brightness.)

7.4. Moving the camera

In our applications, we enable the user to #y through the manifold M. Depending on the keys pressed by the user at each time step,
we apply an isometry g to p. We also track an orthonormal frame for the user; this determines how tangent vectors correspond to
pixels of the screen. We also apply the isometry g to this frame. When the user #ies out of a face f of the tetrahedron they are in, we
apply the corresponding isometry gi

k to the position p and the user’s frame. We also add w(f ) to the initial weight w0. Without this
last step, the overall brightness of the image would change abruptly as the user #ies through a face with non-zero weight.

Remark 7.5. With this last modi!cation, the cohomology fractal depends on a choice of basepoint b ∈ M̃. The point p ∈ M must
now also be replaced by p ∈ M̃ (abusing notation, we use the same symbol for both points). We add b to the notation, and now write
the cohomology fractal as

"
ω,b,p
R : UTp M̃ → R

Remark 7.6. The dependence of the cohomology fractal on b is minor: If we change b to b′, then the value of "
ω,b,p
R (v) changes by

the weight we pick up along any path from b′ to b.
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(a) Material. (b) Ideal. (c) Hyperideal.

Figure 8. Comparison between di"erent views of the cohomology fractal for m004.

7.7. Material, ideal, and hyperideal views

The above discussion describes the material view; the geodesic rays emanate radially from p. To render an image, we place a rectangle
in the tangent space at p. For each pixel of the screen, we take the tangent vector u to be the corresponding point of the rectangle.
See Figure 8(a).

De!nition 7.8. The !eld of view of a material image is the angle between the tangent vectors pointing at the midpoints of the le%
and right sides of the image.

Remark 7.9. The material view su"ers from perspective distortion. This is most noticeable towards the edges of the image, and is
worse when the !eld of view is large.

To generalise the material view to the ideal and hyperideal, we introduce the following terminology. We say that a subset D ⊂
UT M̃ is a view if it is one of the following.

1. In the material view, D is a !bre UTp M̃ ∼= S2.
2. In the ideal view, we take D to be the collection of outward normals to a horosphere H. That is, the vectors point away from ∂∞H.

To render an image we place a rectangle in D. For each pixel of the screen we set the initial vector v to be the corresponding point
of the rectangle. The starting point is then π(v) ∈ M̃, the basepoint of v. Finally, we set w0 to be the total weight accumulated,
along the arc from b to π(v), as we pass through faces of the triangulation. See Figure 8(b).

3. In the hyperideal view, we take D to be the collection of normals to a transversely oriented geodesic plane P. We draw P on the
euclidean rectangle of the screen using the Klein model. The algorithm is otherwise identical to the ideal view case. See Figure 8(c).

Remark 7.10. The ideal view in hyperbolic geometry is the analogue of an orthogonal view in euclidean geometry. In both cases
this is the limit of backing the camera away from the subject while simultaneously zooming in.

Remark 7.11. The hyperideal view su"ers from an “inverse” form of perspective distortion. Towards the edges of the image, round
circles look like ellipses, with the minor axis along the radial direction.

De!nition 7.12. Let D ⊂ UT M̃ be a view, as discussed above. In the notation for the cohomology fractal, we replace p by D:

"ω,b,D
R : D → R

7.13. Edges

We give the user the option to see the edges of the triangulation. The user selects an edge thickness ε > 0. The web application
implements this in a lightweight fashion: In step (3), if the distance from the point q′ to one of the three edges of the face we have
intersected is less than ε, then we exit the loop early. Depending on user choice, the pixel is either coloured by the weight wc or by
the distance d. See Figure 9. In SnapPy, we compute the intersection of the ray with a cylinder about the edge in addition to the
intersection with the faces.

7.14. Elevations

We also give the user the option to see several elevations of the surface F. The user selects a weight wmax > 0. In step (5b), if w0 < 0
but wc > 0, then we have crossed the elevation at weight zero. In this case we exit the loop, and colour the pixel by the distance d.
Similarly, if w0 > wmax but wc < wmax, then we have crossed the elevation at weight wmax, and again we stop and colour by distance.
Finally, if 0 < w0 < wmax, then we stop if wc has changed from w0. Figure 4(a) shows a single elevation.
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(a) Coloured by cohomology fractal. (b) Coloured by distance.

Figure 9. Edges of the ideal triangulation of m004, as seen in the material view.

7.15. Triangulations, geometry, and cocycles

We obtain our triangulations and their hyperbolic shapes from the SnapPy census. We put some e"ort into choosing good
representative cocycles; the choice here makes very little di"erence to the appearance of the cohomology fractal, but it makes a
large di"erence to the appearance of the elevations. That is, a poor choice of cocycle gives a “noisy” elevation. For example, adding
the boundary of a tetrahedron to the Poincaré dual surface may perform a one-three move to its triangulation. This adds unnecessary
“spikes” to the elevations.

When our manifold has Betti number one, there is only one cohomology class of interest. Here we searched for taut ideal structures
dual to this class [24]. When the SnapPy triangulation did not admit such a taut structure, we randomly searched for one that did. A
taut structure gives a Poincaré dual surface with the minimum possible Euler characteristic.

When the Betti number is larger than one, we used tnorm [47] to !nd initial simplicial representatives of vertices of the Thurston
norm ball [44] in H2(M, ∂M). We then greedily performed Pachner moves to reduce the complexity of the cocycles. We o%en, but
not always, realised the minimum possible Euler characteristic.

7.16. Discussion

Any visualisation of a hyperbolic tiling su"ers from the mismatch between the hyperbolic metric of the tiling and the euclidean metric
of the image. The tools for generating more of the tiling involve applying hyperbolic isometries. The tiles thus shrink exponentially
in size while growing exponentially in number. This makes it di$cult for the tiles to cleanly approach ∂∞H2 or ∂∞H3. Approaching
a “parabolic” point at in!nity is even more di$cult.

In the vector graphics approach, one must be careful to avoid wasting time generating huge numbers of invisible objects: tiles may
be too small or their aspect ratios too large.

The ray-tracing approach (and any similar raster graphics approach) deals with this mismatch directly. Here we start with the
pixel that is to be coloured and then generate only the hyperbolic geometry needed to determine its colour.

A disadvantage of the ray-tracing approach is that we generate the hyperbolic geometry necessary for each pixel independently,
meaning that much work is duplicated. However, the massive parallelism in modern graphics processing units mitigates, and is in
fact designed to deal with, this kind of issue. It o%en turns out to be faster to duplicate work in many parallel processes rather than
compute once then transmit the result to all processes requiring it.

8. Incomplete structures and closed manifolds

Suppose that M is a cusped hyperbolic manifold. Recall that we generate cohomology fractals for M by using an ideal triangulation T .
Associated to T there is the shape variety; that is we impose the gluing equations outlined in Section 2.3, omitting the peripheral ones.
This gives us a space of deformations of the complete hyperbolic structure to incomplete hyperbolic structures; see [42, Section 4.4]
and [35, Section 6.2]. If we deform correctly, we reach an incomplete structure whose completion has the structure of a hyperbolic
manifold. The result is a hyperbolic Dehn !lling of the original cusped manifold.

8.1. Incomplete structures

Suppose that (M, T ) is an ideally triangulated manifold. Let Zs be a path in the shape variety, where Z∞ is the complete structure
and the completion of Z1 is a closed hyperbolic three-manifold obtained by Dehn !lling M. Between the two endpoints, we have
incomplete structures Ms on the manifold M.
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(a) s = 10 (b) s = 5 (c) s = 4

(d) s = 3 (e) s = 2 (f) s = 1.8

(g) s = 1.6 (h) s = 1.4 (i) s = 1.2

Figure 10. Cohomology fractals for m122(4s, −s) as s varies.

In an incomplete geometry, there are geodesic segments that cannot be extended inde!nitely. Suppose that, as in our algorithm,
we only consider geodesic segments emanating from p of length at most R. The endpoints of the rays that do not extend to distance
R form the incompleteness locus /s in the ball B3

R ⊂ H3. It follows from work of Thurston that /s is a discrete collection of geodesic
segments, for generic values of s [43].

Suppose that ω : T (2) → R is the given weight function dual to a properly embedded surface F in M. We assume that the boundary
of F (if any) gives loops in the !lled manifold that, there, bound disks. Thus F also gives a cohomology fractal in the !lled manifold.

Remark 8.2. Note that there is no canonical way of transferring a base point b or view D between two di"erent geometric structures
Ms and Ms′ . However, we can choose b and D for each Ms in a way that gives us continuously varying pictures. We do not dwell on
the details here.

Figure 10 shows cohomology fractals for various Ms. We see a kind of branch cut in the background to either side of the
incompleteness locus /s. As we vary s, the background appears to bend along the geodesic. Other paths in the shape variety will
give shearing as well as (or instead of) bending.

When we reach a Dehn !lling, the two sides again match, and we see the structure of the closed !lled manifold. See Figure 11.
(The two sides can also match before we reach the Dehn !lling due to symmetries of the cusped manifold lining up with the cone
structure.)

8.3. Numerical instability near the incompleteness locus

Our algorithm, given in Section 7, does not require completeness. However, a ray from p to /s necessarily meets in!nitely many
tetrahedra. This is because near /s we are far from the thick part of any tetrahedron, and the thin parts of the tetrahedra are almost
“parallel” to /s. Thus the innermost loop of the algorithm will always halt by reaching the maximum step count; it follows that we
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Figure 11. Cohomology fractal for the Dehn !lling m122(4,-1). This gives a !nal image for Figure 10, with s = 1.

Figure 12. Cohomology fractal for the Dehn !lling m122(4,-1) drawn with an incomplete structure on an ideal triangulation.
Here the maximum number of steps S is 55. Compare with Figure 11.

cannot “see through” a neighbourhood of /s. Figure 12 shows the cohomology fractal drawn with a small maximum step count,
making such a neighbourhood visible.

Increasing the maximum step count shrinks the opaque neighbourhood of /s. However, as a ray approaches /s, its segments
within the model tetrahedra tend to their ideal vertices. Thus the coordinates blow up; this appears to lead to numerically unstable
behaviour. See Figure 13(a). In the next section we describe a method to eliminate these numerical defects; we use this to produce
Figure 13(b).

Note that numerical instability caused by rays approaching the ideal vertices also occurs for the complete structure on a cusped
manifold. It is less noticeable in this case however, because these errors occur in a small part of the visual sphere for typical
positions.
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(a) Numerical instability near the in-
completeness locus.

(b) !e same view with a material tri-
angulation implementation.

Figure 13. A view of the cohomology fractal for the manifold m122(4,-1) near the incompleteness locus. On the le% we have
taken the maximum number of steps S su$ciently large to ensure that all rays reach distance R.

8.4. Material triangulations

In order to remove instability around the incompleteness locus, we remove it. That is, we abandon (spun) ideal triangulations in
favour of material triangulations. There is no change to the algorithm in Section 7; we only alter the input data (the planes Pi

k and
face-pairing matrices gi

k):
Given the edge lengths (see Section 2.3.2) for a material triangulation, [19, Lemma 3.4] assigns hyperbolic isometries to the edges

of a doubly truncated simplex (also known as permutahedron). These can be used to switch a tetrahedron between di"erent standard
positions (as de!ned in [19, De!nition 3.2]) where one of its faces is in the H2 ⊂ H3 plane. We assume that every tetrahedron is
in (0, 1, 2, 3)–standard position. Given a face-pairing, we apply the respective isometries to each of the two tetrahedra such that the
faces in question line up in the H2 ⊂ H3 plane. The face-pairing matrix gi

k is now given by composing the inverse of the !rst isometry
with the second isometry. For example, let face 3 of one tetrahedron be paired with face 2 of another tetrahedron via the permutation
(0, 1, 2, 3) 2→ (0, 1, 3, 2). To line up the faces, we need to bring the second tetrahedron from the default (0, 1, 2, 3)–standard position
into (0, 1, 3, 2)–standard position by applying γ012 from [19, Lemma 3.4] which will thus be the face-pairing matrix, see [19, Figure 4].
It is le% to compute the planes Pi

k. Note that Pi
3 (for each i) is the canonical copy of H2 ⊂ H3. All other Pi

k can be obtained by applying
the isometries from [19, Lemma 3.4] again.

8.5. Cannon–Thurston maps in the closed case

Cannon and Thurston’s original proof was in the closed case. Thurston’s original images and all subsequent renderings, with one
notable exception, are in the cusped case. With some minor modi!cations, Proposition 6.2 applies in the closed case; thus the
cohomology fractals again approximate Cannon–Thurston maps.

We are aware of only one previous example in the closed case, due to McMullen [28]. In Figure 14 we give a rasterisation of his
original vector graphics image [29], and our version of the same view. The !lling m004(0,2) of the !gure-eight knot complement
has an incomplete hyperbolic metric. The completion is a hyperbolic orbifold O with angle π about the orbifold locus; the universal
cover is H3.

Since the !lling is a multiple of the longitude, the orbifold O is again !bred. An elevation of this !bre to H3 gives a Cannon–
Thurston map. Our image, Figure 14(a) is the cohomology fractal for the !bre in O, in the hyperideal view. This is implemented
using a material triangulation of an eight-fold cover M. Since M with its !bre, is commensurable with O with its !bre, we obtain the
same image.

McMullen’s image, reproduced in Figure 14(a) was generated using his program lim [27]. Brie#y, let O∞ be the in!nite cyclic
cover of O. McMullen produces a sequence On of quasi-fuchsian orbifolds that converge in the geometric topology to O∞. In each
of these the convex core boundary is a pleated surface. The supporting planes of this pleated surfaces give round circles in ∂H3. His
image then is obtained by taking n fairly large, passing to the universal cover of On, and drawing the boundaries of many supporting
planes [29].
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(a) McMullen’s illustration [29].
See also [28].

(b) Cohomology fractal - hyperideal
view.

Figure 14. Views of m004(0,2).

8.6. Accumulation of !oating point errors

Our implementation uses single-precision #oating point numbers. As we saw in Section 8.3, this can cause problems when rays
approach the vertices of ideal tetrahedra. However, #oating point errors can accumulate for large values of R whether or not rays
approach the vertices. This can therefore also a"ect material triangulations.

With these problems in mind, we cannot claim that our images are rigorously correct. However, for small values of R we can be
con!dent that our images are accurate. For very small values the endpoints of our rays all sit within the same tetrahedron, and so all
pixels are the same colour. As we increase R (as in Figure 5), we see regions of constant colour, separated by arcs of circles. This is
provably correct: (horo-)spheres meet the totally geodesic faces of tetrahedra in circles.

If we zoom in whilst increasing R, eventually #oating point errors become visible. Figure 15 shows the results of an experiment to
determine when this happens, for a material triangulation. At around R = 11, the circular arcs separating regions of the same colour
become stippled. At around R = 13, the regions are no longer distinct.

Remark 8.7. Perhaps surprisingly, this accumulation of error does not mean that our pictures are inaccurate. Suppose that the
side lengths of our pixels are on a somewhat larger scale than the precision of our #oating point numbers. For each pixel, our
implementation produces a piecewise geodesic, starting in the direction through the centre of the pixel, but with small angle defect at
each vertex. Due to the nature of hyperbolic geometry, this piecewise geodesic cannot curve away from the true geodesic fast enough
to leave the visual cone on the desired pixel. Thus, as long as the pixel size is not too small, each pixel is coloured according to some
sample within that pixel.

9. Experiments

The sequence of images in Figure 5 suggests that some form of fractal object is coming into focus. When R is small, the function
"R = "F,b,D

R is constant on large regions of D. As R increases, these regions subdivide, producing intricate structures.
As we have de!ned it so far, the cohomology fractal depends on R. A natural question is whether or not there is a limiting object

that does not depend on R. In this section we describe a sequence of experiments we undertook to explore this question. Inspired by
these, in Sections 10 and 11 we provide mathematical explanations of our observations.

9.1. These pictures do not exist

A naïve guess might be that the cohomology fractal converges to a function as R tends to in!nity. However, consider a ray following a
closed geodesic γ in M that has positive algebraic intersection with the surface F. Choosing D so that it contains a tangent direction
v along γ , we see that "F

R(v) diverges to in!nity as R tends to in!nity. The issue is not restricted to the measure zero set of rays along
closed geodesics. Suppose that v is a generic vector in a material view D. Recall that the geodesic #ow is ergodic [22, Hauptsatz 7.1].
Thus the ray starting from v hits F in!nitely many times. So "F

R(v) again diverges. Thus we have the following theorem.
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(a)R = 10.5, "eld of view ~ 0.015º (b)R = 11.5, "eld of view ~ 0.005º

(c)R = 12.5, "eld of view ~ 0.002º (d)R = 13.5, "eld of view ~ 0.0007º

Figure 15. We zoom into the cohomology fractal form122(4,-1)while increasing R. The !eld of view of the image is proportional
to e−R. Noise due to rounding errors becomes visible at R ∼ 10.5 and completely dominates the picture when R ∼ 13.5.

Theorem 9.2. Suppose that M is a !nite volume, oriented hyperbolic three-manifold. Suppose that p is any point of M. Suppose that F
is a compact, transversely oriented surface. Then the limit

lim
R→∞

"R(v)

does not exist for almost all v ∈ UTp M.

Remark 9.3. To generalise Theorem 9.2 from !nite volume to in!nite volume manifolds, we must replace Hopf ’s ergodicity theorem
by some other dynamical property. For example, Rees [36, Theorem 4.7] proves the ergodicity of the geodesic #ow on the in!nite
cyclic cover of a hyperbolic surface bundle. This is generalised to the bounded geometry case by Bishop and Jones [2, Corollary 1.4].
Both of these works rely in a crucial fashion on Sullivan’s equivalent criteria for ergodicity [41, page 172].

One might hope that as R tends to in!nity, nearby points diverge in similar ways. If so, we might be able to rescale and have, say,
"R/R or "R/

√
R converge. However, increasing R in our implementation produces the sequence of images shown in Figure 16. We

see that, as we increase R, the images become noisy as neighbouring pixels appear to decorrelate. Eventually the fractal structure is
washed away. Dividing the cohomology fractal by, say, some power of R only changes the contrast. Depending on this power, the
limit is either almost always zero or does not exist.

Figure 16 also demonstrates that Remark 8.7, while valid, is misleading; it is true that for large R, every ray ends up somewhere
within its pixel, but the colour one obtains is random noise. This noise is due to undersampling. In our images each pixel U is coloured
using a single ray passing (almost, as we saw in Section 8.6) through its centre. When R is small relative to the side length of U the
function "R|U is generally constant; thus any sample is a good representative. As R becomes larger the function "R|U varies more
and more wildly; thus a single sample does not su$ce.
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(a) R = e 2.5 (b)  R = e 3 (c)  R = e 4 (d)  R = e 5

Figure 16. Cohomology fractals for m004, with larger values of R. Each image here and in Figure 5 has 1000 × 1000 pixels.
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Figure 17. Side view of “screens” (in red) for two ideal views, drawn in the upper half space model. The outward pointing normals
to each horosphere point down in the !gure.

9.4. Take a step back and look from afar

Let D be an ideal view in the sense of Section 7.7. We identify π(D), isometrically, with the euclidean plane C. Using this identi!cation,
we may refer to the vectors of D as zD for z ∈ C. Let E be the ideal view obtained from D by #owing outwards by a distance d. Thus,
ϕd(D) = E. We similarly identify π(E) with the euclidean plane, in such a way that for each z ∈ C, we have ϕd(zD) = (edz)E. We
may now state the following.

Lemma 9.5. Suppose that D is an ideal view and E = ϕd(D). Then the cohomology fractal based at b satis!es

"ω,b,D
R+d (zD) = "ω,b,E

R

(
(edz)E

)

Proof. Consider Figure 17.

Said another way, if we #y backwards a distance d and replace R with R + d, we see the exact same image, scaled down by a factor
of ed. As a consequence, in the ideal view we have the following.

Remark 9.6. Each small part of a cohomology fractal with large R is the same as the cohomology fractal for a smaller R with a
di"erent view.

Remark 9.7. Since we know that we can make non-noisy images for small enough values of R, we can therefore make a non-noisy
image of a cohomology fractal for any value of R, as long as we are willing to use a screen with high enough resolution.

The natural question then is how the perceived image changes as we simultaneously increase the resolution and increase R. This
convergence question is di"erent from the convergence of the cohomology fractal to a function as in Theorem 9.2: when we look at
a very large screen from far away, our eyes average the colours of nearby pixels. Thus, we move away from thinking of the limit as a
function evaluated at points, towards thinking of it as a measure evaluated by integrating over a region. As we will see later, in fact
the correct limiting object is a distribution.

9.8. Supersampling

To investigate this without requiring ever larger screens to view the results, we sample the cohomology fractal at many vectors in a
grid within each pixel and average the results to give a colour for the pixel. That is, we employ supersampling. See Figure 18. Here
we draw cohomology fractals with R ranging from 4 to 12, and with either 1, 22, or 1282 subsamples for each pixel. Each image has
resolution 128 × 128.
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1 × 1 2 × 2 128 × 128

4

6

8

10

12

Figure 18. m122(4,-1). Field of view: 12.8◦. 128 × 128 pixels. For each image, the visual radius R is given at the start of its row,
while the number of samples per pixel is given at the top of its column.

Remark. Note that some pdf readers do not show individual pixels with sharp boundaries: they automatically blur the image when
zooming in. To combat this blurring and see the pixels clearly, we have scaled each image by a factor of three, so each pixel of our
result is represented by nine pixels in these images.

With one sample per pixel, as we increase R the fractal structure comes into focus but then is lost to noise. This matches our
observations in Figures 5 and 16. Taking subsamples and averaging makes little di"erence for small R: the only advantage is an anti-
aliasing e"ect on the boundaries between regions of constant value. However, subsamples help greatly with reducing noise for larger
R. With 2 × 2 subsamples, we see much less noise at R = 10, becoming more noticeable at R = 12. Taking 128 × 128 samples seems
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Figure 19. The graph of the average value of the cohomology fractal for m122(4,-1) for various square regions U with !eld of
view 0.1◦. Thus, these are the same size as the pixels of Figure 18. These are each computed by taking 1000 × 1000 samples. We also
show the envelopes of 0.5, 1.0 and 1.5 standard deviations.

to be very stable: there is almost no di"erence between the images with R = 10 and R = 12. This suggests that the perceived images
converge.

9.9. Mean and variance within a pixel

To better understand how subsampling interacts with increasing R, in Figure 19 we graph the average value within a selection of
pixel-sized regions as R increases.

When R is small, the graphs are more-or-less step functions, as much of the time the pixel U is inside of a constant value region
of the cohomology fractal. The graphs are also very similar for small R. This is because the pixels are close to each other, so all of
their rays initially cross the same sequence of faces of the triangulation. Around R = 6, we reach the “last step” of the step function,
then the regions of constant value become smaller than U. For R ≥ 10, the mean seems to settle down, while the standard deviation
appears to grow like

√
R.

Again this suggests that the perceived images converge. However, if the standard deviation continues to increase with R, then
eventually any number of subsamples within each pixel will succumb to noise.

9.10. Histograms

We have looked at the standard deviation of a sample of values within a pixel. Next, we analyse the distribution of these values in
more detail. See Figure 20.

We !x R = e2. We sample "R at each point of a 1000 × 1000 grid within a square of a material view with !eld of view 20◦. We
chose a relatively large !eld of view here so that we get an “in focus” image of the cohomology fractal with a relatively small value of
R. Here we are being cautious to get good data, avoiding potential problems that our implementation has with large values of R as
discussed in Section 8.6.

We histogram the resulting data with appropriate choices of bucket widths. In Figure 20(a) we show the histogram and the normal
distribution with the same mean and standard deviation for our closed example, m122(4,-1). In Figure 20(b) we show the sample
data as a 1000 by 1000 pixel image. We also draw the normal distribution with the same mean and standard deviation; the data seems
to !t this well.
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(a) Histogram of weights and the normal
distribution with the same mean and stan-
dard deviation.

(b) Cohomology fractal.
-20 -15 -10 -5 105 15 20

Figure 20. Statistics for a cohomology fractal of m122(4,-1) for a square region with !eld of view 20◦ and R = e2.

(a) Histogram of weights and the normal
distribution with the same mean and stan-
dard deviation.

(b) Cohomology fractal.
-10 10

Figure 21. Statistics for a cohomology fractal of s789 for a class vanishing on cusp.

(a) Histogram of weights and the normal
distribution with the same mean and stan-
dard deviation.

(b) Cohomology fractal.
-20 -10 10 20

Figure 22. Statistics for a cohomology fractal of s789 for a class not vanishing on cusp.

We repeat this experiment back in the cusped case with s789. See Figures 21 and 22. Here we show the cohomology fractal for
two di"erent cohomology classes [ω] ∈ H1(M). The cohomology class shown in Figure 21 vanishes when restricted to ∂M, while in
Figure 22 it does not. The distribution appears to be normal when the cohomology class vanishes on ∂M. When [ω] does not vanish
on ∂M, something more complicated appears to be happening. One feature here is that the tails are much too long for a normal
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distribution. A heuristic explanation for this is that in a neighbourhood of the cusp, a geodesic ray crosses the surface repeatedly in
the same direction. This allows it to gain a linear weight in logarithmic distance.

10. The central limit theorem

In this section, we prove a central limit theorem for the values of the cohomology fractal "T across a pixel. That is, the distribution
of the values of the scaled cohomology fractal RT = "T/

√
T converges to a normal distribution with mean zero.

10.1. Setup

We recall the framework introduced in Section 7.7 that uni!es the material, ideal, and hyperideal views. Let M be a connected,
orientable, !nite volume, complete hyperbolic three-manifold. As above we set X = UT M and X̃ = UT M̃. We call a two-
dimensional subset D ⊂ X̃ a view if it is of one of the following.

• For a material view, !x a basepoint p ∈ M̃ and let D = UTp M̃. Note that D can be identi!ed isometrically with S2.
• For the ideal view, !x a horosphere H ⊂ M̃ and let D be the set of outward normals to H.
• For the hyperideal view, !x a hyperbolic plane H ⊂ M̃ and let D be the set of normals to H facing one of the two possible directions.

Note that D ⊂ X̃ has a riemannian metric induced from the riemannian metric on X̃. This metric also endows D with an area
two-form and associated measure denoted by ζ = ζD and µ = µD. Recall that π : X̃ → M̃ is the projection to the base space.

Remark 10.2. Note that there is another riemannian metric on D for the ideal and hyperideal view coming from isometrically
identifying the horosphere or hyperbolic plane H = π(D) with E2 or with, respectively, H2. Up to a constant factor, this metric is
the same as the above metric. The factor is trivial for the hyperideal view; it is

√
2 for the ideal view. This arises as

√
1 + K2

H from
the extrinsic curvature KH of H. We have KH = 1 so that adding KH to the ambient curvature −1 of H3 gives zero, the horosphere’s
intrinsic curvature.

In this notation, the de!nition of the cohomology fractal, for a given closed one-form ω ∈ $1(M) and basepoint b ∈ M̃, becomes
the following. For v ∈ D, we have

"ω,b,D
T (v) =

∫ T

0
ω(ϕt(v)) dt +

∫ π(v)

b
ω (10.3)

For the second integral, any path from b to π(v) in M̃ can be chosen as ω is closed. This integral is constant in v for the material view
since π(D) = p. Choosing W ∈ $0(M̃) so that dW = ω̃ and W(b) = 0, we can simply write

"T(v) = "ω,b,D
T (v) = W ◦ π ◦ ϕT(v)

The central limit theorem will apply to probability measures νD that are absolutely continuous with respect to the area measure
µD on D. We use the usual notation νD ' µD for absolute continuity. By the Radon-Nikodym theorem, this is equivalent to saying
that the measure νD is given by

νD(U) =
∫

U
h · dµD (10.4)

where h ≥ 0 is measurable with
∫

D h · dµD = 1.

Remark 10.5. In Section 11, we will switch from measures νD to forms ηD, for the following reason. Here, in Section 10 we follow
the well-established notation of [37, 49]. However, the transformation laws in Section 11 are better stated in the language of forms.
In both cases we consider probability measures or two-forms that are “products”: namely of a suitable function h : D → R with the
area measure µD or two-form ζD respectively. The function h should be thought of as an indicator (or a kernel) function for a pixel.

10.6. The statement of the central limit theorem

The goal of this section is to prove the following.

Theorem 10.7. Fix a connected, orientable, !nite volume, complete hyperbolic three-manifold M and a closed, non-exact, compactly
supported one-form ω ∈ $1

c (M). There is σ > 0 such that for all basepoints b, for all views D with area measure µD, for all probability
measures νD ' µD, and for all α ∈ R, we have

lim
T→∞

νD

[
v ∈ D : "T(v)√

T
≤ α

]
=

∫ α

−∞

1
σ
√

2π
e−(s/σ )2/2 ds

where "T = "ω,b,D
T is the associated cohomology fractal.
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Let us recall some notions from probability to clarify what this means. Let (P, ν) be a probability space. For each T ∈ R>0, let
RT : P → R be a measurable function. For each T, the probability measure ν on P induces a probability measure ν ◦ R−1

T on R telling
us how the values of the random variable RT are distributed when sampling P with respect to ν. Let ψ be a probability measure on
R.

De!nition 10.8. We say that the random variables RT converges in distribution to ψ if the measures ν ◦ R−1
T converge in measure to

ψ . This is denoted by ν ◦ R−1
T ⇒ ψ .

Here, by the Portmanteau theorem, we can use any of several equivalent de!nitions of weak convergence of measures. We
are only interested in the case where ψ is absolutely continuous with respect to Lebesgue measure on R; that is, we can write
ψ(V) =

∫
V p(x) dx for any measurable V ⊂ R. Note that here p : R → R≥0 is the probability density function for ψ . Convergence

in distribution ν ◦ R−1
T ⇒ ψ is then equivalent to saying that for all α we have

lim
T→∞

ν[x ∈ P : RT(x) ≤ α] =
∫ α

−∞
p(s) · ds

We de!ne

nσ (s) = 1
σ
√

2π
e−(s/σ )2/2 and ψσ (V) =

∫

V
nσ (x) dx

The latter is the normal distribution with mean zero and standard deviation σ .

Example 10.9. The process of #ipping coins can be modelled as follows. Set P = {head, tail}N. We de!ne a measure νP on P as
follows. Given any pre!x v of length n, the set of all in!nite words in P starting with v has measure 2−n. Let Si : P → R be the
random variable Si(w) = ±1 as wi is heads or tails respectively. De!ne /N = S0 + S1 + · · · + SN−1. The classical central limit
theorem states that

νP ◦ R−1
N ⇒ ψ1 where RN = /N√

N
: P → R

We can now restate Theorem 10.7 as

νD ◦ R−1
T ⇒ ψσ where RT = "T√

T
: D → R

10.10. Sinai’s theorem

Our proof of Theorem 10.7 starts with Sinai’s central limit theorem for geodesic #ows [37]. We use the following version of Sinai’s
theorem which is adopted from [18, Theorem VIII.7.1 and subsequent Nota Bene]. This applies to functions that are not derivatives
in the following sense. Recall that X = UT M.

De!nition 10.11. Let f : X → R be a smooth function. We say that f is a derivative if there is a smooth function F : X → R such
that

f (v) = dF(ϕt(v))
dt

∣∣∣∣
t=0

Let µX = µHaar/µHaar(X) be the normalised Haar measure.

Theorem 10.12 (Sinai-Le Jan’s Central Limit Theorem). Fix a connected, orientable, !nite volume, complete hyperbolic three-manifold
M. Let f : X = UT M → R be a compactly supported, smooth function with

∫
X f · dµX = 0. Assume f is not a derivative. Let

RT(v) =
∫ T

0 f (ϕt(v)) dt√
T

Then there is a σ > 0 such that µX ◦ R−1
T ⇒ ψσ .

In fact, the constant σ appearing in Theorem 10.12 is the square root of the variance of f which Franchi–Le Jan denote by V(f ).
They give a formula for V(f ) in [18, Theorem VIII.7.1] and state that V(f ) vanishes if and only if f is a derivative.

Remark 10.13. To relate Theorem 10.12 to [18, Theorem VIII.7.1], note that Franchi–Le Jan think of f as a function on the frame
bundle of M̃ that is both 2 and SO(2)–invariant. Since f is smooth and compactly supported, it satis!es the hypotheses of their
theorem. Note that they also require f to not be a derivative (denoted by L0h, see [18, (VIII.1)]) of a function h but allow h to be a
function on the frame bundle. However, if an SO(2)–invariant f is the derivative of a function h on the frame bundle, it is also the
derivative of an SO(2)–invariant function on the frame bundle.
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We deduce Theorem 10.7 from Sinai’s theorem in three steps.

1. Theorem 10.18 generalises Sinai’s theorem to arbitrary probability measures νX ' µX on the !ve-dimensional X = UT M.
2. Theorem 10.27 restricts from X to the two-dimensional view D using a measure νD ' µD.
3. Finally, we show that the term

∫ π(v)
b ω from (10.3) can be added to obtain "T .

10.14. Generalising Sinai’s Theorem

We begin with a de!nition.

De!nition 10.15. Let (P, µ) be a !nite measure space. For n ∈ N, let Qn : P → R be a measurable function. We say that Qn converges
to zero in probability and write µ ◦ Q−1

n → 0 if for all ε > 0 we have

lim
n→∞(µ ◦ Q−1

n )((−∞, −ε) ∪ (ε, ∞)) → 0

The following result is called strong distributional convergence, see [49, Proposition 3.4].

Theorem 10.16. Let (P, µ) be a !nite measure space and T : P → P be an ergodic, measure-preserving transformation. For all n ∈ N,
let Rn : P → R be a measurable function. Let Qn = Rn ◦ T − Rn and suppose that µ ◦ Q−1

n → 0. Let ψ be a probability measure on R.
If we have ν ◦ R−1

n ⇒ ψ for some probability measure ν ' µ, then we have ν ◦ R−1
n ⇒ ψ for all probability measures ν ' µ.

Remark 10.17. We have specialised Zweimüller’s Proposition 3.4 in [49] to !nite measure spaces. To obtain Zweimüller’s result for
σ–!nite measure spaces (P, µ), we need to replace the requirement µ ◦ Q−1

n → 0 by the following weaker requirement denoted by
Qn

µ−→ 0 in [49, Footnote 3]: for all probability measures ν ' µ we have ν ◦ Q−1
n → 0. To see that Qn

µ−→ 0 is weaker, we can use the
following standard result: for any ν ' µ we have

sup{ν(A) : A measurable with µ(A) ≤ ε} → 0 as ε → 0

The requirements µ ◦ Q−1
n → 0 and Qn

µ−→ 0 are equivalent if µ is !nite.

Using this, we now give our !rst variant of Sinai’s theorem.

Theorem 10.18. With the same hypotheses as in Theorem 10.12, we have the following. There is a σ > 0 such that for any probability
measure νX ' µX we have νX ◦ R−1

T ⇒ ψσ .

Proof. By Theorem 10.12, there is a σ such that µX ◦ R−1
T ⇒ ψσ as T → ∞. Note that the random variables in Theorem 10.16 are

indexed by n ∈ N instead of T ∈ R but it is easy to see that sequential convergence and convergence in distribution are equivalent. In
other words, it is su$ces to show that for any sequence (Tn) with Tn → ∞ the random variables Sn = RTn satisfy νX ◦ S−1

n ⇒ ψσ .
In order to apply Theorem 10.16, we need the following two claims.

Claim 10.19. The time-one map ϕ1 for the geodesic #ow is ergodic.

Proof. By [18, Theorem V.3.1] the geodesic #ow is mixing. It follows that the time-one map ϕ1 is also mixing, and thus ergodic.

Claim 10.20. Let Qn = Sn ◦ ϕ1 − Sn. Then, νX ◦ Q−1
n → 0.

Proof. We will prove a stronger statement: ‖Qn‖∞ → 0.

|Qn(v)| =
∣∣∣∣∣

∫ Tn+1
1 f (ϕt(v)) dt√

Tn
−

∫ Tn
0 f (ϕt(v)) dt√

Tn

∣∣∣∣∣

=
∣∣∣∣∣

∫ Tn+1
Tn

f (ϕt(v)) dt
√

Tn
−

∫ 1
0 f (ϕt(v)) dt√

Tn

∣∣∣∣∣

≤ 2‖f ‖∞√
Tn

We can now !nish the proof of Theorem 10.18. We apply Theorem 10.16 with Rn replaced by Sn and T replaced by ϕ1.



26 D. BACHMAN, M. GOERNER, S. SCHLEIMER, AND H. SEGERMAN

)
*u*s

*f

+

+s #

(a) Coordinates.

)

*u

(b) Flow.

Figure 23. Coordinates for X̃ = UT M̃ = UT H3 and #ow of a box (xu, (−ε, ε), Bs
ε(π(xu))).

10.21. Coordinates

Given a view D, we introduce coordinates for a neighbourhood of D in X̃ = UT M̃ ∼= UT H3 as follows; it may be helpful to consult
Figure 10.21(a). Fix v ∈ X̃. If v is close enough to D in X̃, then there is an xu ∈ D such that the rays emanating from xu and v converge
to the same ideal point in ∂∞M̃. Consider the set H = Hs(xu) ⊂ X̃ such that

• xu ∈ H,
• π(H) is a horosphere, and
• H are the “inward pointing” normals to π(H).

Let xs be the intersection of H with the line through v. Let xf be the signed distance from xs to v along this line. The triple
(xu, xf, xs) with xu ∈ D, xf ∈ R, and xs ∈ Hs(xu)

determines the vector v ∈ X̃ uniquely. In an abuse of notation, we will simply write v = (xu, xf, xs).
Suppose N is a submanifold. Let dN(p, q) denote the length of the shortest curve in N connecting p and q. Given xu ∈ D, let

Bs
ε(xu) = {xs ∈ H : dH(xu, xs) ≤ ε} where H = Hs(xu)

Let
Dε = {(xu, xf, xs) : xu ∈ D, xf ∈ (−ε, ε), xs ∈ Bs

ε(xu)} ⊂ X̃

Remark 10.22. Note that the subscripts appearing in the coordinates v = (xu, xf, xs) refer to the unstable, #ow, and stable foliations.

• The points (xu, 0, xu) give a copy of D, which is unstable.
• If we !x xu and xs, and vary xf, then we obtain a geodesic #ow line.
• Also, if we !x xu and xf, and vary xs, then we obtain a stable horosphere.

Note that each H = Hs(xu) is isometric to a (pointed) copy of C. However, the coordinates above do not live in a geometric
product D × R × C. They instead form a smooth !bre bundle over D. (In the material case, the view D is a copy of S2. If we factor
away the #ow direction from our coordinates, what remains is isomorphic to the non-trivial bundle TS2.) Thus we will only locally
appeal to a “product structure” on these coordinates.

The following lemma is deduced from the exponential convergence inside of stable leaves. See Figure 10.21(b).

Lemma 10.23. For all t ≥ 0, 1 > ε > 0 and all v = (xu, xf, xs) ∈ Dε , we have
dX̃(ϕt(xu), ϕt(v)) ≤ 2ε

Proof. In our coordinates we have ϕt(xu) = (xu, t, xu) and ϕt(v) = (xu, xf + t, xs). We take H = Hs(xu). Then we have
dX̃((xu, t, xu), (xu, t, xs)) ≤ dϕt(H)((xu, t, xu), (xu, t, xs))

= e−tdH((xu, 0, xu), (xu, 0, xs))

≤ e−tε ≤ ε
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and

dX̃((xu, t, xs), (xu, t + xf, xs)) = |xf| ≤ ε

Applying the triangle inequality gives the result.

10.24. Proof of the central limit theorem

We now use these coordinates to continue with the proof of Theorem 10.7.

Lemma 10.25. Let (P, ν) be a probability space. Let RT , ST : P → R be a pair of one-parameter families of measurable functions.
Assume that ν ◦ R−1

T ⇒ ψ where ψ is a probability measure on R with bounded probability density function p : R → R≥0. Assume
that there is a monotonically growing family UT ⊂ P of measurable sets such that ‖(RT − ST)|UT‖∞ → 0 and ν(P − UT) → 0. Then
ν ◦ S−1

T ⇒ ψ .

Proof. Fix α and let

PT = ν[x ∈ P : ST(x) ≤ α] and QT = ν[x ∈ P : ST(x) > α]

We need to show that for every ε > 0, there is a T0 such that for all T ≥ T0 we have
∫ α

−∞
p(s) · ds − ε ≤ PT ≤

∫ α

−∞
p(s) · ds + ε

We only deal with the second inequality since the !rst inequality can be derived in an analogous way using PT + QT = 1. We have
the following estimate.

PT ≤ ν[x ∈ P : RT(x) ≤ α + ‖(RT − ST)|UT‖∞] + ν(P − UT)

Fix ε > 0. Let δ = ε/(3‖p‖∞). By hypothesis, we have for all large enough T

PT ≤ ν[x ∈ P : RT(x) ≤ α + δ] + ε

3

Because ν ◦ R−1
T ⇒ ψ , we furthermore have for all large enough T

PT ≤ ε

3
+

∫ α+δ

−∞
p(s) · ds + ε

3

≤ ε

3
+

∫ α

−∞
p(s) · ds + ‖p‖∞δ + ε

3
=

∫ α

−∞
p(s) · ds + ε

We return to the case of interest where f is given by a one-form ω.

Lemma 10.26. Let ω ∈ $1(M) be closed but not exact. Then ω : X → R is not a derivative in the sense of De!nition 10.11.

Proof. We prove the contrapositive: that is, if ω is a derivative in the sense of De!nition 10.11 then ω = dW for a function W : M →
R. Fix a basepoint p ∈ M. We de!ne W(q) =

∫
γ ω. Here γ is a path from p to q. All that is le% is to show that W is well-de!ned.

So, suppose that γ ′ is another path from p to q. Thus z = γ − γ ′ is a cycle. Let z∗ be the geodesic representative of z. Since ω is
closed we have

∫
z ω =

∫
z∗ ω. Since ω is a derivative we have

∫
z∗ ω = 0 and we are done.

Theorem 10.27. With the same hypotheses as in Theorem 10.7, we have the following. There is σ > 0 such that for all views D with
area measure µD, for all probability measures νD ' µD, and for all α ∈ R, we have

lim
T→∞

νD[v ∈ D : RT(v) ≤ α] =
∫ α

−∞

1
σ
√

2π
e−(s/σ )2/2 ds

where RT(v) =
∫ T

0 ω(ϕt(v))dt/
√

T.

Proof. The one-form ω is not a derivative by Lemma 10.26. Taking f = ω, let σ be as in Theorem 10.18.
Fix a probability measure νD ' µD. We de!ne a measure νX̃ on X̃ using the coordinates v = (xu, xf, xs) by taking the product of,

in order,
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• νD
• the Lebesgue measure on R restricted to [−1, 1]
• the Lebesgue measure on C ∼= Hs(xu) restricted to the unit disk Bs

1(xu)

We scale νX̃ to be a probability measure. Note that the Lebesgue measure on Hs(xu) does not depend on the isometric identi!cation
of C with Hs(xu). Thus νX̃ is well-de!ned.

By summing over fundamental domains, the probability measure νX̃ descends to a probability measure νX ' µX on X. Given
that RT : X̃ → R is π1(M)–invariant, Theorem 10.18 yields νX̃ ◦ R−1

T ⇒ ψσ .
Note that νX̃ is supported in the closure of D1 (as de!ned before Remark 10.22). We have a projection p : D1 → D where

p(xu, xf, xs) = (xu, 0, xu). By construction, we have νX̃(p−1(U)) = νD(U) for any measurable set U ⊂ D.

Claim 10.28. We have

νX̃ ◦ S−1
T ⇒ ψσ where ST = RT ◦ p

Proof. We take P = D and we take UT = D for all T. Applying Lemma 10.25, it is le% to show that ‖RT −ST‖∞ → 0. Let W : M̃ → R
be a primitive of ω̃. That is dW = ω̃. In an abuse of notation, we abbreviate W ◦ π : X̃ → R as W. Recall that v = (xu, xf, xs). We
can now write

RT(v) = W(ϕT(v)) − W(v)√
T

and ST(v) = W(ϕT(xu)) − W(xu)√
T

Since 1/
√

T → 0, it is su$cient to show that both of

W(ϕT(v)) − W(ϕT(xu)) and W(v) − W(xu)

are bounded by twice the Lipschitz constant of W. This follows from Lemma 10.23 when replacing ε by 1 and setting t to either T
or 0.

Fix α. Theorem 10.27 follows from

νD[v ∈ D : RT(v) ≤ α] = νD[v ∈ D : ST(v) ≤ α]
= νX̃(p−1({v ∈ D : ST(v) ≤ α}))
= νX̃[v ∈ D1 : ST(v) ≤ α]

converging to
∫ α
−∞ nσ (s) ds by Claim 10.28.

Proof of Theorem 10.7. Note that Theorem 10.27 shows convergence in distribution for

RT(v) =
∫ T

0 ω(ϕt(v)) dt√
T

However we need to show convergence in distribution for QT(v) = "T(v)/
√

T, the di"erence being

4(v) = RT(v) − QT(v) =
∫ π(v)

b ω√
T

=
∫ π(u)

b ω +
∫ π(v)
π(u) ω

√
T

where u ∈ D is a !xed basepoint. Thus, we need to show that Lemma 10.25 applies when taking P = D. Denote the constant |
∫ π(u)

b ω|
by C. Let C′ be a bound on the absolute value of ω : X → R. It is convenient to let

UT = {v ∈ D : dD(u, v) ≤ 4√T}

Then, ‖4|UT‖∞ ≤ (C + C′ 4√T)/
√

T → 0 for v ∈ UT . Since UT exhausts D and ν is a !nite measure, ν(D − UT) → 0.

11. The pixel theorem

In this section, we prove that the cohomology fractal gives rise to a distribution at in!nity. That is, integrating against the cohomology
fractal then taking the limit as R tends to in!nity, gives a continuous linear functional on smooth, compactly supported functions.
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11.1. Motivation

Throughout the paper, we have drawn many images of cohomology fractals, always depending on a visual radius R. The obvious
question is whether there is a limiting image as R tends to in!nity.

It turns out that the answer critically hinges on the question of what a pixel is. As we showed in Theorem 9.2, thinking of a pixel
as a sampled point does not work. A%er realising this, our next thought was that the cohomology fractal might converge to a signed
measure µ. We managed to prove this for squares (as well as for regions with piecewise smooth boundary). However our proof does
not generalise to arbitrary measurable sets. See Section 11.35 for a discussion.

We !nally arrived at the notion of thinking of a pixel as a smooth test function; see [38]. The cohomology fractal now assigns
to a pixel its weighted “average value”; in other words, we obtain a well-de!ned distribution. This distribution satis!es various
transformation laws; these describe how it changes as we alter the chosen cocycle, basepoint, or view. To prove these we rely heavily
on the exponential mixing of the geodesic #ow.

11.2. Background and statement

Before stating the theorem we establish our notation. We de!ne ω, b, D, and T as in Section 10.1. However, as mentioned in
Remark 10.5, we switch from using the area measure µD to the area two-form ζD and from a probability measure νD to a compactly
supported two-form ηD. To obtain η = ηD ∈ $2

c (D), we set ηD = h · ζD; here h ∈ $0
c (D) is compactly supported and smooth. That

is, h is Hodge dual to η.
The function h should be thought of as the kernel function for a pixel. The discussion below could be phrased completely in terms

of h. However, using η allows us to neatly express the transformation laws between di"erent views.

De!nition 11.3. For a compactly supported two-form η ∈ $2
c (D), we de!ne

"ω,b,D(η) = lim
T→∞

∫

D
"ω,b,D

T · η

As we shall see, "ω,b,D is a distribution: a continuous linear functional on $2
c (D). We recall the topology on $2

c (D) in the proof
of Theorem 11.4. We will use

∫
D to denote the canonical distribution η 2→

∫
D η.

To give a transformation law between views D and E, we will need a way to relate one to the other. Recall that M̃ is isometric to
H3; thus we have ∂∞M̃ ∼= CP1. As t tends to in!nity, the #ow ϕt takes a unit tangent vector v ∈ D to some point ϕ∞(v) ∈ ∂∞M̃.
This induces a conformal embedding iD of D into ∂∞M̃. We de!ne iE similarly. We take iE,D = i−1

D ◦ iE where it is de!ned. This is a
conformal isomorphism from (a subset of) E to (a subset of) D. We can now state the main result of this section.

Theorem 11.4 (Pixel theorem). Suppose that M is a connected, orientable, !nite volume, complete hyperbolic three-manifold. Fix a
closed, compactly supported one-form ω ∈ $1

c (M), a basepoint b ∈ M̃, and a view D.

1. Then "ω,b,D is well-de!ned and is a distribution.
2. Given ω′ ∈ $1

c (M) with [ω] = [ω′], there is a constant C so that we have

"ω′,b,D − "ω,b,D = C ·
∫

D

3. Given another basepoint b′ ∈ M̃, we have

"ω,b′,D − "ω,b,D =
[∫ b′

b
ω

]

·
∫

D

4. Given another view E and a two-form η ∈ $2
c (image(iE,D)), we have

"ω,b,D(η) = "ω,b,E(i∗E,D η)

The last property gives us a distribution at in!nity as follows.

Corollary 11.5. Suppose that M is a connected, orientable, !nite volume, complete hyperbolic three-manifold. Fix a closed, compactly
supported one-form ω ∈ $1

c (M) and a basepoint b ∈ M̃. Then there is a distribution "ω,b on ∂∞M̃ so that, for any view D and any
η ∈ $2

c (D), we have

"ω,b,D(η) = "ω,b((i−1
D )∗η)
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11.6. Proof of the pixel theorem

We now describe some background necessary to prove the theorem. Throughout this section, we !x a connected, orientable, !nite
volume, complete hyperbolic three-manifold M. Again we take X = UT M and X̃ = UT M̃. Let

Yω,D
t (η) =

∫

D
(ω ◦ ϕt) · η (11.7)

Fubini’s theorem implies that
∫

D
"ω,b,D

T · η =
∫

D
"ω,b,D

0 · η +
∫ T

0
Yω,D

t (η) dt (11.8)

so much of the proof boils down to obtaining exponential decay of Yt = Yω,D
t (η).

In this section we will use the Haar measure µHaar for integrals over X = UT M. We will use the shorthand dv = dµHaar(v)
throughout.

We also need to introduce the Sobolev norm Sm = Sm,∞ for smooth functions f on homogeneous spaces. First consider functions
f : G → R where G is a Lie group. Fix a basis for the Lie algebra of G; we think of the elements in this basis as le%-invariant vector
!elds on G. The Sobolev norm Sm(f ) is the maximum of all L∞–norms of functions obtained by di"erentiating f up to m times using
these vector !elds in any order. Suppose that 2 and H are (respectively) discrete and compact subgroups of G. The Sobolev norm of
f : 2\G/H → R is the Sobolev norm of the li% of f to G.

As usual, we have M = 2\H3 ∼= 2\ PSL(2, C)/ PSU(2). Likewise, we have X = UT M ∼= 2\ PSL(2, C)/ PSO(2). For any of
the three views, material, ideal, or hyperideal, we can also express D in this fashion. For example, in the material view we have
D ∼= S2 ∼= PSU(2)/ PSO(2).

For η ∈ $2
c (D), de!ne Sm(η) = Sm(h) where h is the Hodge dual of η. Note that the Sobolev norm depends on our choice of basis;

however, changing the basis changes the resulting norm by a bounded factor and thus only changes the constant C in the following
lemma.

Lemma 11.9. Let M be a connected, orientable, !nite volume, complete hyperbolic three-manifold. There is a constant m ∈ N such that
the following is true. Fix a view D in M and a smooth, compactly supported function f : X = UT M → R with

∫
X f (v) dv = 0. Fix a

compact set K ⊂ D. There are constants C > 0 and c > 0 such that for all two-forms η ∈ $2
K(D) supported in K and for all t ≥ 0, we

have ∣∣∣∣

∫

D
(f ◦ ϕt) · η

∣∣∣∣ ≤ Ce−ctSm(η)

To prove this, we use the exponential decay of correlation coe$cients for geodesic #ows. This is a much studied area. We will rely
on [23] because they explicitly give the dependence of the decay on the Sobolev norms of the functions involved. For hyperbolic,
!nite volume three-manifolds, their theorem can be simpli!ed to the following.

Theorem 11.10. Let M be a connected, orientable, !nite volume, complete hyperbolic three-manifold. Then there exists m ∈ N, C > 0
and c > 0 with the following property. For any smooth functions f , g : X = UT M → R with

∫
X f (v) dv = 0 and for all t ≥ 0, we have

∣∣∣∣

∫

X
f (ϕt(v))g(v) dv

∣∣∣∣ ≤ Ce−ctSm(f )Sm(g) (11.11)

Proof. The more general [23, Theorem 3.1] relates to Theorem 11.10 as follows. They integrate over the frame bundle 2\ PSL(2, C)

using the Bowen-Margulis-Sullivan-measure. However, we can think of a function X → R as an PSO(2)–invariant function on the
frame bundle and the BMS-measure is simply the Haar measure in the case of a hyperbolic, !nite volume three-manifold 2\H3. Note
that [23, Theorem 3.1] requires the functions f and g to be supported on a unit neighbourhood of the preimage of the convex core
of M. However, for !nite volume M, the convex core is just M. Furthermore, conventions for the Sobolev norm Sm di"er in whether
to take the sum or maximum of the L∞–norms of derivatives; however the resulting norms are equivalent because they di"er by a
constant factor.

Let f : X → R be a compactly supported, smooth function and f̃ = f ◦ π : X̃ → R its li%. To prove Lemma 11.9 using
Theorem 11.10, we construct test functions hε : X̃ → R that tend to the given two-form η ∈ $2

c (D) in the sense that

Yf ,D
t (η) =

∫

X̃

(̃f ◦ ϕt) · η (11.12)

can be approximated by

Yf ,D
t,ε (η) =

∫

X̃

f̃ (ϕt(v))hε(v) dv (11.13)

Note that there are several incompatibilities between η and hε :
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1. η ∈ $2
c (D) is a two-form but hε has to be a function.

2. D ⊂ X̃ but the integral Theorem 11.10 is over X.
3. D is two-, not !ve-dimensional.

The !rst issue is solved by using the Hodge dual h ∈ $0
c (D). That is, η = h · ζ where ζ = ζD is the area form on D.

For the second issue, we reformulate Theorem 11.10 as follows:

Theorem 11.14. Let M be a connected, orientable, !nite volume, complete hyperbolic three-manifold. There is a constant m ∈ N such
that the following is true. Fix a smooth, compactly supported function f : X = UT M → R with

∫
X f (v) dv = 0 and a compact set

K ⊂ X̃ = UT M̃. There exists C > 0 and c > 0 such that for all smooth functions g : X̃ → R supported in K and all t ≥ 0, we have
∣∣∣∣

∫

X̃
f̃ (ϕt(v))g(v) dv

∣∣∣∣ ≤ Ce−ctSm(g) (11.15)

Proof. Note that
∫

X̃
f̃ (ϕt(v))g(v) dv =

∫

X
f (ϕt(v))g∑(v) dv

where g∑(v) is the sum of all g (̃v) where ṽ ∈ X̃ is a preimage of v ∈ X. Since K is covered by a !nite number of copies of a fundamental
domain of M, the sum g∑(v) has a !nite and bounded number of terms. Since f has compact support, Sm(f ) is !nite and the result
follows from Theorem 11.10.

To address the third issue, we make the following de!nition.

De!nition 11.16. De!ne an ε–bump function by

bε(x) =
{

exp
(

1
(x/ε)2−1

)
if |x| < ε,

0 otherwise

and set B =
[∫ ∞

−∞ b1(x) dx
][∫ ∞

0 b1(r)2πrdr
]
.

We again use the coordinates on X̃ already introduced in Section 10.21. Recall that H = Hs(xu). We de!ne vs = dH(xu, xs).
Again, see Figure 10.21. We now de!ne

hε(xu, xf, xs) = h(xu) · bε(xf)bε(vs)

Bε3 (11.17)

Using Fubini’s theorem, we can now write

Yf ,D
t,ε (η) = Yf ,D

t,ε (h · ζ )

=
∫

D

∫

R

∫

Hs(xu)
f̃ (ϕt(v))hε(v)JD(v) dxsdxfdxu

where v = (xu, xf, xs), where dxu and dxs are using the area measures on D and Hs(xu), respectively, and where JD is the smooth
function such that

dµX = JD(v) dxsdxfdxu (11.18)

Note that, by construction, JD is invariant under isometries !xing D. In particular, JD(xu) = JD(xu, 0, xu) is a positive constant.
We set J0 = JD(xu).

De!ning

Zf ,D
t,ε (xu) =

∫

R

∫

Hs(xu)
f̃ (ϕt(v))JD(v)bε(xf)bε(vs)

Bε3 dxsdxf, (11.19)

where again v = (xu, xf, xs), we can write

Yf ,D
t,ε (η) = Yf ,D

t,ε (h · ζ ) =
∫

D
Zf ,D

t,ε (xu)h(xu) dxu

Lemma 11.20. For any smooth, compactly supported function f : X → R and any view D, there is a C > 0 such that for all t ≥ 0, for
all 1 > ε > 0, and for all xu ∈ D, we have

∣∣∣̃f (ϕt(xu)) · J0 − Zf ,D
t,ε (xu)

∣∣∣ ≤ Cε
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Proof. Note that the support of hε is contained in the closure of Dε and that the second factor in (11.17) is normalised such that
∫

R

∫

Hs(xu)

bε(xf)bε(vs)

Bε3 dxsdxf = 1

for all xu ∈ D. Thus, it su$ces to show that there is a C > 0 such that for all t ≥ 0, for all 1 > ε > 0, and for all v = (xu, xf, xs) ∈ Dε ,
we have ∣∣∣̃f (ϕt(xu)) · J0 − f̃ (ϕt(v)) · JD(v)

∣∣∣ ≤ Cε (11.21)

Claim 11.22. Let f : X → R be a smooth, compactly supported function. Let L = L(f ) be a Lipschitz constant for f and let f̃ : X̃ → R
be its li%. For all t ≥ 0, for all 1 > ε > 0, and for all v = (xu, xf, xs) ∈ Dε , we have

∣∣∣̃f (ϕt(xu)) − f̃ (ϕt(v))
∣∣∣ ≤ 2Lε and

∣∣∣̃f (ϕt(xu))
∣∣∣ ≤ ‖f ‖∞

Proof. The !rst inequality follows from Lemma 10.23. The second is by de!nition.

Claim 11.23. The function JD has a !nite Lipschitz constant L′ when restricted to D1. Thus, for all 1 > ε > 0 and for all v =
(xu, xf, xs) ∈ Dε , we have

|J0 − JD(v)| ≤ 2L′ε

Proof. Since JD is invariant under isometries preserving D, we can assume that xu is !xed. Then, the domain (xu, (−1, 1), Bs
1(xu)) has

compact closure and thus JD has a !nite Lipschitz constant L′ when restricted to it. The claim now follows from Lemma 10.23.

Using the above two claims, the le% hand side of (11.21) is bounded by 2Lε · J0 + ‖f ‖∞ · 2L′ε + 2Lε · 2L′ε. Thus setting C =
2LJ0 + 2L′‖f ‖∞ + 4LL′ su$ces to prove Lemma 11.20.

Lemma 11.24. Let M be a connected, orientable, !nite volume, complete hyperbolic three-manifold and f : X → R a smooth, compactly
supported function. Fix a view D and a compact set K ⊂ D. Let ζ = ζD be the area form on D. There is a C > 0 such that for all smooth
h : D → R supported in K and for all t ≥ 0, 1 > ε > 0, we have

∣∣∣Yf ,D
t (h · ζ )J0 − Yf ,D

t,ε (h · ζ )
∣∣∣ ≤ Cε‖h‖∞

Proof. We have

Yf ,D
t (h · ζ )J0 − Yf ,D

t,ε (h · ζ ) =
∫

D

(
f̃ (ϕt(xu))J0 − Zf ,D

t,ε (xu)
)

h(xu) dxu

which is bounded by

Cε

∫

D
|h(xu)| dxu

by Lemma 11.20. The result now follows since K has !nite area.

Lemma 11.25. Let M be a connected, orientable, !nite volume, complete hyperbolic three-manifold. Fix m ∈ N. Fix a view D and a
compact set K ⊂ D. There is a C > 0 such that for all smooth h : D → R supported in K and all 1 > ε > 0, we have

Sm(hε) ≤ Cε−(m+3)Sm(h)

where hε is as de!ned in (11.17).

Proof. We estimate Sm(hε) by using that hε is separable as de!ned in (11.17). In suitable coordinates, the second factor can be
written as

gε : R3 → R, (x, y, z) 2→ bε(x)bε(
√

y2 + z2)

Bε3

We have gε(u) = g1(u/ε)/ε3 so Sm(gε) = ε−(m+3)Sm(g1). Using that all hε are supported in a common compact set, the lemma
follows from the following fact about Sobolev norms.

Recall that a Sobolev norm requires a choice of vector !elds that pointwise span the tangent space of the manifold (or a bundle
over the manifold when using the Sobolev norm de!ned earlier by li%ing a function f : 2\G/H → R to G). However, any two such
choices yield Sobolev norms that di"er by a bounded factor when restricting to a small enough neighbourhood or compact set. In
particular, up to a bounded factor, we can estimate the Sobolev norm Sm(hε) by Sobolev norms using local coordinates in which hε

is separable.
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Proof of Lemma 11.9. Let m be as in Theorem 11.14. Fix a smooth, compactly supported function f , a view D, and a compact
K ⊂ D. Theorem 11.14 states that there is a C0 and c0 such that for all smooth h : D → R supported in K and all 1 > ε > 0, we may
set g = hε and have

∣∣∣Yf ,D
t,ε (h · ζ )

∣∣∣ =
∣∣∣∣

∫

X̃
f̃ (ϕt(v))hε(v) dv

∣∣∣∣ ≤ C0e−c0tSm(hε)

Applying Lemma 11.24 to the le%-hand side and Lemma 11.25 to the right hand-side, there are C1 and C2 such that
∣∣∣Yf ,D

t (h · ζ )J0
∣∣∣ ≤ C1ε‖h‖∞ + C0e−c0tC2ε

−(m+3)Sm(h)

Since this holds for all 0 < ε < 1, we can set ε = e−c0t/2(m+3) and obtain
∣∣∣Yf ,D

t (h · ζ )
∣∣∣ ≤ C1 + C0C2

J0
e−c0t/2(m+3)Sm(h)

Proof of Theorem 11.4. Recall that

"ω,b,D(η) =
∫ ∞

0
Yω,D

t (η) dt +
∫

D

[∫ π(v)

b
ω

]

· η (11.26)

We now discuss the topology on $2
c (D). Many textbooks on distributions de!ne the topology on C∞

c (Rn). This su$ces in the
ideal and hyperideal cases, where the view D is di"eomorphic to R2. When D is a two-sphere, we instead rely on the general theory of
distributions on smooth manifolds. We point the reader to [45, Section 2.3] where such distributions are called “generalised sections”.
In particular, the de!nition of D(M; E) in [45] gives the correct topology on $0

c (D) ∼= C∞
c (D) and thus on $2

c (D) ∼= $0
c (D).

Using [45, Corollary 2.2.1] and the de!nition of the topology on $2
c (D), it is not hard to see that statement (1) of the theorem is

equivalent to the following claim.

Claim 11.27. For any compact K ⊂ D, there is a C > 0 such that for all η ∈ $2
K(D), the integrals in "ω,b,D(η) exist and we have

|"ω,b,D(η)| ≤ CSm(η)

Proof. We apply Lemma 11.9 to f = ω : X → R. The lemma implies that there is a C0 > 0 such that for all η ∈ $2
K(D), the integral∫ ∞

0 Yω,D
t (η) dt exists and is bounded by C0Sm(η). Let C1 =

∫
K ζD be the area of K and C2 be the maximum of

∫ π(v)
b ω over v ∈ K.

Recall that h ∈ $0
K(D) denotes the Hodge dual to η = h · ζD. Then, by Equation 11.26, we have the following.

∣∣∣"ω,b,D(η)
∣∣∣ ≤ C0Sm(η) + C1C2‖h‖∞ ≤ (C0 + C1C2)Sm(η)

Let W : M̃ → R be a primitive such that dW = ω. We again abbreviate W ◦ π : X̃ → R as W. We have

"ω,b,D(η) = lim
T→∞

∫

v∈D
(W(ϕT(v)) − W(b)) · η(v)

=
[

lim
T→∞

∫

D
(W ◦ ϕT) · η

]
− W(b) ·

∫

D
η (11.28)

Statement (2) is equivalent to the following claim.

Claim 11.29. If [ω] = 0, there is a C such that "ω,b,D = C ·
∫

D

Proof. Since ω is a coboundary, its primitive descends to a map W : M → R. Add a constant to W to arrange
∫

M W dm = 0; here
we integrate with respect to the volume measure. Now taking f = W, Lemma 11.9 now applies to (11.28) and we have "ω,b,D =
−W(b) ·

∫
D.

Statement (3) follows from from Remark 7.6.
It is le% to show Statement (4). Recall that we de!ned maps iD : D → ∂∞M̃ and iE : E → ∂∞M̃. Let U = image(iD)∩ image(iE) ⊂

∂∞M̃. Furthermore, let us de!ne two distributions on U by

"ω,b
←D(δ) = "ω,b,D(i∗Dδ) and "ω,b

←E(δ) = "ω,b,E(i∗Eδ)

For every η ∈ $2
c (image(iE,D)), there is a compactly supported two-form δ on U such that η = i∗Dδ and i∗E,Dη = i∗Eδ. Thus, it is

enough to show that

"ω,b
←D = "ω,b

←E (11.30)
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Figure 24. The regions ϕT(i−1
D (N)) and ϕT+4Tp(i−1

E (N)) for two material views. The distance between corresponding points in the
two regions is bounded by a constant for all large enough T. The constant can be made arbitrarily small by making the neighbourhood
N about p small enough.

Claim 11.31. For every p ∈ U and ε > 0, there is a neighbourhood N ⊂ U of p, a number 4T ∈ R and T0 ≥ 0 such that for all
s ∈ N and T ≥ T0, we have

|W(ϕT(i−1
D (s))) − W(ϕT+4T(i−1

E (s)))| ≤ ε

Remark 11.32. Note that the le% hand side can be made arbitrary small by shrinking N. However, for !xed N increasing T might
not su$ce. This is why we will need to use a partition of unity argument to verify (11.30).

Proof of Claim 11.31. It might be helpful to consult Figure 24. Let L be a Lipschitz constant of W̃ : X → R.
Suppose that s lies in U ⊂ S2. Let γD and γE be the oriented, pointed, geodesics through i−1

D (s) and i−1
E (s) respectively. Both

forward converge to s. Let H be the horosphere centered at s containing π(i−1
D (s)). Note that γE intersects H orthogonally, say at v.

Let 4Ts be the signed distance, along γE, from π(i−1
E (s)) to v. Let vs = dH(v, π(i−1

D (s))).
Recall that p lies in U ⊂ S2. Recall that ϕT is the geodesic #ow. Exponential convergence and the triangle inequality give the

following estimate:

dX̃(ϕT(i−1
D (s)), ϕT+4Tp(i−1

E (s))) ≤
√

2vse−T + |4Tp − 4Ts|

We refer to Remark 10.2 to explain the factor of
√

2.
There is a neighbourhood N of p such that for all s ∈ N, we have |4Tp − 4Ts| ≤ ε/2L. Note that vs is bounded on N so there is

a T0 such that
√

2vse−T0 ≤ ε/2L. We deduce that

dX̃(ϕT(i−1
D (s)), ϕT+4Tp(i−1

E (s))) ≤ ε/L

Since L is a Lipschitz constant for W̃, the claim follows by setting 4T = 4Tp.

We now de!ne a norm ‖ · ‖1 on $2
c (U). Identify ∂∞M̃ with S2. Such an identi!cation induces an area form ζ∞ on ∂∞M̃. Given

δ ∈ $2
c (U), let d be the Hodge dual, that is δ = d · ζ∞. Let

‖δ‖1 =
∫

U
|d| · ζ∞

Note that ‖δ‖1 does not depend on the identi!cation of ∂∞M̃ with S2.

Claim 11.33. For every p ∈ U and ε > 0, there is a neighbourhood N ⊂ U of p such that for all δ ∈ $2
c (N), we have

∣∣∣"ω,b
←D(δ) − "ω,b

←E(δ)
∣∣∣ ≤ ε‖δ‖1



EXPERIMENTAL MATHEMATICS 35

Proof. Let N, 4T, and T0 as in Claim 11.31. Add a constant to the primitive W of ω such that W(b) = 0. Then, the di"erence
"ω,b

←D(δ) − "ω,b
←E(δ) can be expressed using W as follows.

lim
T→∞

∫

U
(W ◦ ϕT ◦ i−1

D ) · δ − lim
T→∞

∫

U
(W ◦ ϕT ◦ i−1

E ) · δ =

lim
T→∞

∫

U
(W ◦ ϕT ◦ i−1

D ) · δ − lim
T→∞

∫

U
(W ◦ ϕT+4T ◦ i−1

E ) · δ =

lim
T→∞

∫

U
(W ◦ ϕT ◦ i−1

D − W ◦ ϕT+4T ◦ i−1
E ) · δ

Claim 11.31 implies that the integral is bounded by ε‖δ‖1, for all T0 ≥ T. Thus the limit is bounded by ε‖δ‖1.

We now verify (11.30). Fix a smooth, compactly supported δ ∈ $2
c (U). Also !x ε > 0. For each p ∈ U, pick a neighbourhood N

as in Claim 11.33. The support supp(δ) can be covered by !nitely many of these neighbourhoods. Consider a partition of unity with
respect to this !nite cover. By multiplying δ by the partition functions, we obtain smooth two-forms δ1, . . . , δn. Let di be the Hodge
dual of δi. Since

∑ |di| = |d| (pointwise) we have
∑ ‖δi‖1 = ‖δ‖1. Thus Claim 11.33 implies
∣∣∣"ω,b

←D(δ) − "ω,b
←E(δ)

∣∣∣ ≤ ε‖δ‖1

Since ε was arbitrary, we are done.

Remark 11.34. McMullen [29] suggests another approach to Theorem 11.4. Arrange matters so that W, the primitive of ω, is
harmonic with respect to the hyperbolic metric. Prove that W has suitably bounded growth as it approaches ∂∞H3, in terms of
the euclidean metric in the Poincaré ball model. Now prove and then apply an appropriate version (of part (iii) implies part (i))
of [40, Theorem 1.1].

11.35. The cohomology fractal as a measure

We do not know whether the cohomology fractal converges to a signed measure; that is we do not know whether or not

lim
T→∞

∫

U
"ω,b,D

T · dµD

converges for every measurable U ⊂ D. Instead, we have the following partial result.

Theorem 11.36 (Square pixel theorem). Suppose that M is a connected, orientable, !nite volume, complete hyperbolic three-manifold.
Fix a closed, compactly supported one-form ω ∈ $1

c (M), a basepoint b ∈ M̃, and a view D. Suppose that U ⊂ D is bounded. Suppose
further that ∂U has !nite length. Then the following limit exists

lim
T→∞

∫

U
"ω,b,D

T · dµD

Remark 11.37. Recall that the pictures in Figure 18 were generated by uniformly sampling across a pixel square. Theorem 11.36
!nally proves that this technique (with enough samples) will give accurate images in some non-empty range of visual radii. Note that
the earlier Theorem 11.4 is not su$cient; it required a smooth !lter function.

Remark 11.38. It seems di$cult to generalise Theorem 11.36 to measurable subsets. Our proof does not apply, for example, to an
open set U ⊂ D bounded by several Osgood arcs [34].

Before sketching a proof of Theorem 11.36, we discuss molli!cation. Suppose that h : D → R is a bounded measurable function
with compact support. We de!ne hε : D → R by setting

hε(u) = 1
Bε

∫

D
h(v) · bε(dD(u, v)) · dµD(v) (11.39)

Here Bε is a normalisation factor such that
∫

D h · dµD =
∫

D hε · dµD. We call hε the ε–molli!cation (in the unstable direction) of h.

Lemma 11.40. Let h : D → R be a bounded measurable function with compact support. Assume that there are constants c > 0 and
C > 0 such that for all 1 > ε > 0, we have

‖h − hε‖1 ≤ Cεc

Then the following limit exists

lim
T→∞

∫

D
"ω,b,D

T · h · dµD
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Proof sketch. We will show that Yω,D
t (h · dµD) =

∫
D(ω ◦ ϕt) · h · dµD decays exponentially. Let ηε = hε · ζD and Yω,D

t,ε (h · dµD) =∫
D(ω ◦ ϕt) · ηε . Regarding ω as function X → R, we have

∣∣∣Yω,D
t (h · dµD) − Yω,D

t,ε (h · dµD)
∣∣∣ ≤ ‖h − hε‖1 · ‖ω‖∞ ≤ Cεc‖ω‖∞

Since h is bounded, the Sobolev norm of the molli!cation hε of h can be estimated from the Sobolev norm of the molli!cation kernel.
This can be done similarly to Lemma 11.25. Thus, there is a C0 > 0 such that for all 1 > ε > 0, we have Sm(ηε) ≤ C0ε−(m+2).
Taking f = ω and η = ηε , Lemma 11.9 states that there is a C1 > 0 and c1 > 0 such that for all t ≥ 0 and 1 > ε > 0, we have

∣∣∣Yω,D
t,ε (h · dµD)

∣∣∣ ≤ C1e−c1tε−(m+2)

Thus, we have
∣∣∣Yω,D

t (h · dµD)
∣∣∣ ≤ Cεc‖ω‖∞ + C1e−c1tε−(m+2)

We obtain exponential decay when setting ε = e−c1t/2(m+2).

Proof sketch of Theorem 11.36. The theorem follows from Lemma 11.40 by taking h to be the indicator function χU . It is le% to
show that there is a C such that ‖h − hε‖1 ≤ Cε.

Note that h − hε is bounded by one, thus it is enough to show that the area where h − hε is non-trivial is bounded by Cε. Tthe
area of this neighbourhood is bounded above, up to multiplication by a universal constant, by the length of ∂U multiplied by ε.

12. Questions and projects

Question 12.1. Suppose that F is a surface in a hyperbolic three-manifold M. Theorem 10.7 tells us that the standard deviation σ is
a topological invariant of the pair (M, F). What are the number theoretic (or other) properties of σ ? Fixing M, does σ “see” the shape
of the Thurston norm ball?

Question 12.2. Suppose that F is a !bre of a closed, connected hyperbolic surface bundle M. In Proposition 6.2 we showed that
approximations of the Cannon–Thurston map are (components of) level sets of the cohomology fractal. Is there some more precise
sense in which the Cannon–Thurston map + is a “level set” of the distributional cohomology fractal "F,b?

Question 12.3. Can the cohomology class [ω] be recovered from the distributional cohomology fractal "ω,b?

Question 12.4. Figure 19 suggests that in the example of m122(4,-1) the mean has settled down at around R = 10 for a pixel size
of 0.1◦. We also see this in Figure 18 in that there is hardly any di"erence between the images at R = 10 and R = 12 with 128 × 128
samples. Theorem 11.36 tells us that given enough samples we can produce an accurate picture of the distributional cohomology
fractal. Can one calculate e"ective bounds that would allow us to produce a provably correct image?

Question 12.5. In Figure 18, the image with 1 × 1 samples and R = 8 is very similar to the image with 128 × 128 samples and
R = 12. However, we do not understand how an image generated with only one sample per pixel can so closely approximate the
limiting object. The manifold m122(4,-1) is small; as a result, perhaps the geodesic #ow mixes rapidly enough? Does this fail in
larger manifolds?

Question 12.6 (Mark Pollicott). We consider lowering the dimension of F and M by one. Let F be a non-separating curve in a closed,
connected hyperbolic surface M. Fix a point p ∈ M. Let P be a “pixel” – that is, a closed arc in UTp M ∼= S1 with centre cP and radius
rP. The distributional cohomology fractal "F exists and in fact gives a “signed measure” to each such pixel P (see Section 11.35). We
de!ne a function µF : S1 × (0, π ] → R by setting µF(cP, rP) = "F(P). What does the graph of µF look like? For example, what
happens if we !x cP and allow the radius to vary? How does the graph behave as rP approaches zero?

Question 12.7. The histogram in Figure 20(a) is low near the mean. Increasing R (within the range that we trust our experiments,
see Section 8.6) reduces, but does not remove, this gap. Why is it there? (This does not seem to happen in Figure 20(b), where the
surface is closed but the manifold is not.)

Question 12.8. Consider the experiment shown in Figure 22. Here the support of the cocycle ω is not compact. We see that the
distribution of the cohomology fractal, over a pixel, appears to not be normal. Further experiments show that it depends sensitively
on the choice of pixel. Can one verify rigorously that it is not normal?

We suspect that some version of “subtracting the largest excursion” (see the remarks immediately before [16, Theorem 1]) will
yield a more reasonable distribution.
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Question 12.9. Theorem 11.4 applies to cocycles ω with compact support. Consider a cusped manifold and a cocycle ω such that
the pullback of [ω] to the cusp torus is non-trivial. In this case, the Sobolev norm of ω is in!nite; thus Theorem 11.10 does not apply.
Are there modi!cations, perhaps as indicated in Question 12.8, so that we again obtain a distribution at in!nity for the cohomology
fractal?

Question 12.10. In the !bred case, what is the relationship between the cohomology fractal and the lightning curve? See Section 6.4.

We end with some ideas for future so%ware projects.

Project 12.11. One could use material triangulations in the closed case to draw an approximation +D to the Cannon–Thurston map,
following Algorithm 4.2. By Proposition 6.2, these match the cohomology fractal. Motivated by Figures 11 and 14, we anticipate that
+D will look signi!cantly di"erent from Cannon–Thurston maps in the cusped case; the “mating dendrites” that approximate +

have bounded branching at all points.

Project 12.12. In Section 8, we discussed cohomology fractals for incomplete structures along a line in Dehn surgery space. As
discussed in Section 8.3, all of these su"er from numerical defects along the incompleteness locus /s. These defects are visible
(although small) in Figure 10. When the slope s is integral, we use material triangulations (Section 8.4) to remove these defects.
For general s, material triangulations are not available. Instead, one could accelerate through tubes about /s. That is, we modify the
cellulation of the manifold by truncating each tetrahedron, replacing the lost volume with a solid torus “cell” around /s.

Appendix A: Notation

For the convenience of the reader, we list some of the notation used in the paper.
m004 SnapPy notation (for the !gure-eight knot complement). We usem004(p,q) to denote a (p, q)

Dehn !lling.
M connected, oriented, !nite volume hyperbolic three-manifold.
T triangulation of M, see Section 2.
F connected, oriented, !nite-area hyperbolic surface.
F̃, M̃ universal covers.
∂∞F̃ ideal boundary of F̃.
∂∞M̃ ideal boundary of M̃.
p, q, b points of M or M̃.
+ Cannon–Thurston map (Theorem 3.1).
+D approximation to the Cannon–Thurston map (Algorithm 4.2).
UT unit tangent bundle.
u, v unit vectors in UT M or UT M̃.
π unit tangent bundle map (or ratio of circumference to diameter of circle in the euclidean plane).
ω one-cocycle for M. We o%en replace ω by a (Poincaré dual) surface F in our notation.
R, T radius and a time respectively. These serve the same purpose; we use one or the other as we are

thinking geometrically (De!nition 5.1) or dynamically (De!nition 5.5).
"

ω,p
R the cohomology fractal at radius R (De!nition 5.1). We suppress superscripts which are not

relevant to the discussion at hand. Several variants of this notation follow.
"

F,p
R (De!nition 5.2).

"
ω,b,p
R (Remark 7.5).

"ω,b,D
R (De!nition 7.12 and Equation 10.3).

"F,b,D
R (Section 9).

ω̃ li% of ω to M̃ (De!nition 5.4).
W primitive for ω̃ (De!nition 5.4 and Section 10.1).
ϕt geodesic #ow for time t (De!nition 5.5).
D, E views in UT M̃ (Section 7.7).
U subdomain of D: for example, a pixel.
X, X̃ abbreviations for UT M and UT M̃ in Sections 10 and 11.
µD induced area measure on D (Section 10.1).
ζD area form on D (so ζD = dµD).
h measurable (Equation 10.4) or smooth (Section 11.2) test function from D to R.
hε ε–molli!cation of h in X̃ (Equation 11.17) or in the unstable direction (Equation 11.39).
ν ' µ ν (always a probability measure) absolutely continuous with respect to µ (Section 10.1). We

decorate with the measure space (as a subscript) when needed for context.
RT , ST random variable, usually RT = "T/

√
T (Sections 10.6 and 10.24).

σ standard deviation (square root of the variance).
ψσ normal distribution with standard deviation σ (Section 10.6).
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nσ probability density function for ψσ (Section 10.6).
⇒ convergence in measure (De!nition 10.8).
→ convergence in probability (De!nition 10.15).
µX Haar measure on X scaled to be a probability measure (Section 10.10).
xu, xf, xs coordinates for the unstable, #ow, and stable manifolds in a neighbourhood of a view (Sec-

tion 10.21).
Hs(xu) stable manifold through xu (Section 10.21).
dN induced distance on a submanifold N (Section 10.21).
Bs

ε(xu) ε–ball in Hs(xu) (Section 10.21).
Dε product ε–neighbourhood of the view D (Section 10.21).
η two-form in $2

c (D) (Section 11.2).
"ω,b,D the distributional cohomology fractal (De!nition 11.3).
"ω,b the cohomology fractal at in!nity (Corollary 11.5).∫

D canonical distribution (Section 11.2).
iD conformal embedding of D into ∂∞M̃ (Section 11.2).
iD,E conformal isomorphism from (a subset of) E to (a subset of) D (Section 11.2).
Yω,D

t (η) slice of the integral de!ning "ω,b,D(η) (Equation 11.7).
Yf ,D

t (η) Yω,D
t (η) generalised to f : X = UT M → R (Equation 11.12).

Yf ,D
t,ε (η) molli!ed slice (Equation 11.13).

Zf ,D
t,ε (xu) molli!ed sample (Equation 11.19).

Sm Sobolev norm (Section 11.6).
f , g functions in the mixing theorems (Lemma 11.9, Theorem 11.10, and Theorem 11.14).
bε , B bump function and normalising factor (De!nition 11.16).
JD ratio between dµX and dxsdxfdxu (Equation 11.18).
J0 equals JD(xu, 0, xu) (Equation 11.18).
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