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1. Introduction

Suppose M is a compact, connected, orientable, irreducible three-manifold. Sup-
pose S is a compact, connected subsurface of ∂M so that no component of ∂S
bounds a disk in M . In this paper we study the intrinsic geometry of the disk
complex D(M, S). The disk complex has a natural simplicial inclusion into the
curve complex C(S). Surprisingly, this inclusion is generally not a quasi-isometric
embedding; there are disks which are close in the curve complex yet far apart in
the disk complex. As we show, any obstruction to joining such disks via a short
path is a subsurface X ⊂ S that is topologically meaningful for M . We call such
subsurfaces holes. A path in the disk complex must travel into and then out of
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2 HOWARD MASUR AND SAUL SCHLEIMER

these holes; paths in the curve complex may skip over a hole by using the vertex
representing the boundary of the subsurface. We classify holes for D(M, S).

Theorem 1.1. Suppose X is a hole for the disk complex D(M, S) of diameter at
least 57.

• X is not an annulus.
• If X is compressible, then there are disks D, E with boundaries contained

in and filling X.
• If X is incompressible, then there is an I–bundle ρF : T → F embedded in

M so that X ⊂ ∂hT ⊂ S.

See Theorems 10.1, 11.10, and 12.1 for more precise statements. The I–bundles
appearing in the classification lead us to study the arc complex A(F ) of the base
surface F . Since the bundle T may be twisted the surface F may be non-orientable.

Thus, as a necessary warm-up to the difficult case of the disk complex, we analyze
the holes for the curve complex of a non-orientable surface, as well as the holes for
the arc complex.

Topological application. It is a long-standing open problem to decide, given
a Heegaard diagram, whether the underlying splitting surface is reducible. For
example, see [19, Section 2B], [48, Section 4], [49, Problem 1.11(c)], and [17, page
462]. This problem has deep connections to the geometry, topology, and algebra
of three-manifolds; its resolution would give new solutions to both the three-sphere
recognition problem and the triviality problem for three-manifold groups. The
difficulty of deciding reducibility is underlined by its connection to the Poincaré
conjecture: several approaches to the Poincaré Conjecture fell at essentially this
point. See [11] for a survey of the literature on this topic.

One generalization of deciding reducibility is to find an algorithm that, given a
Heegaard diagram, computes the Hempel distance of the Heegaard splitting [25].
See [4, Section 2]. The classification of holes for the disk complex leads to a coarse
answer to this question.

Theorem 21.1. In every genus g there is a constant K = K(g) and an algorithm
that, given a Heegaard diagram, computes the distance of the Heegaard splitting
with error of at most K.

In addition to the classification of holes, the algorithm relies on the Gromov
hyperbolicity of the curve complex [30] and the quasi-convexity of the disk set
inside of the curve complex [32]. However, the algorithm does not depend on our
geometric application of Theorem 1.1, which we now discuss.

Geometric application. The hyperbolicity of the curve complex and the classi-
fication of holes are needed in the proof of the following.

Theorem 20.4. The disk complex is Gromov hyperbolic.

Again, as a warm-up to the proof of Theorem 20.4 we prove, for a non-orientable
surface F and for an orientable surface S, that C(F ) and A(S) are hyperbolic.
See Corollary 6.4 and Theorem 20.3. Note that Bestvina and Fujiwara [3] have
previously dealt with the curve complex of a non-orientable surface, following
Bowditch [7].

These results cannot be deduced from knowing that C(F ), A(S), and D(M, S)
can be realized as quasi-convex subsets of C(S). This is because the curve complex
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THE GEOMETRY OF THE DISK COMPLEX 3

is locally infinite. For a very similar example to these, consider the inclusion of the
three-valent tree T3 into the dual of the Farey triangulation. Thus T3 is quasi-convex
inside of a Gromov hyperbolic space; also T3 is Gromov hyperbolic. However, the
second fact cannot be deduced from the first. To see this take the Cayley graph of
Z2 with the standard generating set. Then the cone C(Z2) of height one-half is a
Gromov hyperbolic space and Z2 is a quasi-convex subset.

The proof of Theorem 20.4 requires a distance estimate (Theorem 19.9): the
distance in any one of C(F ), A(S), or D(M, S) is coarsely equal to the sum of
subsurface projection distances in holes. Our theorem is modelled on the estimates
for the marking graph and pants graph [31, Theorem 6.12 and Section 8] obtained
by the first author and Minsky. However, we cannot use that paper’s hierarchy
machine; this is because hierarchies are too floppy to respect a symmetry and, at
the same time, too rigid to deal with disks. For C(F ) we use the extremely rigid
Teichmüller geodesic machine, due to Rafi [41]. For D(M, S) we use the highly
flexible train-track machine, developed by ourselves with Mosher [33].

Theorems 19.9 and 20.4 are part of a more general framework. Given a combi-
natorial complex G we classify the holes: the geometric obstructions lying between
G and the curve complex. In Sections 13 and 14 we give axioms for G that imply
a distance estimate. Hyperbolicity also follows from the axioms; this is proven in
Section 20.

The axioms are stated in terms of a path of markings, a sequence in the com-
binatorial complex, and their relationship. For the disk complex the combinatorial
sequence is a surgery sequence of essential disks while the marking path is provided
by a train-track splitting sequence; both constructions are due to the first author
and Minsky [32] (Section 18). The verification of the axioms (Section 19) relies
on our work with Mosher: analyzing train-track splitting sequences in terms of
subsurface projections [33].

We do not study non-orientable surfaces directly; instead we focus on symmetric
multicurves in the double cover. This time the marking path is provided by a
Teichmüller geodesic, using the fact that the symmetric Riemann surfaces form a
totally geodesic subset of Teichmüller space. The combinatorial sequence is given
by the systole map. We use results of Rafi [41] to verify the axioms for the complex
of symmetric curves. (See Section 16.) Section 17 verifies the axioms for the arc
complex, also using Teichmüller geodesics and the systole map. Interestingly, for
the arc complex our axioms can be verified using any one of Teichmüller geodesics,
hierarchies, or train-track sequences.

The distance estimates for the marking graph and the pants graph [31] partly
inspired this paper but do not fit our framework. Indeed, neither the marking
graph nor the pants graph are Gromov hyperbolic. It is crucial here that all holes
interfere; this leads to hyperbolicity. When there are non-interfering holes, it is
unclear how to partition the marking path to obtain the distance estimate.

2. Background on complexes

We use Sg,b,c to denote the compact, connected surface of genus g with b bound-
ary components and c cross-caps. If the surface is orientable we omit the subscript
c and write Sg,b. The complexity of S = Sg,b is ξ(S) = 3g − 3 + b. If the surface is
closed and orientable we simply write Sg.
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4 HOWARD MASUR AND SAUL SCHLEIMER

2.1. Arcs and curves. Suppose α ⊂ S is a properly embedded simple closed curve
or simple arc; thus α ∩ ∂S = ∂α. Then α is inessential if α cuts a disk off of S.
When α is an essential curve, then α is peripheral if it cuts an annulus off of S.

Define C(S) to be the set of ambient isotopy classes of essential, non-peripheral
curves in S. Define A(S) to be the set of ambient isotopy classes of essential arcs.
When S = S0,2 is an annulus define A(S) to be the set of essential arcs, up to
ambient isotopy fixing the boundary pointwise. For any surface define AC(S) =
A(S) ∪ C(S).

For α,β ∈ AC(S) the geometric intersection number ι(α,β) is the minimum
intersection possible between ambient isotopy representatives of α and β. When
S = S0,2 we do not count intersection points occurring on the boundary. When two
representatives α and β realize their geometric intersection number we say that α
is tight with respect to β. If they do not realize their geometric intersection, then
we may tighten α until they do. In the rest of the paper we use the same notation
for isotopy classes and for their representatives.

A subset ∆ ⊂ AC(S) is a multicurve if for all α,β ∈ ∆ we have ι(α,β) = 0.
Following Harvey [22] we may impose the structure of a simplicial complex on
AC(S): the simplices are exactly the multicurves. Also, C(S) and A(S) naturally
span subcomplexes.

Note that the curve complexes C(S0,4), C(S1), and C(S1,1) have no edges. In
these cases it is useful to alter the definition. Place edges between all vertices with
geometric intersection exactly two, if S = S0,4, or exactly one, if S = S1 or S1,1.
The result is the Farey graph F = F(S). Two vertices α,β spanning an edge of F
are called Farey neighbors.

With the current definition, C(S) is empty if S = S0,2. Thus for the annulus we
alter the definition, taking AC(S) = C(S) = A(S).

Definition 2.2. For vertices α,β ∈ C(S) define the distance dS(α,β) to be the
minimum possible number of edges of a path in the one-skeleton C1(S) that starts
at α and ends at β.

Note that if dS(α,β) ≥ 3, then α and β fill the surface S. We denote distance
in the one-skeleton of A(S) and of AC(S) by dA and dAC , respectively. Recall that
the geometric intersection of two curves gives an upper bound for their distance.

Lemma 2.3. Suppose S is a compact, connected surface which is not an annulus.
For any α,β ∈ C0(S) with ι(α,β) > 0 we have dS(α,β) ≤ 2 log2(ι(α,β)) + 2. !

For closed orientable surfaces a proof of Lemma 2.3 is given in [25, Lemma 2.1].
A proof in the bounded orientable case is given in [45, Lemma 1.21]. The non-
orientable case is an exercise. When S = S0,2 an induction proves that

(2.4) dS(α,β) = 1 + ι(α,β)

for distinct vertices α,β ∈ C(S). See [31, Equation 2.3].

Lemma 2.5. Suppose S is a connected compact surface. The following are equiv-
alent.

• S admits a pseudo-Anosov map or S ∈ {S0,2, S1}.
• S admits an ending lamination or S ∈ {S0,2, S1}.
• AC(S) has infinite diameter.

Licensed to University of Warwick. Prepared on Tue Oct 30 16:54:24 EDT 2012 for download from IP 137.205.50.42.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE GEOMETRY OF THE DISK COMPLEX 5

• AC(S) has diameter at least five.
• χ(S) < −1 or S ∈ {S0,2, S1, S1,1}.

Lemma 4.6 of [30] shows that pseudo-Anosov maps have quasi-geodesic orbits when
acting on the associated curve complex. A Dehn twist acting on C(S0,2) has geodesic
orbits.

Note that Lemma 2.5 is only used in this paper when ∂S is non-empty. The
closed case is included for completeness.

Proof sketch of Lemma 2.5. If S admits a pseudo-Anosov map, then the stable lam-
ination is an ending lamination. If S admits an ending lamination, then, by an
argument of Kobayashi [27, Proposition 2.2], AC(S) has infinite diameter. (This
argument is also sketched in [30], page 124, after the statement of Proposition 4.6.)

If the diameter of AC is infinite, then the diameter is at least five. One may
check directly that all surfaces with χ(S) > −2, other than S0,2, S1, and S1,1, have
AC(S) with diameter at most four. (The difficult cases, S012 and S003, are discussed
by Scharlemann [44, Section 2].) To finish, all surfaces with χ(S) < −1, and also
S1,1, admit pseudo-Anosov maps. The orientable cases follow from Thurston’s
construction [47, Theorem 7]. Penner’s generalization [39, Theorem 4.1] covers the
non-orientable cases. !

We call a surface S non-simple if it satisfies any one of, hence all of, the conditions
in Lemma 2.5.

2.6. Subsurfaces. Suppose X is a connected compact subsurface of S. If X is an
annulus with peripheral core curve, then we call X a peripheral annulus. If X is
not a peripheral annulus, and if every component of ∂X is essential in S, then we
call X essential.

Definition 2.7. An essential subsurface X ⊂ S is cleanly embedded if the following
property holds. For every component δ of ∂X, if δ is peripheral in S, then δ is a
component of ∂S.

We say that α ∈ AC(S) cuts X if all representatives of α intersect X. If some
representative is disjoint, then we say that α misses X.

Definition 2.8 ([1, page 26]). Suppose X and Y are essential subsurfaces of S. If
X is cleanly embedded in Y , then we say that X is nested in Y . If ∂X cuts Y and
also ∂Y cuts X, then we say that X and Y overlap.

2.9. Markings. A finite set of vertices µ ⊂ AC(S) is called a marking. A marking
µ fills S if for all β ∈ C(S) there is some α ∈ µ so that ι(α,β) > 0. For a marking
µ ⊂ AC(S) define

ι(µ) =
1

2

∑

α,β∈µ

ι(α,β).

A marking µ is a K–marking if ι(µ) ≤ K. Two markings µ, ν are L–close if
ι(µ, ν) := ι(µ ∪ ν) ≤ L. For any K, L we define the marking graph MK,L(S)
to be the graph where vertices are filling K–markings and edges are given by L–
closeness. As an example, consider M = M1,3(S1). Vertices of M are 1–markings
and correspond to Farey neighbors. Two vertices of M are 3–close if and only if
their union is a Farey triangle. It follows that M is quasi-isometric to a Cayley
graph for SL(2, Z) = MCG(S1). This generalizes.

Licensed to University of Warwick. Prepared on Tue Oct 30 16:54:24 EDT 2012 for download from IP 137.205.50.42.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



6 HOWARD MASUR AND SAUL SCHLEIMER

Definition 2.10 ([31, Section 2.5]). A complete clean marking µ = {(αi,βi)}
consists of

• base curves base(µ) = {αi}: a maximal simplex in C(S) and
• transversals {βi}: for each i define Xi = S − (∪j "=iαj) and let βi ∈ C(Xi)

be a Farey neighbor of αi.

If µ is a complete clean marking, then ι(µ) ≤ 2ξ(S) + 6|χ(S)|. As discussed in [31]
any two complete clean markings are connected by a sequence of elementary moves.
Twisting about αi replaces the transversal βi by a new transversal β′

i which is a
Farey neighbor of both αi and βi. Flipping swaps the roles of αi and βi. (After
flipping, some of the other transversals must be cleaned.)

Following [31, Section 7.1] for any surface S there are choices of K, L so that
M(S) is non-empty, connected, and quasi-isometric to the word metric on MCG(S).
We use dM to denote distance in the marking graph.

2.11. Three-manifolds and disks. Suppose M is a compact, connected, ori-
entable three-manifold. Recall that M is irreducible if every embedded two-sphere
in M bounds a three-ball. Suppose S is a compact, connected subsurface of ∂M .
We make the following standing assumption.

Definition 2.12. The pair (M, S) is spotless. That is, M is irreducible and no
component of ∂S bounds a disk in M .

A properly embedded disk (D, ∂D) ⊂ (M, S) is essential if ∂D is essential in
S. Let D(M, S) be the set of essential disks up to ambient isotopy preserving S.
A subset ∆ ⊂ D(M, S) is a multidisk if for all D, E ∈ ∆ we have ι(∂D, ∂E) = 0.
Following McCullough [34, Section 5] we place a simplicial structure on D(M, S) by
taking multidisks to be simplices. As with the curve complex, define dD to be the
distance in the one-skeleton of D(M, S). When S = ∂M we simply write D(M).

3. Background on coarse geometry

We review a few ideas from coarse geometry. See [9, 14, 18] for a fuller discussion.

3.1. Quasi-isometry. Suppose r, s, A are non-negative real numbers, with A ≥ 1.
If s ≤ A · r + A, then we write s ≤A r. If s ≤A r and r ≤A s, then we write s =A r
and call r and s quasi-equal with constant A. Define the cut-off function [r]c by
[r]c = 0 if r < c and [r]c = r if r ≥ c.

Suppose (X , dX ) and (Y , dY) are metric spaces. For subsets U, V ⊂ X define

dX (U, V ) = diamX (U ∪ V ).

Suppose f ⊂ X ×Y is a relation. In a slight abuse of notation, we write f : X → Y
and, for x ∈ X , we write f(x) = {y ∈ Y | xfy}. For examples of usage, see
Definitions 3.6, 4.2 and 4.3.

Fix A ≥ 1. A relation f : X → Y is an A–quasi-isometric embedding if for every
x, y ∈ X we have f(x) *= ∅ and

dX (x, y) =A dY(f(x), f(y)).

The relation f is a quasi-isometry, and X is quasi-isometric to Y , if f is an A–
quasi-isometric embedding and the image of f is A–dense: the A–neighborhood of
f(X ) equals Y .
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THE GEOMETRY OF THE DISK COMPLEX 7

3.2. Geodesics. Fix an interval [u, v] ⊂ R. A geodesic, connecting x to y in X , is
an isometric embedding f : [u, v] → X with f(u) = x and f(v) = y. Denote the
image of f by [x, y] ⊂ X .

Fix intervals [m, n], [p, q] ⊂ Z. An A–quasi-isometric embedding g : [m, n] → X
is called an A–quasi-geodesic. A function g : [m, n] → X is an A–unparameterized
quasi-geodesic if

• there is an increasing function ρ : [p, q] → [m, n] so that g ◦ ρ : [p, q] → X is
an A–quasi-geodesic in X and

• for all i ∈ [p, q − 1], diamX g
[
ρ(i), ρ(i + 1)

]
≤ A.

This is an adaptation the (K, δ, s)–quasi-geodesics defined in [30, Section 7].
A subset Y ⊂ X is Q–quasi-convex if every X–geodesic connecting two points of

Y lies within a Q–neighborhood of Y .

3.3. Hyperbolicity. We now assume that X is a connected metric graph where
all edges have length one.

Definition 3.4. The graph X is δ–hyperbolic if, for any three points x, y, z in X ,
any geodesic triangle connecting them is δ–slim. That is, the δ–neighborhood of
any two sides contains the third. We say that X is Gromov hyperbolic if X is
δ–hyperbolic for some δ ≥ 0.

An important tool for this paper is the following theorem of the first author and
Minsky.

Theorem 3.5 ([30, Theorem 1.1]). The curve complex of an orientable surface is
Gromov hyperbolic. !

For the remainder of this section assume X is δ–hyperbolic, assume x, y, z ∈ X
are points, and fix geodesics k = [x, y], g = [y, z], and h = [z, x].

Definition 3.6. Define ρk : X → k to be the closest points relation where

ρk(z) =
{
w ∈ k | dX (z, w) ≤ dX (z, v) for all v ∈ k

}
.

The next several lemmas are used in Section 20. The proofs are left as exercises.

Lemma 3.7. For any w ∈ ρk(z) there is a point of g within distance 2δ of w. !
Lemma 3.8. The diameter of ρk(z) is at most 4δ. !
Lemma 3.9. The diameter of ρg(x) ∪ ρh(y) ∪ ρk(z) is at most 6δ. !
Lemma 3.10. Suppose z′ is another point in X with dX (z, z′) ≤ R. Then
dX (ρk(z), ρk(z′)) ≤ R + 6δ. !
Lemma 3.11. Suppose k′ is another geodesic in X where the endpoints of k′ are
within distance R of the points x and y. Then dX(ρk(z), ρk′(z)) ≤ R + 11δ. !

Here is a consequence of Morse stability of quasi-geodesics in Gromov hyperbolic
graphs, used in Section 13.15.

Lemma 3.12. For every δ and A there is a constant C with the following property.
If X is δ–hyperbolic and g : [0, N ] → X is an A–unparameterized quasi-geodesic,
then for any m < n < p in [0, N ] we have

dX (x, y) + dX (y, z) < dX (x, z) + C,

where x, y, z = g(m), g(n), g(p). !
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8 HOWARD MASUR AND SAUL SCHLEIMER

3.13. A hyperbolicity criterion. Here we give a hyperbolicity criterion tailored
to our requirements. We thank Brian Bowditch for pointing out an error in our
first proof of Theorem 3.15 and for informing us of Gilman’s work [15, 16].

Suppose X is a graph where all edges have length one. Suppose γ : [0, N ] → X
is a loop in X with unit speed. Any pair of points a, b ∈ [0, N ] gives a chord of γ.
If N/4 ≤ |b − a| ≤ 3N/4, then the chord is 1/4–separated. The length of the chord
is dX (γ(a), γ(b)).

Following Gilman [15, Theorem B] we have the following.

Theorem 3.14. Suppose X is a graph where all edges have length one. Then
X is Gromov hyperbolic if and only if there is a constant K so that every loop
γ : [0, N ] → X has a 1/4–separated chord of length at most N/7 + K. !

Gilman’s proof goes via the subquadratic isoperimetric inequality [18, Crite-
rion 6.8.M]. See also [6]. We now give our criterion, noting that it is closely related
to another paper of Gilman’s [16].

Theorem 3.15. Suppose X is a graph where all edges have length one. Then X is
Gromov hyperbolic if and only if there is a constant M ≥ 0 and, for all unordered
pairs x, y ∈ X 0 there is a connected subgraph gx,y ⊂ X containing x and y, with
the following properties.

• (Local) If dX (x, y) ≤ 1, then gx,y has diameter at most M .
• (Slim triangles) For all x, y, z ∈ X 0 the subgraph gx,y is contained in an

M–neighborhood of gy,z ∪ gz,x.

Proof. To prove the forward direction suppose that X is δ–hyperbolic. For every
x, y ∈ X 0 take gx,y to be any geodesic connecting x to y. Setting M = max{δ, 1}
gives the two properties.

For the backwards direction suppose that γ : [0, N ] → X is a loop. Let ε be the
empty string and define Iε = [0, N ]. For any binary string ω let Iω0 and Iω1 be the
first and second half of Iω. Note that if |ω| ≥ -log2 N., then |Iω| ≤ 1.

Fix a string ω and let [r, s] = Iω. Let gω = gγ(r),γ(s) be the given connected
subgraph of X containing γ(r) and γ(s). Note that g0 = g1 because γ(0) = γ(N)
and because we use unordered pairs as subscripts. Also, for any binary string ω
the subgraphs gω, gω0, gω1 form an M–slim triangle. If |ω| ≤ -log2 N., then every
x ∈ gω has some point b ∈ Iω so that

dX (x, γ(b)) ≤ M(-log2 N. − |ω|) + 2M.

Since g0 is connected there is a point x ∈ g0 that lies within the M–neighborhoods
both of g00 and of g01. Pick some b ∈ I1 so that dX (x, γ(b)) is bounded as in the
previous paragraph. It follows that there is a point a ∈ I0 so that a, b are 1/4–
separated and so that

dX (γ(a), γ(b)) ≤ 2M-log2 N. + 2M.

Thus there is an additive error K large enough so that X satisfies the criterion of
Theorem 3.14 and we are done. !

4. Natural maps

There are several natural maps between the complexes and graphs defined in
Section 2. Here we review what is known about their geometric properties and give
examples relevant to the rest of the paper.
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THE GEOMETRY OF THE DISK COMPLEX 9

4.1. Lifting, surgery, and subsurface projection. Suppose S is not simple.
Choose a hyperbolic metric on the interior of S so that every end has infinite area.
Fix X, a compact essential subsurface of S, that is not a peripheral annulus. Let
ρX : SX → S be the covering map where X lifts homeomorphically and SX ∼=
interior(X). For any α ∈ AC(S) let αX = ρ−1

X (α) be the full preimage.
The induced homeomorphism between X and the Gromov compactification of

SX identifies AC(X) with AC(SX).

Definition 4.2. The cutting relation κX : AC(S) → AC(X) is defined as follows.
A vertex β lies in κX(α) if and only if β is an essential non-peripheral component
of αX .

We also use the notation α|X = κX(α). Note that α cuts X if and only if α|X
is non-empty.

Definition 4.3. Suppose S is not an annulus. The surgery relation σX : AC(S) →
C(S) is defined as follows. A vertex β lies in σS(α) if and only if β ∈ C(S) is a
boundary component of a regular neighborhood of α ∪ ∂S.

Definition 4.4. The subsurface projection relation πX : AC(S) → C(X) is defined
by πX = σX ◦ κX . When X is an annulus define πX = κX .

If α,β ∈ AC(S) both cut X define

dX(α,β) = diamX(πX(α) ∪ πX(β)).

This is the subsurface projection distance between α and β in X. If α,β ⊂ S
are disjoint there is a bound on their subsurface projection distance following [31,
Lemma 2.3] and the remarks in the section Projection Bounds of [35, page 29].

Lemma 4.5. Suppose α and β span an edge in AC(S) and both cut X. Then
diamX(πX(α)) is at most two. Also, dX(α,β) is at most two (unless S = S1,1 and
X = S0,2; the bound is then replaced by three). !
Corollary 4.6. Fix X ⊂ S. Suppose {βi}N

i=0 is a path in AC(S), with N ≥ 1.
Suppose βi cuts X, for all i. Then dX(β0,βN ) ≤ 2N (unless S = S1,1 and X = S0,2;
the bound is then replaced by 3N). !

It is crucial to note that if some vertex of {βi} misses X, then the projection
distance dX(β0,βN ) may be arbitrarily large compared to N . Corollary 4.6 can be
greatly strengthened when the path is a geodesic.

Theorem 4.7 ([31, Theorem 3.1] (Bounded geodesic image)). There is a constant
M0 = M0(S) with the following property. Fix X ⊂ S. Suppose {βi}n

i=0 is a geodesic
in C(S). Suppose βi cuts X, for all i. Then dX(β0,βn) ≤ M0. !

Here is a kind of converse to Lemma 4.5.

Lemma 4.8. For every K ∈ N there is a number L ∈ N with the following property.
For any α,β ∈ AC(S), if dX(α,β) ≤ K for all X ⊂ S, then ι(α,β) ≤ L.

Corollary D of [12] gives a more precise relation between projection distance and
intersection number.

Proof of Lemma 4.8. We only sketch the contrapositive. Suppose we are given a
sequence of curves αn,βn so that ι(αn,βn) tends to infinity. Passing to subsequences
and applying elements of the mapping class group we may assume that αn = α0
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10 HOWARD MASUR AND SAUL SCHLEIMER

for all n. Setting cn = ι(α0,βn) and passing to subsequences again we may assume
that βn/cn converges to λ ∈ PML(S), the projectivization of Thurston’s space
of measured laminations. Let Y be any connected component of the subsurface
filled by λ, chosen so that α0 cuts Y . Note that πY (βn) converges to λ|Y . Again
applying Kobayashi’s argument [27, Proposition 2.2], the distance dY (α0,βn) tends
to infinity. !

4.9. Inclusions. We now record a well-known fact.

Lemma 4.10. The inclusion ν : C(S) → AC(S) is a quasi-isometry. The surgery
map σS : AC(S) → C(S) is a quasi-inverse for ν.

Proof. Fix α,β ∈ C(S). Since ν is simplicial we have dAC(α,β) ≤ dS(α,β). In the
other direction, let {αi}N

i=0 be a geodesic in AC(S) connecting α to β. Since every
αi cuts S we apply Corollary 4.6 and deduce that dS(α,β) ≤ 2N + 2.

Note that the composition σS ◦ ν is the identity on C(S). Also, for any arc
α ∈ A(S) we have dAC(α, ν(σS(α))) = 1. Finally, C(S) is 1–dense in AC(S), as any
arc γ ⊂ S is disjoint from the one or two curves of σS(γ). !

Brian Bowditch raised the question, at the Newton Institute in August 2003, of
the geometric properties of the inclusion ν : A(S) → AC(S). The natural assump-
tion, that this inclusion is again a quasi-isometric embedding, is false. In this paper
we exactly characterize how the inclusion distorts distance.

We now move up a dimension. Suppose (M, S) is a spotless pair. The natural
map ν : D(M, S) → C(S) takes an essential disk D to its boundary ∂D. Since
(M, S) is spotless, the curve ∂D determines the disk D, up to isotopy; also, ∂D
cannot be peripheral in S. Thus ν is injective and well-defined. We call the image
ν(D) the disk set.

The first author and Minsky have shown the following.

Theorem 4.11 ([32, Theorem 1.1]). The disk set is a quasi-convex subset of the
curve complex. !

It is natural to ask if ν : D(M, S) → C(S) is a quasi-isometric embedding, as that
would directly imply the hyperbolicity of D(M, S). In fact, ν again badly distorts
distance; this paper gives an exact characterization.

4.12. Markings and the mapping class group. As discussed in Section 2.9
the marking graph M(S) is quasi-isometric to the word metric on the mapping
class group. Using subsurface projections, the first author and Minsky obtained a
distance estimate for the marking graph and thus for the mapping class group.

Theorem 4.13 ([31, Theorem 6.12] (Distance estimate)). There is a constant
C0 = C0(S) so that, for any c ≥ C0 there is a constant A with

dM(µ, ν) =A

∑
[dX(µ, ν)]c

independent of the choice of µ and ν. Here the sum ranges over all essential sub-
surfaces X ⊂ S. !

This, and their similar estimate for the pants graph, is a model for the distance
estimates given below. Notice that a filling marking µ ∈ M(S) cuts all essential
subsurfaces of S. It is not an accident that the sum ranges over the same set.
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THE GEOMETRY OF THE DISK COMPLEX 11

5. Holes in general and the lower bound on distance

Suppose that S is a compact, connected surface. In this paper the vertices of any
combinatorial complex G = G(S) will be multicurves in S. We typically assume that
vertices of G are connected by edges if and only if there are representatives that are
disjoint. This assumption is made only to simplify the proofs; all arguments work
in the case where, as with the marking graph, we replace multicurves by markings
and where adjacent vertices are allowed to have uniformly bounded intersection.
In all cases G will be connected. There is a natural map ν : G → AC(S) taking a
vertex of G to the corresponding multicurve. Examples in the literature include the
marking graph [31], the pants graph [10, 2], the Hatcher-Thurston graph [23], the
complex of separating curves [8], the arc complex, and the curve complex.

For any combinatorial complex G defined in this paper other than the curve
complex we denote distance in the one-skeleton of G by dG . Distance in the one-
skeleton of C(S) will always be denoted by dS .

5.1. Holes, defined. Suppose S is not simple. Suppose G(S) is a combinatorial
complex. Suppose X is a cleanly embedded subsurface of S. A vertex α ∈ G cuts
X if some component of α cuts X.

Definition 5.2. We say that X is a hole for G if every vertex of G cuts X.

Almost equivalently, if X is a hole, then the subsurface projection πX : G → C(X)
never takes the empty set as a value. Note that the entire surface S is always a hole,
regardless of our choice of G. A peripheral annulus cannot be cleanly embedded
(unless S is also an annulus), so generally cannot be a hole. A hole X ⊂ S is strict
if X is not homeomorphic to S.

Definition 5.3. If X is a hole for G(S) and if πX(G) ⊂ C(X) has diameter at least
R we say that the hole X has diameter at least R.

We now classify holes for the arc complex.

Example 5.4. Suppose S = Sg,b with b > 0 and consider the arc complex A(S).
The holes, up to isotopy, are exactly the cleanly embedded surfaces which contain
∂S. So, for example, if S is planar, then only S is a hole for A(S). The same
holds for S = S1,1. In these cases it is an exercise to show that C(S) and A(S) are
quasi-isometric. In all other cases the arc complex admits infinitely many holes.
Since the mapping class group acts on the arc complex, all non-simple holes for
A(S) have infinite diameter.

The classification of holes for the disk complex is more difficult and is postponed
until Sections 9–12. We here content ourselves with the first non-trivial example.

Example 5.5. Suppose F is a non-simple, orientable surface with boundary. Let
M = F × I. Let X = F × {0} and Y = F × {1}. Since Y is incompressible
(Definition 8.2) in M we deduce that X is a hole for D(M); similarly Y is a hole.

This example was the genesis of our program to understand the intrinsic geom-
etry of D(M, S). The occurrence or non-occurrence of disjoint holes X, X ′ ⊂ S is
highly important for the intrinsic geometry of G(S). In the presence of symmetry
there can be a relationship between πX |G and πX′ |G, as follows.
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12 HOWARD MASUR AND SAUL SCHLEIMER

Definition 5.6. Suppose X, X ′ are holes for G, both of infinite diameter. Then X
and X ′ are paired if there is a homeomorphism τ : X → X ′ and a constant L3 so
that

dX′(πX′(γ), τ (πX(γ))) ≤ L3

for every γ ∈ G. Furthermore, if Y ⊂ X is a hole, then τ pairs Y with Y ′ = τ (Y ).
Lastly, pairing is symmetric; if τ pairs X with X ′, then τ−1 pairs X ′ with X.

Definition 5.7. Two holes X and Y interfere if either

• X ∩ Y *= ∅,
• X is paired with X ′ and X ′ ∩ Y *= ∅, or
• Y is paired with Y ′ and X ∩ Y ′ *= ∅.

Examples arise in the symmetric arc complex and, as in Example 5.5, in the dis-
cussion of I–bundles inside of a three-manifold.

5.8. Projection to holes is coarsely Lipschitz. The following “coarse Lipschitz
projection” lemma is used repeatedly throughout the paper.

Lemma 5.9. Suppose G(S) is a combinatorial complex. Suppose X is a hole for
G. Then for any α,β ∈ G we have

dX(α,β) ≤ 2 + 2 · dG(α,β).

The additive error is required only when α = β.

Proof. This follows from Corollary 4.6 and our assumption that vertices of G con-
nected by an edge represent disjoint multicurves. !
5.10. Infinite diameter holes. We may now state a first answer to Bowditch’s
question.

Lemma 5.11. Suppose G(S) is a combinatorial complex. Suppose there is a strict
hole X having infinite diameter. Then ν : G → AC(S) is not a quasi-isometric
embedding. !

This lemma and Example 5.4 completely determine when the inclusion of A(S)
into AC(S) is a quasi-isometric embedding. It quickly becomes clear that the set
of holes tightly constrains the intrinsic geometry of a combinatorial complex.

Lemma 5.12. Suppose G(S) is a combinatorial complex invariant under the nat-
ural action of MCG(S) on AC(S). Then every non-simple hole for G has infinite
diameter. Furthermore, if X and Y are disjoint non-simple holes for G, then there
is a quasi-isometric embedding of Z2 into G. !

We do not use Lemmas 5.11 or 5.12 and so omit the proofs. Instead our interest
lies in proving the far more powerful distance estimate (Theorems 5.14 and 13.1)
for G(S).

5.13. A lower bound on distance. The sum of projection distances in holes
gives a lower bound for distance.

Theorem 5.14. Fix S, a compact, connected, non-simple surface. Suppose G(S)
is a combinatorial complex. Then there is a constant C0 so that for all c ≥ C0 there
is a constant A satisfying

∑
[dX(α,β)]c ≤A dG(α,β).

Here α,β ∈ G and the sum is taken over all holes X for the complex G.
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THE GEOMETRY OF THE DISK COMPLEX 13

Proof. We follow the proofs of Theorems 6.10 and 6.12 of [31], practically word
for word. The only changes necessary are as follows. We replace the sum over all
subsurfaces by the sum over all holes. We replace Lemma 2.5 of [31], which records
how markings differing by an elementary move project to an essential subsurface,
by Lemma 5.9 of this paper, which records how G projects to a hole. !

One major goal of this paper is to give criteria sufficient to obtain the reverse
inequality: Theorem 13.1.

6. Holes for the non-orientable surface

Fix F a compact, connected, non-orientable surface. We take C2(F ) ⊂ C(F )
to be the subcomplex spanned by vertices representing two-sided curves. Note
that C2(F ) is isometrically embedded in and is 1–dense in C(F ). Thus these two
complexes are quasi-isometric.

Let S be the orientation double cover with covering map ρF : S → F . Let
τ : S → S be the associated involution; so for all x ∈ S, ρF (x) = ρF (τ (x)).

Definition 6.1. A multicurve γ ⊂ AC(S) is symmetric if τ (γ)∩γ = ∅ or τ (γ) = γ.
A multicurve γ is invariant if there is a curve or arc δ ⊂ F so that γ = ρ−1

F (δ). The
same definitions hold for subsurfaces X ⊂ S.

Definition 6.2. The invariant complex Cτ(S) is a simplicial complex with vertex
set consisting of invariant multicurves (without arcs). There is a k–simplex for every
collection of k + 1 distinct isotopy classes having pairwise disjoint representatives.

Notice that Cτ(S) is simplicially isomorphic to C2(F ). There is also a natural
relation ν : Cτ(S) → C(S).

Lemma 6.3. ν : Cτ(S) → C(S) is a quasi-isometric embedding.

Before giving the proof, note the following.

Corollary 6.4 ([3, Section 5]). C(F ) is Gromov hyperbolic. !
Proof of Lemma 6.3. Since ν sends adjacent vertices in Cτ(S) to adjacent simplices
in C(S) we have

(6.5) dS(α,β) ≤ dCτ(α,β),

as long as α and β are distinct in Cτ(S).
The other half of the proof of Lemma 6.3 consists of showing that S is the only

hole for Cτ(S) with large diameter. After a discussion of Teichmüller geodesics we
prove the following.

Lemma 16.8. There is a constant K with the following property. Suppose α,β
are invariant multicurves in S. Suppose X ⊂ S is an essential subsurface where
dX(α,β) > K. Then X is symmetric.

Corollary 6.6. With K as in Lemma 16.8: If X is a hole for Cτ(S) with diameter
greater than K, then X = S.

Proof. Suppose X is a cleanly embedded strict subsurface of S. Suppose
diamX(Cτ(S)) > K. Thus X is symmetric. It follows that ∂X − ∂S is also sym-
metric. Since ∂X does not cut X, we deduce that X is not a hole for Cτ(S). This
proves the corollary. !

Licensed to University of Warwick. Prepared on Tue Oct 30 16:54:24 EDT 2012 for download from IP 137.205.50.42.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



14 HOWARD MASUR AND SAUL SCHLEIMER

This corollary, together with the upper bound (Theorem 13.1), completes the
proof of Lemma 6.3. !

7. Holes for the arc complex

We generalize the definition of the arc complex and classify its holes.

Definition 7.1. Suppose F is a non-simple surface with boundary. Suppose ∆ is a
non-empty union of components of ∂F . The arc complex A(F,∆) is the subcomplex
of A(F ) spanned by essential arcs α ⊂ F with ∂α ⊂ ∆.

Note that A(F, ∂F ) and A(F ) are identical.

Lemma 7.2. Suppose X is cleanly embedded in F . Then X is a hole for A(F,∆)
if and only if ∆ ⊂ ∂X. !

This follows from the definition of a hole. We now have a straightforward obser-
vation.

Lemma 7.3. If X and Y are holes for A(F,∆), then X ∩ Y *= ∅. !
The proof follows immediately from Lemma 7.2. Lemma 5.12 indicates that

Lemma 7.3 is necessary to prove that A(F,∆) is Gromov hyperbolic.
Suppose now that F is non-simple, has non-empty boundary, and is non-orient-

able. Let ρF : S → F be the orientation double cover and let τ : S → S be the
induced involution. Fix ∆′ ⊂ ∂F and let ∆ = ρ−1

F (∆′).

Definition 7.4. We define Aτ(S,∆) to be the invariant arc complex : vertices are
invariant multi-arcs and simplices arise from disjointness.

Again, Aτ(S,∆) is simplicially isomorphic to A(F,∆′). If X∩τ (X) = ∅ and ∆ ⊂
X ∪ τ (X), then the subsurfaces X and τ (X) are paired holes, as in Definition 5.6.
Notice as well that all non-simple symmetric holes X for Aτ(S,∆) have infinite
diameter.

Unlike A(F,∆′) the complex Aτ(S,∆) may have disjoint holes. Nonetheless, we
have the following.

Lemma 7.5. Any two non-simple holes for Aτ(S,∆) interfere.

Proof. Suppose X and Y are non-simple holes for the τ–invariant arc complex
Aτ(S,∆). It follows from Lemma 16.8 that X is symmetric and ∆ ⊂ X ∪ τ (X).
The same holds for Y . Thus Y must cut X, τ (X), or both. !

8. Background on three-manifolds

We review the necessary material regarding three-manifolds. See [24, 43] for
detailed presentations. Throughout M is a compact, connected, orientable three-
manifold. Recall that (M, S) is assumed to be spotless (Definition 2.12).

If N is a compact submanifold of M , then fr(N), the frontier of N in M , is the
closure of ∂N − ∂M .

8.1. Surgery. Suppose F is a surface embedded in M . We consider two cases.
Either F ⊂ ∂M is a subsurface of the boundary or (F, ∂F ) ⊂ (M, ∂M) is properly
embedded.
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THE GEOMETRY OF THE DISK COMPLEX 15

Suppose (D, ∂D) ⊂ (M, F ) is an embedded disk. We call D a surgery disk for
F if

• D ∩ ∂F = ∅,
• D ∩ F = ∂D, and
• D ∩ ∂M = ∂D ∩ ∂M .

We may surger F along D to obtain FD, as follows. Let N be a closed regular
neighborhood of D. Remove from F the annulus N ∩ F . Form FD by gluing on
both disk components of fr(N)−F and taking the closure. When F ⊂ ∂M we must
also isotope interior(FD) into interior(M) to ensure that FD is properly embedded.

Definition 8.2. A surgery disk D for F ⊂ M is a compressing disk if ∂D ⊂ F is
an essential curve. If F admits no compressing disk, then F is incompressible in
M .

The triple (B,α,β) is a bigon exactly when B is a disk and α,β are arcs in ∂B
so that α ∪ β = ∂B and α ∩ β = ∂α = ∂β. Suppose (B,α,β) ⊂ (M, F, ∂M) is an
embedded bigon. We call B a surgery bigon for F if

• B ∩ ∂F = ∂α = ∂β,
• B ∩ F = α, and
• B ∩ ∂M = ∂B if F ⊂ ∂M while
• B ∩ ∂M = β if F is properly embedded.

Again, we may surger F along B. Let N be a closed regular neighborhood of
B. Remove the rectangle N ∩ F from F . Form FB by gluing on the two bigon
components of fr(N) − F and taking the closure. If F lies in ∂M we isotope
interior(FB) into interior(M) to ensure that FB is properly embedded.

Definition 8.3. A surgery bigon (B,α,β) for F ⊂ M is a boundary compression
if β is an essential arc in ∂M − ∂F . A boundary compression is essential in F if α
is an essential arc in F .

In other work, boundary compressions B for F are required to have the latter
property. We divide the definition in two because, for us, F will typically be a
properly embedded disk in M .

Suppose now that (F, ∂F ) is properly embedded in (M, S). Suppose X is a
subsurface of S. Properly isotope F , fixing ∂S pointwise, to make ∂F and ∂X
tight. If (B,α,β) is a boundary compression of F so that β ⊂ X, then we say that
F is boundary compressible into X.

8.4. Boundary compression. We now begin our study of boundary compressions
of disks.

Remark 8.5. Suppose Γ is a multicurve in S. Suppose (D, ∂D) ⊂ (M, S) is an
essential disk. Suppose that Γ and ∂D are tight. Suppose B is a boundary com-
pression of D into S − n(Γ), where n(Γ) is an open product neighborhood. Then
ι(DB,Γ) ≤ ι(∂D,Γ).

In a slight abuse of terminology, in the above definition we allow the multicurve Γ
to have parallel components.

Lemma 8.6. Suppose X, a connected essential subsurface of S, compresses in M .
Suppose (D, ∂D) ⊂ (M, S) is an essential disk. Suppose ∂X and ∂D are tight.
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16 HOWARD MASUR AND SAUL SCHLEIMER

Then

• D is boundary compressible into X or
• D is disjoint from some compressing disk (E, ∂E) ⊂ (M, X).

Proof. Suppose (E, ∂E) ⊂ (M, X) is a compressing disk. If ι(∂D, ∂E) = 0, then
we are done, using the irreducibility of M . Suppose instead that the geometric
intersection number is positive. Ambiently isotope E, fixing ∂X pointwise, to
make ∂E tight with respect to ∂D. This can be done because ∂D and ∂X are
tight. Since M is irreducible we may further isotope E, fixing ∂E pointwise, to
remove all simple closed curves of D∩E. Since D∩E remains non-empty let B be
an outermost bigon of E − D. So (B,α,β) ⊂ (M, D, X) is a surgery bigon.

If β is inessential in S − n(∂D), then β is parallel, in S, to an arc γ ⊂ ∂D.
Thus there is an ambient isotopy of D pushing γ past β. This reduces ι(∂D, ∂E),
a contradiction. !

8.7. Band sums. A band sum is the inverse operation to boundary compression.
Fix disjoint disks D′, D′′ ⊂ (M, S). Fix a simple arc δ ⊂ S so that δ meets each of
D′ and D′′ in exactly one endpoint. Let N ⊂ M be a closed regular neighborhood
of δ. Let D be the disk formed by adding to (D′∪D′′)−N the rectangle component
of fr(N)− (D′ ∪D′′). The disk D is the result of band summing D′ to D′′ along δ.
Note that D has a boundary compression dual to δ yielding D′ ∪D′′: that is, there
is a boundary compression B ⊂ N for D so that B ∩ δ is a single point and so that
DB = D′ ∪ D′′.

8.8. Compression bodies. We pause to discuss a few special three-manifolds.

Definition 8.9. Suppose F is a compact, connected, orientable surface. Let V
be a three-manifold obtained from F × I by attaching two-handles to F × {0} and
capping off any resulting two-spheres (disjoint from F ×{1}) with three-balls. Then
V is a compression body with exterior boundary ∂+V equal to F ×{1}, with vertical
boundary ∂0V equal to ∂F ×I, and with interior boundary ∂−V equal to the closure
of ∂V − (∂+V ∪ ∂0V ).

When ∂−V = ∂0V = ∅, then V is called a handlebody. In this case the genus of
V is the genus of ∂+V .

Disk components of ∂V −∂+V are called spots. When all components of ∂V −∂+V
are spots, then V is homeomorphic to a handlebody (ignoring the given partition
of ∂V ).

Following [5, Theorem 2.1] for any spotless pair (M, S) there is a characteristic
compression body V ⊂ M so that V has no spots, S = ∂+V = V ∩ ∂M , and the
inclusion induces an isomorphism D(V, S) ∼= D(M, S). If X is a subsurface of S,
then the characteristic compression body W ⊂ M for X is contained in V . If X is
not a hole for D(V, S), then the image of D(W, X) in D(V, S) has finite diameter.
When X is a hole the geometry of the inclusion D(W, X) → D(V, S) depends on
how W is contained in V . The inclusion need not be a quasi-isometric embedding;
see Remark 19.10 for a brief discussion.

By the above, to understand disk complexes of spotless pairs (M, S) it suffices to
study D(V, S), where V is a compression body without spots. However, this does
not appear to simplify any of the arguments.
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8.10. Interval bundles.

Definition 8.11. Suppose F is a compact, connected surface. Let T be the ori-
entation I–bundle over F : the unique I–bundle over F with orientable total space.
Let ρF : T → F be the associated bundle map. Then T has vertical boundary ∂vT
equal to ρ−1

F (∂F ) and has horizontal boundary ∂hT equal to the closure of ∂T−∂vT .

In general, if A ⊂ T is a union of fibers of the map ρF , then A is vertical.
If F is orientable, then T ∼= F × I. If F is non-orientable and if α ⊂ F is an
orientation-reversing simple closed curve, then ρ−1

F (α) ⊂ T is a vertical one-sided
Möbius band.

If F is not a sphere or a projective plane, then T is irreducible. Also ∂hT is always
incompressible in T . If F is not homeomorphic to a disk, then ∂vT is incompressible
in T . If ∂vT *= ∅, then any proper vertical surface in T admits a (vertical) surgery
bigon. However, no vertical surface in T may be boundary compressed into ∂hT .

Lemma 8.12. Suppose F is a compact, connected surface with ∂F *= ∅. Let
ρF : T → F be the orientation I–bundle over F . Let X be a component of ∂hT . Let
D ⊂ T be a properly embedded disk. Suppose

• ∂D is essential in ∂T ,
• ∂D and ∂X are tight and
• D cannot be boundary compressed into X.

Then D may be ambiently isotoped to be vertical with respect to T .

Proof. Since ∂D is tight with respect to ∂X we may ambiently isotope D to make
D ∩ ∂vT vertical.

Choose α ⊂ F , a multi-arc, cutting F into a collection of hexagons. Let A =
ρ−1

F (α). Thus A cuts T into a collection of hexagonal prisms. We choose α so that
A and D are in general position. Thus A ∩ ∂vT is disjoint from D ∩ ∂vT . (If F is
orientable, set Y = ∂hT − X. In this case choose α so that D ∩ Y is disjoint from
A ∩ Y .)

Our first goal is to ambiently isotope D inside of T to make D∩A vertical. Each
isotopy will decrease the complexity (|D ∩ A|, |∂D ∩ ∂A|). Also, each isotopy will
preserve the following properties.

• D ∩ ∂vT is vertical and disjoint from A ∩ ∂vT .
• ∂D is tight with respect to ∂X.
• If F is orientable, then D ∩ Y is disjoint from D ∩ A.

If all components of D ∩ A connect opposite sides of ∂hA, then we are done.
Suppose instead that β ⊂ D ∩ A cuts off of A either an innermost disk or an
outermost bigon. In the former case, as T is irreducible, there is an ambient isotopy
of D in T , fixing ∂T pointwise, that eliminates β. This decreases |D ∩ A| and
preserves the properties.

Suppose instead that β cuts an outermost bigon (B,β, γ) off of A. Note that
γ ⊂ X ∩ ∂hA. Since D cannot be boundary compressed into X, deduce that γ is
inessential in ∂T − ∂D. It follows that there is a bigon (C, γ, δ) lying in ∂T with
δ ⊂ ∂D. Since γ ∩ ∂X = ∅ and since ∂D, ∂X are tight deduce that C ∩ ∂X = ∅.
Thus C ⊂ X. Thus the ambient isotopy pushing δ across C reduces |∂D ∩ ∂A| and
preserves the properties.

Our next goal is to make D vertical in the complement of A. Let H be the
closure (in the path metric) of a component of T − A. So H is a hexagonal prism.
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18 HOWARD MASUR AND SAUL SCHLEIMER

Suppose D′ is a component of D ∩H. So D′ is a disk with D′ ∩ ∂vH disjoint from
∂vA (the vertical edges of H). Let ε be an arc of D′ ∩ ∂hH. (If F is orientable,
we choose ε ⊂ D′ ∩ Y .) Let E = ρ−1(ε) and let N = N(E) be a closed product
neighborhood of E. So N is a rectangular solid. Three consecutive sides of D′

are contained in ∂N : two vertical sides and ε. See Figure 8.13. For any arc β of
D′∩∂vN either β can be made vertical by ambient isotopy or β cuts a disk or bigon
out of ∂vN . In the latter cases we proceed as in the first half of the proof, making
D′ vertical in H. Performing all of these isotopies makes D vertical and the lemma
is proved. !

β

ε

Figure 8.13. The rectangular solid N contains D′ ∩ N .

9. Holes for the disk complex

Here we begin to classify holes for the disk complex, a more difficult analysis
than for the arc complex. Suppose (M, S) is a spotless pair. Recall that there is a
natural inclusion ν : D(M, S) → C(S).

Remark 9.1. Suppose X is cleanly embedded in S. Then X is a hole for D(M, S)
if every essential disk (D, ∂D) ⊂ (M, S) cuts X. Equivalently, S − n(X) is incom-
pressible in M . Some authors call X disk-busting for (M, S).

The classification of holes X for D(M, S) breaks into three cases. Either X is
an annulus, X compresses in M , or X is incompressible in M . For each we have a
theorem.

Theorem 10.1. Suppose X, an annulus, is a hole for D(M, S). Then the diameter
of X is at most 11.

Theorem 11.10. Suppose X is a compressible hole for D(M, S) with diameter at
least 15. Then there are essential disks D, E ⊂ M so that

• ∂D, ∂E ⊂ X and
• ∂D and ∂E fill X.
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THE GEOMETRY OF THE DISK COMPLEX 19

Theorem 12.1. Suppose X is an incompressible hole for D(M, S) with diameter
at least 57. Then there is an I–bundle ρF : T → F embedded in M so that

• ∂hT ⊂ S,
• X is a component of ∂hT ,
• some component of ∂vT is boundary parallel into S,
• F supports a pseudo-Anosov map.

These theorems have a corollary.

Corollary 9.2. If X is hole for D(M, S) with diameter at least 57, then X has
infinite diameter.

Proof. If X is a hole with diameter at least 57, then either Theorem 11.10 or The-
orem 12.1 applies.

If X is compressible, then Dehn twists, in opposite directions about the given
disks D and E, yield a homeomorphism f : M → M so that f |X is pseudo-Anosov.
This follows from Thurston’s construction [47, Theorem 7]. By Lemma 2.5 the hole
X has infinite diameter.

If X is incompressible, then X ⊂ ∂hT , where ρF : T → F is the given I–bundle.
Let f : F → F be the given pseudo-Anosov map. Now g, the suspension of f , gives
a homeomorphism of M . Again it follows that the hole X has infinite diameter. !

Applying Lemma 5.11 and Corollary 9.2 we find the following.

Proposition 9.3. If D(M, S) admits a hole X ! S with diameter at least 57, then
the inclusion ν : D(M, S) → C(S) is not a quasi-isometric embedding. !

10. Holes for the disk complex – annuli

Suppose (M, S) is spotless. This section is devoted to proving the following.

Theorem 10.1. Suppose X, an annulus, is a hole for D(M, S). Then the diameter
of X is at most 11.

The proof shares many features with the proofs of Theorems 11.10 and 12.1.
However, the exceptional definition of C(S0,2) prevents a unified approach. Fix
(M, S) a spotless pair. When M is a solid torus, then D(M, S) is at most a point
and there is nothing to prove. Henceforth we assume that M is not a solid torus.
We begin with the following.

Claim. For all D ∈ D(M, S), we have |D ∩ X| ≥ 2.

Proof. Since X is a hole, every disk cuts X. Let α be a core curve for X. If
|α∩D| = 1, then let N = N(α∪D). Since M is not a solid torus the disk E = fr(N)
is essential. Also E is disjoint from α. Thus E misses X, a contradiction. !

Assume, to obtain a contradiction, that X has diameter at least 12. Suppose
D ∈ D(M, S) is a disk chosen to minimize D ∩ X. Pick any disk E ∈ D(M, S) so
that dX(D, E) ≥ 6. Isotope D and E to make the boundaries tight and also tight
with respect to ∂X. Tightening triples of curves is not canonical; nonetheless there
is a tightening so that S − (∂D ∪ ∂E ∪ X) contains no triangles. See Figure 10.2.

After tightening ∂D, ∂E, and ∂X in this way we have the following.

Claim. Suppose δ ⊂ X ∩ ∂D and ε ⊂ X ∩ ∂E are any connected components (and
hence arcs). Then |δ ∩ ε| ≥ 1.
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20 HOWARD MASUR AND SAUL SCHLEIMER

Figure 10.2. Triangles outside of X (left side) can be moved into
X (right side). This decreases the number of points of D ∩ E ∩
(S − X).

Proof. Let SX be the annular cover of S corresponding to X. Let X ′ ⊂ SX be the
homeomorphic lift of X to SX . Define ∂D|X = κX(∂D) and define ∂E|X similarly.

Let δ′ ⊂ X ′ ∩ (∂D|X) be the homeomorphic lift of δ to X ′. Define ε′ similarly.
Since |δ ∩ ε| = |δ′ ∩ ε′| it suffices to bound the latter from below. Note that δ′ is
properly embedded in X ′ but not in SX . To cure this, define δ∗ ⊂ ∂D|X to be the
properly embedded arc in SX that contains δ′. Define ε∗ similarly.

Since dX(D, E) = diamX(∂D|X ∪ ∂E|X) ≥ 6 we find that dX(δ∗, ε∗) ≥ 4. It
follows from (2.4) that |δ∗ ∩ ε∗| ≥ 3.

Suppose x, y ∈ δ∗∩ ε∗ are consecutive along δ∗. Note that x and y are contained
in the preimage of X but are, possibly, not contained in X ′. See Figure 10.3.
However, if both x and y lie in the same component of SX − X ′, then either δ∗

or ε∗ shares a bigon with some lift of ∂X, a contradiction. Again, see Figure 10.3.
This implies that

|δ′ ∩ ε′| ≥ |δ∗ ∩ ε∗| − 2

and so |δ′ ∩ ε′| ≥ 1, as desired. !

δ∗ ε∗

Figure 10.3. Here is a sketch of SX . The central shaded region
is X ′. The upper and lower shaded regions are other lifts of X to
SX . These are not annuli but rather are homeomorphic to R × I.
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THE GEOMETRY OF THE DISK COMPLEX 21

Claim. There is an outermost bigon (B,α,β) of E−D with the following properties:

• B ⊂ E, B ∩ D = α, and B ∩ ∂E = β;
• ∂β ⊂ X;
• |β ∩ X| = 2.

It also follows that |D ∩ X| = 2.

Proof. Note that D∩E is a collection of arcs and curves in E. Since M is irreducible,
any simple closed curve component of D∩E can be removed by an ambient isotopy
(fixing ∂M pointwise) applied to D. Minimality of |D ∩ E| now implies that there
are no simple closed curves in D ∩ E.

Consider any outermost bigon B of E − D, with α and β as in the first bullet.
Since D∩E is minimal, the bigon B is a boundary compression for D. Note that β
cannot completely contain a component of E∩X as every arc of E∩X meets some
arc of D ∩ X. Using this observation, Figure 10.4 shows the four possible ways α
may lie inside of E.

α

Ε

Figure 10.4. The figure shows a portion of E. The darker part
of ∂E are the arcs of E ∩ X. The four arcs drawn in the interior
of E are the four possibilities for the arc α. Note that α cuts a
bigon (B,α,β) off of E. Thus either β is disjoint from X, or β is
contained in X, or β meets X in a single subarc, or β meets X in
two subarcs.

Note that after compression DB is a union of two essential disks, D′, D′′ ∈
D(M, S). Suppose α is one of the three unlabelled arcs depicted in Figure 10.4. It
follows that either D′ or D′′ has, after tightening, a smaller intersection with X
than D does, a contradiction. We deduce that α is as pictured by the labelled arc
in Figure 10.4.

As D′, D′′ cannot have a smaller intersection with X we deduce that |D∩X| = 2,
proving the claim. !

Using the same notation as in the proof above, let B be an outermost bigon of
E − D. We now study how α ⊂ ∂B lies inside of D.

Claim. The arc α ⊂ D connects distinct components of D ∩ X.

Proof. Suppose not. Then there is a bigon (C,α, γ) with C ⊂ D and γ ⊂ D ∩ X.
The disk C ∪ B is isotopic to D′ or D′′ and so is essential. Also, C ∪ B intersects
X at most once after tightening, contradicting our first claim. !

We finish the proof of Theorem 10.1 by noting that D ∪ B is homeomorphic to
Υ × I, where Υ is the simplicial tree with three edges and three leaves. We may
choose the homeomorphism so that (D ∪ B) ∩ X = Υ× ∂I. Since X is an annulus
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22 HOWARD MASUR AND SAUL SCHLEIMER

there is an ambient isotopy of D∪B making (D∪B)∩X just a pair of arcs. Recall
that DB = D′ ∪D′′. It follows that one of D′ or D′′ (or both) meets X in at most
a single arc, contradicting our first claim. !

11. Holes for the disk complex – compressible

The proof of Theorem 11.10 occupies the second half of this section.

11.1. Compression sequences of essential disks. Suppose (M, S) is a spotless
pair. Suppose X is a cleanly embedded subsurface of S. Suppose D ∈ D(M, S).
Choose representatives so that ∂D is tight with respect to ∂X. Suppose D∩∂X *= ∅.

Definition 11.2. A compression sequence for the data M, S, X, D is a sequence
{∆k}n

k=1 where ∆1 = {D} and where ∆k+1 obtained by boundary compressing ∆k

into S − n(∂X) and then tightening. Note that ∆k is a disjoint union of exactly
k essential disks. We further require that every disk of every ∆k cuts ∂X. A
compression sequence is maximal if either

• no disk of ∆n can be boundary compressed into S − n(∂X) or
• there is an essential disk (E, ∂E) ⊂ (M, S − n(∂X)) disjoint from ∆n.

Such maximal sequences end essentially or end in S − n(∂X), respectively.

Lemma 11.3. A maximal compression sequence exists for any data M, S, X, D.
Furthermore, some component of S − n(∂X) is compressible if and only if some
(hence all) compression sequence ends in S − n(∂X).

Proof. All compression sequences must end, by Remark 8.5. If Y is a compressible
component of S − n(∂X), then, by Lemma 8.6, all compression sequences end in
S − n(∂X). The backwards direction is immediate. !

In what follows we assume that X is not an annulus or a pair of pants. Our next
goal is to show that maximal sequences do not move very far in the arc and curve
complex of X.

Definition 11.4. Fix Dk ∈ ∆k. A disjointness pair in X for Dk is an ordered pair
(α,β) of essential arcs in X where

• α ⊂ Dk ∩ X,
• β ⊂ ∆n ∩ X, and
• dA(α,β) ≤ 1.

Here A = A(X).

If α *= α′, then the two disjointness pairs (α,β) and (α′,β) are distinct, even if
α is ambiently isotopic to α′ in X. We treat the second coordinate similarly. The
following lemma controls how subsurface projection distance changes in maximal
sequences.

Lemma 11.5. Suppose D ⊂ D(M, S) is an essential disk. Suppose that X is a
cleanly embedded subsurface of S. Suppose X is not an annulus or pants. Suppose
D cuts ∂X. Choose a maximal sequence {∆k}n

k=1 for the data M, S, X, D. For any
disk Dk ∈ ∆k either

• Dk ∈ ∆n or
• there are four distinct disjointness pairs {(αi,βi)}4

i=1 for Dk in X, where
each of the arcs αi appears as the first coordinate of at most two pairs.
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THE GEOMETRY OF THE DISK COMPLEX 23

Proof. We induct on n − k. If Dk is contained in ∆n there is nothing to prove. If
Dk is contained in ∆k+1 we are done by induction. Thus we may assume that Dk is
the disk in ∆k which is boundary compressed at stage k. Let Dk+1, D′

k+1 ∈ ∆k+1

be the two disks obtained by boundary compressing Dk along the bigon B. By
induction, each of Dk+1 and D′

k+1 either lie in ∆n or have disjointness pairs with
the required properties. See Figure 11.6 for a picture of the pair of pants P ⊂ S
cobounded by ∂Dk and ∂Dk+1 ∪ ∂D′

k+1.

Dk

Dk+1
δ

∂X

Dk+1′

Figure 11.6. All arcs shown connecting Dk to itself or to Dk+1∪
D′

k+1 are arcs of P ∩ ∂X. The arc B ∩ S of the bigon meets Dk

twice and is parallel to the arcs P ∩ ∂X connecting Dk to itself.

Choose δ (shown as a dotted arc in Figure 11.6) to be a band sum arc for
Dk+1∪D′

k+1, dual to B, that minimizes |δ∩∂X|. Since B is a boundary compression
in the complement of ∂X it follows that the band sum of Dk+1 and D′

k+1, along δ,
is tight without any isotopy.

There are now three possibilities: neither, one, or both points of ∂δ are contained
in X.

First suppose that X ∩ ∂δ = ∅. Then every arc of Dk+1 ∩X is parallel to an arc
of Dk ∩X, and similarly for D′

k+1. If Dk+1 and D′
k+1 are both components of ∆n,

then choose any arcs β,β′ of Dk+1 ∩X and of D′
k+1 ∩X. Let α,α′ be the parallel

components of Dk ∩X. The four disjointness pairs are then (α,β), (α,β′), (α′,β),
(α′,β′). Suppose instead Dk+1 is not a component of ∆n. Then Dk inherits four
disjointness pairs from Dk+1.

Second suppose that exactly one endpoint of ∂δ meets X. Breaking symmetry,
suppose γ ⊂ Dk+1 is the component of Dk+1 ∩ X meeting δ. Let X ′ be the
component of X ∩P that contains δ. Let α,α′ be the two components of Dk ∩X ′.
Let β be any arc of D′

k+1 ∩ X.
If Dk+1 /∈∆n, and if γ is not the first coordinate of one of the four disjointness

pairs for Dk+1, then Dk inherits disjointness pairs from Dk+1. If D′
k+1 /∈∆n, then

Dk inherits disjointness pairs from D′
k+1.

Thus we may assume that both Dk+1 and D′
k+1 are in ∆n or that only D′

k+1 ∈
∆n while γ appears as the first arc of a disjointness pair for Dk+1. In the former
case the required disjointness pairs are (α,β), (α′,β), (α, γ) and (α′, γ). In the
latter case we do not know if γ is allowed to appear as the second coordinate of a
pair. However, we are given four disjointness pairs for Dk+1 and are told that γ
appears as the first coordinate of at most two of these pairs. Hence the other two
pairs are inherited by Dk. The pairs (α,β) and (α′,β) give the desired conclusion.
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24 HOWARD MASUR AND SAUL SCHLEIMER

Third suppose that the endpoints of δ meet γ ⊂ Dk+1 and γ′ ⊂ D′
k+1. Let X ′

be a component of X ∩ P containing γ. Let α and α′ be the two arcs of Dk ∩ X ′.
Suppose both Dk+1 and D′

k+1 lie in ∆n. Then the desired pairs are (α, γ), (α′, γ),
(α, γ′) and (α′, γ′). If D′

k+1 ∈ ∆n while Dk+1 is not, then Dk inherits two pairs
from Dk+1. We add to these the pairs (α, γ′) and (α′, γ′). If neither disk lies in
∆n, then Dk inherits two pairs from each disk and the proof is complete. !

Given a disk D ∈ D(M, S) and a hole X ⊂ S our Lemma 11.5 adapts D to X.

Lemma 11.7. Fix a hole X for D(M, S) that is not an annulus or pants. For any
disk D ∈ D(M, S) there is a disk D′ ∈ D(M, S) with the following properties:

• ∂X and ∂D′ are tight.
• If X is incompressible, then D′ is not boundary compressible into S−n(∂X)

and dA(D, D′) ≤ 3.
• If X is compressible, then ∂D′ ⊂ X and dAC(D, D′) ≤ 3.
• Thus dX(D, D′) ≤ 6.

Here A = A(X) and AC = AC(X).

Proof. If ∂D ⊂ X, then take D′ = D and we are done. So we may assume
(Remark 9.1) that D cuts ∂X. By Lemma 11.3 there is a maximal compression
sequence {∆k}n

k=1 for the data M, S, X, D.
Suppose n > 1. Lemma 11.5 implies that the disk D = D1 has a disjointness

pair. Thus dA(D,∆n) ≤ 3. If X is incompressible, then we may take D′ to be
any component of ∆n. If X is compressible, then by Lemma 11.3 there is a disk
E compressing X and disjoint from ∆n. It follows that dAC(D, E) ≤ 3. Taking
D′ = E proves the lemma.

If n = 1, then the proof proceeds as in the previous paragraph, without the need
for disjointness pairs.

In all cases dAC(D, D′) ≤ 3. It follows from Corollary 4.6 that dX(D, D′) ≤ 6.
!

Remark 11.8. Lemma 11.7 is unexpected: after all, any two curves in C(X) can
be connected by a sequence of band sums. Thus arbitrary band sums can change
the subsurface projection to X. However, the sequences of band sums arising in
Lemma 11.7 are very special. Firstly they do not cross ∂X, and secondly they are
“tree-like” due to the fact that every arc in D is separating.

When D is replaced by a surface with genus, then Lemma 11.7 does not hold
in general; this is closely related to a fundamental observation of Kobayashi [27,
Theorem 1] (see also [21, Theorem 1.2]). Namazi points out that even if D is only
replaced by a planar surface, Lemma 11.7 does not hold in general.

11.9. Classification of compressible holes. We now prove the theorem.

Theorem 11.10. Suppose X is a compressible hole for D(M, S) with diameter at
least 15. Then there are essential disks D, E ∈ D(M, S) so that

• ∂D, ∂E ⊂ X and
• ∂D and ∂E fill X.

Proof. By Theorem 10.1 the subsurface X is not an annulus. Since C(X) is non-
empty, X is not a pants.
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THE GEOMETRY OF THE DISK COMPLEX 25

Choose disks D′ and E′ in D(M, S) so that dX(D′, E′) ≥ 15. By Lemma 11.7
there are disks D, E with ∂D, ∂E ⊂ X so that dX(D′, D) and dX(E′, E) are at
most six. It follows from the triangle inequality that dX(D, E) ≥ 3. !

12. Holes for the disk complex – incompressible

This section classifies incompressible holes for the disk complex.

Theorem 12.1. Suppose X is an incompressible hole for D(M, S) with diameter
at least 57. Then there is an I–bundle ρF : T → F embedded in M so that

• ∂hT ⊂ S,
• X is a component of ∂hT ,
• some component of ∂vT is boundary parallel into S, and
• F supports a pseudo-Anosov map.

Here is a short plan of the proof. We are given X, an incompressible hole for
D(M, S). Following Lemma 11.7 we may assume that D, E are essential disks,
without boundary compressions into S − n(∂X), so that dX(D, E) ≥ 45. We
examine the intersection pattern of D and E to find two families of rectangles R
and Q. The intersection pattern of these rectangles in M will determine the desired
I–bundle T . The third conclusion of the theorem follows from an outermost bigon
argument. The fourth conclusion requires another application of Lemma 11.7 as
well as Lemma 2.5.

12.2. Diagonals of polygons. To understand the intersection pattern of D and
E we discuss diagonals of polygons. Let D be a 2n–sided regular polygon. Label
the sides of D with the letters X and Y in alternating fashion. Any side labeled X
(or Y ) will be called an X side (or a Y side).

Definition 12.3. An arc γ properly embedded in D is a diagonal if the points of
∂γ lie in the interiors of distinct sides of D. If γ and γ′ are diagonals for D that
together meet three or four distinct sides, then γ and γ′ are non-parallel.

Lemma 12.4. Suppose Γ ⊂ D is a disjoint union of non-parallel diagonals. Then
there is an X side of D meeting at most eight diagonals of Γ.

Proof. A counting argument shows that |Γ| ≤ 4n−3. If every X side meets at least
nine non-parallel diagonals, then |Γ| ≥ 9

2n > 4n − 3, a contradiction. !
12.5. Improving disks. Suppose now that X is an incompressible hole for D(M, S)
with diameter at least 57. By Theorem 10.1, the subsurface X is not an annulus.
Since C(X) is non-empty, X is not a pants. Let Y = S − n(X).

Choose disks D′ and E′ in D(M, S) so that dX(D′, E′) ≥ 57. By Lemma 11.7
there are disks D, E ∈ D(M, S) that cannot be boundary compressed into X or
into Y so that dX(D′, D), dX(E′, E) ≤ 6. By the triangle inequality dX(D, E) ≥
57 − 12 = 45.

Recall that ∂D and ∂E are tight with respect to ∂X. We may further assume
that ∂D and ∂E are tight with respect to each other. Also, minimize the quantities
|X∩(∂D∩∂E)| and |D∩E| while keeping everything tight. In particular, X−(∂D∪
∂E) has no triangle components. Now consider D and E as even-sided polygons,
with vertices being the points ∂D ∩ ∂X and ∂E ∩ ∂X respectively. Let Γ = D ∩E.

Claim. Γ ⊂ D is a disjoint union of diagonals.
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Proof. The minimality of |D∩E| and the irreducibility of M imply that Γ contains
no simple closed curves. Suppose γ ⊂ Γ is a non-diagonal. Then there is an
outermost such arc in D, say γ′ ⊂ Γ, cutting a bigon B out of D. Tightness implies
that B is a boundary compression of E into S − n(∂X). But this contradicts
the construction of E. Thus all arcs of Γ are diagonals for D and, by the same
argument, for E. !

One possibility for Γ ⊂ D is shown in Figure 12.6. By Lemma 12.4 there is
a component α ⊂ D ∩ X meeting at most eight distinct types of diagonal of Γ.
Choose β ⊂ E ∩ X similarly. As dX(D, E) ≥ 45, applying Lemma 4.5 proves that
dX(α,β) ≥ 45 − 4 = 41.

Break each of α and β into at most eight subarcs {αi} and {βj} so that each
subarc meets all of the diagonals of fixed type and only of that type. Let Ri ⊂ D be
the rectangle with upper boundary αi and containing all of the diagonals meeting
αi. Let α′

i be the lower boundary of Ri. Define Qj ⊂ E and β′
j similarly. See

Figure 12.6 for a picture of Ri.

αi

αi′

Ri

Figure 12.6. The rectangle Ri ⊂ D is surrounded by the dotted
line. The arc αi in ∂D∩X is indicated. In general the arc α′

i may
lie in X or in Y .

An arc αi is large if there is an arc βj so that |αi ∩βj | ≥ 3. Note that |αi ∩βj | =
|α′

i ∩ β′
j |, so α′

i is large if and only if αi is large. We use the same notation for βj .
Let Θ be the union of all of the large αi and βj . Thus Θ is a graph in X with all
vertices of valence one or four. Let Θ′ be the union of the large α′

i and β′
i.

Claim 12.7. The graph Θ is non-empty.

Proof. If Θ = ∅, then all αi are small. Thus |α ∩ β| ≤ 128 and so |σX(α) ∩
σX(β)| ≤ 512. Lemma 2.3 implies that dX(α,β) ≤ 20. As dX(α,β) ≥ 41 this is a
contradiction. !

Let Z ⊂ S be a small regular neighborhood of Θ and define Z ′ similarly.

Claim 12.8. No component of Θ or of Θ′ is contained in a disk C ⊂ S. No
component of Θ or of Θ′ is contained in an annulus A ⊂ S peripheral in X.

Proof. For a contradiction suppose that W is a component of Z contained in a disk
C ⊂ S. Then there is some pair αi,βj cutting a bigon out of S. This contradicts
the tightness of ∂D and ∂E. The same holds for Z ′.

Suppose now that some component W is contained in an annulus A, peripheral
in X. Thus W fills A. Suppose αi and βj are large and contained in W . By the
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classification of arcs in A we deduce that either αi and βj form a bigon in A or the
triple ∂X, αi, and βj form a triangle. Either conclusion gives a contradiction. !

Claim 12.9. If W ⊂ Z is a component and δ ⊂ ∂W is a component, then either δ
is inessential or peripheral in X.

Proof. Suppose some δ ∈ ∂W is essential and non-peripheral. Any large αi meets
∂W in at most two points, while any small αi meets ∂W in at most 32 points. Thus
|σX(α) ∩ δ| ≤ 512 and the same holds for β. Thus dX(α,β) ≤ 40 by the triangle
inequality. As dX(α,β) ≥ 41, this is a contradiction. !

From Claim 12.9 we deduce the following.

Claim 12.10. The graphs Θ, Θ′ are each connected. Also, Θ fills X. !
There are now two possibilities: Θ and Θ′ either intersect or are disjoint. In the

first case set Σ = Θ ∪ Θ′ and in the second case set Σ = Θ. By the claims above,
Σ is connected and fills X. Let R = {Ri} and Q = {Qj} be the collections of large
rectangles.

12.11. Building the I–bundle. Section 12.5 gives us Σ, R, and Q. Note that
R ∪ Q is an I–bundle and Σ is the component of its horizontal boundary meeting
X. See Figure 12.12 for an example.

Qj

Ri

Figure 12.12. R ∪ Q is an I–bundle: all arcs of intersection are parallel.

Let T0 be a regular neighborhood of R ∪ Q, taken in M . Thus T0 has the
structure of an I–bundle. Note that ∂hT0 ⊂ S, ∂hT0 ∩ X is a component of ∂hT0,
and this component fills X due to Claim 12.10. We will enlarge T0 to obtain the
desired I–bundle T ⊂ M .

Begin by enumerating all annuli {Ai} ⊂ ∂vT0 with the property that some
component of ∂Ai is inessential in S. Suppose we have built the I–bundle Ti and are
now considering the annulus A = Ai. Let γ ∪ γ′ = ∂A ⊂ S with γ inessential in S.
Let B ⊂ S be the disk which γ bounds. So B is contained in X or in Y = S−n(X).
By induction, no component of ∂hTi is contained in a disk embedded in S: the base
case holds by Claim 12.8. It follows that B ∩Ti = ∂B = γ. Thus B ∪A is isotopic,
fixing γ′ pointwise, to a properly embedded disk B′ ⊂ M . As γ′ lies in X or Y ,
both incompressible, γ′ must bound a disk C ⊂ S. Again, C lies in X or in Y .
Note C ∩ Ti = ∂C = γ′, using the induction hypothesis. So B ∩ C = ∅.
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It follows that B∪A∪C is an embedded two-sphere in M . Since M is irreducible
B ∪ A ∪ C bounds a three-ball Ui in M . Choose a homeomorphism Ui

∼= B × I so
that B is identified with B × {0}, C is identified with B × {1}, and A is identified
with ∂B × I. We form Ti+1 = Ti ∪ Ui and note that Ti+1 still has the structure of
an I–bundle. Recalling that A = Ai we have ∂vTi+1 = ∂vTi − Ai. Also ∂hTi+1 =
∂hTi ∪ (B∪C) ⊂ S. Thus no component of ∂hTi+1 is contained in a disk embedded
in S. Similarly, ∂hTi+1 ∩X is a component of ∂hTi+1; this component is connected
and fills X.

After dealing with all of the annuli {Ai} in this fashion we are left with an I–
bundle T . Now all components of ∂∂vT are essential in S. All of these lying in X
are peripheral in X. This is because they are disjoint from Σ ⊂ ∂hT , which fills X.
It follows that the component of ∂hT containing Σ is isotopic to X.

This finishes the construction of the promised I–bundle T and demonstrates the
first two conclusions of Theorem 12.1. For future use we record the following.

Remark 12.13. Every curve of ∂∂vT = ∂∂hT is essential in S.

12.14. A vertical annulus parallel into the boundary. Here we obtain the
third conclusion of Theorem 12.1. We say that a hole X for D(M, S) is small if
diamX(D(M, S)) < 61 and large otherwise. Suppose X is a large incompressible
hole and T is the I–bundle constructed in the previous section, having X as a
component of ∂hT . We show that at least one component of ∂vT is boundary
parallel into S.

Claim 12.15. All components of ∂vT are incompressible in M .

Proof. Suppose A ⊂ ∂vT is a compressible annulus component. By Remark 12.13
we may compress A to obtain a pair of essential disks B and C. Note that ∂B is
isotopic into the complement of ∂hT . Thus S − n(∂hT ) compresses. So S − n(X)
compresses and X is not a hole, a contradiction. !
Claim 12.16. Some component of ∂vT is boundary parallel.

Proof. Let D ∈ D(M, S) be an essential disk that cannot be boundary compressed
into S − n(∂X). Apply an ambient isotopy to D that minimizes |D ∩ ∂vT |. Let
Γ = D ∩ ∂vT . Since X is an incompressible hole, Γ is non-empty. By Claim 12.15,
and because M is irreducible, Γ has no simple closed curves. Since D cannot be
boundary compressed into S − n(∂X), all arcs of Γ are essential in ∂vT . Let γ be
any outermost arc of Γ in D. So γ cuts a bigon B off of D. Let δ be the closure
of ∂B − γ. Let A be the component of ∂vT containing γ. So (B, γ, δ) ⊂ (M, A, S).
Note that the interior of δ is contained in S − ∂hT . This is because ∂vT cannot be
boundary compressed into T .

Let C = AB be the disk that results from boundary compressing the annulus
A along the bigon B. Note that C is properly embedded in (M, S), with ∂C
disjoint from ∂hT . Since (M, S) is spotless, C is not peripheral. It follows that C
is inessential. Thus C cuts a closed three-ball U off of M . Since C is disjoint from
T , from Remark 12.13 we deduce that T ∩ U = ∅. It follows that A is boundary
parallel into S, as desired. !
Remark 12.17. The proof of Claim 12.16 implies that the multicurve

{∂A | A ⊂ ∂vT is a boundary parallel into S}
is disk-busting for (M, S).
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12.18. Finding a pseudo-Anosov map. Here we obtain the fourth conclusion of
Theorem 12.1: the base surface F of the I–bundle T admits a pseudo-Anosov map.

As in Section 12.5, pick essential disks D′ and E′ in (M, S) so that dX(D′, E′) ≥
57. Lemma 11.7 provides disks D and E which cannot be boundary compressed
into S − n(∂X). Thus D and E cannot be boundary compressed into ∂hT . Also,
dX(D, E) ≥ 57 − 12 = 45.

After isotoping D to minimize intersection with ∂vT it must be the case that
all components of D ∩ ∂vT are essential arcs in ∂vT . By Lemma 8.12 there is an
ambient isotopy of D making D ∩ T vertical in T . The same holds for E. Choose
A and B, components of D ∩ T and of E ∩ T . These are vertical rectangles. As
usual, we use Theorem 10.1 to rule out the possibility that X is an annulus. By
Lemma 4.5 we have diamX(πX(D)) ≤ 2 and so dX(A, B) ≥ 45 − 4 = 41.

We now begin to work in the base surface F ; by the above, F is not an annulus.
Recall ρF : T → F is the bundle map. Take α = ρF (A) and β = ρF (B). The
natural map C(F ) → C(X), defined by taking a curve to its lift, is distance non-
increasing (see (6.5)). Thus dF (α,β) ≥ 41. Thus, by Lemma 2.5 the subsurface F
supports a pseudo-Anosov map and we are done.

12.19. Corollaries. We now deal with the possibility of disjoint holes for the disk
complex.

Lemma 12.20. Suppose X is a large incompressible hole for D(M, S) supported by
the I–bundle ρF : T → F . Let Y = ∂hT − X. Let τ : ∂hT → ∂hT be the involution
switching the ends of the interval fibers. Suppose D ∈ D(M, S) is an essential disk.

• If F is orientable, then dA(F )(D ∩ X, D ∩ Y ) ≤ 6.
• If F is non-orientable, then dX(D, Cτ(X)) ≤ 3.

Proof. We repeat the proof of Lemma 11.7 with ∂X everywhere replaced by ∂∂hT .
So there is a disk D′ ⊂ M which is tight with respect to ∂∂hT and which cannot be
boundary compressed into ∂hT (or into S −∂hT ). For any component Z ⊂ ∂hT we
have dA(Z)(D, D′) ≤ 3. By Lemma 8.12 an ambient isotopy (preserving T setwise)
makes D′ ∩ T vertical in T and we are done. !

Recall Lemma 7.3: all holes for the arc complex intersect. This cannot hold for
the disk complex. For example let F be an orientable surface with boundary and
let ρF : T → F be the product I–bundle. So M = T is a handlebody. Notice that
both components of ∂hT are holes for D(M). However, by the first conclusion of
Lemma 12.20, X and Y are paired holes, in the sense of Definition 5.6. So, as with
the invariant arc complex (Lemma 7.5), all holes for the disk complex interfere.

Lemma 12.21. Suppose X, Z ⊂ S are large holes for D(M, S). If X ∩Z = ∅, then
there is an I–bundle T ∼= F × I in M so that ∂hT = X ∪ Y and Y ∩ Z *= ∅.

Proof. Suppose X ∩ Z = ∅. It follows from Remark 9.1 that both X and Z are
incompressible. Let ρF : T → F be the I–bundle in M with X ⊂ ∂hT , as provided
by Theorem 12.1. We also have a component A ⊂ ∂vT so that A is boundary
parallel into S. Let U be the closure of the solid torus component of M −A. Note
that Z cannot be contained in S∩∂U because Z is not an annulus (Theorem 10.1).

Let α = ρF (A). Choose any essential arc δ ⊂ F with both endpoints in α ⊂ ∂F .
It follows that ρ−1

F (δ), together with two meridional disks of U , forms an essential
disk D in (M, S). Let W be the closure of ∂hT ∪ (∂U − A). Note that ∂D ⊂ W .
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If F is non-orientable, then Z ∩ W = ∅ and we have a contradiction. Deduce
that F is orientable. Now, if Z misses Y , then Z misses W and we again have a
contradiction. It follows that Z cuts Y and we are done. !

13. Axioms for combinatorial complexes

The goal of this section and the next is to prove, inductively, the upper bound
on distance in a combinatorial complex G(S). This section presents our axioms for
G: sufficient hypotheses for Theorem 13.1. The axioms, apart from Axiom 13.3, are
quite general. Axiom 13.3 is necessary to prove hyperbolicity and greatly simplifies
the recursive construction given in Section 14.

Theorem 13.1. Fix S, a compact, connected, non-simple surface. Suppose G(S)
is a combinatorial complex satisfying the axioms of Section 13. For any constants
c, x ≥ 0 there is a constant A = A(c, x) with the following property. Suppose X is
a hole for G with ξ(X) = x. Suppose αX ,βX ∈ G are contained in X. Then

dG(αX ,βX) ≤A

∑
[dY (αX ,βX)]c

where the sum is taken over all holes Y ⊆ X for G.

The proof of this upper bound is more difficult than the proof of the lower bound,
Theorem 5.14. This is because naturally occurring paths in G between αX and βX

may waste time in non-holes. As a first example, consider the path in C(S) obtained
by taking short curves along a Teichmüller geodesic. The Teichmüller geodesic may
spend time rearranging the geometry of a subsurface. Thus the path of systoles in
the curve complex might be much longer than the curve complex distance between
the endpoints.

In Sections 16, 17, 19 we will verify these axioms for the curve complex of a
non-orientable surface, the arc complex, and the disk complex.

13.2. The axioms. Suppose G(S) is a combinatorial complex.

Axiom 13.3 (Holes interfere). All large holes for G interfere.

As discussed in Lemma 5.12 this axiom is necessary to show that G is Gromov
hyperbolic. It also greatly simplifies the inductive proof of Theorem 13.1. The
remaining axioms provide constants so that for any pair of vertices αX ,βX ∈ G,
both contained in a hole X for G, there is

• a marking path Λ = {µn}N
n=0,

• an accessibility interval JY ⊂ [0, N ] for every essential subsurface Y ⊂ X,
• a combinatorial sequence Γ = {γi}K

i=0 ⊂ G that starts with αX , ends with
βX and has each γi contained in X, and

• an increasing reindexing function r : [0, K] → [0, N ] with r(0) = 0 and
r(K) = N

with various properties. Here are the first four axioms.

Axiom 13.4 (Marking path).

(1) The support of µn+1 is contained inside the support of µn.
(2) For any subsurface Y ⊆ X, if πY (µk) *= ∅, then for all n ≤ k the map

n 1→ πY (µn) is an unparameterized quasi-geodesic with constants depend-
ing only on G.
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The second condition is crucial and often technically difficult to obtain.

Axiom 13.5 (Accessibility). The accessibility interval for X is JX = [0, N ]. There
is a constant B1 so that the following hold.

(1) If m ∈ JY , then Y is contained in the support of µm.
(2) If m ∈ JY , then ι(∂Y, µm) < B1.
(3) If [m, n] ∩ JY = ∅, then dY (µm, µn) < B1.

Axiom 13.6 (Combinatorial). The vertex γi is contained in the support of µr(i).
Further, there is a constant B2 so that

(1) dY (γi, µr(i)) < B2, for every i ∈ [0, K] and every hole Y ⊂ X, and
(2) dG(γi, γi+1) < B2, for every i ∈ [0, K − 1].

Axiom 13.7 (Replacement). There is a constant C3 with the following property.
If Y ⊂ X is a large hole for G and if r(i) ∈ JY , then there is a vertex γ′ ∈ G so that

(1) γ′ is contained in Y and
(2) dG(γi, γ′) < C3.

There are two axioms left, dealing with straight and shortcut intervals. These are
given in the next subsection.

13.8. Inductive, electric, shortcut, and straight intervals. We describe subin-
tervals that arise when partitioning [0, K], the combinatorial interval. Let x =
ξ(X). As discussed in Section 13.15, we choose a general upper threshold L2 and,
for all y ≤ x, a lower threshold L1(y).

Definition 13.9. Suppose [i, j] ⊂ [0, K] is a subinterval of the combinatorial se-
quence. Then [i, j] is an inductive interval if there is a hole Y ! X so that

(1) r([i, j]) ⊂ JY (if Y is paired, then r([i, j]) ⊂ JY ∩ JY ′) and
(2) dY (γi, γj) ≥ L1(y), where y = ξ(Y ).

When X is the only relevant hole there is a simpler definition.

Definition 13.10. Suppose [i, j] ⊂ [0, K] is a subinterval of the combinatorial
sequence. Then [i, j] is an electric interval if dY (γi, γj) < L2 for all holes Y ! X.

Electric intervals will be partitioned into straight and shortcut intervals.

Definition 13.11. Suppose [i, j] ⊂ [0, K] is an electric interval. Then [p, q] ⊂ [i, j]
is a straight interval if dZ(µr(p), µr(q)) < L2 for all non-holes Z ⊂ X.

Definition 13.12. Suppose [i, j] ⊂ [0, K] is an electric interval. Then [p, q] ⊂ [i, j]
is a shortcut if there is a non-hole Z ⊂ X so that

(1) r([p, q]) ⊂ JZ and
(2) dZ(µr(i), µr(j)) ≥ L1(x), where x = ξ(X).

Axiom 13.13 (Straight). There is a constant A = A(x) so that for every straight
interval [p, q] we have

dG(γp, γq) <A dX(γp, γq).

Axiom 13.14 (Shortcut). There is a constant C4 = C4(x) so that for every short-
cut [p, q] we have

dG(γp, γq) < C4.

The verification of the shortcut axiom often requires some of the details of the
classification of holes for G.
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13.15. Deductions from the axioms. Axiom 13.4 and Lemma 3.12 imply that
the reverse triangle inequality holds for projections of marking paths.

Lemma 13.16. There is a constant C5 so that

dY (µm, µn) + dY (µn, µp) < dY (µm, µp) + C5

for every essential Y ⊂ X and for every m < n < p in [0, N ]. !

We make C5 larger, if necessary, to arrange C5 ≥ diamS πS(µ ∪ ν) for any adja-
cent markings µ, ν ∈ M(S) in the marking graph. We record a consequence of
Axiom 13.5.

Lemma 13.17. There is a constant C1 > B1 with the following property. If ∂Y
cuts Z and if m, n ∈ JY , then dZ(µm, ∂Y ) < C1 and also dZ(µm, µn) < C1.

Proof. Part (1) of Axiom 13.5 says that Y is contained in the support of µm. Thus
µm cuts Z. The same is true of µn. Part (2) of Axiom 13.5 says that ι(µn, ∂Y ) ≤ B1.
It follows that πZ(µm) and πZ(∂Y ) have bounded intersection. Lemma 2.3 gives
a bound for dZ(µm, ∂Y ). The triangle inequality implies that dZ(µm, µn) is also
bounded. !

Part (2) of Axiom 13.6 and Lemma 5.9 imply the following.

Lemma 13.18. There is a constant C2 > B2 with the following property. For any
hole Y and for any i ∈ [0, K − 1], we have dY (γi, γi+1) < C2. !

We now have all of the constants C1, C2, C3, C4, C5 in hand. Recall that L3 is
the pairing constant of Definition 5.6 and that M0 is the constant from the bounded
geodesic image theorem (4.7). We choose a lower threshold L1(y) for all y ≤ ξ(X).
We choose the general upper threshold, L2 and general lower threshold L0. For all
z < y ≤ x we require the following:

L0 > C1 + 2C2 + 2L3,(13.19)

L1(y) > M0 + 2C1 + 5C2 + 2L3 + L0 + 2,(13.20)

L1(x) > L1(z) + 2C1 + 4C2 + 4L3,(13.21)

L2 > L1(x) + 2L3 + 6C5 + 2C2 + 14C1 + 11.(13.22)

14. Partition and the upper bound on distance

In this section we prove Theorem 13.1 by induction on x = ξ(X). The first
stage of the proof is to describe the inductive partition: we partition the given
interval [0, K] into inductive and electric intervals. The inductive partition is closely
linked with the hierarchy machine [31, Section 4] and with the notion of antichains
introduced in [42, Section 5].

We next give the shortcut partition; each electric interval is divided into straight
and shortcut intervals. We finally bound dG(αX ,βX) from above by combining the
contributions from the various intervals.

14.1. Inductive partition. We begin by identifying the relevant surfaces. Pick a
hole X for G; pick vertices αX ,βX ∈ G contained in X. Define

BX = {Y ! X | Y is a hole and dY (αX ,βX) ≥ L1(x)}.
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The axioms give a combinatorial sequence Γ = {γi}K
0 . For any subinterval [i, j] ⊂

[0, K] define
BX(i, j) = {Y ∈ BX | dY (γi, γj) ≥ L1(x)}.

We now partition [0, K] into inductive and electric intervals. Begin with the
partition of one part PX = {[0, K]}. Recursively PX is a partition of [0, K] consist-
ing of subintervals which are either inductive, electric, or undetermined. Suppose
[i, j] ∈ PX is undetermined.

Claim. If BX(i, j) is empty, then [i, j] is electric.

Proof. Since BX(i, j) is empty, every hole Y ! X has either dY (γi, γj) < L1(x) or
Y /∈ BX . In the former case, as L1(x) < L2, we are done.

So suppose the latter holds. By the reverse triangle inequality (Lemma 13.16)

dY (µr(i), µr(j)) < dY (µ0, µN ) + 2C5.

Since r(0) = 0 and r(K) = N we find

dY (γi, γj) < dY (αX ,βX) + 2C5 + 4C2.

Thus
dY (γi, γj) < L1(x) + 2C5 + 4C2 < L2.

This proves the claim. !
Thus if BX(i, j) is empty, then [i, j] ∈ PX is determined to be electric. Proceed

on to the next undetermined subinterval. Suppose instead that BX(i, j) is non-
empty. Pick a hole Y ∈ BX(i, j) so that Y has maximal complexity y = ξ(Y )
amongst the elements of BX(i, j)

Let p, q ∈ [i, j] be the first and last indices, respectively, so that r(p), r(q) ∈ JY .
(If Y is paired with Y ′, then we take the first and last indices that, after reindexing,
lie inside of JY ∩ JY ′ .)

Claim. The indices p, q are well-defined.

Proof. Since Y ∈ BX(i, j), we have dY (γi, γj) ≥ L1(x). Let m, n = r(i), r(j).
Suppose JY ∩ [m, n] = ∅. By part (3) of Axiom 13.5 we have dY (µm, µn) < B1.
Part (1) of Axiom 13.6 implies that

dY (γi, γj) < B1 + 2B2 < C1 + 2C2.

This is less than L1(x) by Equation 13.20, giving a contradiction. Thus m < min JY

and max JY < n.
Suppose JY ∩ r([i, j]) is empty. So let h be the last index with r(h) < min JY .

Thus max JY < r(h + 1). We have

dY (µm, µr(h)) < B1 and dY (µr(h+1), µn) < B1.

By Lemma 13.18 we have dY (γh, γh+1) < C2. Applying part (1) of Axiom 13.6
repeatedly, we find

dY (γi, γj) < C2 + 4B2 + 2B1 < L1(X),

with the last inequality deduced from Equation 13.20. This is a contradiction.
Thus, if Y is not paired, the indices p, q are well-defined.

Suppose Y is paired with Y ′. Recall that measurements made in Y and Y ′ differ
by at most the pairing constant L3 given in Definition 5.6. Thus we may deduce,
as in the previous two paragraphs, JY ′ ∩ r([i, j]) is non-empty.
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Suppose now, for a contradiction, that JY ∩ JY ′ ∩ r([i, j]) is empty.

h = max{2 ∈ [i, j] | r(2) ∈ JY }Define

k = min{2 ∈ [i, j] | r(2) ∈ JY ′}.and

Without loss of generality we may assume that h < k. It follows that dY ′(γi, γh)
< C1 + 2C2. Thus dY (γi, γh) < C1 + 2C2 + 2L3. Also, dY (γh+1, γj) < C1 + 2C2.
Deduce

dY (γi, γj) < 2C1 + 4C2 + 2L3 + 2 < L1(x)

with the last inequality following from (13.20). This contradicts the assumption
that Y ∈ BX(i, j) and we are done. !
Claim. The interval [p, q] is inductive for Y .

Proof. We must check that dY (γp, γq) ≥ L1(y). Suppose first that Y is not paired.
Then by the definition of p, q, by property (3) of Axiom 13.5 and by the triangle
inequality we have

dY (µr(i), µr(j)) ≤ dY (µr(p), µr(q)) + 2C1.

Thus by Axiom 13.6,

dY (γi, γj) ≤ dY (γp, γq) + 2C1 + 4C2.

Since by (13.21),

L1(y) + 2C1 + 4C2 < L1(x) ≤ dY (γi, γj),

we are done.
When Y is paired the proof is similar but we must use the slightly stronger

inequality L1(y) + 2C1 + 4C2 + 4L3 < L1(x). !
When BX(i, j) is non-empty, these two claims give a hole Y and indices p, q.

We subdivide the element [i, j] ∈ PX into the elements [i, p − 1], [p, q], and [q +
1, j]. (The first or third interval, or both, may be empty.) The interval [p, q] ∈
PX is determined to be inductive and associated to Y . Now proceed to the next
undetermined element. This completes the construction of PX .

As a bit of notation, if [i, j] ∈ PX is associated to Y ⊂ X we will sometimes
write IY = [i, j]. Note that IY is a subinterval of the combinatorial sequence while
JY is a subinterval of the marking path. Note that r(IY ) ⊂ JY .

14.2. Properties of the inductive partition.

Lemma 14.3. Suppose Y and Z, both contained in X, are holes for G. Suppose
IZ is an inductive element of PX associated to Z. Suppose r(IZ) ⊂ JY (or r(IZ) ⊂
JY ∩ JY ′ if Y is paired). Then

• Z is nested in Y or
• Z and Z ′ are paired and Z ′ is nested in Y .

Proof. Let IZ = [i, j] and z = ξ(Z). Suppose first that ∂Y cuts Z. By Lemma 13.17,
dZ(µr(i), µr(j)) < C1. Then by Axiom 13.6,

dZ(γi, γj) < C1 + 2C2 < L1(z),

a contradiction.
Now, if Z and Y are disjoint, then by Axiom 13.3 and Definition 5.6 there are

two cases. Suppose Y is paired with Y ′; thus Y ′ and Z meet. In this case we are
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done, just as in the previous paragraph. Suppose instead that Z is paired with Z ′;
thus Z ′ and Y meet. If Z ′ is nested in Y , then we are done. If ∂Y cuts Z ′, then,
as r([i, j]) ⊂ JY , again Axiom 13.6 and Lemma 13.17 imply that

dZ′(γi, γj) < C1 + 2C2.

So dZ(γi, γj) < C1 + 2C2 + 2L3 < L1(z), a contradiction. !

Proposition 14.4. Suppose Y ! X is a hole for G.

(1) There is at most one inductive interval IY ∈ PX associated to Y .
(2) If Y is associated to an inductive interval IY ∈ PX and Y is paired with

Y ′, then Y ′ is not associated to any inductive interval in PX .
(3) There are at most two holes Z and W , distinct from Y (and from Y ′ if Y

is paired) such that
• there are inductive intervals IZ = [h, i] and IW = [j, k] and
• dY (γh, γi), dY (γj , γk) ≥ L0.

Remark 14.5. It follows that for any hole Y there are at most three inductive
intervals in the partition PX , where Y has projection distance greater than L0.

Proof of Proposition 14.4. We prove the second claim. Suppose IY = [p, q] and
IY ′ = [p′, q′] with q < p′. It follows that [r(p), r(q′)] ⊂ JY ∩ JY ′ . If q + 1 = p′, then
the partition would have chosen a larger inductive interval for one of Y or Y ′. It
must be the case that there is an inductive interval IZ ⊂ [q + 1, p′ − 1] for some
hole Z, distinct from Y and Y ′, with ξ(Z) ≥ ξ(Y ). However, by Lemma 14.3, we
find that Z is nested in Y or in Y ′. It follows that Z = Y or Y ′, a contradiction.

The first statement has a similar proof.
We prove the third claim. Suppose Z and W are the first and last holes, if any,

satisfying the hypotheses. Since dY (γh, γi) ≥ L0 we find by Axiom 13.6 that

dY (µr(h), µr(i)) ≥ L0 − 2C2.

By (13.19), L0 − 2C2 > C1 so that

JY ∩ r(IZ) *= ∅.
If Y is paired, then, again by (13.19), we have L0 > C1 + 2C2 + 2L3; we also
find that JY ′ ∩ r(IZ) *= ∅. Symmetrically, JY ∩ r(IW ) (and JY ′ ∩ r(IW )) are also
non-empty.

It follows that the interval [i + 1, j − 1] between IZ and IW , after applying the
reindexing map, is contained in JY (and JY ′ , if Y is paired). Thus for any inductive
interval IV = [p, q] between IZ and IW the associated hole V is nested in Y (or V ′

is nested in Y ), by Lemma 14.3. If V = Y or V = Y ′ there is nothing to prove.
Suppose instead that V (or V ′) is strictly nested in Y . It follows that

dY (γp, γq) < C1 + 2C2 < L0.

Thus there are no inductive intervals between IZ and IW satisfying the hypotheses
of the third claim. !

The following lemma and proposition bound the number of inductive intervals.
The discussion here is very similar to the discussion of antichains in [42, Section
5]. Our situation is complicated by the presence of non-holes and interfering holes.
Suppose that X,αX ,βX are given, as in the beginning of Section 14.1. Let x =
ξ(X).
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Lemma 14.6. Suppose 2 ≥ (3 · L2)x. Suppose {Yi}'i=1 is a set of distinct holes
that are strict subsurfaces of X, each having dYi(αX ,βX) ≥ L1(x). Then there is
a hole Z ⊆ X such that dZ(αX ,βX) ≥ L2 − 1 and Z contains at least L2 of the Yi.

Furthermore, for at least L2 −4(C5 +3C1 +2) of these Yi we find that JYi ! JZ .
(If Z is paired, then JYi ! JZ ∩ JZ′ .) Each of these Yi is disjoint from a distinct
vertex ηi ∈ [πZ(αX),πZ(βX)].

Proof. Let gX be a geodesic in C(X) joining αX ,βX . By the bounded geodesic
image theorem (4.7), since L1(x) > M0, for every Yi there is a vertex ωi ∈ gX

such that Yi ⊂ X − ωi. Thus dX(ωi, ∂Yi) ≤ 1. If there are at least L2 distinct
ωi, associated to distinct Yi, then dX(αX ,βX) ≥ L2 − 1. In this situation we take
Z = X. Since JX = [0, N ] we are done.

Thus assume there do not exist at least L2 distinct ωi. Then there is some fixed
ω among these ωi such that at least '

L2
≥ 3(3 · L2)x−1 of the Yi satisfy

Yi ⊂ (X − ω).

Thus one component, call it W , of X − ω contains at least (3 · L2)x−1 of the Yi.
Let w = ξ(W ). Set gW = [αW ,βW ] for αW ∈ πW (βX) and βW ∈ πW (βX). Now,
Lemma 4.5 implies that

dYi(αW ,βW ) ≥ dYi(αX ,βX) − 8

because we are projecting to nested subsurfaces. Hence dYi(αW ,βW ) ≥ L1(w).
Again apply Theorem 4.7. Since L1(w) > M0, for every remaining Yi there is a

vertex ηi ∈ gW such that

Yi ⊂ (W − ηi).

If there are at least L2 distinct ηi, then we take Z = W . Otherwise we repeat
the argument. Since the complexity of each successive subsurface decreases by at
least 1, we must eventually find the desired Z containing at least L2 of the Yi, each
disjoint from distinct vertices of gZ .

So, suppose that there are at least L2 distinct ηi associated to distinct Yi and
we have taken Z = W . Now we must find at least L2 − 4(C5 + 3C1 + 2) of these Yi

where JYi ! JZ .
To this end we focus attention on a small subset {Y j}5

j=1 ⊂ {Yi}. Let ηj be the
vertex of gZ = gW associated to Y j . We choose these Y j so that

• the ηj are arranged along gZ in order of index and
• dZ(ηj , ηj+1) > C5 + 3C1 + 2, for j = 1, 2, 3, 4.

This is possible by (13.22) because

L2 > 4(C5 + 3C1 + 2).

Set Jj = JY j and pick any indices mj ∈ Jj . (If Z is paired, then Y j is also paired;
in this case pick mj ∈ JY j ∩ J(Y j)′ .) We use µ(mj) to denote µmj . Since ∂Y j is
disjoint from ηj , Lemma 13.17 implies that

(14.7) dZ(µ(mj), ηj) ≤ C1 + 1.

Since the sequence πZ(µn) satisfies the reverse triangle inequality (Lemma 13.16),
it follows that the mj appear in [0, N ] in order agreeing with their index. The
triangle inequality implies that

dZ(µ(m1), µ(m2)) > C1.
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Thus Axiom 13.5 implies that JZ ∩ [m1, m2] is non-empty. Similarly, JZ ∩ [m4, m5]
is non-empty. It follows that [m2, m4] ⊂ JZ . (If Z is paired, then, after applying
the symmetry τ to gZ , the same argument proves that [m2, m4] ⊂ JZ′ .)

Notice that J2 ∩ J3 = ∅. For if m ∈ J2 ∩ J3, then by (14.7) both dZ(µm, η2) and
dZ(µm, η3) are bounded by C1 + 1. It follows that

dZ(η2, η3) < 2C1 + 2,

a contradiction. Similarly J3 ∩ J4 = ∅. We deduce that J3 ! [m2, m4] ⊂ JZ . (If Z
is paired, then J3 ⊂ JZ ∩ JZ′ .) Finally, there are at least

L2 − 4(C5 + 3C1 + 2)

possible Yi’s which satisfy the hypothesis on Y 3. This completes the proof. !

Now define
Pind = {I ∈ PX | I is inductive}.

Proposition 14.8. Let x = ξ(X). We have

|Pind| ≤A dX(αX ,βX),

where A = 2(3 · L2)x−1 + 1.

Proof. Suppose, for a contradiction, that the conclusion fails. Let gX = [αX ,βX ]
be a geodesic in C(X). Then, as in the proof of Lemma 14.6, there is a vertex ω
of gX and a component W ⊂ X − ω where at least (3 · L2)x−1 of the inductive
intervals in IX have associated surfaces, Yi, contained in W .

Since x − 1 ≥ w = ξ(W ) we may apply Lemma 14.6 inside of W . So we find a
surface Z ⊆ W ! X so that

• Z contains at least L2 of the Yi,
• dZ(αX ,βX) ≥ L2 − 1, and
• there are at least L2 − 4(C5 + C1 + 2C1 + 2) of the Yi where JYi ! JZ .

Since Yi ! Z and Yi is a hole, Z is also a hole. Since L2 > L1(x)− 1 it follows that
Z ∈ BX . Let Y = {Yi} be the set of Yi satisfying the third bullet. Let Y 1 ∈ Y and
η1 ∈ gZ satisfy ∂Y 1 ∩ η1 = ∅ and η1 is the first such. Choose Y 2 ∈ Y and η2 ∈ gZ

similarly, so that η2 is the last such. By Lemma 14.6,

(14.9) dZ(η1, η2) ≥ L2 − 4(C5 + C1 + 2C1 + 2) − 1.

Let p = min IY 1 and q = max IY 2 . Note that r([p, q]) ⊂ JZ . (If Z is paired with
Z ′, then r([p, q]) ⊂ JZ ∩ JZ′ .) Again by Lemma 13.17,

dZ(µr(p), ∂Y 1) < C1.

It follows that
dZ(µr(p), η1) ≤ C1 + 1

and the same bound applies to dZ(µr(q), η2). Combined with (14.9) we find that

dZ(µr(p), µr(q)) ≥ L2 − 4C5 − 4C1 − 10C1 − 11.

By the reverse triangle inequality (Lemma 13.16), for any p′ ≤ p, q ≤ q′,

dZ(µr(p′), µr(q′)) ≥ L2 − 6C5 − 4C1 − 10C1 − 11.

Finally by Axiom 13.6 and the above inequality, we have

dZ(γp′ , γq′) ≥ L2 − 6C5 − 4C1 − 10C1 − 11 − 2C2.
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By (13.22) the right-hand side is greater than L1(x) + 2L3, so we deduce that Z ∈
BX(p′, q′), for any such p′, q′. (When Z is paired, deduce also that Z ′ ∈ BX(p′, q′).)

Let IV be the first inductive interval chosen by the procedure with the property
that IV ∩ [p, q] *= ∅. Since IY 1 and IY 2 were also chosen, deduce that IV ⊂ [p, q].
Let p′, q′ be the indices so that V is chosen from BX(p′, q′). Thus p′ ≤ p and q ≤ q′.
However, since IV ⊂ [p, q] and since r([p, q]) ⊂ JZ , Lemma 14.3 implies that V is
strictly nested in Z. (When pairing occurs we may find instead that V ⊂ Z ′ or
V ′ ⊂ Z.) Thus ξ(Z) > ξ(V ) and we find that Z would be chosen from BX(p′, q′),
instead of V . This is a contradiction. !
14.10. Shortcut partition. The goal of this subsection is to prove the following.

Proposition 14.11. Let x = ξ(X). There is a constant A = A(x) with the follow-
ing property. If [i, j] ⊂ [0, K] is an electric interval, then

dG(γi, γj) ≤A dX(γi, γj).

We begin by building a partition of the given electric interval [i, j] into straight
and shortcut intervals. Define

CX = {Z ! X | Z is a non-hole and dZ(µr(i), µr(j)) ≥ L1(x)}.

We also define, for all [p, q] ⊂ [i, j],

CX(p, q) = {Z ∈ CX | JZ ∩ [r(p), r(q)] *= ∅}.

Our recursion starts with the partition of one part, P(i, j) = {[i, j]}. Recursively
P(i, j) is a partition of [i, j] into shortcut, straight, or undetermined intervals.
Suppose [p, q] ∈ P(i, j) is undetermined.

Claim. If CX(p, q) is empty, then [p, q] is straight.

Proof. We show the contrapositive. Suppose Z is a non-hole with dZ(µr(p), µr(q)) ≥
L2. The reverse triangle inequality (Lemma 13.16) gives

dZ(µr(p), µr(q)) < dZ(µr(i), µr(j)) + 2C5.

Since L2 > L1(x) + 2C5, we find that Z ∈ CX . Since L2 > C1 > B1, Axiom 13.5
implies that JY ∩ [r(p), r(q)] is non-empty. Thus Z ∈ CX(p, q). !

So when CX(p, q) is empty the interval [p, q] is determined to be straight. Proceed
onto the next undetermined element of P(i, j). Now suppose that CX(p, q) is non-
empty. Then we choose any Z ∈ CX(p, q) so that Z has maximal ξ(Z) amongst
the elements of CX(p, q).

There are two cases. Suppose JZ ∩ r([p, q]) is empty. Let s ∈ [p, q] be the largest
integer so that r(s) < min JZ . Remove [p, q] from the partition P(i, j) and add the
three intervals

[p, s], [s + 1/2], [s + 1, q]

to P(i, j). Here [s + 1/2] is an interval of length zero: we call this a shortcut of
length zero for Z. The intervals [p, s] and [s + 1, q] are undetermined.

Suppose JZ ∩ r([p, q]) is non-empty. Define s, t ∈ [p, q] to be the largest and
smallest indices in [p, q] so that r(s), r(t) ∈ JZ . (We permit s = t.) Thus r([s, t]) ⊂
JZ . Since Z ∈ CX(p, q) it follows that Z ∈ CX and so dZ(µr(i), µr(j)) ≥ L1(x).
Thus [s, t] is a shortcut interval for the non-hole Z. So remove [p, q] from the
partition P(i, j) and add the three intervals

[p, s − 1], [s, t], [t + 1, q]
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to P(i, j). The intervals [p, s − 1] and [t + 1, q] are undetermined. This completes
the recursive construction of the shortcut partition.

Pstr = {I ∈ P(i, j) | I is straight}Define

Pshort = {I ∈ P(i, j) | I is a shortcut}.and

Proposition 14.12. Let x = ξ(X). We have

|Pshort| ≤A dX(γi, γj),

where A = 2(3 · L2)x−1 + 1.

Proof. The proof is identical to that of Proposition 14.8 with the caveat that in
Lemma 14.6 we must use the markings µr(i) and µr(j) instead of the endpoints γi

and γj . !

We are now equipped to give the proof of Proposition 14.11.

Proof. Suppose P(i, j) is the given partition of the electric interval [i, j] into straight
and shortcut subintervals. As a bit of notation, if [p, q] = I ∈ P(i, j), we take
dG(I) = dG(γp, γq) and dX(I) = dX(γp, γq). We have

dG(γi, γj) ≤
∑

I∈Pstr

dG(I) +
∑

I∈Pshort

dG(I) + C2|P(i, j)|.(14.13)

The last term arises from connecting left endpoints of intervals with the right end-
point of the following interval, applying Axiom 13.6, and recalling that B2 < C2.
We now bound the three terms on the right.

We begin with the third; recall that |P(i, j)| = |Pshort| + |Pstr|, that |Pstr| ≤
|Pshort|+1, and that |Pshort|≤A dX(γi, γj). The second inequality follows from the
construction of the partition while the last is Proposition 14.12. Thus the third
term of (14.13) is quasi-bounded above by dX(γi, γj). By Axiom 13.14 the second
term of (14.13) is at most C4|Pshort|.

By Axiom 13.13, for all I ∈ Pstr we have dG(I) ≤A dX(I). It follows from the
reverse triangle inequality (Lemma 13.16) that

∑

I∈Pstr

dX(I) ≤ dX(γi, γj) + (2C5 + 2C2)|Pstr| + 2C2.

We deduce that
∑

I∈Pstr
dG(I) is also quasi-bounded above by dX(γi, γj). Thus for

a somewhat larger value of A we find

dG(γi, γj) ≤A dX(γi, γj).

This completes the proof. !

14.14. The upper bound. We will need the following.

Proposition 14.15. Let x = ξ(X). For any c ≥ 0 there is a constant A = A(c, x)
with the following property. Suppose [i, j] = IY is an inductive interval in PX .
Then

dG(γi, γj) ≤A

∑

Z

[dZ(γi, γj)]c,

where Z ranges over all holes for G strictly contained in X.
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Proof. Let y = ξ(Y ) and note y < x. Axiom 13.7 gives vertices γ′
i, γ

′
j ∈ G, contained

in Y , so that dG(γi, γ′
i) ≤ C3 and the same holds for j. Since projection to holes is

coarsely Lipschitz (Lemma 5.9) for any hole Z we have dZ(γi, γ′
i) ≤ 2 + 2C3.

Fix any c > 0. Now, since

dG(γi, γj) ≤ dG(γ′
i, γ

′
j) + 2C3,

to find the required constant A(c, x) it suffices to bound dG(γ′
i, γ

′
j). Let c′ = c +

4C3 +4. Since y < x, we may apply Theorem 13.1 inductively to obtain a constant
A = A(c′, y) with

dG(γ′
i, γ

′
j) ≤A

∑

Z

[dZ(γ′
i, γ

′
j)]c′

≤
∑

Z

[dZ(γi, γj) + 4C3 + 4]c′

< (4C3 + 4)N +
∑

Z

[dZ(γi, γj)]c.

Here N is the number of non-zero terms in the final sum. Also, the sum ranges over
holes Z ⊂ Y . We may take A somewhat larger to deal with the term (4C3 + 4)N
and include all holes Z ! X to find

dG(γi, γj) ≤A

∑

Z

[dZ(γi, γj)]c,

where the sum is over all holes Z strictly contained in X. !

14.16. Finishing the proof. Now we may finish the proof of Theorem 13.1. Fix
constants c, x ≥ 0. Let X be any hole for G with ξ(X) = x. Suppose αX , βX are
any vertices of G contained in X. Let Γ = {γi}K

i=0 be the combinatorial sequence
given by the axioms. Let PX be a partition of [0, K] into inductive and electric
intervals. So we have

dG(αX ,βX) ≤
∑

I∈Pind

dG(I) +
∑

I∈Pele

dG(I) + C2|PX |.(14.17)

The last term arises from connecting left endpoints to right endpoints of adjacent
intervals.

We bound the terms on the right-hand side; begin by noticing that |PX | =
|Pind|+ |Pele|, |Pele| ≤ |Pind|+1, and |Pind|≤A dX(αX ,βX). The second inequality
follows from the way the partition is constructed and the last follows from Propo-
sition 14.8. Thus the third term of (14.17) is quasi-bounded above by dX(αX ,βX).

Next, consider the second term of (14.17):

∑

I∈Pele

dG(I) ≤A

∑

I∈Pele

dX(I)

≤ dX(αX ,βX) + (2C5 + 2C2)|Pele| + 2C2

with the first inequality following from Proposition 14.11 and the second from the
reverse triangle inequality (Lemma 13.16).

Licensed to University of Warwick. Prepared on Tue Oct 30 16:54:24 EDT 2012 for download from IP 137.205.50.42.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE GEOMETRY OF THE DISK COMPLEX 41

Finally we bound the first term of (14.17). Let c′ = c + L0. Thus,

∑

I∈Pind

dG(I) ≤
∑

IY ∈Pind



A′
y




∑

Z!X

[dZ(IY )]c′



 + A′
y





≤ A′′




∑

I∈Pind

∑

Z!X

[dZ(I)]c′



 + A′′ · |Pind|

≤ A′′




∑

Z!X

∑

I∈Pind

[dZ(I)]c′



 + A′′ · |Pind|.

Here A′
y and the first inequality are given by Proposition 14.15. Also A′′ = max{A′

y |
y ≤ x}. In the last line, each sum of the form

∑
I∈Pind

[dZ(I)]c′ has at most three
terms, by Remark 14.5 and the fact that c′ > L0. For the moment, fix a hole Z
and any three distinct elements I, I ′, I ′′ ∈ Pind.

By the reverse triangle inequality (Lemma 13.16) we find that

dZ(I) + dZ(I ′) + dZ(I ′′) < dZ(αX ,βX) + 6C5 + 8C2,

which in turn is less than dZ(αX ,βX) + L0. It is now an exercise to show that

[dZ(I)]c′ + [dZ(I ′)]c′ + [dZ(I ′′)]c′ < [dZ(αX ,βX)]c + L0.

Thus,
∑

Z!X

∑

I∈Pind

[dZ(I)]c′ ≤ L0 · N +
∑

Z!X

[dZ(αX ,βX)]c,

where N is the number of non-zero terms in the final sum. Also, the sum ranges
over all holes Z ! X.

Combining the above inequalities, and increasing A once again, implies that

dG(αX ,βX) ≤A

∑

Z

[dZ(αX ,βX)]c,

where the sum ranges over all holes Z ⊆ X. This completes the proof of Theo-
rem 13.1. !

15. Background on Teichmüller space

Our goal in Sections 16, 17 and 19 will be to verify the axioms stated in Section 13
for the complex of curves of a non-orientable surface, for the arc complex, and for
the disk complex. Here we give the necessary background on Teichmüller space.
See also [37, 26].

Fix a surface S = Sg,n of genus g with n punctures. Two conformal structures
on S are equivalent, written Σ ∼ Σ′, if there is a conformal map f : Σ → Σ′ which
is isotopic to the identity. Let T = T (S) be the Teichmüller space of S, the set of
equivalence classes of analytically finite conformal structures Σ on S.

Define the Teichmüller metric by

dT (Σ,Σ′) = inf
f

{
1

2
log K(f)

}
,

where the infimum ranges over all quasiconformal maps f : Σ → Σ′ isotopic to the
identity and where K(f) is the maximal dilatation of f . Recall that the infimum is
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realized by a Teichmüller map that, in turn, may be defined in terms of a quadratic
differential.

15.1. Quadratic differentials.

Definition 15.2. A quadratic differential q(z) dz2 on Σ is an assignment of a
holomorphic function to each coordinate chart that is a disk and of a meromorphic
function to each chart that is a punctured disk. If z and ζ are overlapping charts,
then we require that

qz(z) = qζ(ζ)

(
dζ

dz

)2

in the intersection of the charts. The meromorphic function qz(z) has at most a
simple pole at the puncture z = 0.

At any point away from the zeroes and poles of q there is a natural coordinate
z = x + iy with the property that qz ≡ 1. In this natural coordinate the foliation
by lines y = c is called the horizontal foliation. The foliation by lines x = c is called
the vertical foliation.

Now fix a quadratic differential q on Σ = Σ0. Let x, y be natural coordinates for
q. For every t ∈ R we obtain a new quadratic differential qt with coordinates

xt = etx, yt = e−ty.

Also, qt determines a conformal structure Σt on S. The map t 1→ Σt is the Te-
ichmüller geodesic determined by Σ and q.

15.3. Marking coming from a quadratic differential. Suppose Σ is an analyt-
ically finite conformal structure on S. Let σ be the hyperbolic metric uniformizing
Σ and note σ has finite area. In a slight abuse of terminology, we call the collection
of shortest simple closed hyperbolic geodesics the systoles of σ. Fix a sufficiently
small constant ε; in particular, ε is smaller than the Margulis constant. The ε–thick
part of Teichmüller space consists of those surfaces such that the hyperbolic systoles
have length at least ε.

We define P = P (σ), a Bers pants decomposition of S, as follows. Let α1 be any
systole for σ. Define αi to be any systole of σ restricted to S − (α1 ∪ . . . ∪ αi−1).
Continue in this fashion until P is a pants decomposition. By the collar lemma any
curve with length less than the Margulis constant will necessarily be an element of
P .

Suppose now that q is a quadratic differential on the Riemann surface Σ. Let
σ be the uniformizing hyperbolic metric. Let P = P (σ) = {αi} be a Bers pants
decomposition. We must find transversals to P to obtain a complete clean marking
ν(q). Suppose P = {αi}. Fix i and let α = αi. Let Sα be the annular cover
of S corresponding to α. Note that q lifts to a singular Euclidean metric qα on
Sα. Let a be a geodesic representative of the core curve of Sα with respect to the
metric qα. Choose c ∈ C(Sα) to be any geodesic arc, also with respect to qα, that
is perpendicular to a. Let Xα be the non-pants component of S − n(P − {α}).
Let β be any curve in Xα meeting α minimally and so that dα(β, c) ≤ 3. (See
the discussion after the proof of Lemma 2.4 in [31].) Doing this for each i gives a
complete clean marking ν(q) = {(αi,βi)}.

Suppose now that {Σt : t ∈ [−M, M ]} is the Teichmüller geodesic defined by the
quadratic differentials {qt}. Define νt = ν(qt).
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Lemma 15.4 ([41, Remark 6.2]). There is a constant B0 = B0(S) with the follow-
ing property. For any Teichmüller geodesic and for any time t, there is a δ > 0 so
that if |t − s| ≤ δ, then ι(νs, νt) < B0. !
Remark 15.5. Suppose Σs and Σt are surfaces in the ε–thick part of T (S). We take
B0 sufficiently large so that if ι(νs, νt) ≥ B0, then dT (Σs,Σt) ≥ 1.

15.6. The marking path. We construct a path of Bers markings µn, for n ∈
[0, N ] ⊂ N, as follows. Take µ0 = ν−M . Now suppose that µn = νs is defined. Let
t > s be the first time the marking νt gives ι(νs, νt) ≥ B0, if such a time exists. If
so, let µn+1 = νt. If no such time exists take N = n and we are done.

Note that µn fills S for every n. We now show that µn = νs and µn+1 = νt have
bounded intersection. By Lemma 15.4 there is a time r with s < r < t so that

ι(νr, νt) < B0.

By construction
ι(νs, νr) < B0.

Let σ be a hyperbolic metric on S where all curves of base(νr) have length 1 and all
transversals in νr are perpendicular to their base curves. In σ all of the curves of νs

and νt have length bounded above and below. It follows that ι(νs, νt) = ι(µn, µn+1)
is bounded solely in terms of B0. Thus there are constants K, L so that {µn} is a
path in the marking graph M(S) = MK,L(S). Note that dY (µn, µn+1) is uniformly
bounded, independent of Y ⊂ S and of n ∈ [0, N − 1].

Theorem 6.1 of [41] says, for any subsurface Y ⊂ S, that the sequence {πY (µn)}
⊂ C(Y ) is an unparameterized quasi-geodesic.

15.7. The accessibility interval. Suppose Y ⊂ S is an essential subsurface.
Note, for any n, that the subsurface Y is contained in the support of µn, as the
latter equals S.

In Section 5 of [41], Rafi defines an interval of isolation IY inside of the param-
eterizing interval of the Teichmüller geodesic. Note that IY is defined purely in
terms of the geometry of the given quadratic differentials. Further, for all t ∈ IY

and for all components α ⊂ ∂Y the hyperbolic length of α in σt is less than the
Margulis constant. Furthermore, by Theorem 5.3 of [41], there is a constant B1 so
that if [s, t] ∩ IY = ∅, then

dY (νs, νt) ≤ B1.

We define JY ⊂ [0, N ] to be the subinterval of the marking path where the time
corresponding to µn lies in IY . Finally, if m ∈ JY , then ∂Y is contained in base(µm)
and thus ι(∂Y, µm) ≤ 2 · |∂Y |.

15.8. The distance estimate in Teichmüller space. We end this section by
quoting another result of Rafi.

Theorem 15.9 ([40, Theorem 1.1]). Fix a surface S and a constant ε > 0. There
is a constant C0 = C0(S, ε) so that for any c > C0 there is a constant A with the
following property. Suppose Σ and Σ′ lie in the ε–thick part of T (S). Then

dT (Σ,Σ′) =A

∑

X

[dX(µ, µ′)]c +
∑

α

[log dα(µ, µ′)]c,

where µ and µ′ are Bers markings on Σ and Σ′, where Y ⊂ S ranges over non-
annular surfaces, and where α ranges over vertices of C(S). !
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16. Paths for the non-orientable surface

Fix F a compact, connected, non-orientable surface. Let S be the orientation
double cover with covering map ρF : S → F . Let τ : S → S be the associated invo-
lution. Recall from Section 6 that C(F ), C2(F ), and Cτ(S) are all quasi-isometric.

In this section we prove Lemma 16.8, the classification of holes for Cτ(S). This
directly implies the Gromov hyperbolicity of C(F ); see Corollary 6.4. As a bit of
practice, we also verify all of the axioms of Section 13 for Cτ(S).

16.1. The marking path. A pants decomposition P for S is τ–invariant if P is
a simplex in Cτ(S).

Definition 16.2. A complete clean marking µ = {(αi,βi)} for S is τ–invariant if
base(µ) is τ–invariant and τ ({βi}) = {βi}.

Note that the condition on base(µ) is stronger than the condition on transversals;
the latter are only required to be setwise τ–invariant. We will use the extreme
rigidity of Teichmüller geodesics to find a path of τ–invariant markings.

Lemma 16.3. For every τ–invariant hyperbolic metric σ there is a τ–invariant
Bers pants decomposition P = P (σ).

Proof. Let P0 = ∅. Suppose 0 ≤ k < ξ(S) curves have been chosen to form Pk. By
induction we may assume that Pk is a simplex in Cτ(S). Let Y be a component of
S − Pk with ξ(Y ) ≥ 1. Let α be a systole for Y ; so α is a shortest, simple, closed,
essential, and non-peripheral geodesic.

Claim. Either τ (α) = α or α ∩ τ (α) = ∅.

Proof. Suppose not and take p ∈ α∩ τ (α). Then τ (p) ∈ α∩ τ (α) as well, and, since
τ has no fixed points, p *= τ (p). The points p and τ (p) divide α into segments β
and γ. Since τ is an isometry, we have

2σ(τ (β)) = 2σ(β) and 2σ(τ (γ)) = 2σ(γ).

Now concatenate to obtain (possibly immersed) loops

β′ = β ∗ τ (β) and γ′ = γ ∗ τ (γ).

If β′ is null-homotopic, then α ∪ τ (α) cuts a bigon out of S, contradicting our
assumption that α was a geodesic. Suppose, by way of a contradiction, that β′ is
homotopic to some boundary component b ⊂ ∂Y . Since τ (β′) = β′, it follows that
τ (b) and β′ are also homotopic. Thus b and τ (b) cobound an annulus, implying
that Y is an annulus, a contradiction. Thus β′ and similarly γ′ are essential and
non-peripheral.

Let β′′ and γ′′ be the geodesic representatives of β′ and γ′. Since α and τ (α) meet
transversely, β′′ has length strictly smaller than 22σ(β). Similarly the length of γ′′

is strictly smaller than 22σ(γ). Suppose β′′ is shorter than γ′′. It follows that β′′

is strictly shorter than α. If β′′ is embedded, then this contradicts the assumption
that α was a systole. If β′′ is not embedded, then there is an embedded curve β′′′

inside of a regular neighborhood of β′′ which is again essential, non-peripheral, and
has geodesic representative shorter than β′′. This is our final contradiction and the
claim is proved. !

If τ (α) = α, let Pk+1 = Pk ∪ {α}. If τ (α) *= α, then by the above claim
α ∩ τ (α) = ∅. In this case let Pk+2 = Pk ∪ {α, τ (α)}. Lemma 16.3 is proved. !
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Recall, if α is a curve in S, then Sα is the corresponding annular cover. If q is
a quadratic differential on S, then qα denotes the lifted metric. We pull α tight
inside of Sα and define ⊥ to be the set

{γ ∈ C(Sα) | some geodesic representative of γ is perpendicular to α}.

Lemma 16.4. There is a constant C with the following property. Let q be a
τ–invariant quadratic differential and let σ be the uniformizing hyperbolic metric.
Let P = P (σ) = {αi} be a τ–invariant Bers pants decomposition, as provided by
Lemma 16.3. Then there are transversal curves βi for the αi so that

• τ ({βi}) = {βi} and
• for each i we have dαi(βi,⊥i) ≤ C.

Note that ν = {(αi,βi)} is a τ–invariant Bers marking.

Proof. Fix α ∈ P . Set Pα = P − {α, τ (α)}. Let X be the union of the non-pants
components of S − n(Pα). There are three cases to consider depending on whether
τ (α) = α and whether X is connected.

Suppose τ (α) ∩ α = ∅ and X is not connected. It follows that X is a union of
two copies of S0,4, interchanged by τ . In this case we choose a transversal β for α
so that dα(β,⊥) ≤ 3.

Suppose τ (α) ∩ α = ∅ and X is connected. Since τ fixes X setwise, it cannot
fix any boundary component of X; thus X is a twice-holed torus and X/τ is a
once-holed Klein bottle. In this case we choose a transversal β ⊂ X − τ (α) so that
dα(β,⊥) ≤ 3.

In these two cases, add β and τ (β) to the set of transversals and we are done.
Suppose τ (α) = α. It follows that X is a copy of S0,4. Thus X/τ is a twice-holed

RP2. There are only four essential non-peripheral curves in X/τ . Two of these are
cores of Möbius bands and the other two are their doubles. The cores meet in a
single point. Perforce α is the double cover of one core, and we take β to be the
double cover of the other.

Note that ⊥ is a τ -invariant, diameter-one subset of C(Sα). If dα(β,⊥) is large,
then it follows that dα(τ (β),⊥) is also large. Also, τ (β) twists in the opposite
direction from β. Thus

dα(β, τ (β))− 2dα(β,⊥) = O(1)

and so dα(β, τ (β)) is large, contradicting the fact that β is τ–invariant. !

We now turn to verifying the marking path and accessibility requirements, Ax-
ioms 13.4 and 13.5. Suppose that α,β ∈ Cτ(S). If α and β do not fill S, then
we may replace S by the support of their union. Following Thurston [47, Theo-
rem 7] let q be the square-tiled quadratic differential, with squares associated to
the points of α ∩ β. (See also [7, page 122].) Let qt be the image of q under the
Teichmüller geodesic flow.

Lemma 16.5. τ∗qt = qt.

Proof. Note that τ preserves α and also β. Since τ permutes the points of α∩ β it
permutes the rectangles of the singular Euclidean metric qt while preserving their
vertical and horizontal foliations. Thus τ is an isometry of the metric, and the
conclusion follows. !
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Let {Σt | t ∈ [−M, M ]} be the Teichmüller geodesic determined by qt. Choose M
so that the hyperbolic length of α is less than the Margulis constant in σ−M and
the same holds for β in σM . Also, α is the shortest curve in σ−M and similarly for β
in σM . Lemma 16.4 now gives τ–invariant Bers markings νt for every t ∈ [−M, M ].
As in Section 15.6 we can choose a discrete subset to obtain a path in the marking
graph M(S). By the discussion in Section 15.6 this path satisfies Axiom 13.4. By
the discussion in Section 15.7 it also satisfies Axiom 13.5.

16.6. The combinatorial sequence. The previous section gives a Teichmüller ge-
odesic and a marking path {µn}N

n=0. Choose the combinatorial sequence by picking
γn ∈ base(µn) so that γn is a τ–invariant curve or pair of curves and so that γn is
a systole in σt at the corresponding time. Note that γ0 = α and γN = β. Also, the
reindexing map is the identity map.

We now check Axiom 13.6. Since

ι(γn, µr(n)) = ι(γn, µn) = 2,

the first requirement is satisfied. Since µn and µn+1 have bounded intersection, the
same holds for γn and γn+1. Projection to F , surgery, and Lemma 2.3 imply that
dCτ(γn, γn+1) is uniformly bounded.

16.7. The classification of holes. We now finish the classification of large holes
for Cτ(S). Fix L0 > 3C1 + 2C2 + 2C5. Note that these constants are available
because we have verified the axioms that give them.

Lemma 16.8. Suppose α,β ∈ Cτ(S). Suppose Z ⊂ S has dZ(α,β) > L0. Then Z
is symmetric.

Proof. Let {Σt} be the Teichmüller geodesic defined above and let σt be the uni-
formizing hyperbolic metric. Since L0 > C1 + 2C2 the accessibility axiom implies
that JZ = [m, n] is non-empty. For all t in the interval of isolation IZ , we have

2σt(δ) < ε,

where δ is any component of ∂Z and ε is the Margulis constant. Let Y = τ (Z).
Since τ is an isometry (Lemma 16.5) and since the interval of isolation is metrically
defined we have IY = IZ and thus JY = JZ . Deduce that ∂Y is also short in
σt. The collar lemma implies that ∂Y ∩ ∂Z = ∅. If Y and Z overlap, then by
Lemma 13.17 we have

dZ(µm, µn) < C1.

By the triangle inequality and by two applications of property (3) of Axiom 13.5
we have

dZ(µ0, µN ) < 3C1.

By the combinatorial axiom it follows that

dZ(α,β) < 3C1 + 2C2,

and this is a contradiction. Deduce either Y = Z or Y ∩ Z = ∅, as desired. !

As noted in Section 6 this shows that the only hole for Cτ(S) is S itself. Thus
Axioms 13.3 and 13.7 hold vacuously.
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16.9. In straight intervals. We verify Axiom 13.13. Suppose [p, q] is a straight
interval. We must show that dCτ(γp, γq) ≤ dS(γp, γq). Suppose µp = νs and µq = νt;
that is, s and t are times when µp, µq are short markings. Thus dY (µp, µq) ≤ L2 for
every Y ! S. This implies that the Teichmüller geodesic, along the straight interval,
lies in the ε–thick part of Teichmüller space for ε = ε(L2). See [41, Theorem 5.5].

Notice that dCτ(γp, γq) ≤ C2|p− q|, since for all i ∈ [p, q − 1], dCτ(γi, γi+1) ≤ C2.
So it suffices to bound |p− q|. By our choice of B0 (see Remark 15.5) and because
the Teichmüller geodesic lies in the thick part we find that |p − q| ≤ dT (Σs,Σt).
Rafi’s distance estimate (Theorem 15.9) gives:

dT (Σs,Σt) =A dS(νs, νt).

Since νs = µp, νt = µq, and since γp ∈ base(µp), γq ∈ base(µq), we deduce that

dS(µp, µq) ≤ dS(γp, γq) + 4.

This verifies Axiom 13.13.

16.10. Taking shortcuts. Finally, we verify Axiom 13.14. Recall that the rein-
dexing map is the identity. Since S is the only hole, the interval [0, N ] is electric.
Suppose [p, q] ⊂ [0, N ] is a shortcut for the non-hole Z ! S. Thus γp and γq are
contained in base(µp) and base(µq), respectively. From the first half of the shortcut
hypothesis (Definition 13.12), we deduce that ∂Z is contained in both base(µp) and
in base(µq). The second half of the shortcut hypothesis, together with Lemma 16.8,
implies that ∂Z is symmetric, and we are done.

17. Paths for the arc complex

We verify the axioms of Section 13 for the arc complex A(S,∆). It is worth
pointing out that in the case of the arc complex the axioms may be verified us-
ing Teichmüller geodesics, train-track splitting sequences, quasi-Fuchsian three-
manifolds, or resolutions of hierarchies. We use Teichmüller geodesics because they
also deal with the non-orientable case; this is discussed at the end of the section.
Train-track splittings and, presumably, quasi-Fuchsian manifolds also deal with the
non-orientable case.

First note that Axiom 13.3 follows from Lemma 7.3.

17.1. The marking path. We are given a pair of arcs α,β ∈ A(X,∆). Recall
that σX : A(X) → C(X) is the surgery map of Definition 4.3. Let α′ = σX(α) and
let β′ = σX(β). Note that α′ cuts a pants off of X. By passing to a subsurface, we
may assume that α′ and β′ fill X.

As in Section 16.1, let q be the square-tiled quadratic differential determined by
α′ and β′. As in Section 15.6, the differentials qt give a marking path {µn}N

n=0.
This path satisfies the marking and accessibility axioms (13.4, 13.5).

17.2. The combinatorial sequence. Let Yn ⊂ X be any component of X −
base(µn) meeting ∆. So Yn is a pair of pants. Let γn be any essential arc in Yn

with both endpoints in ∆. Since α′ ⊂ base(µ0) and β′ ⊂ base(µN ) we may choose
γ0 = α and γN = β.

The reindexing map is the identity. Thus ι(γn, µn) ≤ 4. This bound, the bound
on ι(µn, µn+1), and Lemma 4.8 imply that ι(γn, γn+1) is also bounded. The usual
surgery argument shows that if two arcs have bounded intersection, then they have
bounded distance. This verifies Axiom 13.6.
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17.3. The replacement, straight, and shortcut axioms. Suppose Y ⊂ X is
cleanly embedded and is a hole for A(S,∆). Thus ∆ ⊂ ∂Y . Suppose γn has n ∈ JY .
Thus ∂Y ⊂ base(µn) and so γn ∩ ∂Y = ∅. Taking γ′ = γn verifies Axiom 13.7.

Axiom 13.13 is verified as in Section 16.
We now verify Axiom 13.14. Suppose [i, j] ⊂ [0, N ] is an electric interval and

[p, q] ⊂ [i, j] is a shortcut for a cleanly embedded non-hole Z ⊂ X. Since p, q ∈ JZ ,
we deduce that ∂Z ⊂ base(µp) ∩ base(µq). Thus γp and γq are disjoint from ∂Z.
There are now several cases.

If ι(γp, γq) = 0, then we are done. If both γp and γq are contained in Z, then we
are done, because Z is not a hole. So suppose that γp and γq are both contained in
Y , a component of X−n(Z). If Y is not a hole, then we are done. Finally, suppose
that Y is a hole for A(S,∆). Since [i, j] is electric, we deduce that dW (γi, γj) < L2

for all holes W ! X. Lemma 13.16 gives a uniform (depending only on x = ξ(X))
upper bound on dW (γp, γq), for all holes W ⊂ Y . Since ξ(Y ) < ξ(X) we may
inductively apply Theorem 13.1, for the complex A(Y,∆). Thus dA(Y,∆)(γp, γq) is
bounded by a constant depending only on x, as desired.

17.4. Non-orientable surfaces. Suppose F is a non-orientable, connected, non-
simple surface with boundary. Suppose ∆F ⊂ F is a collection of boundary com-
ponents. Let S be the orientation double cover and τ : S → S be the involution so
that S/τ = F . Let ∆ be the preimage of ∆F . Let Aτ(S,∆) be the invariant arc
complex.

Suppose αF and βF are vertices in A(F,∆F ). Let α,β be their preimages.
Without loss of generality, we may assume that σF (αF ) and σF (βF ) fill F . Note
that σF (αF ) cuts a surface X off of F . The surface X is either a pants or a twice-
holed RP2. When X is a pants we define α′ ⊂ S to be the preimage of σF (αF ).
When X is a twice-holed RP2 we take γF to be a core of one of the two Möbius
bands contained in X and we define α′ to be the preimage of γF ∪ σF (αF ). We
define β′ similarly. Notice that α and α′ meet in at most four points.

We now use α′ and β′ to build a τ–invariant Teichmüller geodesic. The construc-
tion of the marking path and combinatorial sequence for Aτ(S,∆) is unchanged.
Notice that we may choose combinatorial vertices because base(µn) is τ–invariant.
There is a small annoyance: when X is a twice-holed RP2 the first vertex, γ0, is
disjoint from but not equal to α. Strictly speaking, the first and last vertices are γ0

and γN ; our constants are stated in terms of their subsurface projection distances.
However, since α ∩ γ0 = ∅, and the same holds for β and γN , their subsurface
projection distances are all bounded.

18. Background on train tracks

Here we give the necessary definitions and theorems regarding train tracks. The
standard reference is [38]. See also [36]. We closely follow the discussion in [33].

18.1. On tracks. A generic train track τ ⊂ S is a smooth, embedded trivalent
graph. As usual we call the vertices switches and the edges branches. At every
switch the tangents of the three branches agree. Also, there are exactly two incom-
ing branches and one outgoing branch at each switch. See Figure 18.2 for the local
model of a switch. We require every region of S − n(τ ) to have negative index.

Let B(τ ) be the set of branches. A transverse measure on τ is a function w : B →
R≥0 satisfying the switch conditions: at every switch the sum of the incoming
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incoming

incoming

outgoing

Figure 18.2. The local model of a train track.

measures equals the outgoing measure. Let P (τ ) be the projectivization of the
cone of transverse measures. As discussed in the references, each vertex of P (τ )
gives an essential, non-peripheral curve carried by τ . Let V (τ ) be the set of curves
determined by these vertices. Thus V (τ ) is a marking in the sense of Section 2.9.
There are only finitely many tracks, up to the action of the mapping class group. It
follows that ι(V (τ )) is uniformly bounded, depending only on the topological type
of S.

If τ and σ are train tracks, and Y ⊂ S is an essential surface, then define

dY (τ,σ) = dY (V (τ ), V (σ)).

We also adopt the notation πY (τ ) = πY (V (τ )).
A train track σ is obtained from τ by sliding if σ and τ are related as in Fig-

ure 18.3. We say that a train track σ is obtained from τ by splitting if σ and τ are
related as in Figure 18.4.

Figure 18.3. All slides take place in a small regular neighborhood
of the affected branch.

Figure 18.4. Counterclockwise from the upper left we have the
track τ and then the right, central, and left splittings of τ .

Recall that the number of tracks is bounded, up to the action of the mapping
class group. So, if σ is obtained from τ by either a slide or a split, then ι(V (τ ), V (σ))
is uniformly bounded.
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18.5. The marking path. We will use sequences of train tracks to define our
marking path.

Definition 18.6. A sliding and splitting sequence is a collection {τn}N
n=0 of train

tracks so that τn+1 is obtained from τn by a slide or a split.

The sequence {τn} gives a sequence of markings via the map τn 1→ µn = V (τn).
Note that every vertex of τn+1 has a multiple that is a sum of vertices of τn. Using
this, it is an exercise to show that the support of µn+1 is contained within the
support of µn. Theorem 5.5 from [33] verifies the remaining half of Axiom 13.4.

Theorem 18.7. Fix a surface S. There is a constant A with the following property.
Suppose {τn}N

n=0 is a sliding and splitting sequence of birecurrent tracks in S. Sup-
pose Y ⊂ S is an essential surface. Then the map n 1→ πY (τn), as parameterized
by splittings, is an A–unparameterized quasi-geodesic. !

When Y = S, Theorem 18.7 is essentially due to the first author and Minsky [32,
Theorem 1.3].

In Section 5.2 of [33], for every sliding and splitting sequence {τn}N
n=0 and for any

essential subsurface X ! S an accessible interval IX ⊂ [0, N ] is defined. Axiom 13.5
is now verified by Theorem 5.3 of [33].

18.8. Quasi-geodesics in the marking graph. We will also need the following.
(See [20] for closely related work.)

Theorem 18.9 ([33, Theorem 6.1]). Fix a surface S. There is a constant A
with the following property. Suppose {τn}N

n=0 is a sliding and splitting sequence of
birecurrent tracks, injective on slide subsequences, where µn = V (τn) fills S, for all
n. Then {µn} is an A–quasi-geodesic in the marking graph. !

19. Paths for the disk complex

Suppose (M, S) is a spotless pair. The goal of this section is to verify the axioms
of Section 13 for the disk complex D(M, S).

19.1. Holes. The fact that all large holes interfere is recorded above as Lemma
12.21. This verifies Axiom 13.3.

19.2. The combinatorial sequence. Suppose D, E ∈ D(M, S) are disks con-
tained in a compressible hole X ⊂ S. As usual we may assume that D and E fill
X. Recall that if τ ⊂ X is a train track, then V (τ ) is the set of vertices. We now
appeal to a result of the first author and Minsky.

Theorem 19.3 ([32, Section 4]). There exists a surgery sequence of disks {Di}K
i=0,

a sliding and splitting sequence of birecurrent tracks {τn}N
n=0, and a reindexing

function r : [0, K] → [0, N ] so that

• D0 = D,
• E ∈ µN ,
• Di ∩ Di+1 = ∅ for all i, and
• ι(∂Di, µr(i)) is uniformly bounded for all i.

Here µn = V (τn). !
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Remark 19.4. Note that the double-wave curve replacements of [32, Section 4] are
not needed here; as X is a hole, no curve of ∂X compresses in M . It follows that
consecutive disks in the surgery sequence are disjoint (as opposed to meeting at
most four times). Also, in the terminology of [33], the disk Di is a wide dual for
the track τr(i). Note that τn is recurrent because E is fully carried by τN . Also τn

is transversely recurrent because D is fully dual to τ0.

Thus µn = V (τn) will be our marking path and Di will be our combinatorial
sequence. Axioms 13.4 and 13.5 were obtained in Section 18. The requirements of
Axiom 13.6 are now verified by Theorem 19.3.

19.5. The replacement axiom. We turn to Axiom 13.7. Suppose Y ⊂ X is a
large hole for D(M, S). Fix an index i so that n = r(i) ∈ JY . By Axiom 13.5 we
have Y ⊂ supp(µn) and also ι(∂Y, µn) is uniformly bounded. By Axiom 13.6 there
is a uniform bound on ι(∂Di, µn). It follows that there is a constant K depending
only on x = ξ(X) so that

ι(∂Di, ∂Y ) < K.

As in Section 11.1, boundary compress Di as much as possible into X − n(∂Y )
to obtain a disk D′ so that either

• D′ cannot be boundary compressed into X − ∂Y or
• D′ is disjoint from ∂Y .

We arrange matters so that every boundary compression reduces the intersection
with ∂Y by at least a factor of two. Thus

dD(Di, D
′) ≤ log2(K).

Suppose Y is a compressible hole. Lemma 8.6 implies ∂D′ ⊂ Y and we are done.

Remark 19.6. Note that part (1) of Axiom 13.7 cannot be obtained when Y is an
incompressible hole; it is impossible for any disk D ∈ D(M, S) to have ∂D ⊂ Y . We
finesse this issue as follows. Suppose Y is a large incompressible hole for D(M, S).
Let ρF : T → F be the I–bundle given by Theorem 12.1. Let ∆ ⊂ ∂vT be the
collection of annuli that are boundary parallel into S. Isotope the components of
∆, fixing ∂∆ pointwise, to lie in S. Let δ = ρF (∆). We say that a disk E ∈ D(M, X)
is contained in Y if E is ambiently isotopic to a vertical disk inside of T . Note that
vthe complex of vertical rectangles in T , with vertical boundary in ∆, is isomorphic
to A(F, δ).

We now verify this form of Axiom 13.7. Suppose Y is a large incompressible hole.
Let T and ∆ be as given in Remark 19.6. Isotope D′ to minimize intersection with
∂vT . Let Γ = ∂vT −∆. Notice that all intersections D′ ∩ Γ are essential arcs in Γ.
Simple closed curves are ruled out by the irreducibility of M . Inessential arcs are
ruled out by the fact that D′ cannot be boundary compressed into X −n(∂Y ). Let
B be an outermost bigon of D′ − Γ. Then Lemma 8.12 implies that B is isotopic
in T to a vertical disk.

If B = D′, then we are done. If not, then let A ∈ Γ be the vertical annulus
meeting B. Let D′′ = AB be the boundary compression of A along B. Note that
D′′ is also vertical in T . Since ι(∂D′′, ∂D′) ≤ K − 2 we are done.
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19.7. Straight intervals. We now check Axiom 13.13. Suppose [p, q] ⊂ [0, K] is
a straight interval. Let m, n = r(p), r(q). Recall that dY (µm, µn) < L2 for all
strict subsurfaces Y ⊂ X. We must check that dD(Dp, Dq) ≤A dX(Dp, Dq). Since
dD(Dp, Dq) ≤ C2|q − p| it is enough to bound |q − p|. Note that |q − p| ≤ |n − m|
because the reindexing map is increasing. So it is enough to bound |n − m|.

Suppose µn fills X. Then by Theorem 18.9 the path {µ'} is a quasi-geodesic
in M(X). It follows that |n − m| ≤A dM(X)(µm, µn). Increasing A as needed and
applying Theorem 4.13 we have

dM(µm, µn) ≤A

∑

Y

[dY (µm, µn)]L2

and the right-hand side is quasi-bounded by dX(µm, µn), which in turn is less than
dX(Dp, Dq) + 2C2, proving Axiom 13.13 when µn fills X.

If µn does not fill X, then define n′ ∈ [m, n] to be the first index so that µn′

does not fill X. Let q′ be the first index so that r(q′) ∈ [n′, n]. It follows from the
straight hypothesis and Lemma 4.8 that ι(∂Dq′ , ∂Dq) is uniformly bounded. This,
with the previous paragraph, verifies Axiom 13.13.

19.8. Shortcut intervals. Lastly we check Axiom 13.14. Suppose [i, j] ⊂ [0, K]
is electric for X and [p, q] ⊂ [i, j] is a shortcut for Z ⊂ X. If p is a half-integer
there is nothing to prove. Note that X is a hole for D(M, S) while Z is not. Let
Y = X − Z.

By hypothesis r([p, q]) ⊂ JZ . Let D, E = Dp, Dq. As in the proof of the
replacement axiom (Section 19.5) there is a uniform bound K so that ι(∂D, ∂Z) ≤
K. Let D′ be the result of maximally boundary compressing D into X −∂Z. Thus
dD(D, D′) ≤ log2(K). There is a similar disk E′ for E.

If D′ ∩ E′ = ∅, then we are done. So suppose D′ ∩ E′ *= ∅. If Z or Y is
compressible, then ∂D′ ∩ ∂Z = ∂E′ ∩ ∂Z = ∅ by Lemma 11.3. If both ∂D′ and
∂E′ are contained in Z, then we are done. If not, then both are contained in some
component Y ′ of Y . If Y ′ is not a hole for D(M, S), then, again, we are done.
Suppose Y ′ is a hole for D(M, S). Since ξ(Y ′) < ξ(X) we can apply Theorem 13.1
inductively to D(M, Y ′). Since [i, j] is electric there is a sufficiently large cut-off c
so that all terms on the right-hand side of the upper bound vanish. Again we are
done.

We are left with the possibility that both Z and Y are incompressible. It follows
that Z is a hole for D(M, X). The shortcut hypothesis gives dZ(µr(i), µr(j)) ≥
L1(x). It follows that dZ(Di, Dj) is large and so Z is a large hole for D(M, X). By
Theorem 12.1 there is an I–bundle ρ : T → F so that T ⊂ M , ∂hT ⊂ X, Z is a
component of ∂hT , and some component of ∂vT is parallel into X. As in the proof
of the replacement axiom, there are disks D′′, E′′ contained in T , vertical in T , and
having intersection at most K − 1 with D′, E′ respectively.

Since Z is not a hole for D(M, S) there is a disk C, disjoint from Z, compressing
S into M . After performing boundary compressions we may assume that C∩T = ∅.
Thus C ∩ D′′ = C ∩ E′′ = ∅. This verifies the final axiom, Axiom 13.14.

It follows that the disk complex satisfies both the lower and upper bounds:
Theorems 5.14 and 13.1. This can be restated as follows.
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Theorem 19.9. There is a constant C0 = C0(M, S) so that for any c ≥ C0 there
is a constant A with the following property. For any D, E ∈ D(M, S) we have

dD(D, E) =A

∑
[dX(D, E)]c.

The sum ranges over holes X ⊂ S for the disk complex D(M, S). !
Remark 19.10. In the discussion of the shortcut axiom we had X a compressible
hole for D(M, S) and Z ⊂ X an incompressible hole for D(M, X) but not a hole
for D(M, S). In this situation Theorem 19.9 implies that the inclusion D(M, X) →
D(M, S) is not a quasi-isometric embedding.

20. Hyperbolicity

The ideas in this section are related to the notion of “time-ordered domains”
and to the hierarchy machine of [31]. See also Chapters 4 and 5 of Behrstock’s
thesis [1]. As remarked above, we cannot use those tools directly as the hierarchy
machine is too rigid to deal with the disk complex.

20.1. Hyperbolicity. We prove the following.

Theorem 20.2. Fix G = G(S), a combinatorial complex. Suppose G satisfies the
axioms of Section 13. Then G is Gromov hyperbolic.

As corollaries we have the following.

Theorem 20.3. The arc complex is Gromov hyperbolic. !
Theorem 20.4. The disk complex is Gromov hyperbolic. !

We deduce Theorem 20.2 from the following.

Theorem 20.5. Fix G, a combinatorial complex. Suppose G satisfies the axioms
of Section 13. Then for all A ≥ 1 there exists δ ≥ 0 with the following property.
Suppose T ⊂ G is a triangle of paths where the projection of any side of T into any
hole is an A–unparameterized quasi-geodesic. Then T is δ–slim.

Proof of Theorem 20.2. As laid out in Section 14 there is a uniform constant A so
that for any pair α,β ∈ G there is a recursively constructed path P = {γi} ⊂ G so
that

• for any hole X for G, the projection πX(P) is an A–unparameterized quasi-
geodesic and

• |P| =A dG(α,β).

So if α∩β = ∅, then |P| is uniformly short. Also, by Theorem 20.5, triangles made
of such paths are uniformly slim. Thus, by Theorem 3.15 the complex G is Gromov
hyperbolic. !

The rest of this section is devoted to proving Theorem 20.5.

20.6. Index in a hole. For the following definitions, we assume that α and β
are fixed vertices of G. Suppose a ∈ πX(α) and b ∈ πX(β). Let k = [a, b] be
any geodesic in C(X) connecting a to b. Define ρk : G → k to be the relation
πX |G : G → C(X) followed by taking closest points on k. By Lemmas 3.8 and 4.5
the diameter of ρk(γ) is uniformly bounded. So we may simplify our formulas by
treating ρk as a function. Define indexX : G → N to be the index in X: namely,

indexX(σ) = dX(α, ρk(σ)).
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Remark 20.7. Suppose k′ is a different geodesic connecting a′ ∈ πX(α) to b′ ∈ πX(β)
and index′

X is defined with respect to k′. Then

| indexX(σ) − index′
X(σ)| ≤ 17δ + 4

by Lemma 3.10 and Lemma 3.11. Thus, permitting a small additive error, the
index depends only on α and β and not on the choice of geodesic k. Henceforth we
use the notation k = [πX(α),πx(β)] to denote any geodesic connecting a point of
πX(α) to a point of πX(β).

20.8. Back and sidetracking. Fix σ, τ ∈ G. We say that σ precedes τ by at least
K in X if

indexX(σ) + K ≤ indexX(τ ).

We say that σ precedes τ by at most K if the inequality is reversed. If σ precedes
τ , then we also say that τ succeeds σ.

Now take P = {σi} to be a path in G connecting α to β. Recall that we have
made the simplifying assumption that σi and σi+1 are disjoint.

We formalize two properties of unparameterized quasi-geodesics. The path P
backtracks at most K if for every hole X and all indices i < j we find that σj

precedes σi by at most K. The path P sidetracks at most K if for every hole X
and every index i we find that

dX(σi, ρk(σi)) ≤ K,

where k = [πX(α),πx(β)].

Remark 20.9. Note that if P has bounded sidetracking, then one may freely use in
calculations whichever of σi or ρk(σi) is more convenient.

20.10. Projection control. The following lemma, due to Behrstock [1, 4.2.1], is
closely related to the notion of time-ordered domains [31, Section 4.6]. An elemen-
tary proof is given in [29, Lemma 2.5].

Lemma 20.11. There is a constant M1 = M1(S) with the following property. Sup-
pose X, Y ⊂ S overlap. If γ ∈ AC(S) cuts both X and Y , then either dX(γ, ∂Y ) <
M1 or dY (∂X, γ) < M1. !

We also require a more specialized version for the case where X is nested in Y .
The proof is an exercise in the application of the bounded geodesic image theorem
(Theorem 4.7). Recall that M0 is the constant given in that theorem.

Lemma 20.12. Suppose X ⊂ Y are nested non-simple domains. Fix α,β, γ ∈
AC(S) that all cut X. Let k = [πY (α),πY (β)]. Assume that dX(α,β) ≥ M0. We
have

indexY (∂X) − 4 ≤ indexY (γ)

if dX(α, γ) ≥ M0 and

indexY (γ) ≤ indexY (∂X) + 4

if dX(γ,β) ≥ M0. !
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20.13. Finding the midpoint of a side. Fix A ≥ 1. Let P, Q, R be the sides of
a triangle in G with vertices at α,β, γ. We assume that each of P, Q and R are
A–unparameterized quasi-geodesics when projected to any hole.

Recall that M0 = M0(S) and M1 = M1(S) depend only on ξ(S). We may
assume that if T ⊂ S is an essential subsurface, then M0(T ) < M0(S).

Choose K1 ≥ max{M0, 4M1, 8} + 8δ sufficiently large so that any A–unparame-
terized quasi-geodesic in C(X), for X a hole, backtracks and sidetracks at most
K1.

Claim 20.14. If σi precedes γ in X and σj succeeds γ in Y , both by at least 2K1,
then i < j.

Proof. To begin, as X and Y are holes and all holes interfere, we need not consider
the possibility that X ∩ Y = ∅. If X = Y , we deduce that

indexX(σi) + 2K1 ≤ indexX(γ) ≤ indexX(σj) − 2K1.

Thus indexX(σi) + 4K1 ≤ indexX(σj). Since P backtracks at most K1 we have
i < j, as desired.

Suppose instead X ⊂ Y . Since σi precedes γ in X, we deduce that dX(α,β) ≥
2K1 ≥ M0 and dX(α, γ) ≥ 2K1 − 2δ ≥ M0. Apply Lemma 20.12 to deduce that
indexY (∂X)−4 ≤ indexY (γ). Since σj succeeds γ in Y it follows that indexY (∂X)−
4 + 2K1 ≤ indexY (σj). Again using the fact that σi precedes γ in X we have that
dX(σi,β) ≥ M0. We deduce from Lemma 20.12 that indexY (σi) ≤ indexY (∂X)+4.
Thus

indexY (σi) − 8 + 2K1 ≤ indexY (σj).

Since P backtracks at most K1 in Y we again deduce that i < j. The case where
Y ⊂ X is similar.

Suppose now that X and Y overlap. Applying Lemma 20.11 and breaking
symmetry, we may assume that dX(γ, ∂Y ) < M1. Since σi precedes γ we have
indexX(γ) ≥ 2K1. Lemma 3.10 now implies that indexX(∂Y ) ≥ 2K1 − M1 − 6δ.
Thus,

dX(α, ∂Y ) ≥ 2K1 − M1 − 8δ ≥ M1,

where the first inequality follows from Lemma 3.7.
Applying Lemma 20.11, we deduce that dY (α, ∂X) < M1. Now, since σj suc-

ceeds γ in Y , we find that indexY (σj) ≥ 2K1. So Lemma 3.7 implies dY (α,σj) ≥
2K1 − 2δ. The triangle inequality now gives

dY (∂X,σj) ≥ 2K1 − M1 − 2δ ≥ M1.

Applying Lemma 20.11, we deduce that dX(∂Y,σj) < M1. Thus dX(γ,σj) ≤ 2M1.
Finally, Lemma 3.10 implies that the difference in index (in X) between σi and σj

is at least 2K1 − 2M1 − 6δ. Since this is greater than the backtracking constant,
K1, it follows that i < j. !

Let σα ∈ P be the last vertex of P with the following property. There exists a
hole where σα precedes γ by at least 2K1. If no such vertex of P exists, then take
σα = α.

Claim 20.15. For every hole X, if h = [πX(α),πX(β)], then

dX(σα, ρh(γ)) ≤ 3K1 + 6δ + 3.
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Proof. Since σi and σi+1 are disjoint we have dX(σi,σi+1) ≤ 3 and so Lemma 3.10
implies that

| indexX(σi+1) − indexX(σi)| ≤ 6δ + 3.

Since P is a path connecting α to β the image ρh(P) is (6δ + 3)–dense in h. Thus,
if indexX(σα) + 2K1 + 6δ + 3 < indexX(γ), then we have a contradiction to the
definition of σα.

On the other hand, if indexX(σα) ≥ indexX(γ) + 2K1, then σα succeeds γ in X
and σα precedes γ in some hole. This directly contradicts Claim 20.14.

We deduce that the difference in index between σα and γ in X is at most 2K1 +
6δ + 3. Finally, as P sidetracks by at most K1 we have

dX(σα, ρh(γ)) ≤ 3K1 + 6δ + 3,

as desired. !
We define σβ to be the first σi to succeed γ by at least 2K1; if no such vertex

of P exists take σβ = β. If α = β, then σα = σβ. Otherwise, from Claim 20.14,
we immediately deduce that σα comes before σβ in P. A symmetric version of
Claim 20.15 applies to σβ : for every hole X,

dX(ρh(γ),σβ) ≤ 3K1 + 6δ + 3.

20.16. Another side of the triangle. Recall we are also given a path R = {τi}
connecting α to γ in G. As before, R has bounded backtracking and sidetracking.
Thus we again find vertices τα and τγ , the last/first to precede/succeed β by at least
2K1. This is defined in terms of the closest points projection of β to the geodesic
h = [πX(α),πX(γ)]. By Claim 20.15, for every hole X the vertices τα and τγ are
close to ρh(β).

By Lemma 3.9, if k = [πX(α),πX(β)], then dX(ρk(γ), ρh(β)) ≤ 6δ. We deduce
the following.

Claim 20.17. dX(σα, τα) ≤ 6K1 + 18δ + 6. !
This claim and Claim 20.15 imply that the body of the triangle PQR has

bounded size. We now show that the legs are slim.

Claim 20.18. There is a constant N2 = N2(S) with the following property. For
every σi ≤ σα in P there is a τj ≤ τα in R so that

dX(σi, τj) ≤ N2

for every hole X.

Proof. We only sketch the proof, as the details are similar to our previous discussion.
Fix σi ≤ σα.

Suppose first that no vertex of R precedes σi by more than 2K1 in any hole. So
fix a hole X and geodesics k = [πX(α),πX(β)] and h = [πX(α),πX(γ)]. Then ρh(σi)
is within distance 2K1 of πX(α). Appealing to Claim 20.17, bounded sidetracking,
and hyperbolicity of C(X) we find that the initial segments

[πX(α), ρk(σα)] ⊂ k and [πX(α), ρh(τα)] ⊂ h

must fellow travel. Because of bounded backtracking along P, ρk(σi) lies near this
initial segment of k. Thus by Lemma 3.11 ρh(σi) is close to ρk(σi) which in turn
is close to πX(σi), because P has bounded sidetracking. In short, dX(α,σi) is
bounded for all holes X. Thus we may take τj = τ0 = α and we are done.
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Now suppose that some vertex of R precedes σi by at least 2K1 in some hole X.
Take τj to be the last such vertex in R. Following the proof of Claim 20.14 shows
that τj comes before τα in R. The argument now required to bound dX(σi, τj) is
essentially identical to the proof of Claim 20.15. !

By the distance estimate, we find that there is a uniform neighborhood of
[σ0,σα] ⊂ P, taken in G, which contains [τ0, τα] ⊂ R. Thus PQR is slim. This
completes the proof of Theorem 20.5. !

21. Coarsely computing Hempel distance

We now turn to our topological application. Recall that a Heegaard splitting is a
triple (S, V, W ) consisting of a surface and two handlebodies where V ∩W = ∂V =
∂W = S. Hempel [25, page 632] defines the quantity

dS(V, W ) = min
{
dS(D, E) | D ∈ D(V ), E ∈ D(W )

}

and calls it the distance of the splitting. Note that a splitting can be completely
determined by giving a pair of cut systems: simplices D ⊂ D(V ) and E ⊂ D(W )
where the corresponding disks cut the containing handlebody into a single three-
ball. The triple (S, D, E) is a Heegaard diagram. The goal of this section is to prove
the following.

Theorem 21.1. There is a constant R1 = R1(S) and an algorithm that, given a
Heegaard diagram (S, D, E), computes a number N so that

|dS(V, W ) − N | ≤ R1.

Let ρV : C(S) → D(V ) be the closest points relation: so

ρV (α) =
{
D ∈ D(V ) | for all E ∈ D(V ), dS(α, D) ≤ dS(α, E)

}
.

It suffices to show the following.

Theorem 21.2. There is a constant R0 = R0(V ) and an algorithm that, given an
essential curve α ⊂ S and a cut system D ⊂ D(V ), finds a disk C ∈ D(V ) so that

dS(C, ρV (α)) ≤ R0.

Proof of Theorem 21.1. Suppose (S, D, E) is a Heegaard diagram. Using Theo-
rem 21.2 we find a disk D within distance R0 of ρV (E). Again using Theorem 21.2
we find a disk E within distance R0 of ρW (D). Notice that E is defined using D
and not the cut system D.

Computing distance between fixed vertices in the curve complex is algorith-
mic [28, 46]; thus we may compute dS(D, E). By the hyperbolicity of C(S) (The-
orem 3.5) and by the quasi-convexity of the disk set (Theorem 4.11) this is the
desired estimate, N . !

Very briefly, the algorithm asked for in Theorem 21.2 searches an R2–neighbor-
hood in M(S) about a splitting sequence from D to α. Here are the details.

Algorithm 21.3. We are given α ∈ C(S) and a cut system D ⊂ D(V ). Make D and
α tight. Following [32, Section 4] there is a one-switch track τ in S = ∂V obtained
by collapsing α. The cut system D is dual to τ and also crosses the sole switch of
τ . Now make τ a generic track by combing away from D [38, Proposition 1.4.1].
Note that α is carried by τ and so gives a transverse measure w.
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Build a splitting sequence of measured tracks {τp}N
p=0, where τ0 = τ , τN = α, and

τp+1 is obtained by splitting the largest branch of τp (as determined by the measure
imposed by α).

Let µp = V (τp) be the vertices of τp. For each filling marking µp list all markings
in the ball B(µp, R2) ⊂ M(S), where R2 is given by Lemma 21.5 below. (If µ0 does
not fill S, then output D and halt.)

For every marking µ so produced we use Whitehead’s algorithm 21.4 to try to find
a disk meeting some curve γ ∈ µ at most twice. For every disk C found, compute
dS(α, C) [28, 46]. Finally, output any disk D which minimizes this distance, among
all disks considered, and halt. !

The following lemma is a simplification of an algorithm of Zieschang [13, Theo-
rem 1]. The proof is left as an exercise.

Lemma 21.4. There is an algorithm that, given a cut system D ⊂ V and a curve
γ ⊂ S, outputs a disk C ⊂ V so that ι(γ, ∂C) = min{ι(γ, ∂E) | E ∈ D(V )}. !

We now discuss the constant R2. Notice that the track τp is birecurrent because
α is fully carried and D is fully dual. Thus by Theorem 18.7 and by Morse stability,
for any essential Y ⊂ S there is a stability constant M2 for the path p 1→ πY (µp).
Let δ be the hyperbolicity constant for C(S) (Theorem 3.5) and let Q be the quasi-
convexity constant for D(V ) ⊂ C(S) (Theorem 4.11).

Since ι(D, µ0) is bounded we will, at the cost of an additive error, identify their
images in C(S). For the purposes of the proof, for every p ∈ [0, N ], fix Ep ∈ ρV (µp).
In particular, fix E0 inside of D. (Note that the disks Ep are not necessarily
encountered during the running of Algorithm 21.3.)

Lemma 21.5. There is a constant R2 with the following property. Suppose that
n < m, that dS(µn, En), dS(µm, Em) ≤ M2 + δ+Q, and that dS(µn, µm) ≥ 2(M2 +
δ+Q)+5. Then there is a marking ν ∈ B(µn, R2) and a curve γ ∈ ν so that either

• γ bounds a disk in V ,
• γ ⊂ ∂Z, where Z is a non-hole, or
• γ ⊂ ∂Z, where Z is a large hole.

Proof of Lemma 21.5. Choose points σ,σ′ in the ε–thick part of T (S) so that all
curves of µn have bounded length in σ and so that En has length less than the
Margulis constant in σ′. As in Section 15 there is a Teichmüller geodesic and
associated markings {νk}K

k=0 so that dM(ν0, µn) is bounded and En ∈ base(νK).

Claim. There is a constant R3 so that for any small hole X we have dX(µn, νK) <
R3.

Proof. If dX(µn, νK) ≤ M0, then we are done. If the distance is greater than
M0, then Theorem 4.7 gives a vertex of the C(S)–geodesic connecting µn to En

with distance at most one from ∂X. It follows from the triangle inequality that
every vertex of the C(S)–geodesic connecting µm to Em cuts X. Thus the bounded
geodesic image theorem (Theorem 4.7) implies that

dX(µm, Em) < M0.

Note that dX(µ0, E0) is bounded by construction. Since X is a small hole the
distance dX(Ep, Eq) is uniformly bounded for any p, q ∈ [0, m]. Since p 1→ πX(µp) is
an unparameterized quasi-geodesic we deduce that dX(µp, Eq) is uniformly bounded
for all p, q ∈ [0, m].
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Since ι(En, νK) = 2 the distance dX(En, νK) is bounded. By the triangle in-
equality

dX(µn, νK) ≤ dX(µn, En) + dX(En, νK)

and the claim is proved. !

Now consider all strict subsurfaces Y so that

dY (µn, νK) ≥ R3.

None of these are small holes, by the claim above. If there are no such subsurfaces,
then Theorem 4.13 bounds dM(µn, νK): taking the cut-off constant larger than

max{R3, C0, M2 + δ + Q}

ensures that all terms on the right-hand side vanish. In this case the additive error
in Theorem 4.13 is the desired constant R2 and the lemma is proved.

If there are such subsurfaces, then choose one, say Z, that minimizes 2 = min JZ .
Thus dY (µn, ν') < C1 for all strict non-holes and all strict large holes. Since
dS(µn, En) ≤ M2 + δ + Q and {νm} is an unparameterized quasi-geodesic [41,
Theorem 6.1] we find that dS(µn, ν') is uniformly bounded. The claim above bounds
distances in small holes. As before we find a sufficiently large cut-off so that all
terms on the right-hand side of Theorem 4.13 vanish. Again the additive error
of Theorem 4.13 provides the constant R2. Since ∂Z ⊂ base(ν') the proof of
Lemma 21.5 is finished. !

To prove the correctness of Algorithm 21.3 it suffices to show that the disk
produced is close to ρV (α). Let m be the largest index so that for all p ≤ m we
have

dS(µp, Ep) ≤ M2 + δ + Q.

Using the stability of p 1→ πS(µp), the hyperbolicity of C(S), and the quasi-convexity
of D(V ), we deduce that µm+1 lies within distance M2 + δ of some vertex v ∈
[α, ρV (α)]. The remark after Lemma 13.16 implies that dS(µp, µp+1) ≤ C5 for all
p. By the definition of ρV we have dS(v, ρV (α)) ≤ dS(v, Em); we deduce that

dS(µm, ρV (α)) ≤ 2C5 + 3M2 + 3δ + Q.

Let n < m be the largest index so that

2(M2 + δ + Q) + 5 ≤ dS(µn, µm) ≤ 2(M2 + δ + Q) + 5 + C5.

If no such n exists, then take n = 0. Lemma 21.5 implies that there is a disk
C with dS(C, µn) ≤ C5R2 + C5 + 2 and this disk is found during the running of
Algorithm 21.3. It follows from the above inequalities that

dS(C,α) ≤ C5R2 + 5M2 + 5δ + 3Q + 7 + 4C5 + dS(ρV (α),α).

So the disk D, output by the algorithm, is at least this close to α in C(S). Using
the triangle with vertices α, ρV (α), and D it is an exercise to show that

dS(D, ρV (α)) ≤ C5R2 + 5M2 + 9δ + 5Q + 7 + 4C5.

This completes the proof of Theorem 21.2. !
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