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Polynomial-time word problems

Saul Schleimer

Abstract. We find polynomial-time solutions to the word problem for free-by-cyclic groups,
the word problem for automorphism groups of free groups, and the membership problem for the
handlebody subgroup of the mapping class group. All of these results follow from observing that
automorphisms of the free group strongly resemble straight-line programs, which are widely
studied in the theory of compressed data structures. In an effort to be self-contained we give a
detailed exposition of the necessary results from computer science.
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1. Introduction

Automorphisms of the free group are closely connected to two techniques in computer
science: string matching and compression. The relevance of the first is obvious. The
second is less clear. So, consider the fact that an automorphism of complexity n can
produce, by acting on a generator, a word of size at most exp(n). Now, there are only
exp(n) such automorphisms while there are exp(exp(n)) words available as output.
Thus most words in the free group cannot be obtained in this way. Those which can
are highly regular and thus susceptible to compression.

Compression techniques have already made an appearance in algorithmic topol-
ogy. Word equations play a starring role in the work of Schaefer, Sedgwick, and
Štefankovič [25]. One of the problems they consider, connectedness of normal curves
and surfaces, is also addressed by the orbit-counting techniques of Agol, Hass, and
Thurston [1]. Both results rely, directly or indirectly, on Plandowski’s Algorithm [24]
(Theorem 8.1 below).

The structure of the paper is as follows: Section 2 reviews straight-line programs
and also a slight variant, composition systems. Such programs are called compressed
words. Section 3 is an exposition of Lohrey’s Theorem [18]:

Theorem 3.5. The word problem for compressed words in the free group is solvable
in polynomial time.

© 2006 Saul Schleimer
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We use this theorem to answer a variety of questions; in each case the compression
technique “accelerates” an obvious exponential-time algorithm.

Theorem 4.1. For any automorphism � ∈ Aut(Fm) the word problem for the free-
by-cyclic group G� = Fm �� Z is polynomial time.

This problem is already known to be in NP: Bridson and Groves [7] show that
G� has a quadratic isoperimetric inequality. A generalization gives:

Theorem 5.2. The word problem for Aut(Fm) is polynomial time.

This solves problem (C1) on the list maintained by Baumslag, Myasnikov, and
Shpilrain [3]. In Section 6 we discuss membership problems: deciding whether or not
a given word belongs to a subgroup. In particular, if V is a handlebody and S = ∂V

then Broaddus asks if there is a polynomial-time algorithm to decide whether or not
a homeomorphism of S extends over V . We prove:

Theorem 6.4. The membership problem for MCG(V ) in MCG(S) is polynomial
time.

Sections 7 and 8 give expositions of theorems due to Hagenah [12] and Plan-
dowski [24], upon which Lohrey’s Theorem relies. As a result the computer science
portions of the paper are self-contained. I have been somewhat more permissive when
using techniques from combinatorial group theory or three-manifolds.

The paper ends with a brief appendix (Section A) indicating how these techniques
extend to closed surface groups. In particular, we prove:

Corollary A.6. The word problem for compressed words in a closed surface group
is solvable in polynomial time.

From this we give a new polynomial-time algorithm to solve the word problem in
the mapping class group MCG(S).

Acknowledgements. I thank Martin Bridson and Nathan Broaddus for both inspiring
seminar talks and for illuminating conversations. Without such models this paper
would not exist. I also thank Ilya Kapovich for his many helpful comments.

2. Straight line programs and composition systems

Recall that if L is a set of characters, or an alphabet, then the Kleene closure L∗ is
the set of all words (finite strings of characters) in L. If w ∈ L∗ then |w| is the length
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of w: the number of characters of w counted with multiplicity. We write ε for the
empty string: the word of length zero. If u and v are words we write u = v if and
only if u and v are identical as strings.

Fix a word w and assume 0 ≤ i ≤ j ≤ |w|. We take w[i : j ] to be the substring
starting immediately before the i + 1th character of w and ending just after the j th

character. Thus w[i : i] = ε and, in general, |w[i : j ]| = j − i. By convention
negative indices count from the end of w. Thus:

w[−j : −i] = w[|w| − j : |w| − i].
The following abbreviations will be useful: w[ : i] for w[0 : i], w[i : ] for w[i : |w|],
and w[i] for w[i : i +1]. Thus w[0] is the first character of w while w[−1] is the last.

If u, v are words in L∗ then their concatenation is denoted by u · v. This leads to
the pleasant identity w = w[ : i] · w[i : ]. Also, in order to rotate a word w exactly i

characters simply form w[i : ] · w[ : i]. For any word w ∈ L∗ define rev(w) to be the
reverse of w: so rev(w)[i] = w[−i − 1].

A straight-line program A = 〈L, A, An, P 〉 contains the following: a finite
alphabet L = {a1, . . . , am} of terminal characters, a disjoint finite alphabet A =
{A1, . . . , An} of non-terminal characters, a root terminal An ∈ A, and a set P =
{Ai → Wi} of production rules. These last allow us to replace a non-terminal Ai

with its production: a (possibly empty) word Wi in (L ∪ A)∗. Every non-terminal
Aj appearing in Wi has index j < i. When indices are unimportant we shall use the
non-terminal A to represent the root of A.

To justify the term “root” define the production tree of a character in L ∪ A as
follows: The tree for a terminal a ∈ L is a single vertex, labelled a. The tree for
a non-terminal Ai ∈ A is planar, has root labelled Ai , and, attached to the root in
left-to-right order, contains a copy of the production tree for every character of Wi .

If B ∈ L ∪ A then the height of B, denoted ‖B‖, is the height of the production
tree of B: the maximal distance from the root to a leaf. For example, terminals have
height zero.

Define w(A) = wA to be the word of L∗ that results from running the straight-
line program A. That is, if An is the root then produce Wn, replace all non-terminals
appearing with their productions, and continue doing so until the resulting word lies
in L∗. This is exactly the word appearing at the leaves of the production tree of A.
Also, define w(Ai) = wAi

to be the word in L∗ produced by the non-terminal Ai .
A straight-line program is in Chomsky normal form if every production Wi has

length one or two: all of the former lie in L while all of the latter lie in A∗.

Remark 2.1. Every straight-line program can be placed in normal form in time
polynomial in �i |Wi |. This is done by introducing dummy non-terminals.
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Remark 2.2. Two remarks are in order about the meaning of polynomial time. The
variable in question is the bit-size of the input. The exact bit-size depends on a
choice of encoding; for example, a straight-line program in normal form, with n non-
terminals, should have bit-size O(n log2(n))The precise running-time of an algorithm
also depends on the model of computation. It is generally true that changing encoding
or model of computation transforms the bit-size or running-time by a polynomial
function. Thus the claim that some problem may be solved in polynomial time is
essentially independent of these choices.

Example 2.3. Here is the canonical example of a straight-line program:

F =
〈 {a, b}, {Fi}, Fn,

{Fi → Fi−1 · Fi−2}ni=3 ∪ {F2 → a, F1 → b}
〉

.

So w(Fi) is the ith Fibonacci word. For example

w(F8) = abaababaabaababaababa,

w(F9) = abaababaabaababaababaabaababaabaab.

It follows that the length |w(Fn)| grows exponentially with n.

Composition systems are a more flexible version of straight-line programs (in
normal form), introduced in [11]. We present a slight generalization, due to [18]: If
A, B, C ∈ A, then productions of the form A → B[i : j ] · C[k : l] are allowed. Here
B[i : j ] is a truncated non-terminal. Truncated non-terminals only appear on the right
hand side of productions, never on the left. A truncated non-terminal B[i : j ] is well
formed if the indices satisfy 0 ≤ i ≤ j ≤ |wB |. Define w(B[i : j ]) = wB [i : j ].
Repeated truncation behaves quite simply: (B[i : j ])[k : l] = B[i + k : i + l].
Example 2.4. Consider the straight-line program in normal form

A =
〈 {a, b}, {Ai}, An,

{Ai → Ai−1 · Ai−1}ni=4 ∪ {A3 → A2 · A1, A2 → a, A1 → b}
〉

.

Of course, w(Ai) = (ab)2i−3
for i ≥ 3. Truncate a little to obtain:

B =
〈 {a, b}, {Bi}, Bn, {Bi → Bi−1[1 : ] · Bi−1[1 : ]}ni=5∪

∪{B4 → B3 · B3, B3 → B2 · B1, B2 → a, B1 → b}
〉

.

Now the output appears to be more interesting: for example

w(B8) = bababbabbbababbabbababbabbbababbab.
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For future use, we record:

Lemma 2.5. If A is a composition system of height ‖A‖ then |wA| ≤ 2‖A‖. �

Lemma 2.6. There is a polynomial-time algorithm that, given a composition system
A, computes |wB | for all B ∈ A. �

Lemma 2.7. There is a polynomial-time algorithm that, given a composition system A

and an integer i, computes the character wA[i]. �

Remark 2.8. In particular, suppose we are given i, j with 0 ≤ i ≤ j ≤ |wA|. Then
we may compute the word wA[i : j ] in time polynomial in j − i and in the size of A.

It is perhaps surprising that the expressive power of composition systems and
straight-line programs are nearly the same. In Hagenah’s thesis [12, Chapter 8] we
find:

Theorem 7.1. There is a polynomial-time algorithm that, given a composition sys-
tem A, finds a straight-line program X with wX = wA.

For the convenience of the reader, the algorithm and a proof of correctness are
presented in Section 7. A more subtle result is due to Plandowski [24]:

Theorem 8.1. There is a polynomial-time algorithm that, given straight-line pro-
grams A and X in normal form, decides whether or not wA = wX.

In an attempt to be self-contained a proof appears in Section 8. Gasieniec, Karpin-
ski, Plandowski, and Rytter [11] strengthen Theorem 8.1 as follows:

Theorem 2.9. There is a polynomial-time algorithm that, given composition sys-
tems A and X, computes the largest integer k ≥ 0 where wA[ : k] = wX[ : k].
Proof. This is an application of Theorems 7.1 and 8.1 and of binary search. Suppose
that A and X are the root non-terminals for A and X, respectively. Theorems 7.1
and 8.1 result in a polynomial-time algorithm that, given any number i with 0 ≤
i ≤ min{|wA|, |wX|}, decides if wA[ : i] = wX[ : i]. Call this algorithm the prefix
checker.

Let j0 = min{|wA|, |wX|}. If the prefix checker accepts j0 then take k = j0 and
we are done. Otherwise, let i0 = 0 and proceed as follows. We are given numbers
in, jn with

• i0 ≤ in < jn ≤ j0 and

• wA[ : in] = wX[ : in] and wA[ : jn] �= wX[ : jn]



746 S. Schleimer CMH

If in + 1 = jn then set k = in and we are done. Otherwise, let i′ be greatest integer
less than (in + jn)/2. Run the prefix checker with input i′. If i′ is accepted then let
in+1 = i′ and let jn+1 = jn. If i′ is rejected then let in+1 = in and let jn+1 = i′.

Finally, notice that the prefix checker is called at most O(log2(j0)) times. This
completes the proof. �

3. Lohrey’s Algorithm

We now turn our attention to the free group. Let Lm = {ai, ai}mi=1. Let · : Lm → Lm

be the obvious involution. Given a word w(ai) ∈ L∗
m define w to be rev(w(ai)).

Compressed word is the umbrella term for a straight-line program or composition
system which produces a word in L∗

m. The involution given above extends to com-
pressed words; constructions like B are allowed on the right hand side of productions.
If A → B[i : j ] · C[k : l] then A → C[−l : −k] · B[−j : −i]. Finally, if A → a then
A → a. See Example 3.2 below for an illustration.

Lemma 3.1. There is a polynomial-time algorithm that, given a compressed word A,
computes a new compressed word A with w(A) = w(A). �

Now suppose that {a1, . . . , am} generate the free group Fm and that ai is the inverse
of ai . Recall that a word in the free group is freely reduced if it has no subwords of
the form aiai or aiai for any i ∈ {1, . . . m}. A word is cyclically reduced if all of its
rotations are freely reduced.

Example 3.2. To simplify notation inside this example, let L2 = {
a, b, a, b

}
. Form

a straight-line program

A =
〈

L2, {Ai, Bi}ni=0, An,

{Ak+1 → Bk, Bk+1 → BkAkBk}n−1
k=1 ∪ {A0 → a, B0 → b}

〉
.

Thus

w(A5) = babbbabbabbabbbabbabbbabbabbbabbabbabbbab.

Note the close relation with ϕ5(a) where ϕ : F2 → F2 is the automorphism a → b,
b → bab. Notice also that w(A5) has both free and cyclic reductions.

Using the generalization of Plandowski’s work (given as Theorem 2.9 above),
Lohrey [18] has proven:
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Theorem 3.3. There is a polynomial-time algorithm that, given a straight-line pro-
gram A in normal form, finds a composition system X where wX is the free reduction
of wA.

Proof. Induct on n. Suppose A = 〈Lm, A, An, P 〉 is the given straight-line program.
Now define a composition system X = 〈Lm, X, Xn, Q〉. For every non-terminal Ai

of height one in A place Xi in X and add the production Xi → w(Ai) to Q.
Now, if height(An) = 1 then there is nothing more to prove. So assume that

height(An) ≥ 2. By induction assume that Xi , for i < n, lies in X and assume that
the corresponding production lies in Q. Thus w(Xi) is freely reduced for all i < n.
Now place Xn in X and consider what Xn will produce.

Suppose that An → Ai · Aj . Build Xi using the algorithm of Lemma 3.1. Apply

the algorithm of Theorem 2.9 to find the largest k so that w(Xi )[ : k] = w(Xj )[ : k].
Add the production

Xn → Xi[ : −k] · Xj [k : ]
to Q. The word w(Xn) is now freely reduced. �

Example 3.4. We continue Example 3.2. Given A as above Lohrey’s algorithm
produces the following composition system:

X =
〈

L2, {Xi, Yi}, Xn, {Xi+1 → Yi, Yi+1 → Yi[ : 2] · Yi}n−1
i=1

∪ {X1 → Y0, Y1 → Y0X0Y0, X0 → a, Y0 → b}

〉
.

For example, w(X5) = bababab. Deduce that w(Xk+2) = w(Yk+1) = ba · w(Yk)

for k ≥ 1.

There is an important corollary of Theorem 3.3:

Theorem 3.5 (Lohrey [18]). The word problem for compressed words in the free
group is solvable in polynomial time. �

We notice two more consequences.

Corollary 3.6. There is a polynomial-time algorithm that, given a compressed word A,
finds a compressed word X where wX is cyclic reduction of wA. The algorithm also
gives the compressed conjugating word.

Proof. Following Theorems 7.1 and 3.3 assume that wA is freely reduced. Using
the algorithm of Lemma 3.1 produce the compressed word A. Now apply the gen-
eralization of Plandowski’s algorithm (Theorem 2.9) to find the largest k so that
wA[ : k] = w

A
[ : k]. It follows that the composition system A′ → A[ : k] produces

the conjugating word. Also, the composition system X → A[k : −k] produces the
cyclic reduction of wA, as promised. �
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The second consequence is more subtle:

Theorem 3.7. The conjugacy problem for compressed words in the free group is solv-
able in polynomial time. The algorithm also computes the compressed conjugating
word.

We only sketch the proof, as the theorem is not used in the sequel.

Proof sketch of Theorem 3.7. Suppose that A and X are the given compressed words.
Using Corollary 3.6 assume that A and X produce cyclically reduced words. Using
Lemma 2.6 check that |wA| and |wX| are equal.

Let W be the compressed word with root production W → X · X. That is
wW = wX ·wX. Thus, to prove that wA and wX are conjugate it suffices to prove that
wA appears as a subword of wW . But this is a special case of the fully compressed
pattern matching problem which can be solved in polynomial time. See, for example,
the work of Karpinski, Rytter, and Shinohara [16], of Gasieniec et al. [11], or of
Miyazaki, Shinohara, and Takeda [22]. �

4. Free-by-cyclic groups

For background in group theory the reader should consult Lyndon and Schupp’s
book [20]. Recall the definition of Aut(Fm): the group of all automorphisms of the
free group Fm. Fix � ∈ Aut(Fm). The free-by-cyclic group G� is presented by:〈

ai, t | tai t̄ = �(ai), i ∈ {1, . . . , m}〉.
The goal of this section is to prove:

Theorem 4.1. The word problem for G� is polynomial time.

Proof. Let Lm = {ai, ai} and M = Lm ∪ {t, t̄ }. Let A = {Ai,p | i ∈ {1, . . . m},
p ∈ N}. Fix � ∈ Aut(Fm) by assuming that the words ui(a1, . . . , am) = �(ai) are
given as input.

Define production rules as follows:

Ai,0 → ai,

Ai,p → ui(A1,p−1, . . . , Am,p−1), p ≥ 1.

Suppose now that W is a word in M∗. The length of W determines the size
of the given word problem. Now rewrite W in stages: First freely reduce. Next
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replace every ai and ai appearing by Ai,0 and by Ai,0, respectively. Now move all
occurrences of t to the right, and of t̄ to the left, rewriting as follows:

t · Ai,p � Ai,p+1 · t,

t · Ai,p � Ai,p+1 · t,

Ai,p · t̄ � t̄ · Ai,p+1,

Ai,p · t̄ � t̄ · Ai,p+1,

t · t̄ � ε.

The result is a word in {Ai,p, Ai,p}∗, possibly with powers tk and t̄
l appearing

at the end and beginning. Let W ′(Ai,p) be this word, omitting the leading and
trailing powers of t . Construct a straight-line program with a root non-terminal
A → W ′(Ai,p). Notice that W is trivial in G� if and only if the word wA freely
reduces in Fm and the powers satisfy k = l. (This is a simple form of Britton’s
Lemma. See page 181 of [20].)

However the latter occurs if and only if the total exponent of t in W is zero. The
former is exactly solved by applying Lohrey’s Algorithm (Theorem 3.3). �

Remark 4.2. The statement of Theorem 4.1 may be generalized to ascending HNN
extensions: � is assumed to be an injection instead of an automorphism. The proof
is identical. The question for HNN extensions in general appears to be more delicate.

5. The automorphism group of a free group

We now examine the automorphism group in greater detail. Recall that the automor-
phism group Aut(Fm) is finitely generated by the Nielsen generators (see Chapter 1.4
of [20]):

(1) αi ∈ Aut(Fm) so that αi |Lm interchanges ai and ai , fixing all other elements
of Lm.

(2) βij ∈ Aut(Fm), with i �= j , has βij (ai) = aiaj , and βij (ak) = ak for all k �= i.

Remark 5.1. Choosing a different generating set alters running times by at most a
multiplicative constant. The choice above simplifies the proof below.

Theorem 5.2. The word problem for Aut(Fm) is polynomial time.

Proof. Suppose that � = ϕ1 . . . ϕn is a word in the Nielsen generators. It suffices to
check that �(ai) freely reduces to ai , for all i.
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To do this, define a straight-line program: Let {Ai,p} be the set of non-terminals
with i ∈ {1, . . . m} and p ∈ {0, 1, . . . n}. Create the following production rules:

Ai,0 → ai,

Ai,p → ϕp(Ai,p−1), p ≥ 1.

If ϕp = αi is of the first kind then ϕp(Ai,p) equals Ai,p−1 while ϕp(Aj,p) equals
Aj,p−1, for j �= i. If ϕp = βij is of the second kind then ϕp(Ai,p) equals Ai,p−1 ·
Aj,p−1, and so on.

Now apply the algorithm of Theorem 3.3 to rewrite this straight-line program
so that all outputs are freely reduced. If the resulting composition system has
|w(Ai,n)| ≥ 2 for any i then the automorphism � is nontrivial. If |w(Ai,n)| = 1
for all i then, using the algorithm of Lemma 2.7, check if w(Ai,n) = ai . If this is the
case for all i then � is the identity element of Aut(Fm). �

Remark 5.3. In our analysis of the word problem for free-by-cyclic groups we could
accept as input both the word W in M∗ and automorphism � given as a word in the
Nielsen generators. Now we need not precompute the words ui . Instead we find,
as in the proof of Theorem 5.2, straight-line programs producing these words. The
running time of Theorem 4.1 then becomes polynomial in the two inputs W and �.

Note that solving the word problem for a group also solves the word problem
for subgroups. Of course, there are many beautiful subgroups of Aut(Fm). As just
a single example consider the braid group, Bm: Let Dm be a disk with m points
removed from the interior. Then Bm is the group of homeomorphisms of Dm that fix
the boundary pointwise, modulo boundary and puncture fixing isotopies. Choosing
a basepoint on the boundary makes Bn act on π1(Dm) ∼= Fm and so embeds Bn into
Aut(Fm). A simple corollary to Theorem 5.2 is the well-known:

Corollary 5.4 ([4], [17], [9], [5], [13]). The word problem for Bm is polynomial
time. �

6. Membership problems

We now turn our attention to membership problems, also called generalized word
problems. Suppose that H is a subgroup of a finitely presented group G. We seek an
algorithm that, given a word W written in the generators of G, decides if W represents
an element of H . Note that if H is normal in G then such an algorithm also solves
the word problem in the quotient G/H .

Recall that Inn(Fm) is the normal subgroup of Aut(Fm) that contains �U for all
words U ∈ L∗

m: �U(V ) = UV U . The quotient is the outer automorphism group,
Out(Fm).
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Theorem 6.1. The word problem for Out(Fm) is polynomial time.

Proof. To see this, note that the membership problem for Inn(Fm), inside of Aut(Fn),
is solved by the construction given in the proof of Theorem 5.2 and by Corollary 3.6.

�

Another interesting membership problem is that of the braid group (or more gen-
erally, mapping class groups of punctured surfaces) inside of Aut(Fm). In order to
avoid multiplying examples we only discuss the problem for the braid group: it suf-
fices to check that the boundary word is fixed and all punctures are preserved, up to
conjugacy. (See [21, Theorem N6], for example.) Corollary 3.6 can check the latter
and the former is dealt with by Lohrey’s Algorithm (Theorem 3.3).

Here is another kind of membership problem, proposed by Nathan Broaddus: Let
MCG(S) denote the mapping class group of the closed connected orientable genus g

surface, S. Consider a handlebody V with ∂V = S. Then MCG(V ) naturally
includes in MCG(S).

Remark 6.2. Recall the fundamental fact that � ∈ MCG(S) lies in the subgroup
MCG(V ) if and only if � preserves the set of meridians: the set of curves in S that
bound disks in V . In fact a “weaker” condition is equivalent: let D be a collection of
g disjoint disks in V so that V �D is a three-ball. Then � ∈ MCG(V ) if and only if
the curves �(∂D) bound disks in V .

Fix a point x ∈ S and let {a1, . . . , ag, b1, . . . , bg} be the standard set of generators
of π1(S, x). We arrange matters so that all of the bi are meridians. See Figure 1.

Figure 1. Generators for the fundamental group of S.

Choose also a standard set {τ } of Dehn twist generators for MCG(S). In fact
we will over-specify these twists: for each Dehn twist in the generating set choose
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a twisting curve {α} that avoids a small neighborhood of the basepoint x ∈ S. See
Figure 2.

Figure 2. Generators for the mapping class group.

Pick finally a point y in this small neighborhood of x, avoiding all the loops ai

and bi . It follows that π1(S�{y}, x) ∼= F2g is freely generated by the ai and bi loops.
Also, the Dehn twists give free group automorphisms. (See [21, Theorem N10].)
Broaddus tells us the useful:

Lemma 6.3. Fix W ∈ {ai, bi, ai, bi}∗ so that W is homotopic in S to a simple closed
curve ω. The following two conditions are equivalent:

• ω is a meridian.

• After deleting all bi’s and bi’s from W the resulting word in {ai, ai}∗ freely
reduces to the empty word.

Proof. Consider the map π1(S, x) → π1(V , x) ∼= Fg induced by inclusion. As in
Figure 1 all of the bi lie in the kernel while the images of the ai freely generate π1(V ).
Accordingly, identify π1(V ) and the free group 〈ai |〉.

Suppose now that the first condition holds: ω is a meridian. Then W lies in the
kernel. Since the bi normally generate the kernel the second condition follows.

Suppose instead that the second condition holds. Since W is in the kernel, deduce
that ω bounds a singular disk in V . By the celebrated Loop Theorem [14] ω is a
meridian. �

We are now prepared to prove:

Theorem 6.4. The membership problem for MCG(V ) in MCG(S) is polynomial
time.
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Proof. As is well known [15] the 2g + 1 Dehn twists shown in Figure 2 generate
the mapping class group, MCG(S). So fix a word � = τ1 . . . τn, written in terms
of these twists and their inverses. By Remark 6.2 it is enough to check that �(bi),
thought of as a word in the free group generated by the ai and the bi , satisfies the
second condition of Lemma 6.3. This can be done directly, but �(bi) might have
length exponential in n.

Instead, for each i encode �(bi) as a compressed word, say A(i). It is a triviality
to remove all bi and bi appearing in w(A(i)): for every non-terminal B with B → bi

replace the production by B → ε. Call the new compressed word A
′(i).

Now run Lohrey’s Algorithm (Theorem 3.3) on A
′(i). The mapping class � lies

in MCG(V ) if and only if w(A′(i)) freely reduces to the empty string, for all i. �

Remark 6.5. Suppose that W is another handlebody of genus g with ∂W = S so that
V ∪S W is the three-sphere. Here the ai loops bound disks in W . Define the Goeritz
group G to be the intersection MCG(V ) ∩ MCG(W), thought of as subgroups of
MCG(S). (See [26], [2], and [8] for discussion of the Goeritz group in genus two.)
Applying Theorem 6.4 twice gives a polynomial-time algorithm for the membership
problem of G in MCG(S).

7. Hagenah’s Algorithm

We now discuss the computer science underpinnings of the discussion above. To
begin, in Hagenah’s thesis [12, Chapter 8] we find:

Theorem 7.1. There is a polynomial-time algorithm that, given a composition system
A, finds a straight-line program X with wX = wA.

The exposition of this result in [12] is wonderfully clear. I present a proof only
to make this paper self-contained.

Proof of Theorem 7.1. Fixing notation, suppose that A = 〈L, A, A, P 〉. Note that
all productions in P are either of the form B → C[i : j ] · D[k : l] or of the form
B → a[i : j ].

Build the straight-line program X = 〈L, X, X, Q〉 from the bottom up. The set
X will contain plain non-terminals, one for each non-terminal of A, and decorated
non-terminals, each associated to some plain non-terminal. Proceed as follows: for
every non-terminal B ∈ A of height one we add a plain non-terminal Y to X. Suppose
B produces a[i : j ]. Then

• if j = i + 1 add Y → a to Q and

• if j = i add Y → ε to Q.
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Let A be the root non-terminal of A. Assume via induction that for every other
non-terminal B ∈ A a plain non-terminal Y has been added to X, so that wY = wB .
We now describe the decorated non-terminals that may also, by induction, appear in
X. Fix any plain non-terminal Y in X. Then Y [i : j ] is a decorated non-terminal.
There are various cases:

• If 0 < i < j < |wY | then Y [i : j ] is a subword non-terminal.

• If 0 < j < |wY | then Y [ : j ] is a prefix non-terminal.

• If 0 < i < |wY | then Y [i : ] is a suffix non-terminal.

• Y [ : ] = Y is the plain non-terminal.

• Y [i : i] = ε is the empty word.

Repeated decoration behaves as expected: (Y [i : j ])[l : k] = Y [i+k : i+l]. The production
rules for decorated non-terminals are given below.

Suppose now that the root has production A → B[i : j ] · C[k : l]. Suppose that
Y and Z are plain non-terminals in X corresponding to the non-terminals B and C.
Add a plain non-terminal X to X corresponding to A. Add the non-terminals Y [i : j ]
and Z[k : l] to X. Add the production rule X → Y [i : j ] · Z[k : l] to Q.

Production rules are needed for every new decorated non-terminal, Y [i : j ], created
by the addition of the plain X. Suppose that the plain non-terminal Y produces U ·V .
(Here it is possible that U and V are themselves decorated non-terminals.) There are
several cases and subcases: Suppose first that Y [i : j ] is a subword non-terminal.

Subcase Add to X Add to Q

|wU | ≤ i V [i−|wU | : j−|wU |] Y [i : j ] → V [i−|wU | : j−|wU |]

i < |wU | < j U [i : ], V [ : j−|wU |] Y [i : j ] → U [i : ] · V [ : j−|wU |]

j ≤ |wU | U [i : j ] Y [i : j ] → U [i : j ]

Suppose now that Y [ : j ] is a prefix non-terminal.

Subcase Add to X Add to Q

|wU | < j V [ : j−|wU |] Y [ : j ] → U · V [ : j−|wU |]

j ≤ |wU | U [ : j ] Y [ : j ] → U [ : j ]
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Suppose now that Y [i : ] is a suffix non-terminal.

Subcase Add to X Add to Q

|wU | ≤ i V [i−|wU | : ] Y [i : ] → V [i−|wU | : ]

i < |wU | U [i : ] Y [i : ] → U [i : ] · V

Notice that creating the plain non-terminal X causes at most two decorated non-
terminals to be created, both of lesser height. Every subword non-terminal in turn
creates at most one subword non-terminal or at most one prefix and at most one
suffix non-terminal. Again, these have lesser height. Finally, any prefix (suffix) non-
terminal causes at most one prefix (suffix) non-terminal to be created. As usual, the
height decreases.

Suppose that n = ‖A‖. It follows that the creation of the plain non-terminal X

adds at most 1 + 2(2n) = 1 + 4n new decorated non-terminals to X. Thus the total
number of non-terminals in X, at the end of the construction, is

n +
∑
B∈A

(1 + 4‖B‖) ≤ n +
n∑

i=1

(1 + 4i) = 2n2 + 4n.

This completes both the description of the algorithm and its proof of correctness. �

8. Plandowski’s Algorithm

The final piece of the puzzle is:

Theorem 8.1 (Plandowski [24]). There is a polynomial-time algorithm that, given
straight-line programs A and X in normal form, decides whether or not wA = wX.

A proof, essentially following [24], is provided for the convenience of the reader.

Proof of Theorem 8.1. Let A = 〈L, A, A, P 〉 and X = 〈L, X, X, Q〉. Note that we
assume, as we may, that A and X have the same terminal alphabet. Making a copy
of X if necessary, assume that A ∩ X = ∅. Finally assume that |wA| = |wX| and
|A| = m ≥ n = |X|.

We begin with the following definition: a triple (B, Y, i) is an assertion if:

• B ∈ A ∪ L and Y ∈ X ∪ L.

• 0 ≤ i < |wB |.
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If 0 ≤ i and |wB | ≤ i + |wY | then (B, Y, i) is a overlap assertion. If 0 < i and
i + |wY | < |wB |, and then (B, Y, i) is a subword assertion. Assertions of the form
(Y, B, i), are defined similarly. We do not allow a pair of non-terminals from the
same program to appear in a single assertion.

An overlap assertion (B, Y, i) is satisfied if and only if wB [i : ] = wY [ : |wB |− i].
Likewise, a subword assertion is satisfied if and only if wB [i : i + |wY |] = wY . As
a bit of terminology a set of assertions, �, is satisfied if and only if every assertion
γ ∈ � is. In point of fact, the algorithm checks satisfiability of (B, Y, i) when and
only when both B and Y are terminal characters and i = 0.

Our algorithm transforms a set of assertions �k into another such set, �k+1. Be-
ginning with �0 = {(A, X, 0)} the following properties are maintained:

(a) �k+1 is satisfied if and only if �k is satisfied.

(b) At most m + n − k elements of A ∪ X are mentioned in �k .

(c) For all k, |�k| is bounded by (k + 1)4mn(m + n).

There are two ways to produce a new assertions from old, splitting and compacting.

Splitting. Fix �, a set of assertions. Suppose that, of all non-terminals from A and
X appearing in �, the non-terminal B ∈ A has maximal length. Fix γ ∈ �. We must
define Split(γ, B) and then Split(�, B).

There are several cases to consider. If B does not appear in γ then Split(γ, B) =
{γ }. Now suppose that γ = (B, Y, i) or γ = (Y, B, i). Note that γ is either an
overlap or subword assertion and that we have assumed |wB | ≥ |wY |. Suppose that
B → C · D. Now consider subcases. If γ = (B, Y, i) is an overlap assertion then:

Subcase Split(γ, B) Type

i < |wC | (C, Y, i) overlap

(Y, D, |wc| − i) either

|wC | ≤ i (D, Y, i − |wc|) overlap

The table should be read as follows: When i < |wC | then Split(γ, B) contains two
assertions: either a pair of overlaps or one of each type. When |wC | ≤ i the set
Split(γ, B) contains a single overlap assertion. Suppose now that γ = (B, Y, i) is a
subword assertion:
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Subcase Split(γ, B) Type

i + |wY | < |wC | (C, Y, i) subword

i + |wY | = |wC | (C, Y, i) overlap

i < |wC | < i + |wY | (C, Y, i) overlap

(Y, D, |wc| − i) overlap

i = |wC | (Y, D, 0) overlap

|wC | < i (D, Y, i − |wC |) subword

Suppose now that γ = (Y, B, i) is an overlap assertion. As usual assume that |wB | ≥
|wY |:

Subcase Split(γ, B) Type

|wY | ≤ i + |wc| (Y, C, i) overlap

i + |wC | < |wY | (Y, C, i) subword

(Y, D, i + |wc|) overlap

Finally (Y, B, i) cannot be a subword assertion because |wB | ≥ |wY |. This finishes
the definition of Split(γ, B). Define

Split(�, B) = ⋃
γ∈� Split(γ, B).

Immediate from the definitions is:

Claim 8.2. A set of assertions � is satisfied if and only if Split(�, B) is satisfied. �

Define now o(�) to be the number of overlap assertions in �. Similarly we take
s(�) to be the number of subword assertions of �. So |�| = o(�) + s(�). From the
tables above deduce:

Claim 8.3. Suppose that � is a set of assertions. Then

o(Split(�, P )) ≤ o(�) + 2s(�),

s(Split(�, P )) ≤ o(�) + s(�)

when P ∈ A ∪ X is a non-terminal of maximal length in �. �
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Compact. Now for the definition of Compact(�). Note that, if u is a word, then
p ∈ N is a period of u if

• 1 ≤ p ≤ |u| − 1 and

• u[i] = u[i + p] for all 0 ≤ i ≤ |u| − 1 − p.

An immediate consequence of the definition is:

Claim 8.4. Suppose that γ = (B, Y, i) and γ ′ = (B, Y, j) are overlap assertions
with i < j . Then γ and γ ′ are satisfied if and only if γ is satisfied and j − i is a
period of the word wB [i : ]. �

We now give a restricted version of the famous Periodicity Lemma [19]:

Lemma 8.5. If p and q are periods of u, where p + q ≤ |u|, then gcd(p, q) is also
a period of u. �

The following claim is the engine in the proof of correctness of Plandowski’s
Algorithm:

Claim 8.6. Suppose that γ = (B, Y, i), γ ′ = (B, Y, j), and γ ′′ = (B, Y, k) are
overlap assertions with i < j < k and j − i + k − i ≤ |wB | − i. Then γ , γ ′, and γ ′′
are satisfied if and only if γ is satisfied and gcd(j − i, k − i) is a period of wB [i : ].

Proof. This follows from two applications of Claim 8.4 and from the Periodicity
Lemma 8.5. �

Equivalently γ , γ ′ and γ ′′ are satisfied if and only if γ and δ = (B, Y, i+gcd(j −
i, k − i)) are satisfied. This leads directly to the definition of SimpleCompact: given
{γ, γ ′, γ ′′} as in the hypothesis of Claim 8.6 define SimpleCompact({γ, γ ′, γ ′′}) =
{γ, δ}, with δ as above.

Now, for any set of assertions � define Compact(�) as follows: Order the sets
A and X of non-terminals. Let �0 = �. For all j we may assume that the set �j

is ordered lexicographically. Scan through �j to find the first consecutive triple of
assertions that satisfies the requirements of Claim 8.6. Apply SimpleCompact to this
triple to obtain �j+1 and notice that |�j+1| = |�j | − 1. Finally, if no such triples
exist then set Compact(�) = �j .

It follows that a single Compact operation involves calling the subroutine
SimpleCompact at most O(|�|) times. We also record the fact:

Claim 8.7. � is satisfied if and only if Compact(�) is satisfied. �
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Now to define �k+1 in terms of �k . Suppose that P ∈ A ∪ X is a non-terminal
appearing in �k maximizing the length of |wP |. Then take

�k+1 = Compact(Split(�k, P )).

Note that property (a) above is guaranteed by Claims 8.2 and 8.7 while property (b)
is provided by the fact that every non-terminal is split for at most one value of k. We
must now bound the size of �k .

Fix attention on any pair of non-terminals B ∈ A and Y ∈ X. Let {(B, Y, ij )}Nj=1
be the overlap assertions of �k that mention B and Y in that order and indexed so that
ij < ij+1. As �k is compact it follows from Claim 8.6 that

|wB | − ij < ij+2 − ij + ij+1 − ij .

Since ij+1 < ij+2 it follows that

1

2
(|wB | − ij ) < ij+2 − ij .

Deduce that N ≤ 2 log2(|wB |) + 1 ≤ 2‖B‖ + 1, with the last inequality following
from Lemma 2.5.

Claim 8.8. With �k+1 as given:

o(�k+1) ≤ mn(2m + 1) + nm(2n + 1) ≤ 4mn(m + n),

s(�k+1) ≤ 4mn(m + n) + s(�k) ≤ k(4mn(m + n)).

This verifies property (c) above. �

This completes both the description of the algorithm and its proof of correctness.
�

A. On surfaces

The discussion above gives a satisfactory picture of the behavior of compressed words
in the free group. One immediately asks for a similar treatment of hyperbolic groups
in general. However the situation there appears to require a new idea.

Instead we briefly describe well-tempered paths: a beautiful geodesic language
for closed surface groups. Our discussion is meant to be more inspiring than exhaus-
tive: many details are omitted. For simplicity, we restrict ourselves to the closed,
orientable, connected genus two surface.

Let D be the regular decagon in the hyperbolic plane with angles 2π/5. Label
the boundary of D with the word abcdeabcde, read counter-clockwise. The first five
edges are oriented counter-clockwise while the last five are oriented clockwise. Let
L = {a, b, c, d, e, a, b, c, d, e}. See Figure 3.
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a

a

b

b

c

c

d

d

e e

Figure 3. A labelled regular hyperbolic decagon.

The decagon and its labelling extends to a tiling D of the hyperbolic plane. Notice
that a path in the one-skeleton determines a word in L∗. Let M ⊂ L∗ be the subset
that can be realized in this way. Conversely, a word of M determines a unique path
in the tiling, up to the action of π1(S). When it cannot cause confusion we treat paths
and words interchangeably.

The following words of length five are called bad turns:

edcba, baedc, dcbae, aedcb, cbaed,

abcde, cdeab, eabcd, bcdea, deabc.

A path is well-tempered if the corresponding word is freely reduced and contains no
bad turn. The intent, and hence the name, is that these paths want to “turn right” as
often as they “turn left.” This is possible because 10/2 is odd. See Figure 4 for a
picture of the good turns.

Notice that well-tempered paths are well-behaved:

Theorem A.1. For any ordered pair of vertices in the tiling D there is a unique
well-tempered path connecting one to the other. Well-tempered paths are geodesic.
Subpaths are again well-tempered as are inverses. Finally, well-tempered paths are
locally detectable: to verify the property it suffices to check all subpaths of length
five.

Remark A.2. Well-tempered words are similar to short-lex words in hyperbolic
groups (see [9]). For example, both form regular geodesic languages which satisfy
uniqueness and which are closed under taking subwords. However, short-lex seems
satisfy the additional properties of local detection and inverse closed only when the
group is free.
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a

b c

d

e

Figure 4. All of the good turns are shown.

Here is a sketch of the proof of Theorem A.1. Suppose that α and β are paths and
the final vertex of α is the initial vertex of β. Define α · β to be their concatenation.
If α and β are well-tempered and α · β is not then the free reduction (or bad turns)
must overlap the point of concatenation.

We may straighten α · β (rel endpoints) until it becomes well-tempered. There
are four stages:

(1) Free reduction.

(2) Sweeping across two sides of at most one corridor.

(3) Sweeping across at most three pieces.

(4) Sweeping across one side of at most two corridors.

Before elaborating on these we briefly give definitions: A piece is a path δ of
length two to ten where all edges of δ are on the boundary of a single decagon of the
tiling. Now, fix a decagon D = D0 and suppose that Di is the image of D0 under the
ith power of a fixed side pairing transformation of D0. The union C = ⋃k−1

i=0 Di is
called a corridor. The two edges in ∂C corresponding to the transformation are the
ends of C. The other two components of ∂C are the sides of C. Note that sides of
corridors always have period four. See Figure 5.

Suppose again that α and β are well-tempered and γ0 = α ·β is the concatenation.
We can now flesh out the stages required to make γ0 well-tempered, assuming it is
not already. First freely reduce, if possible, to produce γ1. If γ1 contains two sides
and one end of a corridor C then sweep γ1 across C to obtain γ2. This deals with all
pieces of length nine and ten.
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eee e

Figure 5. An e-corridor of length three.

Next sweep γ2 across at most three pieces of lengths between five and eight to
form γ3. The pieces of length five are necessarily bad turns. The proof that there are
at most three such is a lengthy but straight-forward combinatorial argument.

If γ3 contains an end and a side of a corridor C, forming a bad turn, then sweep
γ3 across C. This occurs at most twice. Call the resulting curve, which must be
well-tempered, γ . These four stages simply move α · β through the thin triangle
bounded by α, β, and γ . See Figure 6.

α

β

γ

Figure 6. A cartoon of a thin triangle in the decagon tiling.

Recall that M is the set of words corresponding to paths in the one-skeleton of
the tiling D . For any compressed word A in M let γA be the corresponding path.
Again γA is only defined up to the action of π1(S). The above discussion leads both
to a proof of Theorem A.1 and of:

Theorem A.3. There is a polynomial-time algorithm that, given a compressed word
A in M, finds a compressed word X where

• the path γX is well-tempered and
• γA and γX are homotopic rel endpoints.
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Proof sketch. Suppose that the root of A has production A → B · C. By induction
assume that γB and γC are well-tempered. The first stage is a straight-forward ap-
plication of Plandowski’s Algorithm (Theorem 2.9). The second and fourth stages
require both Plandowski’s Algorithm and the fact that words of period four are highly
compressible. To deal with the third simply examine a constant sized suffix of w(B ′′)
and a constant sized prefix of w(C′′), where B ′′ and C′′ are the compressed words
output by the second stage. �

Remark A.4. There is a subtlety hidden in this proof sketch – the compressed word
X produced may have bit-size larger than that of A. Since the proof is inductive the
growth must be carefully controlled, in part using Hagenah’sAlgorithm (Theorem 7.1)

Remark A.5. It may be possible to prove versions of Theorems A.1 and A.3 us-
ing short-lex paths. However the number of combinatorial possibilities appears to
greatly increase. Also, I do not know how to control the growth in size indicated
in Remark A.4 when using short-lex paths. If this could be done then the entire
discussion should apply to general word hyperbolic groups.

From Theorem A.3 deduce:

Corollary A.6. The word problem for compressed words in π1(S) is solvable in
polynomial time. This gives a solution to the word problem in Aut(π1(S)). �

The compressed conjugacy problem follows from a careful reading of Epstein
and Holt’s paper [10]. In a few places their subroutines, acting on words, must be
altered to act on compressed words. In particular a solution to the fully compressed
matching problem (see the proof of Theorem 3.7) replaces the Knuth–Morris–Pratt
algorithm for checking if two words are cyclic conjugates and for computing roots.
Also, as noted above, the language of well-tempered paths is regular; this is used in
their proof to find certain bounds. Thus:

Theorem A.7. The conjugacy problem for compressed words in π1(S) is solvable in
polynomial time. �

Since π1(S) has no torsion the simple version of Bridson and Howie’s algo-
rithm [6], adapted to compressed words, now solves the membership problem for the
inner automorphism group Inn(π1(S)). Finally, recall Nielsen’s Theorem (see [21,
page 175]): the mapping class group MCG(S) is isomorphic to the outer automor-
phism group of π1(S). So, similar to the proof of Theorem 6.1, well-tempered paths
give:

Theorem A.8 ([23], [13]). The word problem in MCG(S) is solvable in polynomial
time. �
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