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Introduction

The main purpose of this monograph is to present a theorem of D. Gabai which produces
essential laminations on a great many 3-manifolds. We shall produce these laminations via
a construction of pseudo-Anosov flows on closed 3-manifolds, and of “pA flows” on compact
3-manifolds M which are torally bounded, meaning that each component of M is a torus.
The construction works whenever:

e M is oriented and irreducible.
o The rank of Hy(M,0M;Z) is positive (automatically true if OM # 0).
e M is not a Seifert fibered space.

e M is atoroidal, which means that every incompressible torus 7" in M is isotopic to a
boundary component; in other words, T is peripheral.

See theorem A below for a precise statement. The laminations produced by the construction
are “very full” laminations, which means that each complementary piece of the lamination
is obtained from a solid torus or a (torus)xI by a simple “paring” operation. See below for
a discussion of pseudo-Anosov and pA flows, and very full laminations.

When M # 0, very full laminations and pA flows are nicely situated for Dehn filling.
Given a very full lamination A in M, for each component T' of 0 M there are coordinates
(m, 1) for H1(T;Z), depending on A, such that as long as the surgery coefficients [ = 0,+1
are avoided the lamination A remains very full in the filled manifold. A similar statement
is true for pA flows. See theorem B below.

Along the way, we develop the theory of pseudo-Anosov and pA flows:

¢ On a closed manifold there is a close relation between pseudo-Anosov flows and pA
flows given by the “double DA” operation.

e Associated to a pA flow there is a transverse pair of very full laminations A®, A“, the
“stable” and “unstable” laminations of the flow (theorem 4.10.3).
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We also produce combinatorial tools which aid in the construction of pseudo-Anosov and
pA flows. By melding Markov partitions with the dynamic branched surfaces of J. Christy,
we produce the concept of a dynamic pair of branched surfaces, and prove:

¢ Every dynamic pair of branched surfaces carries a pA flow (theorem 3.3.2). On a
closed manifold every dynamic pair carries a pseudo-Anosov flow (theorem 3.4.1). A
converse is also true: every pA flow is carried by some dynamic pair of branched
surfaces (theorem 3.3.2).

See chapter 2 for the theory of dynamic pairs, and chapter 3 for the relation to flows. The
elements of this theory are extended to the setting of sutured manifolds in chapter 4.
In the rest of this introduction, we give a more leisurely overview of the monograph.

Laminations and flows

Essential laminations are a simultaneous generalization of Reebless foliations and incom-
pressible surfaces in 3-manifolds [GO89]. An essential lamination A carries topological
information about the 3-manifold M in which it lives. For example, if a 3-manifold M has
an essential lamination then M is irreducible and has infinite fundamental group, and if
M is closed then the universal cover of M is homeomorphic to R3. Many workers have
labored at constructing essential laminations in many different contexts; see Gabai’s survey
[Gab95].

There is a well known connection between foliations and Anosov flows on 3-manifolds.
If ® is an Anosov flow on a closed 3-manifold M, the stable manifold theory of Hirsch,
Pugh, and Shub [HPS77] produces a transverse pair of 2-dimensional foliations, the weak
stable and unstable foliations of ®, and these are Reebless foliations of M.

There is similar well known connection between very full laminations and suspension
flows of pseudo-Anosov flows. Suppose f: .5 — 5 is a homeomorphism of a closed surface,
with mapping torus My = S X R/(2,s + 1) ~ (f(2), s), and with suspension flow susp(f)
on My, the quotient of the flow on § x R given by (z,s) -t = (2,5 + t). If f is a pseudo-
Anosov homeomorphism, then (by definition) there is associated to f a transverse pair of
singular 1-dimensional foliations of S, the stable and unstable foliations of f [FLP*79].
The flow susp(f) is an example of a pseudo-Anosov flow. On the surface S, the singular
stable and unstable foliations may be “split” along singular leaves to produce a transverse
pair of laminations on .5, each filling the surface 5; one can then suspend these laminations
to obtain a transverse pair of very full laminations A®, A* on M.

The general concept of a pseudo-Anosov flow on a 3-manifold arises by simultaneously
generalizing Anosov flows and suspension flows of pseudo-Anosov surface homeomorphisms
(see §3.1). We shall offer two definitions, a smooth definition and a topological definition,
and we shall formulate some conjectures about how these definitions are related. Mostly we
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will stick to the topological definition, in part because that is what comes most naturally
out of our combinatorial constructions (such as theorem 3.4.1 mentioned above). A pseudo-
Anosov flow has 2-dimensional weak stable and unstable foliations, which are singular along
a finite number of periodic pseudohyperbolic orbits. These foliations may be split open along
their singular leaves, producing a transverse pair of very full laminations in M. Thus if M
supports a pseudo-Anosov flow, then M has an essential lamination, with all the topological
consequences that entails.

If ¢ is a pseudo-Anosov flow on M, the splitting operation performed above on the
singular stable and unstable foliations of ® may be performed dynamically on @ itself,
using a variant of Smale’s DA operation. The result is what we call a pA flow; see §3
for the definition. Loosely speaking, a pA flow is one which satisfies axiom A except for
certain basic sets which are pseudohyperbolic periodic orbits; the definition also places strict
conditions on the connections between the pseudohyprbolic orbits and the other basic sets.
The letters “pA” can be read as “pseudo axiom A”, or as “derived from pseudo-Anosov”,
or something like that (the letters “DA” stand for “derived from Anosov”’—acronyms are
in general a bad idea, but I can’t think of what else to call a pA flow). The advantage of pA
flows over pseudo-Anosov flows is that the definition can be formulated on any compact,
oriented, torally bounded 3-manifold M. pA flows enjoy all the topological advantages of
pseudo- Anosov flows: they have 2-dimensional weak stable and unstable laminations which
are very full, essential laminations in M. Also, pA flows are technically easier to work
with than pseudo-Anosov flows, because the tools of smooth hyperbolic dynamics may be
applied directly to pA flows.

To see how pA flows arise in nature, consider the problem of defining a pseudo-Anosov
homeomorphism f: § — 5 when S is a compact, oriented surface with nonempty boundary.
Because 0§ is a union of circles invariant under f, some aspect of the definition for closed
surfaces will have to be discarded. In [FLP179] exposé 11, a definition is offered which
retains the property of topological transitivity (some orbit is dense) at the expense of uni-
form hyperbolicity. Inspired by axiom A diffeomorphisms, we propose a different definition,
discarding topological transitivity but keeping uniform hyperbolicity on the chain recurrent
set, except on a finite collection of basic sets each of which is a pseudohyperbolic orbit.
Thurston’s classification of surface mapping classes will still hold using this definition: on
any compact oriented surface S, any orientation preserving homeomorphism f: § — 5
can be isotoped so that: f is finite order; or f preserves some system of nonperipheral,
nontrivial simple closed curves; or f is a pA homeomorphism. By applying the suspension
construction, we obtain a proof of theorem A for the mapping torus Mjy.

In general, given a pA flow ® on M, we may use the stable manifold theory to associate
to @ a transverse pair of laminations called the stable and unstable laminations of ®. These
laminations are of a special type called “very full” laminations, defined as follows. Let M be
a compact, oriented, torally bounded 3-manifold. Let A be a compact lamination contained
in int(M). Consider the manifold with boundary M} obtained from M — A by adding on



Introduction 7

boundary leaves, that is, leaves of A which are adjacent to M — A. We say that A is very
full if there are no sphere leaves or Reeb components, and if each component C' of M} falls
into one of the following two types:

Pared solid torus C ~ H — K where H = D? x §' and K C 8H is a nonempty family
of nontrivial simple closed curves which is essential in the sense that the minimal
geometric intersection number between K and the meridian curve §D? x (point) is
at least 2.

Pared torus shell C ~ T?x[0,1]— K x 1 where T? is the torus, K C T? is any nonempty
family of nontrivial simple closed curves, and T2 x 0 corresponds to a boundary
component of M; in this case, the curve family K x 0 lives in a boundary component
of M, and is called the degeneracy locus of that boundary component.

These objects are jointly called pared torus pieces. Very full laminations are evidently
essential, and they are a special case of the “full laminations” studied by Hatcher and
Oertel [HO96].

We can now state a simplified version of our main theorem:

Theorem A. Let M be a compact, oriented, irreducible, torally bounded 3-manifold such
that the rank of Ho(M,0M;Z) is positive. One of the following is true:

o M is Seifert fibered.
o M has a nonperipheral, incompressible torus.

o M has a pA flow, and if M is closed then it has a pseudo-Anosov flow. In particular,
M has a very full lamination.

Remark. As a special case, the complement of every nontorus, nonsatellite knot in $3 has
a pA flow. This leads to a completely general existence theorem for “knot holders” in the

sense of Birman and Williams [BW83], or “templates” as they are known in more recent
literature [GHS96]).

Theorem A may be regarded as a 3-dimensional generalization of Thurston’s classifi-
cation of surface diffeomorphisms mentioned above. That classification has an equivalent
reformulation which is often useful: every compact surface homeomorphism f: 5 — S may
be isotoped so that f preserves some family T of nontrivial, nonperipheral, pairwise dis-
joint, simple closed curves, and for each component C of S cut along T, the first return
map of f to C is isotopic to either a finite order homeomorphism or a pA homeomorphism.
There is a similar reformulation of theorem A:

Theorem A’. Let M be a compact, oriented, irreducible, torally bounded 3-manifold such
that the rank of Ho(M,0M;Z) is positive. There exists a family T of incompressible,
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nonperipheral, pairwise disjoint, embedded tori, such that for each component C of M cut
along T, one of the following is true:

o C is a Seifert fibered; or
o C has a pA flow, and if T = OM = 0 then C = M has a pseudo-Anosov flow. In

particular, C' has a very full lamination.

Application to Dehn filling

pA flows and very full laminations are nicely situated for performing Dehn filling—for
“almost all” Dehn fillings on each boundary torus, the lamination remains essential in
the filled manifold, and the flow remains pA. “Almost all” means that in the appropriate
coordinates on Dehn filling space, the only bad filling coefficients (m,!) are those with
1| < 1.

The following theorem is due to D. Gabai:

Theorem B: Dehn Filling Theorem. Let M be a compact, oriented, irreducible, torally
bounded 3-manifold, and suppose that dM # 0. Suppose also that M is not Seifert fibered.
For each component T; C OM there exist Dehn filling coordinates (m;,l;): Hi(T;) - Z & Z
with the following property. Let M. be obtained from M by filling some components T; of
OM along curves v; C T;, so that |l;(;)| > 2 for each T; that is filled. Then M., has an
essential lamination, and so M., is irreducible and has infinite fundamental group, and if
OM., is closed then the universal cover of M., is homeomorphic to R®.

Remark. In a knot complement, the coordinates given by the theorem may not agree with
the usual meridian—longitude coordinates; an example is given in 777.

Proof. Since M # 0 it follows that the rank of Ho(M,0M;Z) is positive. Applying
theorem A’ let 7 be a family of incompressible, nonperipheral, pairwise disjoint, embedded
tori in M such that each component of M cut along 7 either is Seifert fibered or has a very
full lamination. For each component T; of 0M, let C' be the component of M cut along T
which contains T;, and choose the coordinates (m;,[;) so that:

o If C is Seifert fibered then each Seifert fiber on T; has coordinates (m;, ;) = (1,0).

o If C has a very full lamination then each component of the degeneracy locus on T;
has coordinates (m;, ;) = (1,0).

Now consider M, as in the statement of the theorem. For each component C' of M cut
along 7, let C., C M, be the filling of C. If C' has a very full lamination A we shall prove
that A remains very full in C.,. If C has a Seifert fibration we shall prove that this extends
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to a Seifert fibration on C,, and C, is irreducible and boundary incompressible. It follows
that if 7 # () then 7 is itself an essential lamination in M.,, whereas if 7 = () then the very
full lamination in M is also a very full lamination in M.,.

Case 1: C has a very full lamination A. Consider a component T; of C' N M,
which is filled along the curve v; C T;. Let K; be the degeneracy locus of A on T;. Since
(m;(K;), (K1) = (1,0) and |I;(7;)| > 2, the pared torus shell containing T is filled in to
form a pared solid torus in C.,, which is essential because of the fact that (y, K;) > 2. It
follows that A is very full in C,, and so C, is irreducible and boundary incompressible.

Case 2: (C is Seifert fibered Let @) be the base orbifold of C'. For any component T; of
C N 3M which is filled, let 4; C T; be the filling curve, let K; be a Seifert fiber on T;, and
let ¢; be the component of 3Q to which T; projects. By hypotheses we have (v, K;) # 0
and so C,, is Seifert fibered.

From the hypothesis that M is not Seifert fibered it follows that C' contains at least one
boundary component which arises from cutting along 7, and so 9C, # 0. It follows that
C is irreducible—the only reducible Seifert fibered spaces are those with empty boundary
and with an $2 x R! geometric structure.

Let @)., be the base orbifold of C,. Note that ()., is obtained from @ by capping off ¢;
with a disc containing a cone point of order |l;(7;)| > 2, for each component T; of C N OM
which is filled.

Suppose that C,, has compressible boundary. It follows that ()., is a disc with at most
one cone point. The number of cone points in @), is equal to the number of cone points
in @ plus the number of filled components of C' N dM, and so at most one component of
CNOM is filled. If no components are filled then @, = @, and so §C contains a component
of 7 which is compressible in M, a contradiction. If one component is filled then ) is an
annulus with no cone points and C' is a (torus)x[; it follows that 0C contains a component
of 7 which is peripheral in M, also a contradiction. &

Remark. In many special cases this theorem can be strengthened by weakening the hypoth-
esis to say that |[;(y;)| > 1.

For example, let C' be a component of M cut along 7, and suppose that C has a very
full lamination. If T; is a component of M N C, and if the degeneracy locus on T; has two
or more components, then the weaker hypothesis |;(7;)| > 1 still implies (v;, K;) > 2 which
is enough to insure that the pared torus shell containing 7; gets filled in to an essential
pared solid torus.

For another example, suppose that C is Seifert fibered with base orbifold @), and let
C,, @+ be as in the proof. In almost all cases, for each component T; of M N C we need
only the weaker restriction that |[;(7;)| > 1. This restriction is still enough to conclude
that C. is Seifert fibered; if |/;(y;)| = 1 then ¢; is capped off by a disc with no cone points.
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Also, under the hypotheses that M is not Seifert fibered it still follows that C., # 0 and
so C,, is still irreducible. The only possible problem is if €y has a compressible boundary
component, and the only way that fillings with |/;(7;)| = 1 could cause this problem is if:
@ is a planar surface with < 1 cone point; all but one component of 3C is filled; and for
every filled component T; we have |/;(7;)| = 1. These are precisely the assumptions which
lead to @, being a disc with <1 cone point.

Remark. Because of the previous remark, it is desirable to have very full laminations whose
degeneracy locus has two or more components on each torus boundary. There is, however, a
certain intuition saying that generically the degeneracy locus has only one component. For
example, the generic element of the mapping class group of a punctured surface is pseudo-
Anosov with 1-pronged singularities at the puncture, and under suspension this leads to a
very full lamination whose degeneracy locus has one component on each boundary torus.
On the other hand, as suggested to me by W. P. Thurston, this intuition about “generic”
properties of the degeneracy locus may be suspicious in special situations, for example knot
complements in the 3-sphere.

Remark. When M is an oriented Seifert fibered space, for example the complement of a
torus link, the hypothesis |/;(7;)| > 1 is sufficient for the Seifert fibration to extend over
the filled manifold M,. As mentioned above, the base orbifold of M, is easily computed
by capping off boundary components of the base orbifold of M. It is well known how to
use the Seifert fibration to decide basic topological properties of M., such as irreducibility,
incompressible boundary, and infinite fundamental group. In many cases the hypothesis
|l;(7:)| > 1 is not enough to establish these properties; for example if M is a torus link and
if every boundary torus is filled so that |/;(y;)| = 1 then M, is a lens space and so it has
finite fundamental group.

Finite depth foliations

In [Gab83] Gabai proves that if M is a compact, irreducible, oriented torally bounded
3-manifold, and if the rank of Hy(M) is positive, then M has a transversely oriented,
Reebless finite depth foliation F transverse to M. Recall that F is finite depth if there
is a nested sequence of sublaminations 7y C --- C F, = F such that each leaf of Fj is
compact, and for each ¢ = 1,... ,n, each leaf L of F; — F;_1, and each sequence of points
2, € L leaving every compact subset of L, all limit points in M of the sequence (zj) are
contained in F;_1. Recall that a Reeb component of F is a solid torus whose boundary is a
leaf and whose interior is foliated by planes that accumulate on the boundary. A foliation
is Reebless if it has no Reeb components.

For example, if the depth is zero then F is a fibration over the circle with fiber F', and
in this case theorem A follows from Thurston’s classification of surface mapping classes
[FLP*79] as remarked above.
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In general, theorem A is an immediate consequence of [Gab83] and the following:

Theorem C. Let M be a compact, oriented irreducible torally bounded 3-manifold, and let
F be a transversely oriented, Reebless, finite depth foliation transverse to OM. One of the
following 1s true:

1. M s Seifert fibered.

2. M has a nonperipheral, incompressible torus T transverse to F and not isotopic to a

leaf of F.

3. M has a pA flow whose stable and unstable laminations are transverse to F. If M is
closed then M has a pseudo-Anosov flow which is almost transverse to F.

Remark. “Almost transversality” of a pseudo-Anosov flow and a closed surface was intro-
duced in [Mos90]. The needed generalization, replacing the surface by a foliation, is given
in §3.5; here is a rough sketch of the definition. If v is a pseudohyperbolic orbit of a flow &,
there are several ways to “dynamically blow up” 7; this means that the stable and unstable
manifolds of 4 are pulled apart, and invariant annuli are inserted, creating a new flow ®%#.
There is a semi-conjugacy from &% to &, homotopic to the identity, that collapses the
invariant annuli back to 7. A pseudo-Anosov flow & is said to be almost transverse to a
foliation F if there is a way to dynamically blow up the singular orbits of & so that the
blown up flow ®# is transverse to F. On a hyperbolic manifold M, a pseudo-Anosov flow
® which is almost transverse to some finite depth foliation has strong geometric properties:
® is a “quasigeodesic” flow on M [FMO95].

Note that clause 3 of theorem C does not say that M has a pA flow which is almost
transverse to F. While it is possible to formulate a true statement of this sort, to do so
requires a rather technical and perhaps not very useful definition of “almost transversality”
between pA flows and finite depth foliations.

Remark. In the case that M is Seifert fibered, more information is available from work of
Brittenham [Bri93], which shows that F has a sublamination A such that A is parallel to
the Seifert fibration and F — A is transverse to the Seifert fibration. As the reader will see,
the Seifert fibrations popping out of the proof of the main theorem are easily seen to have
this property.

There is an equivalent reformulation of theorem C, modelled on theorem A’.

Theorem C’'. Let M be a compact, oriented, irreducible, torally bounded 3-manifold, and
let F be a transversely oriented, Reebless, finite depth foliation transverse to OM. There
exrists a finite family T of pairwise disjoint, incompressible, nonperipheral tori transverse
to F, none of which are isotopic to leaves of F, such that for each component C of M cut
open along T, either C is Seifert fibered, or the following statements are true:
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1. C has a pA flow whose stable and unstable laminations are transverse to F ‘ C.

2. If T = OM = 0 then the closed manifold C = M has a pseudo-Anosov flow which is
almost transverse to F.

Remark. This theorem can be used to produce pseudo-Anosov flows on some 3-manifolds
which have nonperipheral, incompressible tori, as long as each such torus is isotopic to a
leaf of 7. Examples of this sort are given by Bonatti and Langevin [BL94]|, where the flows
produced are Anosov—our construction applied to the Bonatti-Langevin example produces
the same flows as their construction.

Application to the Thurston norm

Theorem C has consequences for the structure of the Thurston’s seminorm z on Ho(M;R).
This seminorm measures the least complexity of a surface representing a class: if a C
Hy(M;Z) then z(a) is the minimum of |x_(A)| where A is any surface representing a,
and x_(A) is the Euler characteristic of A—(sphere components). When M is irreducible
and atoroidal, e.g. when M is hyperbolic, it follows that z is a norm. The unit ball B,
is a finite-sided polyhedron in Hy(M;R) whose faces are defined by level sets of linear
functionals defined over Z.

In [Mos92b] a connection is drawn between pseudo- Anosov flows and the Thurston norm.
Let ® be a pseudo-Anosov flow on a closed, hyperbolic 3-manifold M. Let Cg C H1(M;R)
be the smallest closed cone containing the homology class of every periodic orbit, a finite
cone that can be calculated from a Markov partition for ®. Let Dy C H2(M;R) be the
dual cone of Cg with respect to the intersection pairing. Let xo € H2(M;R) be the Euler
class of the normal plane bundle of ®, regarded as a linear functional on Hy(M;R). The
class x3 may be computed from the pseudo-hyperbolic orbits of ®. The main result of
[Mos92b] says that if ® is quasigeodesic then X5 = Xgl(l) N Dg is a subpolyhedron of some
face of B,.

In [FM95] it is proved that if M is a closed, hyperbolic 3-manifold, and if a pseudo-
Anosov ® on M is almost tranverse to a finite depth foliation on M, then @ is indeed
quasigeodesic, and so the results of [Mos92b] apply.

According to [Gab83], for any surface A C M which realizes the Thurston norm in its
homology class, there is a finite depth foliation F containing A as a leaf. By theorem A,
there is a pseudo-Anosov flow ® that is almost transverse to F. By [FM95] the flow & is
quasigeodesic. Applying the results of [Mos92b] as described above, we have proved:

Corollary D. If M is a hyperbolic 3-manifold, then the boundary of B, C Ha(M;R) is
covered by the polyhedra L3 associated to quasigeodesic, pseudo-Anosov flows on M. &
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Remark. This corollary raises an important question: can 0B, be covered by finitely many
of the polyhedra ¥3? Conjecture: Yes. See the questions section below for some discussion
of this conjecture.

There should be a computational process which takes as input some finite depth foliation
and produces as output a complete description of B,, without invoking normal surface
theory as is done in [Oer85] or [TW96]. This process would go as follows: construct a
pseudo-Anosov flow ® almost transverse to the given foliation, and compute ¥5. Now invent
a process for moving around 9B, constructing pseudo-Anosov flows whose corresponding
Y’s piece together to give all of 0B,.

A sketch of the proof of Theorem C

As remarked above, when F is depth 0 theorem C follows from an application of Thurston’s
classification of surface mapping classes [FLP*79]. For higher depth foliations the technical
details are quite different.

The major elements of the construction are already present in the special case of a
depth 1 foliation F on M, which we now describe. We may suppose that F has finitely
many compact leaves, and no complementary component of the compact leaves is foliated
as a product. The compact leaves form a compact surface S. Let N be obtained by cutting
M open along S. The “scars” of S form disjoint subsurfaces R_N, R, N C ON, and M is
obtained from N by gluing R4 N to R_N via a homeomorphism g: Ry N — R_N. The
surfaces R_N, Ry N give N the structure of a sutured manifold [Gab83]. The suture set
YN = (0N —(R_NUR4N))is aunion of tori and annuli, each annulus with one boundary
circle in R_N and the other in R, N. The restriction of 7 to N —R1 N is a fibration over
the circle. The fiber is a surface F' with finitely many ends, and the monodromy map
f: F — Fis end periodic, i.e. f acts as a semi-covering transformation on a neighborhood
of each end, either attracting towards the end or repelling away from the end. Each end
of F' spirals into some component of S. The dynamics of end periodic maps have been
analyzed by Handel and Miller, with results similar to Thurston’s analysis of compact
surface dynamics (but with significantly different proofs). An account of the Handel-Miller
theory is given in [Fen96a]. The result of this theory is that f may be isotoped so that one
of three alternatives happens:

1. f permutes a finite, simple family of non-peripheral essential closed curves on F.
2. f is a covering transformation over a compact surface.

3. f is a pA surface homeomorphism (defined appropriately in the category of end pe-
riodic maps), with invariant 1-dimensional stable and unstable laminations. This
case encompasses the possibility that f respects a finite, simple family of proper lines



14 Introduction

which cut off components on which f acts as a covering transformation over a compact
surface.

Case (1) leads to an incompressible, nonperipheral torus transverse to F. Case (2) implies
that N is a (surface)xI and so M is fibered over the circle.

Case (3) is the most interesting. Suspending f and then accelerating the time parameter
near N gives a pA flow &y defined on N. The repelling ends of F spiral into R_N, and
&y enters N along R_N. The attracting ends spiral into Ry N, where &y leaves N.
The unstable lamination Ay has boundary A* C RN, and the stable lamination A%; has
boundary A* C R_N. There is a maximal compact totally invariant subset C' C int(N) of
¢, containing the intersection A%, N A3;.

Now let R_N and R4 N be identified by g: RL N — R_N toform S C M. Isotope the
identification map g so that A®* and A" intersect efficiently in 5. There are special cases to
handle in which this isotopy does not exist, but these cases typically lead to incompressible,
nonperipheral tori. If we make the extra assumption that closed leaves of A* are not isotopic
to closed leaves of A*, then the isotopy exists.

Note that A%; is not a lamination in M, because it has boundary A* lying on the surface
S which is not part of M. To correct this problem, extend A%, by flowing up past A* C §
and back into N. The points where A" intersects A® extend to flow lines spiralling into C,
and the rest of the flow lines escape past C and back out to 5, augmenting A}, = Aj to a
larger lamination A} D Af, with boundary OAY = A} D A} = A*. Now continue the process
inductively: isotope the identification map so that A} intersects A? efficiently in .5, flow up
past S, etc. This generates an increasing sequence of laminations A C A} C A} C ---.
Passing carefully to a limit, we obtain a true, boundaryless lamination A* = cl(AfUAYU- - -)
of M. A similar argument with A%;, flowing down past A* C §, produces a true lamination
A? of M. Then one proves that one of the following occurs:

e A® A" are very full in M, and are the stable and unstable laminations of a pA flow
® on M that is transverse to F; or
e M has a nonperipheral, incompressible torus.

Although we made some special assumptions about closed leaves of A* and A", these as-
sumptions may be drastically weakened at the expense of losing strict transversality of ®
and F, as long as one is willing to accept almost transversality.

A combinatorial formulation: Dynamic pairs of branched sur-
faces
Rather than trying to formalize the above proof directly, we take an indirect approach,

via the combinatorial tools of dynamical systems: branched surfaces and Markov parti-
tions. My whole approach to this subject is highly combinatorial. This is due in part to
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availability of good combinatorial tools. But to be honest, the actual reason for thinking
combinatorially is because one’s mind is bent that way (apologies to M. Gromov—[Gro93],
p. 7). As a child I loved playing with Tinker Toys and Legos, producing gothic constructions
from a few simple brightly colored pieces whose forms I admired. This love has colored
almost all of my mathematics.

Branched surfaces are an important tool in dynamics. Williams first used branched
surfaces to study 2-dimensional hyperbolic attractors of diffeomorphisms [Wil73]. Birman
and Williams used a special class of branched surfaces with boundary, which they called
“knot holders”, to study 1-dimensional hyperbolic invariant sets of flows on the 3-sphere
[BW83]. Nowadays knot holders are known as “templates”, and a rich literature of tem-
plates has grown up. See, for example, the recent notable work of Ghrist [Ghr96], [Ghr95],
who proves that if K is the figure-eight knot in S°, and if ® is any flow transverse to the
fibration of $% — K over S!, then ® contains periodic orbits of every knot type in 5. The
paper [Ghr96] also has a bibliography on the subject of templates.

Closer to our present topic, Christy applied branched surfaces to the study of 2-dimensional
hyperbolic attractors [Chr93]. Following Christy, we define an unstable dynamic branched
surface in a 3-manifold M to be a branched surface B C M together with a nonzero vector
field V' tangent to B that always flows “into” the branch locus. In most cases of interest V
generates a forward semiflow on B. When this semiflow is expansive, Christy’s main result
is that there a flow & defined in a neighborhood N(B), and a 2-dimensional lamination A
carried by B, such that A is a hyperbolic attractor. One can also reverse the direction of the
vector field on B to obtain a stable dynamic branched surface, which carries a hyperbolic
repeller of some flow defined on N(B).

The advantage of dynamic branched surfaces over templates, for our purposes, is that
a dynamic branched surface may be regarded as an essential branched surface in the sense
of Gabai and Oertel [GO89]. In other words, dynamic branched surfaces are more closely
associated to the global topology of the ambient manifold. Nonetheless, template theory
plays a crucial role in our development of dynamic branched surfaces and dynamic pairs
(see §3.3).

Another classical tool of dynamical systems is “symbolic dynamics”, in which directed
graphs are used to encode the dynamics of hyperbolic invariant sets of flows, with Markov
partitions as an intermediary. According to Bowen [Bow73], the idea of symbolic dynamics
first arose with Hadamard and later Marston Morse. The construction of Markov partitions
for hyperbolic invariant sets of flows is due to Bowen [Bow78], [Bow73]. Fried, simultane-
ously generalizing hyperbolic invariant sets of homeomorphisms and pseudo-Anosov home-
omorphisms, introduced “finitely presented” homeomorphisms, and constructed Markov
partitions for them [Fri87]. (Although it has not yet been done, there should be a theory of
finitely presented flows, simultaneously generalizing hyperbolic invariant sets of flows and
pseudo-Anosov flows, and including examples such as the geodesic flow of a word hyperbolic
group [Gro93]).
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Given a pA flow ® on a torally bounded 3-manifold M, the stable and unstable lami-
nations A®, A" are carried, respectively, by stable and unstable branched surfaces B*, B“.
We put these into a single package called a dynamic pair of branched surfaces, by requiring
the vector fields on B® and B to be compatible. We also require the pair B*, B* to “fill
up” M, in a sense which is made precise by describing the allowed types of components of
M — (B* U B*). The intersection B® N B" is an oriented train track 7 which, regarded as
a directed graph, encodes a Markov partition and symbolic dynamics for the flow &.

Chapter 2 contains the theory of dynamic pairs. The main results in this chapter are
about the structure of dynamic pairs, and methods for constructing them. In particular,
proposition 2.6.2 describes how, starting from an unstable dynamic branched surface, one
may construct a dynamic pair.

Chapter 3 describes the relations between dynamic pairs, pA flows, and pseudo-Anosov
flows. Theorem 3.3.2 describes precisely how to pass back and forth between pA flows
and dynamic pairs. Theorem 3.4.1 describes how to pass from a dynamic pair on a closed
manifold to a pseudo-Anosov flow.

Chapter 3 also contains transversality constructions, designed to establish transversality
statements in the conclusion of theorems C and C’. Given a transversely oriented, Reebless
foliation F carried by a branched surface 3, and given a dynamic pair B*, B*, we define
the property that B®, B* is “vertical” with respect to 3. Theorem 3.5.4 says that if B*, B*
is vertical with respect to 3, and if the manifold M is closed, then a pseudo-Anosov flow
carried by B?, B* is almost transverse to F.

Almost transversality is a delicate property, and theorem 3.5.4 is hard to prove. We also
offer a very simple result, proposition 3.5.3, which says that if the dynamic pair B*, B* is
vertical with respect to 3, then the stable and unstable laminations of a pA flow carried by
B?, B* are transverse to F. This simpler result is probably adequate for most applications,
and it does not require the ambient manifold to be closed.

All of the theory from chapters 2 and 3 can be carried out in the setting of sutured
manifolds, and this is the subject of chapter 4. Formulating the correct definition of a
dynamic pair is the hardest part, and there are many new cases and extra details needed to
supply complete proofs, but the basic structure of the sutured manifold theory is the same
as the torally bounded theory.

The proof of theorems C and C’ are contained in chapters 5 and 6 (NOT INCLUDED
IN THIS VERSION). Here is a sketch of the proof, for the above example of a depth 1
foliation F on M. First use the Handel-Miller process, appropriately combinatorialized, to
construct a dynamic pair of branched surfaces B3;, By, in N, the sutured manifold obtained
by cutting M open along the compact leaves of . These branched surfaces have boundary
train tracks 7° = 0B3y, C R_N, ™ = 0B} C R;. We may not regard Bj;, B}y, as a dynamic
pair in the torally bounded manifold M, because these branched surfaces have boundary
on the surface S. To correct this problem, let By, = Bj “flow up” past S, generating a
new branched surface B} O By with boundary train track 7i* O 7§'. Continue this process,



Introduction 17

defining a sequence Bf C B} C By C --- with boundary train tracks 7} C i C 73 C - --
This train track sequence fills up more and more of .5, and so must eventually stabilize at
some finite stage: 77 = 7f,; = ---. Once stabilization is acheived, the branched surfaces
also stabilize: B} ,; = BY,, = ---, and this becomes the unstable branched surface B“
in M. By using the tools of chapters 2—4, in particular proposition 2.6.2 and its ultimate
generalization 4.11.2, we produce automatically the stable branched surface B?. One shows
that either B*, B* fill up M, producing the desired dynamic pair, or they do not fill up and
M has an incompressible, nonperipheral torus.

In general, given a sutured manifold hierarchy on a torally bounded 3-manifold M
[Gab83], M = My ~ My ~ --- ~ M, we inductively construct dynamic pairs starting
with M,, and working down through the hierarchy, or we eventually produce a nonperiph-
eral, incompressible torus. The basis step of the induction, an adaptation of the methods

of Handel and Miller, is proved in chapter 5. The inductive step is proved in chapter 6.

Questions

Here are some questions that are raised by these results.

Tori and flows Can you have both an incompressible torus and a pseudo-Anosov flow?
The answer is an easy yes, in fact you can have an incompressible torus and an Anosov
flow, e.g. the geodesic flow of a hyperbolic surface. For a deeper understanding, one needs
a geometric description of the relationship between a pseudo-Anosov flow and the torus
decomposition of the manifold. In principle, one should be able to take a description of the
flow and decide if there is an incompressible torus (given the geometrization conjecture,
this would help decide if the manifold is hyperbolic). The work of Fenley should be useful
here [Fen96b].

A closely related question is: For which finite depth foliations F is there an almost
transverse pseudo-Anosov flow? In other words, even if there exists an incompressible,
nonperipheral torus transverse to F, not isotopic to a leaf of F, can one still find a pA or
pseudo-Anosov flow?

Existence of flows Which manifolds have pseudo-Anosov flows? At this writing, the
only closed, oriented, irreducible, atoroidal 3-manifolds with infinite fundamental group
which are known not to have pseudo-Anosov flows are certain small Seifert fiber spaces
which were proved, by Brittenham, not to have essential laminations [Bri93].

For an intriguing special case of this question, let M be a compact, oriented 3-manifold
with OM a torus, suppose int(M ) has a finite volume hyperbolic structure, and suppose M
has a pA flow & whose degeneracy locus on 9 M has one component. Let M., be obtained by
filling M along a curve v which intersects the degeneracy locus exactly once. By choosing
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the filling coefficients (m(v), {(y)) sufficiently close to oo, the manifold M, has a hyperbolic
structure (see [Thu]). Does M., have a pseudo-Anosov flow? Note that if M fibers over the
circle and ¢ is transverse to the fibration, and if 4 is parallel to the boundary of the fiber,
then the answer is yes, because M, also fibers over the circle, and the monodromy map
must be isotopic to a pseudo-Anosov homeomorphism.

Geometrization As a special case of the geometrization conjecture one can ask: if M
has a pseudo-Anosov flow and no incompressible torus, is M hyperbolic? Is =1 (M) a word
hyperbolic group?

Thurston’s norm We alluded earlier to the following conjecture:

Conjecture (Norm and flow finiteness conjecture). If B, is the Thurston norm unit
ball in Ho(M; R), the boundary of B, may be covered by the finitely many polygons g asso-
ctated to pseudo-Anosov flows ® on M that are almost transverse to finite depth foliations.

It is easy to see that if F is a fibration of M over S!, and if M is atorioidal, then there
is a unique pseudo-Anosov flow transverse to F, up to reparameterization and isotopic
preserving F; this follows from the uniqueness of pseudo-Anosov surface homeomoprhisms
in their isotopy classes [FLP*79].

Here is series of successively stronger conjectures which would resolve the finiteness
conjecture for the Thurston unit ball. The first conjecture should be reasonably easy to
attack, by induction down through the depths:

Conjecture (Transverse finiteness conjecture). For any finite depth foliation F on
an atoroidal 3-manifold M, there are only finitely many pseudo-Anosov flows that are almost
tranverse to F.

Remark. The construction used in the proof of theorem C produces at most a finite col-
lection of pseudo-Anosov flows that are almost transverse to F, as long as there are no
incompressible, nonperipheral tori. A good understanding of this proof should provide a
clue to the transverse finiteness conjecture.

The following would imply the finiteness conjecture for the Thurston norm:

Conjecture (pseudo-Anosov finiteness conjecture).  Given an atoroidal 3-manifold
M, there exists only finitely many pseudo-Anosov flows ® on M, up to isotopy and repa-
rameterization, such that ® is almost tranverse to some finite depth foliation on M.

Here is one possibility for attacking the pseudo-Anosov finiteness conjecture. Let F,
F’ be two Reebless finite depth foliations whose tangential Euler classes are equal. By
the transverse finiteness conjecture, there exist finitely many pseudo-Anosov flows that are



Introduction 19

almost transverse to F. We conjecture that one of these flows is almost transverse to F”.
As a starting point for this conjecture, one wants to prove that for each norm-minimizing
surface 5 C M such that |x(5)| = |x#(S5)|, there exists a pseudo-Anosov flow which is
almost transverse to F and to S.

In general it is not true that if ® is pseudo-Anosov and F is finite depth, and if the
tangential Euler class of F is equal to the normal Euler class of &, then ® is almost
transverse to F; a counterexample is given in [Mos92b].
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Chapter 1

Preliminaries

In this section we review material from the theory of laminations and branched surfaces
(§1.1-1.4) and we begin the study of dynamic branched surfaces (§1.5-1.6).

1.1 Laminations

In this section we review from [GO89] the definition of an essential lamination on a 3-man-
ifold, and we define “very full” essential laminations, a special case of the full laminations
of [HO96].

A familiar operation in topology is that of “cutting open” a manifold along a submani-
fold. For instance, if a closed surface is cut along an embedded circle the result is a compact
surface with one or two boundary components, depending on whether or not the circle is
orientation reversing. In order to make use of this cutting operation in many different
contexts, we formalize it as follows.

Let X be a smooth compact manifold, or a smooth compact subcomplex of a smooth
manifold. Let Z be an open subset of X. Choosing a Riemannian metric on X, there
is an induced Riemannian metric on Z. Define a topological metric on Z where d(z,y)
is the infimum of path lengths from z to y. Let € Z denote the completion of Z. Since
any two Riemannian metrics on X are bilipschitz equivalent, as a topological space € Z is
well-defined independent of the metric on X. The inclusion map Z — X extends uniquely
to a continuous map € Z — X called the overlay map. Abusing terminology we sometimes
refer to the overlay map as the inclusion map. If Y is a subset of X, the remains of ¥
in €Z is the inverse image of Y under the overlay map €7 — X. Sometimes we abuse
notation and write €(Z) NY for the remains of Y in ¢ Z.

FEzample. If M is a manifold and S is a codimension-1 submanifold, then ¢(M — §) is
what we usually mean when we talk about “M cut open along S”. Each component of the
remains of S is called a scar of 5. If 3M = 0 then the remains of § is § €¢(M — 5).

23
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Ezample. If U is an open cell in a smooth cell complex X, the overlay map takes €U
homeomorphically to the associated closed cell cl(U)—the overlay map “lays €U over”
the set cl(U). There are many similar situations where the completion operator “¢” and
the closure operator “cl” give the same result, but when cutting along submanifolds or
subcomplexes it is usually safer to use the completion operator.

Ezample. If U is a complementary component of a codimension-1 lamination with smooth
leaves, €U is the union of U with boundary leaves incident to U, as described below.

Given an n-manifold M, a k-dimensional lamination (without boundary) is a closed
subset A of M contained in int(M) which is decomposed into k-dimensional manifolds
called leaves, so that A is covered by open charts of the form U ~ D* x D™ *, where
for each leaf L, each component of U N L has the form D* x ¢ for some t € D™ %, A
k-dimensional lamination with boundary (A,0A) C (M,0M) is similarly defined, with the
additional requirement that OA is a (k — 1)-dimensional lamination in M, and dM has a
collar neighborhood U ~ 0M X [0,1) such that ANU ~ JA x [0,1).

Given a manifold M and a lamination A in M, a homeomorhism f: M — M is said to
preserve A if f takes each leaf of A to itself, and f is said to respect A is f takes each leaf
of A to some other leaf. Dennis Sullivan told me that this terminology is due to Michael
Gromov.

Let M be a compact 3-manifold and A a 2-dimensional lamination without boundary
in M. A transversely oriented leaf L of A is called a boundary leaf if L has a one-sided
collar neighborhood L x [0,1) — M on the positive side of L, which is 1 — 1 immersed in
M, and whose interior L x (0,1) is disjoint from A. Let M) = &€(M — A), a 3-manifold
with int(My) = M — A and 0M, identified with the union of boundary leaves of A. For
each boundary leaf L, the one-sided collar neighborhood L X [0, 1) described above may be
regarded as a collar neighborhood of L in My. A lamination A is essential if the following
conditions hold:

e A has no sphere leaves.

¢ A has no Reeb components.

e M, is irreducible.

e OMj, is incompressible in M}y .

e OMj, is end incompressible in My .

We refer the reader to [GO89] for a detailed discussion of this definition, with the following
brief reminders.

A Reeb component of A is a solid torus H ~ D? x §! embedded in M such that 8H
is a leaf of A, each leaf I C int(H) is a topological plane, L is symmetric with respect to
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rotation of the D? coordinate of H, and L — L C 8H. The leaf L is like an infinite snake
eating its tail.

End incompressibility is defined as follows. Let E be a closed disc with one bound-
ary point removed, E = {(z,y) € R? | ||(z,y)|| < 1,(=,y) # (1,0)}. Given a subsur-
face F C OMj, an end compression of F is a proper embedding f: (E,JF,int(E)) —
(M, F,int(My)), where proper means that the inverse image of a compact subset of My
is compact. The subsurface F is end incompressible if for every end compression f, the
restricted map §f: OF — F extends to a proper embedding f': E — F.

There is an equivalent formulation of end incompressibility which makes use of extra
structure on My, which it has by virtue of being the completion of a component of M — A.
The manifold M, has a compact submanifold-with-corners N, a “core”, having the following
properties:

O N = ON N OM, is a union of faces.

OyN = cl(ON — O N) is also a union of faces.

¢ Each component of cl(My — N) is noncompact.

cl(Mp — N) is an I-bundle over a noncompact surface F', such that J,N is the re-
striction of the I-bundle to JF.

The existence of the “core” is a standard result in lamination theory. We say that an end
compression f: E — My is vertical near the end if f(E)Ncl(Mp — N) is a union of I-fibers.
Tt follows easily that a subsurface FF C @M, is end incompressible if and only if there is no
end compression f: E — My with f(OF) C F which is vertical near the ends.

In the definition of essentiality for A we refer only to end incompressibility of 0 M.
However, when we study laminations on sutured manifolds in §4.10 we will use more general
subsurfaces of 0 M.

A lamination A is very full if it has neither sphere leaves nor Reeb components, and
each component of M, is an essential pared torus piece as defined in the introduction. In
particular, M has a core whose closed complementary components are products of the
form F' x I where the surface F is a half-open annulus. Obviously pared torus pieces satisfy
properties (3-5) in the definition of an essential lamination, and hence a very full lamination
is essential; the essentiality condition in the definition of a pared solid torus guarantees that
there are no end compressions which are vertical near the ends. Note that for each pared
solid torus H — K, there exist integers (m, k) with m > 2 and 0 < k < m, such that m, k
are the geometric intersection number of K with, respectively, a meridian and a longitude
of H. The pair (m, k) is called the type of the pared solid torus. Also, given a pared torus
shell T2 x [0,1] — K x 1, the number n > 1 of components of K is called the type .
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1.2 Branched surfaces

In this section we review branched surfaces and laminations carried by branched surfaces.

Let M be a smooth, compact n-manifold. A branched k-manifold (without boundary)
in M is a smooth, compact, k-dimensional subcomplex B C int(M ) with the property that
each # € B has a neighborhood in B which is a union of smooth k-discs embedded in
M, all tangent at z, thereby defining a unique tangent k-plane T, B C T, M. A branched
k-manifold (with boundary) is a smooth k-complex in M with the same property at points
of B Nint(M), with the extra requirement that 0B = B N M is a branched (k — 1)-
manifold without boundary, and for some collar neighborhood U ~ 0M x [0,1) of OM
we have BN U ~ 0B x [0,1). A branched 2-manifold is called a branched surface, and a
branched 1-manifold is called a train track. Given a branched k-manifold B, a point z € B,
and a smooth k-manifold S C B with 05 = SN 0B such that « € 5, the germ of S at 2 is
called a sheet of B at z. By local finiteness of B it follows that each point of B has finitely
many sheets. Nonmanifold points of B, i.e. points where B is not locally a manifold with
boundary, are characterized by having two or more sheets.

If B is a branched surface, the set of nonmanifold points of B is a smooth 1-complex
denoted T B, the branch locus of B. A nonmanifold point of TB, i.e. a point where T B is
not a l-manifold with boundary, is called a crossing point of B. A completed component
of B — TB is called a sector of B. If T is a train track, nonmanifold points of 7 are called
switches, and completed components of 7—(switches) are called branches.

Henceforth, unless specified otherwise, we shall assume that every train track and every
branched surface has generic branch locus. For a train track 7, generic branch locus means
that every switch s € 7 is trivalent, with exactly two sheets. On one half of the tangent
line T,7, called the one-sheeted side, the two sheets coincide. On the other half of T,7, the
two-sheeted side, the two sheets are distinct. For a branched surface B, generic branch locus
means first of all that B is trivalent at each noncrossing point # € T B, that is, there is a
neighborhood of # in B of the form Y x (0,1) where Y is a neighborhood of a generic switch
in a train track. It follows that B has two sheets at @, and T B divides T,, B into two halves,
the one-sheeted side on which the two sheets coincide, and the two-sheeted side on which
the two sheets are distinct. For a crossing point # € T B, generic branching means that
there are four ends of T B — {2}, defining four distinct directions in T}, B arranged in cyclic
order. These four directions divide T, B into four quadrants: a one sheeted gquadrant; two
two sheeted quadrants adjacent to the one-sheeted quadrant; and a three sheeted quadrant
opposite the one sheeted quadrant (see figure 1.1). There are three sheets at @, arranged
from top to bottom as 57, .52, 53; all three coincide in the one-sheeted quadrant; all three are
distinct in the three-sheeted quadrant; in one two-sheeted quadrant S; and S» coincide and
are distinct from S3; in the other two-sheeted quadrant S, and S3 coincide and are distinct
from 5;. Note that T B is the image of a piecewise smooth immersion of a 1-manifold which
passes from one branching direction at z to the opposite direction, whenever it passes over
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side view top view

Figure 1.1: Generic branching of a branched surface

a crossing point . The domain of this immersion is a 1-manifold called the maw, and its
components are called maw curves . A maw curve is therefore either an immersion of a
circle into B with image contained in TB = 0B, or an immersion of an arc into B with
image contained in T B and endpoints contained in 9B.

In figure 1.1 the maw appears smooth at each crossing point, but this is neither necessary
nor convenient—it is useful to allow the maw to be piecewise smooth, especially when
defining branched surface hierarchies (see figure 1.5).

A branched surface B C M, possibly with boundary, has a regular neighborhood N(B)
and a decomposition of N(B) into interval fibers or I-fibers, each I-fiber intersecting B
transversely. The local model for N(B) near TB and near 0B is shown in figure 1.2.
Define the frontier Fr N(B) = N(B)Ncl(M — N(B)). There is a decomposition Fr N(B) =
Fr, N(B)UFr, N(B) as follows. The horizontal frontier Fr;, N(B) is the set of endpoints of
the I-fibers, and the vertical frontier Fr, N(B) is cl(Fr N(B) — Fr, N(B)). The restriction
of the I-fibration to Fr, N(B) defines a fibration over the maw of B; we may embed the maw
as a section of Fr, N(B) transverse to the I-fibers. Note that a circular maw curve embeds
as the core of an annulus component of Fr, N(B), and an interval maw curve embeds as
the core of a rectangle component of Fr, N(B).

There is a map ¢: M — M, homotopic to the identity, that maps N(B) onto B so that
the inverse image of a point € B is an I-fiber in N(B), and so that ¢ | M — N(B) is a
homeomorphism onto M — B; note that an I-fiber is not necessarily taken to a point where
that fiber intersects B. We call ¢ an I-collapsing map for B. Restricting ¢ to the core of
Fr, N(B) we obtain the maw curve parameterization of T B.

Note: we follow the tradition in branched surface theory of using the word “fiber”
somewhat loosely. The map ¢: N(B) — B is not a fibration in the sense of homotopy
theory [Spa81], for it need not satisfy the path lifting property—given a path in B, a
chosen lift of the starting point to N(B) need not extend to a lift of the whole path.
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Figure 1.3: Three models of the I-fibered neighborhood of a branched surface.

the I-fiber over a non-crossing point of TB has one tangential intersection with Fr N(B);
and the I-fiber over a crossing point has two tangential interections with Fr N (B).

A lamination A C M is carried by a branched surface B if A C N(B) and A is transverse
to the I-fibers. If A intersects each I-fiber then we say that B fully carries A.

Next we define splitting of a branched surface B. Choose an I-bundle neighborhood
p: N(B) — B in the corner model. Let F be a compact surface embedded in N(B)
transverse to the I-fibers, and suppose that O0F = 9,F U §;F, where 0, F and &;F are
compact submanifolds with disjoint interior, and 9,F = F N 0,N(B). Suppose moreover
that p ‘ int(0;F) is in general position with respect to TB. Then we call F a splitting
surface, and we define a branched surface By obtained by splitting B along F, as follows.
Let N(F) be an I-bundle over F each of whose fibers is embedded in an I-fiber of N(B).
Let N(Br) = cI(N(B) — N(F)). The branched surface B is defined abstractly as the
quotient of N(Bg) obtained by crushing each I-fiber of N(BF) to a point. To get a
concrete embedding of Br in M, perturb the map p ‘ N(BrF) so that it crushes distinct
I-fibers to distinct points. Clearly Br is embedded in N(B) transverse to the I-fibers,
so the map p ‘ Bp is defined and is a submersion called the carrying map from Br to B.
Notice that if F' is altered by an isotopy of N(B) preserving I-fibers, then Bg is unchanged.
Ifp ‘ F: F — B is an embedding, and if F = p(F), then we sometimes abuse terminology
by saying that Br is obtained by splitting B along F; this abuse of terminology always
assumes that F lifts to some splitting surface F' unique up to an I-fiber preserving isotopy

of N(B).

1.3 Finite depth foliations

Let M be a manifold with torus boundaries. A lamination covering all of M and transverse
to OM is called a foliation of M. A transversely oriented foliation F is called taut if for
every ¢ € M there exists an immersion S! — M transverse to F passing through z. If F
is taut then F is Reebless.

Let F be a transversely oriented foliation of M. Suppose that every leaf L of F is proper,
meaning that the leaf topology coincides with the subspace topology on L, that is, L is
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covered by foliation charts each intersecting L in a disc. Define Fj to be the sublamination
of F consisting of the compact leaves, and for each n > 1 define F,, by induction to be the
sublamination consisting of F,,_; union all leaves L such that cI(L) — L C F,,_1. We say
that F is a finite depth foliation if F,, = M for some integer n > 0. The depth of a leaf L
is the minimal & such that L C Fy.

Recall the construction of Gabai [Gab83, Gab87], which shows that taut, finite depth
foliations are ubiquitous in 3-manifolds. Given a compact 3-manifold M, the “Thurston
norm” on Ho(M,0M;R)is a semi-norm which describes the minimal complexity of a surface
representing a given integer homology class. More precisely, given a compact surface S let

2(5)= Y ~x(50)

x(S0)<0

where the sum is taken over components Sy of S. Given o € Hy(M,0M;Z), define z(o) to
be the infimum of #(.5) over all properly embedded oriented surfaces (5,9S5) C (M,0M)
representing o. Then @ extends to a pseudo-norm on Ho(M,0M;R) called the Thurston
norm. An oriented surface (5,05) C (M, 0M) is norm-minimizing if each component of §
is incompressible, and .5 realizes the minimum of @ in the homology class of 5.

Theorem 1.3.1 ([Gab83]). Let M be a compact, irreducible 3-manifold with torus bound-
aries. If S is a norm-minimizing surface, then there exists a taut, finite depth foliation F
with § as a compact leaf. &

1.4 Hierarchies

In this section, we recall the combinatorial methods used by Gabai to construct finite depth
foliations. Gabai’s original construction in [Gab83] was couched in terms of “sutured mani-
fold hierarchies”, and in [Gab87] constructions 4.16 and 4.17, he reworded the construction
in terms of “branched surface hierarchies”. Both points of view will be useful to us: when
viewing the hierarchy as a whole we usually think in terms of branched surfaces; but when
looking at a particular level in the hierarchy we think in terms of sutured manifolds.

1.4.1 Sutured manifolds and their decompositions

Recall that if M is an oriented manifold and S C M is a submanifold, each orientation
on S induces a transverse orientation on .5, and vice versa, giving a 1-1 correspondence;
we use this correspondence without comment in what follows. The orientation on M
corresponding to the outward transverse orientation is called the boundary orientation.

A sutured manifold is a compact, oriented 3-manifold P, equipped with a decomposition
0P = yP UR_P U R4P into submanifolds with disjoint interior, so that the following
properties are satisfied:
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1. 4P is a disjoint union of tori and annuli in JP.
2. R_.PNR,P=0.
3. 0R_.PUOR,P =0P.

4. For each annulus component A C 4 P, one component of A is in R_ P and the other
isin R4 P.

The union of annulus components is denoted y4 P, the union of torus components is y7P,
and we denote RP = R_P U R, P. The core of an annulus component is called a suture,
and the union of sutures is denoted oP. We shall sometimes regard a sutured manifold
as a smooth manifold-with-corners, so that each component of 4P is a corner with 90°
interior angle; this is called the corner model of P.

We sometimes put a different manifold-with-corners structure on a sutured manifold
P, called the cusp model (compare figure 1.3), which is smooth except for a cusp along
the suture ¢ P, which is locally modelled on the set {(z,y,z) € R? ‘ z > 0,—f(e) <
z < f(z)} where f:[0,00) — [0,00) is a cusp function. In the cusp model we have

oP=R_PNR,P=0R_P=08R,P.

Ezample. Suppose M is a manifold with torus boundaries, and B C M is a transversely
oriented branched surface with boundary. Suppose also that B is groomed which means
that for each annulus component A of €(O0M — O0B), the transverse orientation points
into A along one boundary circle and out of A along the other. Then P(B) has the
natural structure of a sutured manifold in the corner model where R P(B) = 0, P(B), and
the transverse orientation points inward along R_P(B) and outward along R P(B); the
transverse orientation on RP(B) is defined by pulling back the transverse orientation on
B under the I-fiber collapsing map P(B) — B. Also, yP(B) = Fr, P(B) U(P(B)NJdM),
as defined earlier for any branched surface.

FEzample. A sutured manifold P is a product if (P,yP) ~ (F x I,0F x I) for some compact
surface F'.

Now we recall Gabai’s operation of sutured manifold decomposition. Consider a sutured
manifold P in the cusp model. A properly embedded, transversely oriented surface S C P
is a decomposing surface if the following are satisfied:

1. S is transverse to o P.

2. S is groomed, that is, for each component T of 47 P, the components of 85 N T, with
transverse orientation induced from 5, are isotopic as transversely oriented circles.

3. No component of S is a disc with boundary in R_P or R4 P.

4. No component of 05 is the boundary of a disc in R_P or R4 P.
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Figure 1.4: Sutured manifold decomposition. The transverse orientation, on S as well as
on R, is the orientation pointing out of the page.

We define a sutured manifold decomposition P 2 P as follows. As a topological manifold
we have P/ = ¢(P— ), with scars 57, 5, where the notation is chosen so that the pullback
of the transverse orientation on S defines transverse orientations on S~ and ST which point
into P’ along S~ and out of P’ along ST. Let the remains in P’ of the surfaces R_ P and
R+ P be denoted R and R/,. Define R_P' = S~ UR’_ and Ry P’ = 5T UR/,.. This gives
P’ the structure of a sutured manifold in a mixture of the cusp and corner models. To
convert to a pure cusp model, collapse each annulus component of y7P = S to a cusp. See
figure 1.4 to see how the suture structure is affected near a point of 85 N o P. The overlay
map P’ — P takes each of §~, ST homeomorphically to S, thereby inducing a gluing map
g: ST — §~. The overlay map P’ — P is the quotient map obtained by identifying each
zc ST with g(z) € S™.

Remark. Gabai’s original definition in [Gab83] works in the corner model. In place of the
condition that S intersects o P transversely, the requirement is that for each component A
of 74P, every component of § N A is either an arc connecting opposite boundary circles
of A, or a “groomed circle”, a circle which, when equipped with a transverse orientation
inherited from S, is oriented isotopic to the boundary circles of A, equipped with their
transverse orientations inherited from RP. The difference between these two definitions
is not very strong, because circle components of S N y4P can always be pushed out of
v4 P by isotopy of 5, and the grooming condition implies that the decomposed manifold is
unaffected by this isotopy.

1.4.2 Branched surface hierarchies

Let M be a compact, oriented, torally bounded 3-manifold. A branched surface hierarchy
in M is a sequence of transversely oriented branched surfaces B C By C --- C Bg in M
such that:

e B, is a surface.

¢ Each component of S|, = (B, — Br_1) is a sector of By,.
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Figure 1.5: Given branched surfaces By C By such that S = 5] = ¢(B; — By) is a sector
of By, this figure shows how S attaches to By at a point where 35 crosses T By, producing
a crossing point ¢ of B;. In (a) the point # is a non-smooth manifold point of TBy. In
(b) the sector S has been attached, with boundary crossing T By at . In (c) we show the
view inside the cusp model for P(By), looking down the maw. Compare with the sutured
manifold decomposition depicted in figure 1.4.

¢ No component of S}, is a disc whose boundary is a maw circle of By,.

¢ There is no smoothly embedded disc D C Bj_; whose boundary is a maw circle of

By.

¢ Each annulus component A of ¢(0M —0B;) is groomed, and so P(B;) = ¢(N —N(B;))
is a sutured manifold.

e P(Bg) is a product sutured manifold.

Suppose that we convert P(Bk_1) to the cusp model by collapsing each component of
YaP(Bi_1) to a cusp. Do this collapsing so that each component of S; N y4P(By_1), an
arc connecting opposite boundary circles, is collapsed to a point. Let S be the image of .5},

under this collapsing. It follows that Si is a decomposing surface in P(Bj_1 ), and moreover

we have a sutured manifold decomposition P(Bj_1) % P(By). Therefore, associated to

each branched surface hierarchy By C B1 C --- C Bg in M there is a sutured manifold
hierarchy

M 2 P(By) 2 P(By) ~ - %% P(Bg)

in the sense of [Gab83]. Figure 1.5 shows how S} attaches to Bj_; at a point where 0.5,
crosses T Bp_1.

When the whole sequence By C By C --- C Bk is understood, we will sometimes abuse
notation and refer to B = Bg as a branched surface hierarchy.

Now we turn to the relation between branched surfaces and finite depth foliations. Let
F be a finite depth foliation and let By C --- C By_1 be a branched surface hierarchy.
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We have previously defined what it means for a lamination to be carried by a branched
surface. We say that the foliation F is carried by the hierarchy B if there are sublaminations
Fo C -+ C Fy_1 C Fny = F such that F, is fully carried by B,, for 0 < n < N, and if
N(By), P(By) are the I-fibered neighborhood and complementary sutured manifold of By
in the corner model, then F | N(By) is transverse to I-fibers and F | P(By) is transverse
to the I-fibration of the product structure P(By) =~ (surface) x I. The definition does not
require that F,, consist exclusively of leaves of depth < n in F.

The construction of finite depth foliations given by Gabai in [Gab87] starts by construct-
ing certain branched surface hierarchies (ones which are “groomed” in a stronger sense than
we have described), and then produces foliations carried by such hierarchies. We shall need
the following straightforward fact, whose proof is given in [FM95] for the special case of a
foliation with isolated levels, meaning that each leaf has a saturated neighborhood in which
all other leaves have lower depth; the general case is similar.

Proposition 1.4.1. Every finite depth foliation is carried by some branched surface hier-

archy. &

1.4.3 Sliding a hierarchy

Part of our strategy for proving the main theorem will be to construct a lamination or flow
transverse to a given branched surface hierarchy, and apply the previous proposition. But
there is a hitch: our construction requires operations which change the hierarchy, although
the changes are quite mild and do not alter the finite depth foliations that are carried by
the hierarchy. Here is a description of the operations needed.

Consider a branched surface hierarchy By C --- C By = B. If we hold B,, fixed and
isotope the attaching maps of ¢(B — B,,), we obtain a new hierarchy By C --- C B,, C
B, ., C---C By = B’, which we say is obtained from B by sliding, or more specifically by
sliding along level n. To be more precise, let N(B,,), P(B,,) be the I-fibered neighborhood
and complementary sutured manifold in the corner model, and let ¢: M — M be an I-fiber
collapsing map for B,, taking N(B,) onto B,. Let B¢ = cl(¢'(B — B,)), a branched
surface with boundary in P(B,,), which may be identified with BN P(B,,); think of B, as a
“complement” of B,,. Now consider a map h: P(B,,) — P(B,,) which is a sutured manifold
homeomorphism isotopic to the identity relative to y P(B,,). Let B’ = B,,Ugq(h(B¢)). Note
that there is a branched surface hierarchy

ByCc---CB,CB,,,C---CBy=D58

where

B, = B,Uq|h(¢(¢g"(B; — B,)))| forn+1<i<N.



1.5. DYNAMIC BRANCHED SURFACES 35

The relation of sliding generates an equivalence relation among branched surface hierarchies
in M: two branched surface hierarchies are equivalent if you can get from one to the other
by a sequence of slidings along levels. We have the following easy fact:

Proposition 1.4.2. If B, B’ are equivalent branched branched surface hierarchies, and if
B carries a finite depth foliation F, then B’ also carries F. &

It is convenient to translate equivalence of branched surface hierarchies into sutured
manifold terms, as follow.

Given a sutured manifold decomposition P 2, II, the homeomorphism g: ST — S~ that
is consistent with the quotient map II — P is called the gluing map for the decomposition.
Suppose that hy: RyII — Rl and h_: R_II — R_II are homeomorphisms isotopic to
the identity rel boundary. Then we regard the homeomorphism h_ o g o h_T_lz hi(ST) —
h_(S7) as a new gluing map, obtained by sliding the old gluing map g. If P is the
manifold obtained from II by using the new gluing map, then there is an obvious induced
suture structure on 1-:’, and there is an obvious induced isotopy class of sutured manifold
homeomorphisms P < P.

Proposition 1.4.3. Let By C --- C By be a branched surface hierarchy in M, and for

each n let P(B,_1) S P(B,,) be the induced sutured manifold decomposition. If we slide
the gluing map g: S;7 — S, to produce a sutured manifold P(Bn_l), and if we choose a
sutured manifold homeomorphism P(Bn_l) — P(B,_1) in the correct isotopy class, then
there is an induced slide in level n on the branched surface hierarchy.

Proof. Sliding g means precomposing by hy: R P(B,,) — R4 P(B,) and postcomposing
by h_: R_P(B,) - R_P(B,,), where h_ and h, are homeomorphisms isotopic to the
identity rel boundary. The maps h_,h; extend to a sutured manifold homeomorphism
h: P(B,) — P(B,,) isotopic to the identity rel vy P(B,,), and the effect of g on the hierarchy
is to slide it along level n using the map h. &

1.5 Dynamic branched surfaces

Branched manifolds are often used to study the structure of hyperbolic attractors. Williams
[Wil73] put this idea on solid mathematical ground, for expanding attractors of diffeomor-
phisms. Christy [Chr93] later extended this to expanding attractors of flows. In this section
we shall describe several concepts due to Christy.

Recall that a semiflow on a space X is a continuous map ¢ from a subset D C X x R
to X such that

o Forall z € X, theset I, = {t € R | (2,t) € D} is a closed connected subset of R
containing 0.
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o (z,0) = =.

e Forallz € X,s€ I, and t € Iy, , we have s+t € I, and
¢(w75 + t) = ¢(¢($,S),t)

A forward semiflow is one whose domain contains X X [0, 00), and the domain of a backward
semiflow contains X X (—o0,0]. The trajectory through a point @ is the map I, — X given
by t — ¢(z,t). If X is a smooth subcomplex of a manifold then we can speak about smooth
or piecewise smooth semiflows on X. Also, a vector field V on X generates the semiflow ¢
if V, is the tangent vector to the trajectory through z, for each z € X. If ¢ is understood,
we often write - ¢ as a shorthand for ¢(z,t). Similarly given A C X and J C R such that
JCI,foreachz € A, wewrite A-J ={z-t|z€ At e J}.

A sink of a forward semiflow on X is a closed subset S C X such that for all 2 € X
there exists ¢ > 0 such that ¢ - ¢ € S, and if # € S then 2 - [0,00) C S. A source of a
backward semiflow is similarly defined.

Consider a branched surface B C M and a nowhere zero vector field V in M tangent
to B. We say that V points forward along T B if:

e For each noncrossing point # € T B, the vector V, points from the two-sheeted side
to the one-sheeted side.

e For each crossing point ¢ € B, the vector V, points from the three-sheeted quadrant
to the one-sheeted quadrant.

In the top view of figure 1.1, a vector field tangent to the branched surface and pointing
towards the northwest is a forward vector field. We say that V' points backward along TB
if —V points forward.

Remark. Note that if TB # 0, and if V is tangent to B and forward along T B, then V
cannot be smooth or even Lipschitz on M, because V has at least two local trajectories
through each point of T B, violating uniqueness of trajectories for Lipschitz vector fields.

An unstable dynamic branched surface in a compact 3-manifold M is a pair (B,V)
where B C M is a branched surface without boundary and:

o V is a nowhere zero, C° vector field on M.
¢ V is tangent to B.
¢ V points forward along T B.

Despite the above remark, we say that V is smooth if it is smooth in the ordinary sense
on M — TB, and V has a unique smooth forward trajectory starting at each point of M,
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which depends continuously on the initial point. In other words, V generates a unique
forward semiflow on M with smooth trajectories. It is easy to construct local models for
vector fields near T B which satisfy these properties. Notice that B is invariant under the
forward semiflow generated by a smooth V', and so the restriction V' ‘ B generates a forward
semiflow on B. Note that the definition of an unstable, dynamic branched surface (B, V)
does not require smoothness of V.

A stable dynamic branched surface (B, V) is similarly defined by requiring V' to point
backward along TB. We say that V is smooth if it generates a unique backward semiflow
with smooth trajectories.

When (B,V) is a (stable or unstable) dynamic branched surface, we often abuse ter-
minology and say that B is a (stable or unstable) dynamic branched surface with dynamic
vector field V.

Sectors of a dynamic branched surface B are described as follows. Given a sector X,
a point p € 0¥ is called an external tangency if the overlay map ¥ — B takes p to a
crossing point s and takes a neighborhood of p to one of the two-sheeted quadrants at
s. Equivalently, p has a neighborhood in ¥ locally modelled on the subset {(z,y) € R? ‘
¢ > 0and — |z|] <y < |z|}, where p corresponds to (0,0), and the vector field near p
corresponds to 8/0y. Note that if p € X is not an external tangency, then the vector field
either points into X or out of ¥ at p. An application of the Euler-Poincaré index theorem,
using that the vector field is nowhere zero, shows:

Proposition 1.5.1. Fach sector ¥ of a dynamic branched surface has one of the following
types: a torus or Klein bottle, an annulus or Mdébius band with no external tangencies, or
a disc with two external tangencies. &

The latter type will be called a bigon sector.

Remark. Given any branched surface B C M, the existence of a dynamic vector field V is
a purely combinatorial property of B and of the inclusion B — M. To see why, first note
that one can always construct V ‘ T B to point forward. Then, for each sector o, one can
extend V over o if and only if o has zero index in the sense of proposition 1.5.1. Finally,
for each component C of €(M — B), one can extend V over C if and only if C has zero
index in a certain sense.

Thus, in some sense the concept of a dynamic vector field is purely combinatorial, and
we often regard the dynamic vector field V' as a purely combinatorial object associated to
the branched surface B.

Remark. Christy [Chr93] requires that the forward semiflow on B generated by V be ezpan-
sive, which means that there exists €, R > 0, such that for any two trajectoriesa,3: R — B,
if d(a(t),B(t)) < € for all t € R, then there exists » < |R| such that a(t + r) = §(t) for all
teR.
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For our purposes, we do not want to worry about the global dynamics of the forward
semiflow, which leaves us free to choose any vector field satisfying the defining properties.
This allows us to regard V as a purely combinatorial object.

Nevertheless, in §2.6 the idea of expansivity is re-introduced in the combinatorial dis-
guise of a “Markov section” for V' (see proposition 2.6.3).

Let (B, V) be an unstable dynamic branched surface. We define “dynamic splitting” of
B as follows. Let FF C N(B) be a splitting surface (or an embedded surface in B). The
map from F' to B is a submersion, so we may pull V back to a smooth vector field V' on
F. Suppose that V' points into F' along 8, F and out of F' along 8;F. Then we say that
F is a dynamic splitting surface, and B is a dynamic splitting of B along F. There is a
vector field Vr on M whose restriction to Bp is the pullback of V under the submersion
p ‘ Br. Since F'is a dynamic splitting surface, it is easily checked that VF points toward the
one-sheeted side of each noncrossing point in T Br, and Vr points toward the one-sheeted
quadrant of each crossing point.

Dynamic splitting is similarly defined for stable dynamic branched surfaces, except that
the vector field on the splitting surface F points outward along 0, F and inward along 0; F.
We have:

Lemma 1.5.2. If(Br, VF) is obtained by dynamic splitting from an unstable (resp. sta-
ble) dynamic branched surface (B,V'), then (Br,Vr) ts an unstable (resp. stable) dynamic
branched surface. &

1.6 The taffy pulling example

Some examples of dynamic branched surfaces are given in [Chr93]. Here we shall describe
how to produce examples on mapping tori of pseudo-Anosov homeomorphisms. These
examples have previously been described in the language of “affine branched surfaces” by
Oertel [Oer96].

Let S be a compact, connected, oriented surface of genus g and with n boundary
components, such that if ¢ = 0 then n > 4. By work of Thurston, such a surface always
has a pseudo-Anosov homeomorphism f: S — S (see [FLP*79]). Moreover the map f
has an invariant train track 7, which means that f(7) is isotopic to a train track in N(7)
transverse to the I-fibers of N(7). An invariant train track can be found concretely by
results of Bestvina and Handel [BH95]. Using an invariant train track, one can construct an
unstable dynamic branched surface B in the mapping torus My = S x I /(z,1) ~ (f(z),0).
We shall illustrate this construction with a single example.

Let S be the four holed sphere, depicted in figure 1.6 as a disc with three holes. Let
t1: S — S be the “half Dehn twist” under which the left and middle holes are rotated
halfway through a circle in the counterclockwise direction, and let ¢5 be the half Dehn twist
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for the middle and right holes. Let f = tl_1 ot,: § — §. Thisis the “taffy-pulling example”,
one of the simplest examples of pseudo-Anosov phenomena.

The topmost diagram in figure 1.6 shows an invariant train track 7 for f, the middle
diagram shows ¢,(7), and the bottom diagram shows t;! o t,(7) = f(7). Also shown are
eight points marked (a—h) which partition 7 into ten segments, each segment identified by
its endpoints, e.g. [a,b],[b,c],[b,d],.... These segments form a “Markov partition” of 7,
as in [BH92] (see §2.6 for Markov partitions in the context of unstable dynamic branched
surfaces). The vertex and edge maps are:

f,h — a ab — bd

a — b be — de
d — ¢ cf — ehgfcba
b,e — d bd — dehgfc
c — e de — cbafghed

g — g eh +— dba

fo -~ afs

gh — gha

fa — ab

ha — ab

To construct the unstable dynamic branched surface in M, first we construct a branched
surface B' C § x [0,1], with B’ N (S x1) = 7 x1and B'N(S x0) = f(r) x 0. The
branched surface B’ “interpolates” between f(7) and 7, realizing the folding map f(7) — 7.
To describe the folding map, we regard f(7) as embedded in an I-fibered neighborhood
N(71). If G is the grey area in the lower diagram of figure 1.6, for each component C of
(G- f(7)), the I-fibration of N(7) induces an I-fibration of C' which may be parameterized
as a¥:[0,1] x I — C, where af = a®(t x I) is an I-fiber, af is the “degenerate” fiber
mapped to the cusp of C, and alc C 0C. We require that these parameterizations are
“generic” in the sense that for each ¢ € [0, 1], there are at most two I-fibers of the form
al, af " which share an endpoint. There is a 1-parameter family of train tracks 7, where
T =T, 7o = f(7), and 7; is obtained from f(7) by collapsing the fibers a$ for each C' and
each s € [0,t]. The branched surface B’ is defined by B’ N (S X t) = 1 X t. A crossing
point of B’ occurs on a level surface S x t if there exist fibers o, af’ which share an
endpoint. Since the I-fiber parameterizations are generic, the branched surface B’ has
generic branching. There are two kinds of crossing points, depicted in figure 1.7. The
branched surface B’ C S x [0,1] glues up, under the map (z,1) — (f(),0), to give the
desired unstable dynamic branched surface B C M. The dynamic vector field on B is
induced by a vector field on S x [0, 1] which points tranverse upward on each S X ¢ and is
tangent to B’. The method of folding guarantees that the vector field is forward along T B’

(see figure 1.7 for the vector field near a crossing point).
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The example of this section can be generalized to any compact, oriented, connected
surface S and any map f: § — S with pseudo-Anosov mapping class. Apply the results
of [BH95] to get an invariant train track = with a Markov partition. By twiddling their
construction, we may assume that 7 is trivalent, and that every switch is folded. Then
follow the exact same method described in this section to produce an unstable dynamic
branched surface in the mapping torus M; = (S x [0,1])/(z,1) ~ (f(z),0). Using f~* one
can also produce a stable dynamic branched surface.



Chapter 2
Dynamic pairs

In this section we define and study dynamic pairs of branched surfaces on oriented 3-
manifolds with torus boundaries. One starts with a pair of branched surfaces B, B* C M
in general position, from which it follows that B® and B" are transverse to each other
and to each other’s branch locus, and their branch loci are disjoint. Then one takes a C°
vector field V on M such that (B®,V) is a stable dynamic branched surface and (B*,V) is
unstable. The manifold Q@ = €(M — (B*® U B*)) inherits, by pullback from M, the structure
of a smooth manifold-with-corners. Also, ) has a vector field obtained by pulling back
V. Certain faces of @ that come from B? are labelled with the symbol “s”, faces coming
from B" are labelled “u”, and faces coming from O0M are labelled “b” for “bare”. The
manifold-with-corners @), equipped with its vector field and labelling, is an example of a
“dynamic manifold”. We will require that each component of @ is topologically simple and
has “simple dynamics”, which says roughly that trajectories of () are either intervals or
circles. The main work in defining dynamic pairs is to formulate the precise requirements
on Q.

In §2.2 we define manifolds with corners, and in §2.3 we define dynamic manifolds. The
definition of dynamic pairs is given in §2.4. In the remaining sections, we explore some
properties of dynamic pairs and develop tools for constructing dynamic pairs. In §2.5 we
study “dynamic train tracks”, which occur for example as the intersection of the branched
surfaces in a dynamic pair. We use dynamic train tracks to investigate the branched surfaces
which make up a dynamic pair. In §2.6 we study Markov branched surfaces, a concept due
to Joe Christy, and we use them to give a method for constructing a dynamic pair starting
from just an unstable dynamic branched surface. In §2.7 we show by example how to
contruct a dynamic pair on any pseudo-Anosov mapping torus.

The results in this section are combinatorial in nature, and yet they are motivated by
dynamical considerations. The motivations may not, however, become clear until section
§3; on the other hand many of the results in §3 depend on technical results from this section.
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This has led to some difficulties in ordering the presentation. The reader may want to shift
back and forth between the present section and §3, as needed in order to understand the
material.

2.1 Motivation: dynamic pairs in pseudo-Anosov mapping
tori

The definition of a dynamic pair will be conceptually simple, but the formal definition re-
quires some unfamilar combinatorial machinery, and it may be helpful to visualize dynamic
pairs in a familiar situation before launching into the formal definition. To simplify the
discussion we will stick to the boundaryless case, making a few comments afterward to
explain the case of nonempty boundary.

Let f: S — S be a pseudo-Anosov homeomorphism. Let My = S x I/(z,1) ~ (f(z),0)
be the mapping torus of f. Recall the construction of an unstable dynamic branched surface
B* C M in §1.6. Start from an invariant train track 7" for f. Choose a 1-parameter
sequence of foldings 7;* where 7} = f(7*) and 7' = 7", so folding occurs as ¢ increases.
Construct B* so that it intersects S X t/ ~ in 7* X t/ ~. Because folding occurs as ¢
increases, there is an upward pointing vector field V' tangent to B* such that (B*,V) is an
unstable dynamic vector field.

Let’s examine the components of ¢(M — B"). Recall that a pseudo-Anosov homeomor-
phism has finitely many “pseudohyperbolic” periodic orbits. At each point z in such an
orbit, the stable and unstable foliations each have n-prongs for some n > 3, and the first
return map of  induces a k-fold cyclic rotation on these prongs for some k =0,... ,n — 1.
Associated to  there is a component of €(.5 — 7*) which is an n-cusped disc. As ¢ increases,
one traces out an n-cusped disc component of €(.S —7}), and the n-cusped disc for z at level
t = 1is glued to the n-cusped disc for f(z) at level ¢ = 0. Continuing around the orbit of z,
the n-cusped disc associated to z at level t = 0 eventually returns to itself, with the cusps
undergoing a k-fold cyclic rotation. Thus, associated to the orbit of @ there is a component
of ¢(M — B") which has the structure of a solid torus with cusps on its boundary, and
these cusps trace out an (n, k) torus knot on the boundary of the solid torus; this will be
called a u-cusped solid torus in the next section.

One may similarly construct a stable dynamic branched surface B®* C M: choose an
invariant train track 7° for f; choose a l-parameter sequence of foldings 7, where 75 = 7°
and 7§ = f~1(7°), so folding occurs as ¢ decreases; and construct B? so that it intersects
S Xt/ ~inTf xt/ ~. The components of &(M — B") are u-cusped solid tori.

The key observation is that the train tracks 7' and 7’ can be chosen to intersect
“efficiently”, after possibly replacing 73 by f"(7}*) for some sufficiently large n. After this
is done, the same vector field V on M will suffice as a dynamic vector field for both B® and
B*. Moreover, we may also assume that for each ¢ € [0, 1] and for each pseudohyperbolic
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Figure 2.1: A 3-cusped disc of €(S — 77*), intersected by 7.

point @ of f, if P* is the n-pronged disc of €(S — 1) associated to z, and if P* is the
n-pronged disc of €(S — 74*) associated to z, then P® N P* has a component which is a
2n-sided polygon P, with sides of P alternating between arcs in 7’ and arcs in 7;*.

With the above assumption, we now describe how components of ¢(M — B*) interact
with components of €&(M — B*). First, if T*, T are the cusped solid torus components of
¢(M — B*),¢(M — B") associated to the same periodic orbit of f, then 7% N T™ contains
a component of (M — (B* U B*)) which is a solid torus T' with corners on its boundary,
and these corners trace out a (2n,2k) torus knot on 9T. In the next section we shall refer
to T as a “dynamic solid torus”.

Now we describe the remaining components of €¢(M — (B* U B*)). If D, is an n-cusped
disc component of €(S5 — 1), figure 2.1 shows how D, might intersect 7;’. One component
of €(D; — 77) is a disc with 2n corners, leading to a dynamic solid torus as described
above. Each remaining component is either a rectangle, a disc with 4 corners, or a one-
cusped triangle, a disc with 2 corners and one cusp. As t increases, the cusps of D, are
folded, and meanwhile the cusps of 77 are being split, creating and destroying rectangles
and one-cusped triangles, or converting one into the other.

In figure 2.2, we examine the creation and destruction of a certain component of €(.5 —
(m¥ U)) as t increases, yielding the component of €(M — (B* U B")) shown in figure 2.3.
In the next section objects of this type are referred to as “pinched tetrahedra” (see figure
2.6).

In conclusion, the components of €¢(M — (B* U B*)) are either dynamic solid tori or
pinched tetrahedra. This statement is the main clause in the definition of a dynamic pair
in M. Other clauses in the definition describe how components fit together in M.

In the following sections we give detailed descriptions of objects encountered when
studying ¢(M — B?®), ¢(M — B*) and ¢(M — (B® U B")); in addition to dynamic solid tori
and pinched tetrahedra, we will also need “dynamic torus shells” which arise when M has
torus boundaries.
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Figure 2.2: At time #p a cusp of 7}, while being split, pierces through a branch of 7;¢, giving
birth to a 1-cusped triangle at greater times ¢;. At time ¢, this cusp has passed through to
an adjacent branch, converting the 1-cusped triangle into a rectangle at greater times 3.
At time t4 a cusp of 7!, while being folded, converts this rectangle into a 1-cusped triangle
for greater times t5. At time tg, this cusp continues to fold, leading to the death of the
1-cusped triangle.

Figure 2.3: If the shaded regions in figure 2.2 are stacked one atop the other, the corre-
sponding component of ¢(M — (B* U B*)) is a “pinched tetrahedron” (figure 2.6).
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2.2 Manifolds with corners

Let N be a compact topological n-manifold, possibly with boundary. A stratification of N
is a filtration N(® ¢ N C ... ¢ N®™ = N such that N(% is a finite set (i.e. a compact
0-manifold), and for each n > 0 the set N () — N("=1) is an n-manifold without boundary,
the completion of which is a compact n-manifold whose boundary immerses topologically in
N1 A component of N — N("=1) (or its completion) is called an n-stratum. O-strata
are called wvertices, 1-strata are called edges, and 2-strata are called faces. Note that a
stratum may be compact and boundaryless, and it may also be empty.

A surface with corners is a compact 2-manifold F equipped with a covering by charts
that are locally modelled on certain closed subsets of E2, with C™ overlap maps. The

closed subsets, called standard local models at the origin O, are as follows:
e (Interior point) E2
L]

(
¢ (Boundary point) y > 0
(

Corner) z > 0andy > 0

(Cusp) 2 > 0 and — f(z) <y < f(z), where f:[0,00) — [0,00) is a cusp function.

Formally, a chart for a surface with corners F' at p € F is an open set U containing p and a
homeomorphism (U, p) ~ (D* N C, ©), where D? is the open unit disc in E?, and C is one
of the four sets above, the names of which define the type of the point p. A surface with
corners F has a natural stratification of the form §°F C 8'F = 0F C F, where the vertex
set OV F is the set of corners and cusps.

A 3-manifold with corners is similarly defined, using the following standard local models
at the origin in E® = {(z,y, z)} (with f a cusp function):

¢ (Interior point) E®

¢ (Boundary point) z > 0

o (Cusp edge) z < 0and —f(z) <z < f(2).

(
(
o (Corner edge) > 0 and y > 0
(
(

Apex)z >0andy > 0and 2 <0
e (Gable) z<0Oand y > 0 and —f(z) <z < f(2)

A 3-manifold with corners Q has a natural stratification of the form 8°Q C 8'Q C 9%Q =
9Q C Q, where the vertex set Q) is the set of apexes and gables, and 8'Q is the closure
of the union of all corner and cusp edges. Note that each face of a 3-manifold with corners
is a surface with corners.
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2.3 Dynamic manifolds

A dynamic manifold consists of a 3-manifold with corners Q, a C vector field V on @, and
a labelling of each face of @ with one of the symbols b, u, s, p, m, (for bare, unstable,
stable, plus, minus) such that the following axioms hold (on first reading it may be easier
to ignore all axioms involving p and m labels, since these occur only in the context of
sutured manifolds):

1. For each face F of Q:

(a) If F is an m-face then V is transverse to F', pointing out of ) along int(F').
(b) If F is a p-face then V is transverse to F, pointing into ¢ along int(F').
(c) If Fiis a b, u, or s-face then V is tangent to F.

2. Labelling each edge of ) with the pair of symbols labelling the faces on either side of
the edge, we have:

(a) Each uu, ss, and pm-edge is a cusp edge.

¢

)
(b) There are no pp, mm, bb, bu, or bs-edges.
) All other edges are corners.

)

(

(d) If E is a uu-edge, then V is transverse to E, pointing out of @ along E (see
figure 2.4 for a concrete local model); in particular, if F' is a u-face incident to
E then V points out of F' along E.

(e) If E is an ss-edge and F is an s-face incident to E then V points into F' along
E (reverse the direction of the vector field in item 2d).

(f) If E is an su-edge then V is tangent to E at each point; more precisely in the
standard local model for a corner edge, V(z,y,2z) = (0,0,1). (This property
follows from (c)).

The union of b-faces of @) is denoted O,Q, and similarly for 0,Q, 0sQ, 0pQ, and Om Q.

Formally a dynamic manifold is a triple (Q,V,£) where: V is a C° vector field on Q; £ is
a function from the set of faces of @ to the set {b, u,s, p, m}; and the above conditions are
satisfied. We shall also say that V is a dynamic vector field on . Notice in the local model
for an ss or uu-edge, the formula for V given in figure 2.4 forces V to be U™ except at a
point p on the edge itself; V' obviously does not have a unique integral curve at p, therefore
V is not even Lipschitz at p, by the uniqueness theorem for solutions of ordinary differential
equations. Nevertheless we shall say that V is smooth if it is C> at each point not on an
ss or uu-edge; but it should be emphasized that we do not always require smoothness.

Despite the formal nature of the definition of a dynamic manifold, there is some geomet-
ric meaning to the labels b, u, s, p, and m, which hopefully will be clarified as properties
and examples of dynamic manifolds are presented.
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cross section of a uu-edge cross section of a pm-edge

Figure 2.4: The vector field near a uu-edge and a pm-edge, in cross-section, using the
standard local model z < 0, —f(z) < @ < f(z) for cusp edges. Near a uu-cusp edge
the vector field is tangent to each curve of the form (z,y,z) = (a- f(t),b,t), where ¢
parameterizes the curve, a € [—1,+1] is a constant, and b € R is a constant. Near a pm-
cusp edge in the standard local model, the vector field points in the positive z-direction.

From the defining axioms of a dynamic manifold, other properties are deduced as follows.
If F is a pm-edge then V is not tangent to F at any point; more precisely, in the standard
local model for a cusp edge we can write V(z,y, z) = (1,0,0) (see figure 2.4). The types of
corner edges are: su, pb, ps, pu, mb, ms, mu. If F is a pb, ps, or pu-edge and if F is
the b, s, or u-face incident to £ then V points out of F' along E; take V(z,y, z) = (0,0,1)
in the standard local model for a corner edge; similar descriptions hold for mb, ms, and
mu-edges. Labelling each vertex with the triple of symbols associated to the three faces
incident to the vertex, the types of gables are: uus, uup, uum; ssu, ssp, ssm; pmb, pmu,
pms; and the types of apexes are psu or msu(apexes will rarely occur). At uus, uup, and
uum-gables V is described as follows (see figure 2.5). At a uus-gable, in the standard local
model for gables, we can use the same formula for V(z,y, z) as given above for uu-edges.
At a uup-gable, we may use the same formula for V(z,y, z) but a nonstandard local model
for the gable, namely z < 0, y < z, —f(z) < z < f(z). At a uum-gable, again we may
use the same formula for V(z,y, z), but we use a nonstandard local model for the gable,
namely z < 0,y > —z, —f(z) < @ < f(z2). At an ssu, ssp, or ssm-gable V is similarly
described. At a pmb, pmu, or pms-gable with the standard local model for gables, we
may take V(z,y,z) = (1,0,0) as in figure 2.4 for a pm-edge, intersected with y > 0. At a
corner edge with the standard local model, take V = (0,0, 1).

The distinction between b, u, and s-faces—all of which are tangent to the vector field—
is clarified by using the Euler-Poincaré formula together with the restrictions on edge and
vertex labels to list the possible types of faces, a tedious but finite task. Rather than give
an exhaustive list of the possible types, we point out that only an s-face can have a cusp
where the vector field leaves the face, as in the uus-gable in figure 2.5; for example one
possible type of s-face is a one-cusped triangle with two us-edges meeting at a uus-gable,
and the third edge being an ss-cusp edge (see figure 2.6). Similarly, only a u-face can have
a cusp where the vector field enters the face. The idea is that on a “stable” face flow lines
converge in forward time, while on an “unstable” face flow lines converge in backward time.
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1
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uus-gable uup-gable uum-gable

Figure 2.5: The vector field near gables incident to a uu-edge.

If V is a dynamic vector field on @, a trajectory of V is a differentiable path a: J — @,
where J is a connected subset of R, such that for each ¢ty € J we have da/dt(ty) = V(a(to))-
The trajectory is complete if it is not the restriction of a trajectory with larger domain; in
this case each point of a(0J) lies in an m-face, p-face, ss-edge, or uu-edge. We also allow
the degenerate case of a complete trajectory which is a single point lying on a pm-edge,
or a single point on an muu-gable or a pss-gable. When V is smooth, each point of @ lies
on some trajectory, and the trajectory passing through each point not on an ss or uu-edge
is unique; this follows from the existence and uniqueness theorem for solutions of ordinary
differential equations. Notice that each us-edge is a trajectory; the orientation on a us-edge
inherited from V is called the dynamic orientation on that edge. On any us-edge F which
is not a circle, the dynamic orientation on F is determined by the labelling structure: the
negative endpoint of F is either a uss-gable or msu-corner, and the positive endpoint is
either an suu-gable or a psu-corner.

If V is smooth, we say that (Q, V) has interval dynamics if each trajectory is a closed
interval, and circle dynamics if each trajectory is a circle. Roughly speaking, “simple
dynamics” means either interval dynamics or circle dynamics (but see the “maw pieces”
below).

Here are some examples of dynamic manifolds.

Ezample. If M is a torally bounded 3-manifold and V is a vector field on M tangent to the
boundary, then (M, V) is a dynamic manifold where OM is labelled b.

Ezample. Suppose M is a manifold with torus boundaries, V is a vector field on M, and
(B®,V) is a stable dynamic branched surface. Let = ¢(M — B*®). The pullback of V
to () defines a dynamic manifold with only b and s-faces, and only ss-edges. A similar
construction works with unstable dynamic branched surfaces.

Ezample. A dynamic manifold @ is an s-cusped solid torus if @) is a solid torus, all edges are
ss-circles, all faces are s-annuli, and the ss-circles form a family of homotopically nontrivial,
simple closed curves, which intersects any meridian curve of @ in at least two points. There
is an ordered pair (n, k) called the type of Q, where n > 2 is the minimal intersection number
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of the ss-circle family with a meridian curve, and @ is the mapping torus of a rotation on
an n-cusped disc through an angle 27k/n. A u-cusped solid torus is similarly defined.

The only requirement on the dynamic vector field V' on @ is that it be tangent to faces,
exit along a uu-cusp edge and enter along an ss-cusp edge. If V' is smooth, one can use
this property to prove that there exist bi-infinite trajectories of V', using the Conley index
[Con78]. We say that V is circular on @ if there exists a homotopy equivalence @ — S!
such that each trajectory of V, when mapped to S, has positive derivative with respect
to the standard orientation on S*. Pulling back the standard generator of H;(S') ~ Z we
obtain a generator of H1(Q) called the positive generator.

Ezample. A dynamic manifold @ is an s-cusped torus shell if Q ~ T? x [0,1], T2 x 0 is a
b-face, all edges on T x 1 are ss-circles, and all faces on T2 x 1 are s-annuli. The number n
of ss-circles is called the type of @). A u-cusped torus shell is similarly defined. Circularity
of V on cusped torus shells is defined as for cusped solid tori.

If the symbol s or u is understood, we will drop it from the terminology for a cusped
solid torus or torus shell. Cusped solid tori and torus shells are known collectively as
cusped torus pieces. Note, for example, that if M is the mapping torus of a pseudo-Anosov
homeomorphism f: § — §, and if B C My is the unstable dynamic branched surface
constructed by the method of §1.6, then each component of €(M; — B) is a u-cusped torus
piece: there is one u-cusped solid torus for each orbit of singular points of f, and there is
one u-cusped torus shell for each orbit of boundary components of f.

Ezample. Let P be a sutured manifold in the corner model, and let V' any smooth vector
field on P which points inward along R_P, outward along R, P, and is tangent along
v P. Labelling 0P so that OmP = R_P, 0pP = R4 P, and 0P = 4P, the pair (P,V) is
called a dynamic sutured manifold. We can always alter V by a homotopy supported in
a neighborhood of y4 P so that V restricted to 74 P has interval dynamics, each trajectory
connecting opposite boundary components. Assuming V is so altered, if we collapse the
each trajectory of V on y4 P to a point, the result is a dynamic manifold which is the cusp
model for (), and each suture becomes a pm-cusp.

A dynamic sutured manifold is also called an isolating block in the terminology of [CE71].

Isolating blocks are useful in studying Conley’s homotopy index for isolated invariant sets of
flows. Indeed, in our present context the complementary sutured manifolds of a branched
surface hierarchy will be isolating blocks for the pseudo-Anosov flow that we eventually
construct.
Ezample. If B®, B* is a transverse pair of branched surfaces, and if V' is a vector field on M
such that (B®,V) is a stable dynamic branched surface and (B*, V') is an unstable dynamic
branched surface, then @ = ¢(M — (B*UB")) equipped with the pullback of V' is a dynamic
manifold. These examples have b, s, and u-faces, as well as ss, uu, and su-edges.

As in the example just considered, the examples to follow will have only b, s, and
u-faces, and only ss, uu, and su-edges. The vector field V will be implicitly determined
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Figure 2.6: A pinched tetrahedron

up to homotopy on edges of ) by the labelling structure on 8Q, except that the dynamic
orientation on us-circles must be given explicitly. In each example with “simple” dynamics
it is easy to construct V explicitly, and we usually leave the construction to the reader.

Ezample. A pinched tetrahedron, shown in figure 2.6, is a topological 3-ball with two u-faces
and two s-faces fitting together in a tetrahedral pattern, with one uu-edge, one ss-edge,
four us-edges, two suu-gables and two uss-gables. Note that a smooth dynamic vector
field may be chosen to have interval dynamics. The trajectories make the tetrahedron into
the join of the ss-edge and the uu-edge.

Ezample. A dynamic solid torus is a solid torus ¢ whose edges form a nonempty family of
oriented isotopic, nontrivial, nonmeridinal us-circles. Each face is an s or u-annulus, and
there are no vertices. There exist integers m > 1 and 0 < k < m such that @) is the mapping
torus of a rotation on a 2m-gon through an angle 27k/m; the number of us-circles, and
the number of annulus faces, is 2 - gcf(m, k). The pair (m, k) is called the type of Q. We
say that Q) is essential if m > 2.

The only restriction on the dynamic vector field V is that the us-circles all be oriented
isotopic in (). There are many vector fields satisfying this condition. One reasonably
canonical choice is a vector field tangent to a Seifert fibration of @; when k # 0 there is one
singular fiber at the core of the solid torus; and when k = 0 there are no singular fibers.
Another less canonical but still reasonable property is that V' be circular, which means
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that there is a fibration of Q over S! such that each trajectory of V, when mapped to 51,
have positive derivative with respect to the standard orientation on S*.

Ezample. A dynamic torus shell is a torus shell @ =~ T x [0, 1] such that T' x 0 is a b-face,
and the edges on 7' X 1 form a nonempty family of oriented isotopic us-circles. The dynamic
vector field may be homotoped to have circle dynamics, making 7' a product circle bundle
over an annulus. The faces on T X 1 are all s and u-annuli, and there are no vertices. The
number of annulus faces is 2n for some integer n > 1 called the type of the dynamic torus

shell.

We refer to dynamic solid tori and dynamic torus shells collectively as dynamic torus
pieces. When the context is clear the adjective “dynamic” may be dropped.

FEzample. Our final example (for now) of a dynamic manifold is a maw piece (see figure
2.7). Topologically, a maw piece is a solid torus. As a manifold with corners, a maw piece
is the cartesian product of a circle with a one-cusped triangle, a triangle with one cusp and
two corners. There are two types of maw pieces: a uss and an suu-maw piece. A uss-maw
piece has one u-annulus and two s-annuli as faces. The edges consist of one ss-circle and
two oriented isotopic us-circles, each homotopic to the core of the solid torus. The vector
field on a uss-maw piece can be homotoped so that the u-annulus is foliated by circular
trajectories, and so that every other trajectory is the 1-1 immersed image of [0, 00), starting
at a point on the ss-circle and spiraling asymptotically into a circular trajectory on the
u-annulus (as with torus pieces, later we will use other models for V). An suu-maw piece is
defined similarly. Note that maw pieces have neither interval dynamics nor circle dynamics,
but some kind of hybrid; we still consider maw pieces to have “simple dynamics”.

Maw pieces will not occur in the definition of a dynamic pair, but they will appear in
later results which describe the structure of a dynamic pair. For now, we observe that if
@ is a dynamic torus piece with u-faces Fy,..., F,, and if pq,..., 1, are uss-maw pieces,
then we may attach pq,...,u, to @ by identifying F; with the u-face of p;; the result of
these identifications is an s-cusped torus piece of the same type as ). Similarly, attaching
suu-maw pieces to the s-faces of ) results in a u-cusped torus piece of the same type as

Q.

2.4 Definition of dynamic pairs

A dynamic pair of branched surfaces, on a compact, oriented, torally bounded 3-manifold
M, is a pair of branched surfaces B®, B* C M in general position, disjoint from OM,

together with a C vector field V on M, so that the following are satisfied.

1. (M,V) is a dynamic manifold, in other words V is tangent to 0M .
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Figure 2.7: A uss-maw piece (glue the top to the bottom).

2. (B*,V) and (B",V) are stable and unstable dynamic branched surfaces. Let Q =
@(M —(B*U B“)) , a dynamic manifold with dynamic vector field obtained by pulling
back V under the overlay map @ — M.

3. The vector field V is smooth on M, except along T B* where backward trajectories
are locally unique, and along T B* where forward trajectories are locally unique.

4. () has simple dynamics. Each component of ) is either a pinched tetrahedron, an
essential dynamic solid torus, or a dynamic torus shell. In a dynamic torus piece, V
is circular.

5. Transience of forward trajectories. For each component K of €(B* — B?), there exists
a u-face F' of some torus piece such that F C K and F is a sink of the forward
semiflow on K.

6. Transience of backward trajectories. For each component K of ¢(B® — B%), there
exists an s-face F' of some torus piece such that /¥ C K and F is a source of the
backward semiflow on K.

7. Separation of torus pieces. Let )1 be the union of torus piece components of Q.
The overlay map Q1 — M has no face gluings, where a face gluing is a factorization
Qr — X — M such that the quotient map f: @7 — X either identifies two faces
homeomorphically or identifies one face to itself by a double covering map over a
Mobius band.
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Here are some remarks to clarify various points.

Remark. To clarify the axiom 5 Transience of forward trajectories, note that by axiom
3 each point of B* — B® has a unique forward trajectory defined for all future time and
similarly for axiom 6. Also note that the vector field on @ is smooth, as a consequence of
axiom 3.

Remark. Given a dynamic pair B*, B* on M, the intersection train track = = B* N B* has
an orientation induced by V', and 7 is called the dynamic train track. The intuition behind
a dynamic pair is that the “interesting” trajectories are the ones contained in 7: the set of
trajectories staying in T may be regarded as a Markov flow, with stable direction tangent
to B* and unstable direction tangent to B*. On the other hand, trajectories not contained
in 7 have “boring” behavior. For example, trajectories in a dynamic solid torus just wind
around and around and around. Now a circular flow on a solid torus can still have pretty
interesting dynamics, but the point is that the trajectories are boring from a homotopic
perspective—for example, all periodic orbits in the solid torus are homotopic to an iterate
of the core.

Trajectories that stay entirely within 7 are called orbits of 7. An orbit R — 7 is said to
be periodic if it factors through a map R — S! — 7, where R — S§! is a universal covering
map; we also say that the map S! — 7 is a periodic orbit. Given a periodic orbit f: S — T,
there is a plane bundle f*(7B*) defined over S', where T B“ is the tangent plane bundle
of B*. If the total space of f*(T'B") is an annulus we say that f is an untwisted periodic
orbit; otherwise, the total space is a Mobius band, and we say that f is a twisted periodic
orbit. Note that twistedness may be defined equivalently using f*(7 B*).

Remark. Axioms 5-7 may seem technical and mysterious at this stage, but they are very
important for getting good dynamical and topological behavior. For example, they will
be crucial in the proof of proposition 2.5.1 which says in part that each component C of
¢(M — B") is a u-cusped torus piece. This is a key component in the proof that the unstable
manifold of a dynamic pair carries a very full lamination (theorems 3.3.1 and 3.3.2).

Remark. Axiom 7 is independent of the others—here is an example of a pair B?*, B* satis-
fying axioms 1-6 but not axiom 7. Let p: M — 5 be a Seifert fibration of M over some
compact, oriented 2-orbifold Q. Let C?,C" be closed 1-manifolds in S which are trans-
verse to each other and disjoint from the cone points of 5, such that each component of
(S — (C* U C")) is either an even-sided polygon with at most one cone point, or an annu-
lus without cone points and with one boundary circle in 35 and the other boundary circle
an even sided polygonal curve. Then B* = p~1(C?) and B* = p~!(C*%) give the desired
example. Note that the overlay map ¢(M — (B* U B")) — M identifies faces of torus pieces
in pairs (see also the next remark).

In the presence of axioms 1-6, the nonexistence of face gluings may be reformulated as
follows:
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Proposition 2.4.1 (Equivalence of face and corner gluings). Suppose M is a com-
pact, oriented, torally bounded 3-manifold, and suppose B*, B*,V satisfy azioms 1-6. Let
QT be the union of torus piece components of @ = €(M — (B* U B*)). Then Qt has face
gluings if and only if it has “corner gluings”. That is, aziom 7 Separation of torus pieces
1s satisfied if and only if QT has no corner gluings, where a corner gluing is a factorization
Qr -5 Y — M where g: Qp — Y either identifies two corner circles homeomorphically
or identifies one corner circle to itself by a double covering map over a circle.

Proof. If there is a face gluing then by looking at boundary circles of the glued faces we
obtain corner gluings.

Suppose there is a corner gluing. Let ¥ be the periodic orbit in 7 resulting from the
gluing. Consider first the case that v is untwisted, and suppose for the moment that 5
is embedded in 7. Let N(v) be a regular neighborhood of v in M, and let A* C N(y) N
B*, A* C N(v)N B* be smooth, properly embedded annuli in N (), dividing the solid
torus N(v) into four quadrants g1, ¢2, ¢s, ¢4 numbered in circular order. By assumption
at least two of these quadrants lie in dynamic torus pieces. If two adjacent quadrants lie
in dynamic torus pieces then there is a face gluing, a contradiction. Suppose that two
opposite quadrants lie in dynamic torus pieces, say ¢; and g3. Choose the notation so that
A® separates q; U g» from g3 U g4, and A" separates g, U g3 from g4 U q;. Since B¥Ngqy = 0 it
follows that B* Ngq, = 0. Since B*Ngqs = 0 it follows that B* N ¢y = 0. Therefore, g» lies in
a dynamic torus piece (and similarly g4 lies in a dynamic torus piece). Therefore the two
adjacent quadrants ¢, g2 both lie in dynamic torus piecees, and so there is a face gluing, a
contradiction.

This argument did not really depend on v being embedded: if vy is not embedded replace
N(7) by an immersed solid torus. And if v is twisted, there is an analogous argument where

A?, A" are Mobius bands. &

Remark. Another possible alternative to axiom 7 Separation of torus pieces is Torus piece
disjointness, which says that the union of torus pieces embeds in M under the overlay map.
However, Torus piece disjointness is strictly stronger than Separation of torus pieces—in
section 2.7 we give an example of a dynamic pair which violates Torus piece disjointness
by having two corner circles of torus pieces intersect nontrivially under the overlay map.

This is a somewhat unfortunate state of affairs—several technical details would be
simplified if one had Torus piece disjointness. On the other hand, from a constructive point
of view, Torus piece disjointness is more difficult to verify, being stronger than Separation
of torus pieces. The reader is encouraged, over the next several sections, to imagine how
the theory might be changed by requiring Torus piece disjointness.
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2.5 Dynamic train tracks

The main results of this section describe the structure of the two branched surfaces that
make up a dynamic pair, and the train track which occurs as their intersection.

Suppose that (B, V) is an unstable dynamic branched surface in a compact, oriented
3-manifold M with torus boundaries. Note that €(M — B) is a dynamic 3-manifold (with
respect to the pullback of V'), all faces of which are labelled u or b. We say that B is very
full in M if each component of €(M — B) is a u-cusped torus piece. Very full is similarly
defined for a stable dynamic branched surface.

Proposition 2.5.1. Let M be a compact, oriented 3-manifold with torus boundaries. Sup-
pose that B*, B* is a dynamic pair in M. Let Q@ = ¢(M — (B* U B%)), P* = ¢(M — B?),
P = ¢&(M — B*). Then:

1. B® iswvery full in M.

2. Inclusion induces a type preserving, 1-1 correspondence between dynamic torus pieces
of Q@ and components of P*. If T C @ and C C P? are corresponding components,
then (abusing notation) each component of €(C — T') is a uss-maw piece p, and p is
attached to T by identifying the u-face of u with some u-face of T.

3. The dynamic vector field on each component of P* is circular.
4. B? does not carry a closed surface.

5. No sector of B® contains a periodic trajectory of the dynamic vector field.
Similar statements hold for B* and P".

Remark. With T, C as above, the proof will show that for each maw piece component p
of €¢(C — T), the branched surface B* N p consists of “tongues” dividing p into pinched
tetrahedra, as shown for example in figure 2.8.

Remark. This proposition shows that the axiom Separation of torus pieces of a dynamic
pair implies a seemingly stronger property, namely that the interiors of faces of torus pieces
map disjointly under the overlay map.

Remark. From proposition 1.5.1 and the fact that B® carries no closed surface it follows
that each sector is either a bigon, an annulus, or a Md&bius band. If we knew that B*
contained no annulus or M&bius band sectors, then property 5 of proposition 2.5.1 would
follow easily, because if a bigon sector ¢ contained a periodic trajectory of V then the
Euler-Poincaré formula would imply that o contains a zero of V, but V has no zeroes.
We would therefore have a stronger theorem if we could prove that B® has no annulus or
Mobius band sectors. I suspect that this is true, at least in the “transitive” case when 7 is
strongly connected, but I am not certain.
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Ss

Figure 2.8: A uss-maw piece divided into six pinched tetrahedra by tongues. The model
vector field depicted in figure 2.7 must be homotoped, to make it tangent to the tongues.
After homotopy, the vector field is not uniquely integrable along the unstable branch locus,
but it does generate a forward semiflow.
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The rest of this section is devoted to the proof of proposition 2.5.1. The proof will use
some tools whose importance will grow throughout the rest of this paper, so we will take a
leisurely path through the proof, taking care to develop the tools in some generality.

The main tool used in the proof is a “dynamic train track” on a dynamic branched
surface, a concept motivated by the train track 7 = B® N B* associated to a dynamic pair
B*, B".

Let 7 be a train track with generic branching, let s be a switch, and suppose 7 is oriented
in a neighborhood of s. We say that s is a converging switch if the orientation points from
the two-sheeted side to the one-sheeted side, and s is a diverging switch if the orientation
points the other way.

A dynamic train track in an unstable dynamic branched surface (B, V) is an oriented
train track 7 embedded in B such that for some dynamic vector field V' on B we have:

1. V' is tangent to 7, and V' is smooth on B, except at diverging switches of 7. It
follows that each 2 € ¢(B — 7) which is not a cusp of (B — 7) has a unique forward
trajectory.

2. 7 is disjoint from the crossing points of B, and the set of converging switches of 7 is
TN YB.

3. Transience of forward trajectories. For each component K of €(B — 7), there exists
a smooth, compact, connected surface A C K such that 04 C 0K, and A is a sink of
the forward semiflow on K generated by V.

As a consequence of item 2 we have:
4. Each diverging switch of T lies in B — T B, i.e. in the interior of some sector of B.

Given a component K of €&(B — 7), if A is the sink of K, then V' is tangent to A and to
0A, and so A is a torus, Klein bottle, annulus, or Mdébius band. We say that 7 fills up B
if the sink of each component of €(B — 7) is an annulus or Mdbius band.

The definition of a dynamic train track 7 in a stable branched surface B, and the
definition of filling up, are obtained by obvious analogy with the word “sink” replaced by
“source”.

Lemma 2.5.2. Gwen a dynamic pair B®, B in M, the train track = = B®* N B" is a
dynamic train track filling up each of the dynamic branched surfaces B*, B*. &

In order to further understand dynamic train tracks, we study the structure of ¢(B — )
in more detail.

A cusped branched surface is an object K satisfying the definition of a branched surface
with boundary, except that a boundary point may be locally modelled on a cusp point, as in
the definition of a surface with corners. Given a cusped branched surface K, the boundary
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0K is a train track, with nongeneric behavior at the cusp points: each cusp point of K
is a switch of 0 K whose one-sheeted side is empty. Each cusp point of K is a topological
1-manifold point of 3K, so we may smooth 3K at each cusp point to obtain a train track
with generic switching. Now consider a vector field Vx on K such that Vi is tangent to
0K, Vi points inward along each cusp, and Vi points forward along TK; we call K a
cusped unstable dynamic branched surface. As an immediate consequence of items 2—1 in
the definition of a dynamic train track, we have:

Lemma 2.5.3. If B C M is an unstable dynamic branched surface and ™ C B is a dynamic
train track, then €(B —T) is a cusped unstable dynamic branched surface. Moreover, pulling
V' back via the overlay map we obtain a vector field making €(B — 7) into a cusped unstable
dynamic branched surface. &

The structure of the train track 0 €(B — 1) is described in the following definition.

A singular orientation on a train track 3 is an orientation defined on the complement
of a finite set of manifold points of 3 called singularities, such that the orientations point in
opposite directions on the two sides of a singularity. Given a singularity s, if the orientations
point away from s then we say that s is a source, or more specifically an orientation source;
if the orientations point away from s then s is a sink or an orientation sink. A trivalent
train track 3 equipped with a singular orientation is called unstable if each singularity is a
source, and each switch is converging. Similarly, 3 is stable if each singularity is a sink and
each switch is diverging. As a further consequence of the definitions we have:

Lemma 2.5.4. Continuing the notation from the above lemma, the restriction of the vector
field to 0 €(B — T) makes it into an unstable train track with one orientation source for
each cusp. Similar statements hold for a dynamic train track in a stable dynamic branched
surface. &

The train track 0 €¢(B — 7) might be called the “tangentially peripheral train track”
associated to 7. We can also associate a “transversely peripheral train track”, as follows:

Lemma 2.5.5. Continuing the above notation, consider €(M — B), a dynamic manifold
with u and b-faces, and uu-cusps. Let 7/ be the remains of T in €(M — B). The restriction
of the vector field on €(M — B) to 1’ determines an orientation which is singular at the
cusps, making 7' into a stable train track. Similar statements hold for a dynamic train
track in a stable dynamic branched surface. &

Further structure of stable and unstable train tracks is described as follows.

Given a train track # and a smoothly embedded circle ¥ C 3, a spiralling orientation
on v is an orientation for which, if extended continuously to a neighborhood of ¥ in 3, each
switch of 3 on the curve v is a converging switch. In other words, all train paths arriving
at v agree with the spiralling orientation on . The train track 3 is said to be rational if:
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e There are only finitely many smoothly immersed circles in 3, called cycles.
e Each cycle is embedded, and the cycles are pairwise disjoint.
e Each cycle has a spiralling orientation.

Note that any infinite train path in a rational train track § eventually spirals around a
cycle.

The notions of stable and unstable train tracks are related to rationality by the following
easily proved fact:

Lemma 2.5.6. Suppose 3 is a connected train track not homeomorphic to a circle. If B is
unstable then:

e 3 is rational.

o For each cycle v C B, there are no singularities on v, and the orientation of 3
restricted to vy is a spiralling orientation. We say that v is a circular sink of 3.

o A branch of B contains a source if and only if both ends of the branch are on the
two-sheeted side of a switch.

e No branch of B has both ends on the one-sheeted side of a switch.

o Given a train path p: [0,1] — B, there is at most one point t € [0,1] such that p(t) is
a source of (.

If B is stable, the same statements hold replacing the word “agrees” with “disagrees” and
“circular sink” with “circular source”. O

When a dynamic train track 7 fills up an unstable dynamic branched surface B, propo-
sition 2.5.7 will give us more detail about the structure of each component K of ¢(B — 7).
In particular, if A is the sink of K—so A is an annulus or M&bius band, also called a ring—
then K can be built up from A by inductively attaching certain sectors called “tongues”
and so we will call K a “ring with tongues” (figure 2.9 shows a tongue, and figure 2.8 shows
tongues attached to a ring). It will follow that the unstable train track 0K has either one
or two circular sinks, depending on whether A is a Mobius band or annulus. We turn to
the description of a “ring with tongues”.

Let T' be a disc with one cusp ¢ and at least two corners (see figure 2.9). Let «, 3 be
the two edges adjacent to the cusp, and let a,b be the corners of T which are at the ends
of o, B opposite c. Let vy = cl(0T — (e U B)), an arc connecting a and b consisting of one or
more edges of T' meeting at corners. Let Vr be a vector field on T which is tangent to a
and 3, pointing inwards at ¢, and transverse outwards at each point of 7. Then (T, V7) is
called a tongue, or more specifically an unstable tongue, and ~ is the attaching arc of T. If
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Figure 2.9: An unstable tongue with cusp ¢ and attaching arc 7.

Vr points outward at the cusp and inward along 7 then (T, V7) is a stable tongue. When
V7 is understood we may drop it from the notation and say simply that 7 is a tongue.

Let K’ be a cusped unstable branched surface. Let 4’ be an embedded arc in K’ with
04’ C 0K’ such that 4’ is transverse to the vector field on K’. Form a new cusped unstable
branched surface K by gluing an unstable tongue T to K’, identifying the base 7 of T with
the arc 4’, so that the gluing map is smooth, the tangent planes match up along the gluing
locus, and the vector fields agree along the attaching arc. We say that K is obtained from
K’ by attaching a tongue.

A cusped unstable dynamic branched surface K is called a ring with tongues if K is
built up from a ring—an annulus or M6bius band—by inductively attaching tongues. That
is, there exists a sequence Ky C Ky C --- C K, = K, each a cusped unstable dynamic
branched surface with respect to the vector field obtained by restriction from K, such that:

e 0K, C 0K.

e K is an annulus or Mo6bius band smoothly embedded in K.

e K, is obtained from K;_; by attaching a tongue T; C K.
Note that TK is the union of the attaching arcs for the tongues.

Proposition 2.5.7. Let B be an unstable dynamic branched surface, and let T C B be a
dynamic train track. Then T fills up B if and only if each component of €&(B — ) is a
ring with tongues. A similar statement holds for a dynamic train track in a stable dynamic
branched surface.

Proof. One direction is an immediate consequence of the observation that in a ring with
tongues, the ring is a sink.
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To prove the converse, consider a component K of €(B — 7), and let R be the sink. Let
¢ be a cusp of K. Let 7’ be the boundary of a regular neighborhood of ¢ in K, so 7’ is a
properly embedded arc in K, which we may choose to be transverse to V.

We claim that for each ¢ € 4 the forward trajectory z - [0,0) intersects TK. To
see why, we know that @ - [0, 0) eventually lands in R. Note that R Ny’ = 0, because
each backward trajectory from 7’ ends at ¢, but each point in R has at least one infinite
backward trajectory. Thus, z - [0, 00) has a first intersection point with R, and this point
must be in TK, proving the claim.

Let y(2) be the first point of TK hit by z € 4/, and let v = {y(=) ‘ z € v'}. Clearly
y: v — 7 is a homeomorphism, and 4 is the attaching curve of a tongue T with cusp c.
Removing T' — v from K produces a connected, cusped branched surface with one fewer
cusp which still has R as a sink. Continuing inductively, eventually we obtain a connected
sub-branched surface R’ C K which has no cusps. Note that R’ is a sink of the forward
semiflow on K. Note also that R C R’, because each point of R has at least one infinite
backward trajectory, but no point of K — R’ does.

It remains to show that R = R’. Arguing by contradiction, suppose R # R’ and let
¢ € R — R. Although # does not have a uniquely defined backward trajectory, nonetheless
we claim that there exists an infinite backward trajectory. To define it, start flowing
backward from @, and whenever the trajectory hits TR’, choose an arbitrary sheet to
continue backward along. This process may be continued as long as the trajectory never hits
a cusp, but R’ has no cusps. There exists, therefore, a backward trajectory p = @ - (— 00, 0]
in R’. Since R is invariant under the forward semiflow, and since z ¢ R, it follows that
pN R = 0. Choose an accumulation point y for p, i.e. a limit point of z -¢; for some sequence
t; — —oo. Since p is transverse to TR’ and since p is disjoint from the sub-branched surface
R C R/, it follows that y ¢ R. We claim that the forward trajectory through y is disjoint
from R, for if y -t € R for some ¢t > 0 then by taking t; sufficiently close to —oco so that
p(t;) is close to y it follows that p(z,t; +t) € R, contradicting the fact that pN R = @. The
forward trajectory through y is therefore disjoint from R, contradicting the fact that R is
a sink of K.

This shows that R = R’, and therefore K is obtained from the ring R by inductively
attaching tongues. &

Now we turn to:

Proof of proposition 2.5.1. We start by simultaneously proving items 1 and 2. Let C
be a component of P*. First we claim there exists a torus piece T of @ such that T C C.
Choose 2 € int(C). In the first case, @ € T for some torus piece T, and it follows that
T C C. In the second case z € B* — B*, and by applying axiom 5 in the definition of
a dynamic pair, Transience of forward trajectories, it follows that the forward trajectory
of z is disjoint from B* and eventually lies in a u-face of some torus piece T, from which
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it follows that 7 C C. The only remaining case is that # € int(¢) for some pinched
tetrahedron ¢, and then the forward trajectory of # eventually hits the uu-edge of t at a
point of int(C) N (B* — B?®), reducing to the previous case. This establishes the claim.

Let A be (the image in C of) a u-face of T. Let K be the component of €(B* — B*)
containing A. By proposition 2.5.7, A is an annulus or Mobius band, and K is obtained
from A by attaching a possibly empty set of tongues. We claim that in fact A is an annulus,
and there is at least one tongue: if A were a Mobius band then A would be double covered
by a u-face of T, violating axiom 7; and if there were no tongues then K = A would be
equal to (the image of ) another face of a torus piece, also violating axiom 7.

Let pu be the component of €¢(C — T') containing A as a u-face. Then K C p, from
which it follows that g has an ss-cusp circle v intersecting K in one or more cusp points
of K. The points of K N~ yield a circular subdivision of v into arcs 1 * - - - % v,,. Each v,
is the ss-cusp edge of a pinched tetrahedron component T; of @. Orient v so that for each
i € Z/n we have Head(y;) = Tail(7;+1), and denote this point by z;.

Following the proof of 2.5.7, define by induction K = Ky D K1 D --- D K,, = A, where
K, 1 is obtained from K; by attaching a tongue 7; with cusp z;. Note that the tongue 7
is a subset of a u-face of 77, and also of a u-face of T»; we may glue 77 and T> along the
tongue 71 to obtain a pinched tetrahedron denoted 7. Continuing inductively, we may glue
T] and T;;, along 7; to obtain a pinched tetrahedron denoted T ;. Consider the pinched
tetrahedron 7. The tongue 7, is the entirety of one u-face of T, and a subset of the other
u-face; gluing these two u-faces together along 7,, one obtains a uss-maw piece with u-face
A, and clearly this maw piece is identified with p.

This shows that the components of €(C — T') are maw pieces, one attached to each
u-face of T, and hence C is a u-cusped torus piece of the same type as T'. This proves
statements 1 and 2 of proposition 2.5.1. Statement 3 follows easily from the dynamical
properties of maw pieces combined with the circularity of the vector field on dynamic torus
pieces. The analogues of statements 1-3 for B* follow by similar arguments.

Next we prove statement 4, switching our point of view to the branched surface B*: we
show that B* carries no closed surface. Assuming that B" carries the closed surface F, we
derive a contradiction. Since V points forward along T B* it follows that any trajectory of
V that starts in F stays in F. If B* N 1T were empty it would follow that F' is contained
in the sink of a component of €(B* — ), contradicting the fact that all sinks are annuli
and Mobius bands. Therefore 77 = 7 N F # 0. The train track 77 is oriented and has
no converging switches, and therefore 77 is a stable train track with no orientation sinks.
A simple combinatorial exercise shows that a stable train track with no orientation sinks
can have no diverging switches, and therefore each component of 77 is a circle. Let vy be a
component of 7r. If 7 had a diverging switch s lying on -, then s would also be a diverging
switch of 77, a contradiction. It follows that every switch of T lying on v is a converging
switch, and so ¥ is a “circular sink” of 7. We have therefore shown that if B* carries a
closed surface then T has a circular sink.
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Now we show that if v is a circular sink of 7 then ~ is a corner circle of some torus piece
of Q. Let R be a smoothly embedded annulus or Mébius band in B* with core y. Let C be
a component of €(R—+), and let 7¢ be the component of C mapped to vy under the overlay
map C' — R. There exists a component K of ¢(B" — 1) such that C C K and y¢ C 0K.
Applying proposition 2.5.7, K is obtained from an annulus A by attaching tongues. Clearly
C C A and y¢ C OA. There exists a torus piece component T’ of €(M — (B* U B*)) having
A as a u-face, and it follows that v is a corner circle of T'.

Finally, we show that a corner circle 4 of a torus piece T' cannot be a circular sink of 7,
and so 7 has no circular sinks, providing the contradiction that proves statement 4. Let A’
be the s-face of T incident to v, let y’ be the suu-maw piece attached to T along A’, and
let F be the u-face of p’ incident to y. We know that x4’ N B? is obtained from the annulus
A’ by attaching at least one stable tongue. The intersection of F' with the boundary of the
first stable tongue contains a branch of 7 that intersects v at a diverging switch, and so v
is not a circular sink.

In proving statement 4 we have proved slightly more, namely that 7 has no circular
sinks. Repeating the argument for B? it also follows that 7 has no circular sources.

Next we prove statement 5 for B*, that no sector o of B* contains a periodic trajectory
of V. Arguing by contradiction, let v C o be a periodic trajectory of V. There are two
cases, depending on whether y N7 = (.

If y N7 # 0 then v C 7, because V is smooth on B* except at diverging switches, and
hence backwards trajectories starting in 7 N o stay in 7 as long as they stay in o. Also, the
only switches of 7 on v are diverging switches, and hence « is a circular source of 7. But
we have just proved that 7 has no circular sources.

If y N7 = 0, then there exists a component K of €¢(B* — 1), with annulus sink R, such
that ¥ C R. Note that v is isotopic to a core curve of the annulus R, for otherwise v is
homotopically trivial and bounds a disc, whose interior contains a zero of V' by the Euler-
Poincaré formula, a contradiction. By the Separation of torus pieces axiom of dynamic
pairs, together with proposition 2.5.7, K has at least one tongue attached to R along
an arc ¢ C TK such that o connects opposite components of 3R. It follows that -,
like any homotopically nontrivial curve in R, has nonempty intersection with o C TB",
contradicting that v is contained in a sector of B*. &

Remark. A converse to proposition 2.5.1 is also true: if B®, B* is a pair satisfying axioms
(1-4) of a dynamic pair, and if each component of P* and P is obtained from a torus
piece and some divided maw pieces by identifying annulus faces as in the conclusion of
proposition 2.5.1, then B*, B* satisfy axioms 5-7 and hence B*  B* is a dynamic pair. To
prove axiom 7 Separation of torus pieces, each u-face of each torus piece embeds properly
in P*, and the interior of P* embeds in M, and so different u-faces of torus pieces have
interiors mapping disjointly to M. The proof of axioms 5, 6 Transience of forward and
backward trajectories follows from the behavior of the semiflow in a divided maw piece.



2.6. UNSTABLE MARKOV BRANCHED SURFACES YIELD DYNAMIC PAIRS 65

The definition of a dynamic pair can therefore be formulated in two equivalent ways:
with axioms 5-7; or with the description of P® and P" in proposition 2.5.1. In practice
axioms 5—7 seem easiest to verify and so are more appropriate for a definition.

2.6 Unstable Markov branched surfaces yield dynamic pairs

In proposition 2.6.2 we give a construction which provides a partial converse to proposition
2.5.1: starting from a dynamic branched surface B which satisfies the conclusions of 2.5.1,
and assuming that the dynamics on B are “Markov” in a certain sense, we show how to
construct a dynamic pair. We begin with a discussion of Markov branched surfaces.

Let (B,V) be an unstable dynamic branched surface with smooth V' generating a for-
ward semiflow ¢. A Markov section of ¢ is a collection Z of closed intervals smoothly
embedded in B satisfying the following properties:

1. Each I € 7 is transverse to ¢.
2. For each I € 7, either int(I)NTB =0 or I C TB.
3. Foreach I #1I' € T wehave INI' C 81N AT

4. T is a cross section. For each # € B there exists ¢ > 0 such that z -t € |JZ. The
smallest such value of ¢, called the first return time of @, is denoted t,, and the
function @ — t, is a bounded function on B. The map f(z) = ¢(z,t,) is called the
first return map.

5. The Markov property. For any I € 7 and @ € OI, there exists I’ € Z such that
f(z)eor.

If ¢ has a Markov section 7 then we say that (B, V,T), or more informally B, is a Markov
branched surface.

An important property of a Markov branched surface is that for every p € B, every
backward trajectory starting from p intersects |JZ after a bounded time; this is true despite
the nonuniqueness of backward trajectories. To prove this, suppose that there were an infi-
nite backward trajectory that was disjoint from |J Z. Let ¢ be an accumulation point of that
trajectory. Then the forward trajectory from ¢ would be disjoint from |J Z, contradicting
that 7 is a cross section.

The following proposition says that the Markov property is necessary, in order for a
dynamic branched surface to be part of a dynamic pair:

Proposition 2.6.1. Given a dynamic pair B®, B* in a compact, oriented, torally bounded
3-manifold M, there exists a dynamic vector field V' for B* such that (B*,V,T) is a Markov
branched surface for some T.
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Sketch of proof. If one is given a Markov section Z, the set

8= U z-[0,00)

xcdI,IcT

is a finite 1-complex. Our approach is to construct the appropriate 1-complex 8 and then
construct the Markov section.

Consider a component K of €(B* — B*). By proposition 2.5.1 K is obtained from an
annulus A by attaching tongues. For each cusp z of K choose a point z, € K — 0K near
the cusp, so that the backward trajectory from @, hits z after a short time. Let Xx be
the collection of all the points @, for cusps z € K, together with all branch points of B
lying in K. For each # € Xk, the forward trajectory - [0, 00) eventually lands in A. By
homotoping the vector field, we may assume that @ - [0, 00) is eventually periodic, once it
hits A. In other words, there exists a periodic orbit 7, C A such that the image of - [0, c0)
intersected with A is v,. We can, moreover, homotope so that this property is true for all
¢ € X = Ug Xk. Having done this, define 8 = |J,.x ¢ - [0, 00), a finite 1-complex parallel
to the dynamic vector field, consisting of finitely many periodic orbits plus finitely many
finite trajectories each ending on one of these periodic orbits.

The Markov section Z may now be constructed by taking sufficiently many intervals
transverse to V whose endpoints lie on 8. To construct a typical element of 7, start
at a point of # and trace out an arc transverse to V, avoiding T B* and any previously
constructed elements of 7, and passing right through = = B? N B*, stopping the first time
you hit 3. A cross-section 7 may be constructed in this manner, by taking the starting
points to be an e-dense subset of # for some € > 0. By construction the Markov property
is satisfied, and the remaining properties of a Markov section are easily verified. &

Combining the above proposition with proposition 2.5.1 we obtain a list of necessary
condition for an unstable branched surface B to be part of a dynamic pair. The following

proposition says that these conditions are also sufficient, after some minor adjustments
on B:

Proposition 2.6.2. Let M be a compact, oriented, torally bounded 3-manifold. Suppose
that (B,V,T) is an unstable Markov branched surface. Suppose moreover that:

e B iswvery full in M.

o The dynamic vector field on each component of €(M — B) is circular.
e B carries no closed surfaces.

o No sector of B contains a periodic trajectory of V.

Then we can construct a dynamic pair B®, B* in M such that B" is obtained from B by
dynamic splitting.
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Remark. The proof will show that B is split along a dynamic splitting surface consisting of
a disjoint union of annuli and Mdébius bands, thereby creating some new cusped solid tori
of type (2,0) or (2,1).

Proof. The proof breaks into three major steps. Step 1 uses the Markov section to con-
struct a dynamic train track 7 C B which fills up B. Step 2 consists of a sequence of
alterations on 7 and B, including possibly some dynamic splitting of B. Step 3 constructs
a stable branched surface B* so that 7 = B* N B, and shows that B?, B* = B is a dynamic
pair in M. In each step the dynamic vector field V' will be altered, but we make sure to
do this so that V is still a dynamic vector field on B, and after step 3 we check that V is
a dynamic vector field for the pair B®, B“.

Step 1: From Markov section to dual dynamic train track. Our immediate goal
is to homotop V through dynamic vector fields on B to a new dynamic vector field V’, and
construct a dynamic train track 7 tangent to V', so that 7 fills up B. This 7 will be called
the dual dynamic train track to Z. In some sense the construction of 7 is the inverse of the
construction in proposition 2.6.1.

Let T = {I1,...,In}. From the definition of Markov section it follows that each I;
has a unique partition into subintervals as I; = I;; * I;5 % - - - % I, so that the first return
map f is continuous on int(I;;) for each j =1,...,n, and f ‘ int(1;;) extends continuously
to a homeomorphism I;; — I’ for some I’ € T; by abuse of terminology this extension
is called the first return map of the subinterval I;;. Define the transition matriz of the
Markov section Z to be the M X M matrix g where pu(%, j) is the number of subintervals of
I; mapping homeomorphically onto I; under the first return map.

Choose a base point z; € int(I;) for each I; € Z. For each 7 we construct a piece Ti+ of
T starting from z; (figure 2.10a) and another piece 7; ending at z; (figure 2.10b).

To construct Ti+, consider the partition I; = I;; # I;» % - - -x I;x defined above; the integer
K = K, depends only on 7, and is the sum of the entries inrow ¢ of u. Foreachk =1,... K
let I;, € 7 be the element of the Markov section such that the first return map takes I;;, to
I;,. There is a unique point &, € int(I;;) taken to z;, under the first return map Iy, — I, .
Let I be a compact subinterval of int(I;) containing &1, ... ,&x; we obtain I! from I; by
removing a tiny neighborhood of each endpoint of I;. Choose a number ¢ > 0 so small that
I!-10,t] N (TB u UI) = I!. Let yir, = & -t. Construct a piece of oriented train track

Ti+ C I!-]0,t] with one backwards endpoint at #; and K forward endpoints at y;1,. .. ,¥ix,
and with K — 1 diverging switches, as shown in figure 2.10a.
Next, let I},. .. ,IiL be the collection of subintervals of elements of Z whose first return

maps take them homeomorphically to I;; now L = L; is the sum of column ¢ of u. Let
yf = y;i Where j, k are chosen so that If = I;;. Recalling that y;;, is on the trajectory from
;i to z;, we may construct a piece of oriented train track 7;” consisting of the trajectories
from each 7, ... ,ylL to x;, as shown in figure 2.10b. Notice that the intersection of any two
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Vi

(a) Construction of T+ (b) Construction of t;

Figure 2.10: Constructing a dynamic train track from a Markov section.

of these trajectories contains #;, and the first point of intersection is a converging switch
of 77 which is transverse to B; it follows that 7, has exactly L — 1 converging switches.
Now define the dual train track 7 of 7 to be

T = U (fun)

i=1,...,.M

Note that T has exactly (%, j) oriented paths going from z; to z; whose interiors are disjoint
from |JZ. We must prove that 7 is a dynamic train track in B.

We first prove that 7 N T B consists of the converging switches of 7. By construction
every converging switch of T lies in TB. We must show that for each ¢ = 1,..., M, each
point p € 7, N T B is a converging switch. To see why this is true, note first that for some
l=1,...,L; the point p lies on the trajectory from yf to @;. Going backward from p, this
trajectory follows one of the two sheets on the two-sheeted side of p. Now go backward
from p along a trajectory that follows the other sheet, and after a bounded time one must
intersect |JZ. The first such intersection point must be a:f for some k=1,...,L;, and so
p also lies on the trajectory from yf to z;, proving that p is a converging switch of 7.

We must homotop V through dynamic vector fields to make V tangent to 7. Fix
i=1,..., M and consider Ti+; see figure 2.10a. Note that Ti+ is contained in I} - [0, ¢] which
lies in some sector o of B. In figure 2.10a, the vector field V points straight upward. We
may alter V' by a homotopy supported in I - [0,¢] so that V is tangent to Ti+, retaining a
positive upward coordinate in figure 2.10a. Doing this for all ¢ = 1,..., M, and noticing
that V is automatically tangent to 7, , it follows that V is now tangent to 7.

It remains to verify the property Transience of forward trajectories.
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Let K be a component of &(B — 7), a cusped unstable dynamic branched surface.
From the construction we know that § K # (. Following the proof of proposition 2.5.7, we
inductively remove tongues to obtain a sub-branched surface R C K, also a cusped unstable
dynamic branched surface, such that 3R C 0K, K is obtained from R by inductively
attaching tongues, and R has no cusps. Removal of a tongue does not affect connectivity,
and so R is connected. The only diverging switches of the oriented train track R occur
at cusps of R, but R has no cusps and so R has no diverging switches. It follows that
OR has no converging switches, and therefore R is a union of circles. Removal of tongues
preserves the property that the boundary is nonempty, and so R # 0.

We shall show that TR = (), which together with the previous paragraph implies that
R is an annulus or M&bius band, and so K is a ring with tongues.

Each I € T is subdivided into two arcs at the point z; = I N 7; the components are
called half-intervals of T. Let Ix be the collection of half-intervals of 7 contained in K.
For each o € Tk, if int(a) N R # 0 then a C R, because int(a) N TK = (. Let Iy be the set
of half-arcs contained in R. Each a € Ty has one boundary point 2, on R and the other
boundary point y, in int(R). For each y,, the first return of y, to Zr is another point y,;
let Y4ar be the flow segment from y, to yor. Let Y C R be the directed graph with vertices
Yo and directed edges 7v,,/. Note that each vertex of Y has exactly one outgoing edge.

We claim that every vertex of Y has at least one incoming edge. To prove this statement,
suppose there is a vertex y, with no incoming edges. There exists an infinite backwards
trajectory y - (—oo, 0] staying entirely in R, for if one follows any trajectory backwards
from y,, making arbitrary choices whenever TR is hit, the only obstruction to continuing
backward forever occurs at a cusp of R, but there are no cusps. Now it is evident that every
infinite backward trajectory eventually hits | Z, and so we can choose a point z = y-t € JZ
with [t/ > 0 minimal. By the hypothesis that y, has no incoming edges, it follows that
z € int(I) for some I € 7. However, from the construction of 7 it follows that the flow
segment from z to y, must intersect 7, contradicting that this flow segment is contained in
the interior of R C €(B — 1), thereby proving the claim.

Each vertex of Y therefore has exactly one outgoing edge and at least one incoming
edge, from which it follows that each vertex has ezactly one incoming edge, and therefore
Y is a disjoint union of circles.

We claim also that Y N TR = (. If not, there would be a vertex y,, a backward
trajectory y, - (—o0,0], and a number T' < 0 such that y, - T € Y but y, - (—o0, 0] diverges
from Y for t < T. But then arguing as above there would be a first value t < T such that
Yo -t € UZ and y, - t is a boundary point, from which it follows that y, - ¢ is a vertex of Y.
But then the next vertex of Y going forward from y,, -t would have two incoming vertices,
a contradiction.

Consider now the branched surface ¢(R — Y). Each element of Zp pulls back to a
properly embedded arc in ¢(R —Y'), and so we may regard |JZr as a subset of ¢(R —Y').
The first return map on |JZg is a local homeomorphism which restricts to a bijection on
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0 Zr, from which it follows that the first return map is a homeomorphism on | J Zg. Thus,
¢(R —Y) is the mapping torus of a homeomorphism on a union of closed intervals, and so
¢(R—Y) is a union of annuli and M6bius bands. It follows that R is a union of annuli and
Mobius bands, and so by connectivity it is a single annulus or Mébius band, completing
the proof that K is a ring with tongues.

We have constructed a dynamic train track 7 that fills up B, with dynamic vector field
V' tangent to 7.

It is not hard to check that V is still circular in each component T of (M — B).

Step 2 Ideally we would now like to construct a branched surface B® so that the pair
B?, B* = B is a dynamic pair with 7 = B® N B. However, the intersection train track of a
dynamic pair satisfies several properties that 7 may not satisfy. In a sequence of substeps,
we shall describe how to alter B and 7 so as to establish each needed property.

The first property is true without any alterations:

Step 2a: Each component K of ¢(B — 7) has at least one tongue. If this is not
so, then K is an annulus or Mobius band. There exists a sector o of B such that K C o.
Each boundary circle ¢ of K is a periodic trajectory of V' contained in . We now show
that V also has a periodic trajectory in o, contradicting the hypothesis of proposition 2.6.2
and therby proving the claim.

The circle ¢ is a periodic trajectory in 7 contained in o. From the construction of 7,
corresponding to c is a cycle of elements in 7, namely I ,I;,...,I;, = I;, such that
p(ik—1,%) # 0 for k = 1,..., K, and each I;, is contained in o. Moreover, there exist
subintervals J;, C I;, such that the first return map of ¢ takes J;,_, homeomorphically
onto J;, for k =1,..., K, the trajectories from J;, , to J;, allliein o, and J;,, = I;,, = I;,.
The K-fold iterate of the first return map therefore takes J;, C I;, homeomorphically onto
I;,, and so there is a periodic trajectory of ¢ entirely contained in o, i.e. there is a periodic

trajectory of V contained in o, a contradiction.

For the remainder of the proof let K = &(B — 7). Let R be the union of sinks of
components of K.

Step 2b: Eliminating circular sinks of 7. A circular sink of T is a smoothly embedded
circle ¥ C 7 such that each switch of 7 on 7 is a converging switch. Recall from the proof of
proposition 2.5.1 that if 7 were the intersection train track of a dynamic pair then T would
have no circular sinks.

We describe how to alter T so as to eliminate a circular sink y. Let b C 7 be the “basin
of attraction” of 7, the set of all y € 7 such that the directed path in 7 going forward from
y never encounters any diverging switches and eventually lands in y. Alter T by deleting b,
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to produce a train track 7. It is obvious that 7’ is a dynamic train track, except perhaps
for the property Transience of forward orbits, which we now verify.

The inverse image of 4 under the overlay map K — B is a subset 7' C JR and the map
7"+ 7 is double covering. Similarly, the inverse image of cl(b) is a subset ¥’ C 0K, and
the map b — cl(b) is a double covering. If ¥ is an orientation preserving curve in B, then
each of the covering maps 7' — v, b’ — cl(b) is a disconnected double covering; whereas if
v is orientation reversing then the covering maps are connected.

Regarding b as a subset of €(B —7'), note that K is obtained from ¢(B — ') by cutting
open along cl(b), and b’ is the remains of cl(b) in K. Let C’ be the component of &(B — 7')
containing cl(b), and let C' C K be the inverse image of C’. Clearly C is a union of one or
two components of K, and 4’ is contained in the boundary of the sink(C) (= the union of
sinks of components of C'). It is now easy to see that C’ has a sink obtained from sink(C')
by gluing v’ to itself via the covering transformation of the double covering v’ — +, proving
Transience of forward orbits for the train track 7/ and thereby showing that 7’ is a dynamic
train track in B. Also, 7/ fills B, for if sink(C’) were a torus or Klein bottle then this
surface would be carried by B contrary to the hypothesis.

We have described how to eliminate one circular sink of 7, replacing T by a dynamic
train track 7’ that fills up B. Clearly there is a finite number of circular sinks, and the
number in 7' is one fewer than in 7. Also, 7/ still has the property that each component of
¢(B — 7') has at least one tongue. By repeating the process we may therefore assume that
7 has no circular sinks.

Step 2c: Splitting rings having tongues on both sides. Given a component K of
¢(B — ) with sink R, the surface R is either a two-sided annulus or one-sided Mébius band.
We may ask, for each side of R, whether there is a tongue attached to that side. Since
there is at least one tongue attached to R, there are three cases:

(a) R is a Mobius band, with at least one tongue attached (to its unique side).
(b) R is an annulus, with at least one tongue attached to each side.
(c) R is an annulus, with tongues attached to only one side.

We remark that if 7 is the intersection train track of a dynamic pair, only case (c) can
oceur.

If any ring R is of type (a) or (b), we shall split it as follows. Let R’ be a smoothly
embedded ring in B such that R C int(R') C R’ C N(R) where N(R) is a small neigh-
borhood of R. After perturbing the dynamic vector field on B, we may assume that R’
is a splitting surface, i.e. the vector field points outward along R’. Now split B along R’,
resulting in a branched surface B’ with oriented train track 7’. It is easy to verify that
B’, 7' still satisfy the hypotheses, as well as the earlier properties that have already been
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established for B, 7. Also, the dynamic vector field on B tangent to 7 can be perturbed
to become a dynamic vector field on B’ tangent to /. Note that ¢(M — B’) has one more
component than €(M — B): a cusped solid torus, of type (2,0) when R is an annulus, or
of type (2,1) when R is a Mdbius band. Observe also that ¢(B’ — 7') has one fewer sink of
types (a), (b).

After a finite number of such alterations, we may therefore assume that each sink of a
component of €(B — 7) is of type (c¢), and therefore is contained in a face of a component

of ¢(M — B).

Step 2d: Splitting lonely face orbits of 7. Let T be a component of ¢(M — B), let
A be a face of T, and let 74 = 7N A. Since 7 fills up B it follows that 74 # 0. Also,
0T C 0A. Since V is tangent to T and points forward on T B it follows that 74 points out
of A at each point of d7. Finally, each switch of 74 is a diverging switch in int(A4). From
these properties it follows that 74 has at least one periodic orbit, every periodic orbit is
embedded, and distinct periodic orbits in 74 are disjoint. There cannot be three or more of
these orbits, because the ones in the middle would be circular sinks of 7, which have been
eliminated in an earlier step. Thus, 74 contains either one or two orbits.

Note that if 7 were the intersection train track of a dynamic pair, then 74 would contain
two orbits.

Suppose, then, that 74 contains a unique periodic orbit v. We alter T as follows. There
is a regular neighborhood K () of v in B, consisting of a ring A with tongues attached
disjointly, one tongue for each point where T B crosses v (see figure 2.11). The intersection
of T with each tongue is a short arc from the cusp of the tongue to a converging switch of
7. Let o be the union of 4 with slightly shorter arcs, one for each converging switch of 7 on
7. Now split 7 along the 1-complex ¢, creating a new train track 7'. Perturb the dynamic
vector field on B to be tangent to 7. The pair B, 7’ still satisfies the hypotheses of the
proposition, as well as all the previously established properties. Note that ¢(B — 7’) has
one more component than ¢(B — 7); this component is an annulus with tongues.

We have now reduced to the case where the inclusion of sinks of components of ¢(B — )
into faces of ¢(M — B) induces a 1-1 correpondence between components of ¢(B — 7) and
faces of components of ¢(M — B).

Step 3: Constructing the stable branched surface. Now take B* = B. We construct
B? so that = B* N B* and prove that B*, B* is a dynamic pair.

Consider a component T of (M — B); we construct B7., the remains of B® in T'. Let
Tr be the remains of 7 in 8T, a stable train track by lemma 2.5.5. Let Fy,..., Fy be
the faces of T, and let R; C F; be the unique annulus whose boundary lies in 7p. For
each n € Z/N there is a uu-cusp circle ¢,, = dF,,_1 N JF,. Note that ¢, N7 # § for
eachn =1,..., N, because no component of €(B — 7) contains a maw circle. Since 7r is
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Figure 2.11: If the orbit 4 is the only orbit of T contained in a certain face of a cusped
torus piece, split 7 along a 1-complex o obtained from v by adding a short arc adjacent to
each convering switch on 7.

stable, given @ € ¢, N 77, the backward trajectory in 77 that starts from 2z and stays in the
face F,,_; must eventually hit a circular source of 77, and that circular source must be a
component d,; of @R, _1; similarly, going backward from z in F,, N 77 you must eventually
hit the component d,,» of OR,,. It follows that 7r has a component 77, containing the
circular sources d,1,d,» and containing each point of 77 N ¢,,. By hypothesis, the flow on
T is circular, and so the circular sources d,,1, d,,» are oriented isotopic in T'.

Now we construct a stable ring with tongues which will be inserted into 7', with bound-
ary 7r,,. Let Al be the subannulus of 0T containing ¢,, with 0A], = d,; U d,2. Let A,, be
a properly embedded annulus in 7' with boundary d,; U d,2, obtained by perturbing the
inclusion map A], — T. Note that there is an suu-maw piece p,, C T with cusp circle ¢,
and boundary A/, U A,.

Since d,1, d,2 are oriented isotopic in 7', we may homotop the dynamic vector field on
int(T') to be tangent to A4,,, without altering the fact that the vector field is circular on T
We may also homotop so that all forward trajectories in p,, — A, eventually hit the cusp
circle ¢, and all backward trajectories limit on A,,.

Now we attach tongues to A,,. Enumerate the points of ¢,, N 77 in circular order around
Cn as ¢1,...,2xg of the points of ¢, N 7r. Attach one tongue for each of the points z;, as
follows.

Consider first ;. Let 411,712 be the paths in 77 connecting z; to d,,1, d,,2 respectively.
We wish to attach a stable tongue ¢; to A4,,, tangent to V, with edges 11, 712 adjacent to
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21, and with base curve 713 C A,,. To do this, first let ¢] C p,, be a small 1-cusped triangle
tangent to V, with cusp at 21, and with two edges on short subsegments of 411, y12 incident
to 21. The third edge of ¢, denoted 7]5, is a properly embedded arc in u,. Now let v,
flow backward in g, to an arc 475 which is contained in a very small neighborhood of A,,.
There is a 1-cusped triangle ¢t/ which is the union of ¢] with the trajectories from 75 to
v1{5. By a perturbation of V and ¢] supported near A,,, we obtain the desired stable tongue
1.

Next consider 5. Let 51,7922 be the paths in 77 going from 25 to dp1 U Y11, dn2 U Y12
respectively. We wish to attach a stable tongue ¢, to 4,, Uty, tangent to V, with edges 721,
792 incident to z,, and with base curve y,35 C A, Ut;. Again start with a small 1-cusped
triangle ¢, near z, and flow backward to obtain another 1-cusped triangle t; whose base
edge is contained in a very small neighborhood of A,, Ut;. By a perturbation of V' and ¢/
supported near A,, U t; we obtain t,.

Continuing in this manner, we construct an annulus with tongues B}, = A,Ut;U---Utk.
Let B3 = UY_, BS,.

Now let B® be the (overlay image of the) union of the B7., over all components T of
¢(M — B). From the construction it is easy to check all the axioms of a dynamic pair for
B?, B*, except possibly for axiom 7, to which we now turn.

Suppose that there is an s-face gluing of dynamic torus pieces of B?, B*. This s-face is
contained in some sector o of B®, and any boundary component of ¢ is a periodic trajectory
in o, violating the fact that no sector contains a periodic orbit. A u-face gluing is similarly
ruled out.

This finishes the proof of proposition 2.6.2. &

Recall that when unstable dynamic branched surfaces were defined, we did not require
that the dynamic vector field generate an expansive forward semiflow, contrary to the
definition adopted by Christy [Chr93]. It is interesting to note that the existence of a
Markov section is closely related to expansivity:

Proposition 2.6.3. If (B,V) is an unstable dynamic branched surface, the following are
equivalent:

1. The dynamic vector field V' can be chosen so that it generates an expansive forward
semiflow.

2. B does not carry a torus or Klein bottle, and the dynamic vector field V can be chosen
so that it has a Markov section.

Proof. We only sketch the proof, since this proposition is not needed elsewhere.

The space of dynamic vector fields on B is path connected, that is, any two dynamic
vector fields on B are homotopic through dynamic vector fields. We are therefore free to
replace V by any other dynamic vector field.
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To prove that 2 implies 1, carry out the above proof up to step 2b, using the nonexistence
of tori and Klein bottles. Show that the transition matrix has no non-negative eigenvectors
of eigenvalue 1. Use that to construct an expansive first return map to the Markov section,
and suspend to get an expansive semiflow.

The proof that 1 implies 2 follows standard methods for construction of Markov parti-
tions, as in [Bow73|. If B carried a torus or Klein bottle S, the restriction of V' to .S would
generate an expansive flow on 5; but a torus or Klein bottle does not support an expansive

flow. O

2.7 The taffy-pulling example revisited

We may now use theorem 2.6.2 to give the first rigorous example of a dynamic pair. Let
B C M be the unstable dynamic branched surface in the mapping torus of the taffy pulling
map on the four-holed sphere, as described in section 1.6 and figure 1.6. The reader may
easily check that the set of arcs

T = {ab,be,cf, bd, de, ek, g, gh, fa, ha}

is a Markov section for B. Applying the proof of proposition 2.6.2 we obtain a dynamic
train track T C B. It is easy to check directly that 7 fills B.

The branched surface B does not carry a torus or Klein bottle; indeed B carries no closed
surface at all. To check this, apply the following lemma, whose proof is easily extracted
from the proof of statement 4 of proposition 2.5.1.

Lemma 2.7.1. Let T be a dynamic train track filling an unstable dynamic branched surface
B. Suppose that T has no circular sinks. Then B carries no closed surface. &

In the taffy pulling example, it is easy to check that the train track constructed in
proposition 2.6.2 has no circular sinks, and so B carries no closed surface. Proposition
2.6.2 now applies, and so B may be split to form B*, and B® may be constructed, so that
(B*, B*) is a dynamic pair.

Indeed, if one traces through the proof of proposition 2.6.2 with this example, it is easily
seen that the dynamic train track 7 already satisfies all the needed properties so that there
is a dynamic pair (B*, B*) with B = B* and 7 = B* N B; none of the alterations needed
for the general proof are necessary for this example.

For a general pseudo-Anosov map f, the construction of an invariant train track and
Markov partition given by [BH95] can be combined with the methods of 1.6 to produce a
Markov unstable dynamic branched surface B in the mapping torus My, whose completed
complementary components are cusped torus pieces with a circular flow. It is not hard
to show that 7 is strongly connected, using the fact that f is transitive, and so 7 has no
circular sinks and B carries no closed surface. It is easily checked that B has no annulus
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or Moébius band sectors, and no periodic trajectory can lie in a bigon sector. Proposition
2.6.2 therefore applies, yielding a construction for a dynamic pair in Mjy.

We remark that the above example does not satisfy “torus piece disjointness” —the
union of torus pieces of ¢(M — (B*U B")) does not embed in M under the overlay map. To
see why, refer back to figure 1.6, and note that there are two dynamic torus shells, each 1-
pronged. One torus shell arises from the outer boundary component of the disc. The other
torus shell arises from the three inner boundary components, which are cyclically permuted
by f. We claim that this “inner” torus shell does not embed in M. To see why, it suffices
to identify the corner circles of this torus shell, as periodic cycles in 7, and to show that one
of these circles is not embedded. One can check that all the entries in the transition matrix
u are zeroes and ones, and so a periodic cycle of T is determined by a periodic sequence
Ings Loy - o o s Ing = I, of elements in the Markov section such that p(ng_1,nt) = 1 for all
k=1,...,K. The periodic cycle in T corresponding to such a sequence is embedded in T
if and only if the sequence is 1-1. The two periodic cycles yielding the corner orbits for
the inner dynamic torus shell are (ed, de, cb) and (eh, db, cf). We write each element of the
Markov section as an oriented edge, so that the reader can trace out the cycle in figure 1.6.
The oriented edges ed and de represent the same element of the Markov section, and so the
first corner orbit is not embedded.



Chapter 3

Flows

In this section we consider pseudo-Anosov flows and pA flows. Because pA flows are
technically easier to work with—they are more closely related to dynamic pairs and to very
full laminations, and they may be analyzed by direct application of classical tools rather
than by reconfiguring those tools—our main focus will be pA flows, and certain proofs
involving pseudo-Anosov flows will be sketchy or even conjectural. In order to smooth the
exposition we will start with the more familiar territory of pseudo-Anosov flows, and we
will show how the double DA operation leads naturally to the definition of pA flows.

The reader who is interested only in essential laminations can safely skip the latter
subsections 3.4-3.5, which deal solely with pseudo-Anosov flows and constitute about half
of chapter 3. Also, section 3.1 need only be skimmed to review concepts of hyperbolic
dynamics and to learn about pseudohyperbolic orbits.

3.1 Pseudo-Anosov flows

If ® is a flow on a Riemannian 3-manifold M, and if I C M is a ® invariant set, a stable
bundle for ® on I is a ¢ invariant subbundle E* of T M ‘ I such that for some 8 > 0,a > 1,
if v € E® then |D®;(v)| < 0a~*|v| for t > 0. An unstable bundle E" is similarly defined
by requiring |D®;(v)| < fat|v| for t < 0. We say that the ezponential expansion rate is at
least a.

Recall that a smooth flow @ on a closed 3-manifold M is Anosov if for some (and hence
any) Riemannian metric on M there is a continuous ®-invariant splitting of the tangent
bundle TM =T® @ E* @ E" into 1-dimensional subbundles, such that T'® is tangent to &,
FE? is a stable bundle for ¢, and E* is an unstable bundle. An important feature of an
Anosov flow is the Stable manifold theorem [HPST77|, which says that the plane bundle
T® @ E? is integrable, defining a continuous 2-dimensional foliation F* called the weak
unstable foliation of ®. The bundle T® @ E* is also integrable, defining the weak stable

77
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foliation F* of ®. Other important features are the existence of a Markov partition [Rat73],
and symbolic dynamics [BowT73].

In [Mos92a] a topological definition of pseudo-Anosov flows is offered which avoids
smoothness issues, by requiring the flow to have (singular) weak stable and unstable fo-
liations with appropriate expansion properties. In [FM95] a smooth definition is offered,
which mimics the above definition of Anosov flows. Here we present the smooth definition
and an improved topological definition, and we give a conjectural explanation for how the
two definitions are related.

We begin at the point of departure from the land of hyperbolic flows, with the concept
of a “pseudohyperbolic” orbit.

Given n > 2, consider the quadratic differential z"~2dz? on the complex plane C.
Away from the origin O, there are holomorphic coordinate charts that take 2" 2dz? to dz?;
these charts are well defined up to Euclidean translation and 180° rotation in the range.
Pulling back horizontal lines with transverse measure |dy| under such a chart, we obtain
the horizontal singular foliation f* with transverse measure p*. Pulling back vertical lines
and |dz|, we obtain the vertical singular foliation f* with transverse measure p®. In polar
coordinates, for each k = 0,...,n — 1 there is a horizontal leaf § = 2k7/n and a vertical
leaf § = (2k + 1)7 /n; these are called prongs. The singularities of f*, f* at O are called
n-pronged singularities. Away from O the foliations are regular, and transverse to each
other. The Euclidean metric dz? + dy? pulls back to a well-defined Riemannian metric
p2 4+ u? on C — O. The topological metric defined by this formula may be completed to a
metric on C denoted d,,.

Given A;, A, > 0, let 10, : C — C be the unique map which respects f* and f*, preserves
each prong of f* and f“, compresses leaves of f° by the factor A,, and stretches leaves of
f* by the factor A,. Let Rg: C — C be rotation about O through angle 6, that is
Ro(z) = e?™ 2. If 0 < k < n the map Ry /r, commutes with ¢, and respects f°, f*, inducing
a cyclic permutation of the prongs. The map ¥.r = Ry, © ¥, defines the local model for a
pseudohyperbolic fized point with stretching A,, compression Ay, n prongs, and rotation k.
We also say that v,; has type (n, k). Note that

Drin (i, + H3) = X700 + Ao,

Now take the suspension flow of ¢, a flow ¥,;;, defined on the mapping torus N, =
CxR/(z,74+1) ~ (Ynr(2),r), where ¥, is induced by the flow (2, s)-t = (z,s5+t) on CxR.
The suspension of the origin defines a periodic orbit y,,x C Ny, and we say that (N, Ynk)
is the local model for a pseudohyperbolic periodic orbit of a flow, with compression A,
expansion A, and type (n, k). The Riemannian metric

APl 4 Nl + de?

on (C — O) x R is preserved by the covering transformation (z,7 + 1) — (¥nr(2),7), and
so it descends to a Riemannian metric on N,; — Y., which completes to a geodesic metric
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on N, denoted ds,; note that although all definitions depend on the compression A, and
the expansion A, these numbers are suppressed in the notation. Note that the suspension
of the foliations f*, f* define 2-dimensional foliations on N,,;, singular along 7,x, called the
local weak stable and unstable foliations of ¥,

Let ® be a flow without stationary points on a closed, oriented smooth 3-manifold M.
We say that ® is a smooth pseudo-Anosov flow if there exists a geodesic metric dps on M
such that the following are satisfied.

e There is a finite set I' of periodic orbits, called singular orbits, such that when re-
stricted to M — JT', the flow & is smooth and djs is a smooth Riemannian metric.

e FEach v € T is pseudohyperbolic, defined as follows. For some A,, A, > 1, n > 3, and
k=0,...,n—1, there exists a neighborhood U of v, and an embedding f: U — N,
taking ¥ to y.k, such that:

— f respects orbits.
— fis smooth on U — 7.

— f is bilipschitz with respect to the metrics dp; and ds,.

o On M —T, there is a continuous splitting of the tangent bundle into three 1-dimensional
®-invariant line bundles T'® ¢ E* @ E", such that T'® is tangent to trajectories of @,
FE? is a stable bundle and E* is an unstable bundle for ®, with respect to the metric

dur.

e Near a pseudohyperbolic orbit v, the bundles E*  E* are tangent to the local weak
stable and unstable foliations near v, respectively.

Remark. Given a pseudohyperbolic orbit v, the condition that the local conjugacy f be
bilipschitz implies that on the complement of v the norm of Df is bounded, where the
norm is computed with respect to the metrics dps and d,;. Note that the local conjugacy
need not respect the parameterization of the flow; but it is easily checked that the parameter
ratio is a smooth function bounded away from zero and infinity.

Remark. Given a pseudohyperbolic periodic orbit vy of type (n, k), compression A, and
expansion A, the numbers n, k, A,, A, are invariants of ¥ under local bilipschitz conjugacy.
Under topological conjugacy the numbers A,, A, are no longer invariant, but n, k still are.

Remark. The final condition in the definition may be unnecessary. It seems likely that in
the presence of the preceding conditions, each local conjugacy f can be replaced by one
which also satisfies the final condition.

Next we turn to the definition of a topological pseudo-Anosov flow. Roughly speaking,
® is a topological pseudo-Anosov flow if ® has weak stable and unstable foliations, singular
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along a collection of pseudohyperbolic orbits, and ¢ has a Markov partition which is ex-
pansive in a certain sense. This definition is tailored to serve two purposes. First, it reflects
many of the essential dynamic features of a smooth pseudo-Anosov flow, in particular the
stable manifold theory and the existence of Markov partitions. Second, it is easy to verify
in specific cases, as we shall see in section 3.4.

Let M be a compact, oriented 3-manifold and ¢ a flow on M without stationary points.
We say that ® is a topological pseudo-Anosov flow if there exists a finite collection of
periodic orbits I', a pair of 2-dimensional ®-invariant singular foliations W*, W*" called the
weak stable and unstable foliations, and a finite set M called a Markov partition for @,
satisfying the following conditions:

1. Each v € T is pseudo-hyperbolic: for some A,, A, > 1, n > 3, and k£ with 0 < k < n,
there exists a neighborhood U of 4, and an embedding f: U — N, taking v to .z,
such that f respects orbits.

2. The foliations W?# W™ are regular and transverse away from the pseudohyperbolic
orbits, and they agree with the local weak stable and unstable foliations near the
pseudohyperbolic orbits.

3. There exists a metric d on M and constants C' > 0, § > 0, a > 1 with the following
properties. For any two points @, y in the same leaf of W?, if d(2,y) < C then there is
a proper, monotonic increasing function s: [0, 00) — R such that d(z-¢,y-s(¢)) < fa™*
for all t > 0. A similar condition holds for two points in the same leaf of W*™.

Before continuing with the definition, let I*, I'* be homeomorphic copies of [0, 1], and define
a flow boz to be an embedding H: I"* x I* x [0,1] — M such that Bottom(H) = I* x I* x 0
and Top(H) = I* X I X 1 are transverse to ®, the set I* x ¢ x [0, 1] is contained in a leaf of
W for each t € I®, the set t x I* x [0, 1] is contained in a leaf of W* for each t € I*, and the
[0, 1]-orientation on each segment ¢ X t' x [0, 1] agrees with the direction of the flow ®. An
s-subrectangle of Bottom(H ) is a rectangle of the form J x I® x 0 where J is a subinterval
of I'; s-subrectangles of Top(H ), and u-subrectangles of Bottom(H ), Top(H ) are similarly
defined.

4. M is afinite set of low boxes with disjoint interiors, forming the 3-cells of a regular cell
decomposition of M. For each H, H' € M, each component of Top(H ) N Bottom(H"')
is both an s-subrectangle of Top(H ) and a u-subrectangle of Bottom(H").

To complete the definition, define the transition digraph of M to be the directed graph T’
with vertex set M and with one edge from H € M to H' € M for each component of
Top(H) N Bottom(H'). A strong component of T is a directed subgraph I'' C T such that
there is a directed path in I from any vertex to any other vertex, and IV is maximal with
respect to this property. We say that I is a sink if every edge F of T' — I adjacent to I
points towards IV, and I" is a source if every adjacent edge points away from IV.
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5. The transition digraph of M has no circular sinks or sources.

There is some redundancy in this definition—as we shall see in the conjecture below, items
3 and 5 are equivalent in the presence of the other conditions.
These two definitions should be related as follows:

Conjecture. Let M be a closed §-manifold. FEvery smooth pseudo-Anosov flow on M 1is
a topological pseudo-Anosov flow. Conversely, every topological pseudo-Anosov flow & on
M is smoothable, i.e. there exists a smooth structure on M with respect to which ® is a
smooth pseudo-Anosov flow.

Remark. This conjecture is interesting even in the Anosov case. A lot of work has gone
into classifying smooth conjugacy classes of smooth Anosov diffeomorphisms and flows (see
[Caw93] and the references there). But so far the existence of a smooth structure on a topo-
logical Anosov homeomorphism or flow has been overlooked. For Anosov homeomorphisms
of tori, the results of Adler and Weiss can easily be tailored to prove the existence of an
invariant smooth structure. In the flow case it seems somewhat harder, but Elise Cawley
has told me how to do it, and her methods almost certainly adapt to pseudo-Anosov flows.

We shall suggest a proof of the above conjecture, based on known techniques of Anosov
dynamical systems. In order to make this proof rigorous, work is needed to generalize these
techniques to pseudo-Anosov dynamical systems.

Remark. One can formulate a higher dimensional analogue of this conjecture, for Anosov
diffeomorphisms and flows. It would be very interesting if there were any nonsmoothable
examples.

Sketch of a proof. Suppose ® is a smooth pseudo-Anosov flow with singular orbits I' and
splitting TM = T® @ F* @ E* on M — T'. The stable manifold theory of [HPS77] can be
adapted to show that T® @ E* is integrable in M — I, yielding a foliation W* in M which
is singular along I', and which agrees with the local weak stable foliation near each orbit in
I'. The singular foliation W™ is similarly obtained by integrating T'® ¢ E*. The foliations
W?* W™ satisfy the requirements for the weak stable and unstable foliations of a topological
pseudo-Anosov flow.

In [Rat73] there is a construction of Markov partitions for transitive Anosov flows.
As remarked by Shub in [Shu87] p. 145, transitivity is not needed to construct Markov
partitions, as long as there is a local product structure, which follows from the existence of
stable and unstable foliations. Thus, the construction of Markov partitions can be carried
out for smooth pseudo-Anosov flows.

Suppose that condition 5 fails, so there is, say, a circular sink in I'. This corresponds to
a cycle of flow boxes Hy, ..., Hy such that Top(H;) C Bottom(H;41) for all ¢ € Z /k, which
in turn yields a periodic orbit ¥ of ® intersecting this cycle of flow boxes. Let A; be the
intersection of the unstable manifold of v with H;, and let A = [J A4;. It follows that A is
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an embedded, closed annulus in M, contained in a leaf of W*, invariant under ®. But this
contradicts item 3.

Conversely, suppose ¢ is a topological pseudo-Anosov flow. The first proof that & is
smoothable uses Birkhoff sections as in Fried’s work [Fri83] together with orbit surgery
methods of Goodman [Goo83]. The second proof uses techniques of Cawley [Caw93], as
applied to flows [Caw96].

For the first proof, use the Markov partition and apply the methods of [Fri83] to obtain
a Birkhoff section for ®, an embedded surface S C M such that int(.5) is transverse to
$, 05 is a union of periodic orbits of ®, and every orbit of & hits S in bounded time.
Then using S as in [Fri83] one shows that the flow @ is obtained by orbit surgery from the
suspension flow of a pseudo-Anosov homeomorphism. Note that suspension pseudo-Anosov
flows are obviously smooth. The methods of [Goo83] (see also [HT80]) may be applied to
show that any pseudo- Anosov flow obtained by orbit surgery from a smooth pseudo-Anosov
flow is also smooth.

For the second proof, we start by using “super-eigenvectors” of M to impose coordinates
on each rectangle Bottom(H ) for H € M. Choose an enumeration M = {Hq, ..., Hi} and
let 4 be the k x k transition matrix, where y;; is the number of components of Top(H;) N
Bottom(H;). Thus p;; is the number of edges in I' from H; to H;.

Lemma 3.1.1 (Super-eigenvector lemma). There exists A > 1, a positive row vector
W, and a positive column vector V' such that (Wu); > AW, and (uV'); > AV;, for i =
1,... k.

Proof. Without loss of generality we may assume that the flow boxes are enumerated so
that the vertices of each strong component of I' are adjacent in the enumeration, and if
there is an edge H; — H; with H;, H; in different strong components then 7 < j. Thus, p
has an upper block decomposition: each strong component of I' corresponds to a block on
the diagonal, and all entries below these blocks are zero. A circular strong component of I'
corresponds to a diagonal block which is a permutation matrix; condition 5 guarantees that
each such permutation block has some nonzero entries above it and some nonzero entries
to the right of it.

We construct the column vector V; the construction of W is similar. For each nonper-
mutation block B,,, the Perron-Frobenius theorem provides a positive column eigenvector
for that block, with eigenvalue A, > 1; put this eigenvector into the positions of V' corre-
sponding to the block B,,. Choose A > 1 less than each A,,. We must still define an entry V;
corresponding to each H; lying in a circular strong component of I'. By condition 5 there
exists a directed path from a noncircular strong component to H;; let x; be the shortest
length of such a path. If z; = 1 then choose H; to be any vertex in a noncircular strong
component such that H; — H; is an edge of I', and define V; = V;/(2A). If z; > 1, then
choose H; to be any vertex such that z; = z; — 1 and H; — H; is an edge, and define
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Vi = Vi/(2}). ¢

We may now impose coordinates on Bottom(H;), making it a V; x W, matrix, so that
for each edge H; — Hj the first return map from Bottom(H;) to Top(H;) stretches the
V-coordinate by at least A and compresses the W-coordinate by at least A.

These coordinates determine well-defined transverse Holder structures on W#, W*, which
agree along the vertical sides of the flow boxes. Moreover, in these structures, the transverse
holonomy of W* is exponentially contracting in the backward direction and the holonomy
of W* is exponentially contracting in the forward direction (exponential convergence is a
well-defined concept in any Holder structure).

From [Caw93] it follows that for any topological Anosov map f: T2 — T2, given any f-
invariant transverse Holder structures on the stable and unstable foliations with exponential
contraction properties as above, there is an f-invariant smooth structure consistent with
these transverse Holder structures. The same techniques work for a topological Anosov
flow [Caw96]. Applying these techniques to a pseudo-Anosov flow ®, using the transverse
Holder structures on W*, W* constructed above, we obtain a smoothing of ®. &

3.2 pA flows

Pseudo-Anosov flows are not well adapted to torally bounded3-manifolds. On closed
3-manifolds, moreover, pseudo-Anosov flows have the disadvantage of requiring one to work
with singular foliations. These disadvantages are overcome by the concept of pA flows. The
definition is motivated by melding the idea of pseudohyperbolic orbits with two ideas from
hyperbolic dynamics: the DA operation, and axiom A flows.

The DA operation is performed on an Anosov flow ® by “splitting open” the unstable
leaves of a finite collection I' of periodic orbits of ®, creating a hyperbolic attractor (see
below for the definition of attractors and repellers). More precisely, for each v € T' one alters
® on an isolating neighborhood N () as shown in figure 3.1a. As proved in [BW83], the
result of this operation is an axiom A flow ®* having an attractor A which is a 2-dimensional
lamination. Associated to eachy € I there is a ®*-invariant ring A, such that int(Ar)NA =
0, A, is a union of hyperbolic periodic orbits in A, and the core of A, is a repelling orbit
of ®* isotopic to 7. If v is untwisted then A, is an annulus, otherwise A, is a Mobius band.
The union of repelling orbits of A, for v € I, is a link in M isotopic to I'.

One can also split open along stable manifolds of I' to get a flow with a 2-dimensional
repeller and isolated attracting orbits (figure 3.1c).

There is also a “double DA” operation [Mos92a], in which one splits along the stable
and unstable manifolds of I' simultaneously. In other words, the flow @ is altered on N(7)
as shown in figure 3.1b. The double DA operation on an Anosov flow produces an Axiom
A flow &% with a 1-dimensional hyperbolic invariant set I (for a sketch of the proof, see
proposition 3.2 below). For each y € T', there is an invariant set T, of ®# having the
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Figure 3.1: The unstable DA, double DA, and stable DA operations. Each figure shows a
Poincaré section—a local cross-section for the flow—and a phase diagram on the Poincaré
section, i.e. a planar flow whose orbits are invariant sets of the first return map of the
3-dimensional flow. Note: phase lines are not generally leaves of stable or unstable folia-
tions.

structure of a manifold-with-corners fibering over the circle with fiber a square. If v is
untwisted this fibration is a product; if v is twisted, the monodromy map is a 180° rotation
on the square. The dynamic structure of T, is as follows. The edges of T, are hyperbolic
orbits in I. The faces of T', are labelled s and u, according to whether they are tangent to
the stable or unstable directions of the corner orbits. The core of each face is a periodic
orbit: an attracting orbit of ¥ in each u-face, and a repelling orbit in each s-face. At the
core of T, is a hyperbolic orbit, whose unstable manifolds go out to the attracting orbits at
the s-face cores, and whose stable manifolds come from the repelling orbits at the u-face
cores. All other orbits in T, are transient, going from a repelling orbit in backwards time
to an attracting orbit in forwards time. The union of the cores of the T, form a link in M
which is isotopic to I.

Roughly speaking, a pA flow is what you get from a pseudo-Anosov flow by doing a
double DA operation on each singular orbit. Before turning to the formal definition, we
review topological dynamics and Axiom A flows.
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First we review the ideas of chain recurrence as developed by Conley [Con78]. Consider
a semiflow ¢ on a compact space X. An invariant set of ® is a subset Z C X such that for
all z € 7 and t € R, the point z - ¢ is defined and is in Z. The maximal invariant set of ®
is a compact subset of X.

Given ¢,T7 > 0 and 2,y € X, an ¢, T-chain from z to y is a sequence of flow segments
z1-[0,t1],...,2, - [0,t,] such that

ez ==
oz, ty, =1y

o d(z;-t;,x;41) <eforalli=1,...,n—1.
e t;>Tforalli=1,... n.

The chain recurrent set of ® is the set Cg consisting of all € X such that for all ¢,7 > 0
there exists an €, T-chain from # to #. Note that Cg is a closed invariant set of ®.

A closed ®-invariant set I C X is chain connected if for each z,y € I and all ¢,7 > 0
there exists an ¢, T-chain from z to y. Clearly a chain connected set I is a subset of Cg. We
say that I is a chain component of Cg if I is a maximal chain connected set. A basic result
of topological dynamics is that Cg decomposes into chain components. Chain component
are also called basic sets.

Let C1,C5 be basic sets. A connecting point from C1 to C5 is a point y € X such that
for all #; € C1,29 € C5 and all €, > 0 there exists an ¢,T chain from #; to y and one
from y to z5. The join of C; and Cs, denoted J(C4,C4), is the union of C; U Cy with
all connecting points from C4 to (5. Given any collection C of basic sets, define the join
J(C) = U{T(C1,C4) | C1,C3 € C}. Note that J(C) is a ®-invariant set, and if |JC is
compact then J(C) is compact.

Define a directed graph I'g, called the Lyaponov graph, whose vertices are the basic sets,
and with an edge C; — C; defined between basic sets C; # C5 if there exists a connecting
point from (7 to C3. The Lyaponov graph is:

o Transitive: If C1 — Cy and Cs — Cj are directed edges then so is €7 — Cj.
o Acyclic: There there are no cycles ¢y — Cy — --- — C,, — (.

Given a subgraph IV C I'g, let J(I') be the join of the basic sets forming the vertices of
I

A subgraph TV C T's is complete if for any two adjacent edges C; — Co — C5 in I'p
such that C1,C3 € IV, the edges C; — C, and C; — (3 are also in I'. Each subgraph
IV C T'g is contained a unique, minimal complete subgraph called the completion of I, and
the join of I is equal to the join of its completion. If I is a complete subgraph of I'g, then
the Lyaponov graph of & ‘ J(I) is naturally isomorphic to I'.
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Now let ® be a flow without stationary points on a compact manifold M. An isolated
nvariant set of & is a closed ®-invariant set I such that for some neighborhood U of I in
M, the set I is the largest ®-invariant set contained in U, that is I = ),.g U -t = {z €
M ‘ 2z -R C U}. The neighborhood U is called an isolating neighborhood of I. As special
cases, we say that I is an attractor if I = (,5, U - t, and I is a repeller if I = (), ., U - t.

Suppose that U is an isolating neighborhood of an isolated invariant set I, and U is a
codimension-0 compact submanifold of M whose boundary decomposes as 3B = R_B U
R+ B where R_B, R4 B have disjoint interiors, 0B = 0R_B = R, B, the flow exits
B along int(R4B), enters along int(R_B), and is externally tangent along ¢B. Then
U is called an isolating block for I. If M is a 3-manifold, an isolating block has the
natural structure of a sutured manifold in the cusp model. Conley and Easton proved
that if ® is smooth on some neighborhood of I then I has an isolating block [CET1]. In
proposition 3.3.3 we shall review Bob Williams’ explicit construction of isolating blocks for
1-dimensional hyperbolic invariant sets in dimension 3 [BW83].

Given an isolated invariant set I C M such that & is smooth on some isolating neigh-
borhood U of I, a hyperbolic splitting of indez k on I is a splitting of the bundle T M ‘ I into
continuous, ®-invariant sub-bundles T® ¢ F° ¢ E*, where T'® is the 1-dimensional tangent
bundle for ®, E? is a k-dimensional stable bundle for ®, and E* is an m — k — 1-dimensional
unstable bundle, with respect to some Riemannian metric on M. If there is a hyperbolic
splitting on I then we say that I is a hyperbolic invariant set.

Suppose that I is an isolated hyperbolic invariant set. Choose an isolating block U for
I. Define the local weak stable lamination of I with respect to U, denoted W , to be the
set of all z € U such that - ¢ is defined for all t > 0; since U is an isolating block for I it
is evident that z -t accumulates in I as t — oco. Define the local weak unstable lamination
Wi, similarly. The Stable manifold theorem of Pugh and Shub [HPS77] says that that
these are, in fact, laminations: if I has index k then W}’ is a k + 1-dimensional lamination,
and W} is an m — k-dimensional lamination. The laminations W , W%  are transverse,
and their intersection is the 1-dimensional lamination I. Given a subset X € I, the set of
leaves of W} _ intersecting X is denoted W (X).

Note that W , W[ are independent of the choice of isolating block U in the following
sense. If U’ is another isolating block, and if W'} W'} ~are the weak stable and unstable
laminations of I with respect to U’, then there are neighorhoods V' C U of W} UW}"_ and
VI CU of W UW'} , and a diffeomorphism V' — V' that takes each flow line to itself,
and takes W2 . to W'} and W to W'}  preserving the lamination structure. The proof
is easy if U’ C U: take the diffeomorphism obtained by flowing U’ forward until R, U’ hits
R,U. The proof is also easy if U’ is a slight perturbation of U. In general, use the fact
that after replacing U’ be a slight perturbation, the intersection U N U’ is an isolating block
of I.

Suppose that I is an index 1 hyperbolic invariant set in an oriented 3-manifold M.
Consider a periodic orbit v in I. Formally, we may regard 4 as an immersion of an oriented
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circle into M, mapping as a finite covering space over some embedded oriented circle called
an embedded periodic orbit. Note that v preserves orientation in the surface W (v) if
and only if it preserves orientation in the surface Wi (), in which case we say that v is
untwisted; otherwise, v is twisted. If v is an embedded untwisted orbit then W} (y) and
W () are both annuli; if 7 is embedded and twisted then these surfaces are Mobius bands.
If v: S — I is a twisted periodic orbit, and if 4': ' — I is the k-fold cover of y—i.e. ¥’
factors as ST — §1 - I where the first map is a k-fold covering map—then 4/ is twisted
if and only if k is odd.

A “stable boundary periodic orbit” of I is a periodic orbit 4 which may be moved off of
I by homotoping v into Wy (7). To be more explicit we must specify the direction in which
v may be homotoped. Let v C I be either an untwisted embedded periodic orbit, or the
double cover of a twisted embedded periodic orbit; in either case, v is itself untwisted. Let
T be a transverse orientation of v in W} (); if v is an embedded twisted orbit then there
are two choices for 7; whereas if v is the double cover of a twisted embedded orbit then
there is an essentially unique choice of 7. We say that the pair (v, 7) is a stable boundary
periodic orbit of I if the component of W} (v) — 7 into which 7 points is disjoint from
I. Note that if v is embedded and untwisted, then it may be a boundary periodic orbit
with respect to either, neither, or both of its transverse orientations in W;? (7). Unstable
boundary periodic orbits of I are similarly defined.

Here are some observations and terminology which describe various types of chain con-
nected, isolated hyperbolic invariant sets on a 3-manifold M. If a chain connected hyper-
bolic invariant set has index 2 then is an attracting periodic orbit, and if the index is 0
then it is a repelling periodic orbit.

The term “strange attractor” is used in the literature to refer to a hyperbolic invariant
set of index 1 which is a boundaryless 2-dimensional lamination A tangent to E*, that is
A = W _(A). The transversals are totally disconnected, and if A is chain connected then
the transversals are Cantor sets (which is regarded as strange, I guess). One could also talk
about a “strange repeller”, though I have never heard the term.

Another common example is a 1-dimensional hyperbolic invariant set of index 1; this is
always a 1-dimensional lamination tangent to T®. A local transversal of this lamination is
totally disconnected (with a “local product structure” as described below). The local weak
stable and unstable laminations are 2-dimensional, with totally disconnected transversals.
If I is chain connected, and if I is not a periodic orbit, then a local transversal is a Cantor
set, with a local product structure of the form (Cantor set)x(Cantor set).

A flow ¢ without stationary points on a smooth, closed manifold M is aziom A if its
chain recurrent set is hyperbolic. More generally, an isolated ®-invariant set I is axiom A
if the chain recurrent set of ® ‘ I is hyperbolic. The main result in the theory of axiom
A flows is the Spectral decomposition theorem [Sma67], which says that if I is an axiom
A invariant set (e.g. the chain recurrent set of an axiom A flow) then the chain recurrent
set of I has finitely many chain components. If M is 3-dimensional, these all fall into
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one of several types: attracting periodic orbits (index 2); repelling periodic orbits (index
0); 2-dimensional hyperbolic attractors or “strange attractors”; 2-dimensional hyperbolic
repellers; and 1-dimensional hyperbolic invariant sets. The latter three types are all of
index 1.

Now we turn to the new concepts needed to define pA flows. Roughly speaking, a
pA flow is like an axiom A flow, in that the chain recurrent set has finitely many chain
components—some of the chain components are axiom A, and the remainder are pseudohy-
perbolic orbits. We put very strong restrictions on the pseudohyperbolic orbits, imprisoning
them inside special invariant sets which inhibit their interaction with the other chain com-
ponents. These invariant sets are the ones which arise in the double DA operation on a
pseudo-Anosov flow. We put similarly strong restrictions on the components of 9 M.

To imprison a pseudohyperbolic orbit we use a “pA solid torus”, which is what you get
by doing a double DA operation on a pseudohyperbolic orbit (figure 3.2a). To be precise,
fix integers n > 1, 0 < k < n. Let G be a regular 2n-sided polygon in C centered on O.
Label the sides of G alternately s and u. Let { be a homeomorphism of C that preserves
G, commutes with the symmetry group of G, and has the following properties. Each corner
of GG is a hyperbolic fixed point of { with stable direction tangent to the adjacent s-side
of G and unstable direction tangent to the adjacent u-side. Each s-side of G contains a
repelling fixed point of , each u-side of G contains an attracting fixed point, and there are
no other fixed points on G. The origin O is an n-pronged pseudohyperbolic fixed point
of {, whose unstable manifolds go out to the attractors on 0G and whose stable manifolds
come from the repellers on dG. All other orbits in G go from a repelling fixed point on
0G in backwards time to an attracting fixed point on 8G in forwards time. The map ( is
smooth except at O. Now take the suspension flow of the map Ry, o (, a flow defined on
the mapping torus of Ry, o (. The suspension of G is an isolated invariant set for this
flow, the local model for a pA solid torus of type (n, k).

To imprison a component of 9M we use a “pA torus shell” (figure 3.2b). To define it, let
G be as above, and choose a small, round Euclidean disc D C G centered on the origin. Let
¢c=0D. Let Q: be obtained by altering { near D so that ¢ is preserved, with 2n hyperbolic
fixed points on ¢. The map Q: ‘ ¢ therefore has n attracting and n repelling fixed points

alternating around c¢. In the annulus A bounded by ¢ and 0G, each attractor of Q: ‘ ¢ has

an unstable manifold going out to an attractor on 0G; similarly for repellers of Q: ‘ c. All
other orbits in ¢ go between two fixed points on ¢, and all other orbits in A — ¢ go between
two fixed points on AG. The annulus G — int(D) is a closed invariant set of {. Now throw
away int( D), so ¢ is only defined on C — int(D). Take the suspension flow of the map ¢ the
suspension of G —int(D) is the local model for a pA torus shell of type n. The suspensions
of the attracting fixed points of Q: ‘ ¢ are called boundary attractors of the suspension flow;
boundary repellers are similarly defined. Note that a boundary attractor of the suspension
flow is not an attractor of the suspension flow on the whole mapping torus; indeed it has
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(a) (b)

Figure 3.2: A pA solid torus and a pA torus shell are obtained by suspending Ry, o ¢,
where ( is depicted here for n = 3.

one unstable manifold transverse to the boundary of the mapping torus.

pA solid tori and torus shells are called, collectively, pA torus pieces.

Let M be a smooth, compact 3-manifold with torus boundaries. Let ® be a flow on M
with no stationary points, and let Cg be the chain recurrent set of ®. We say that ® is a
pA flow if the following hold:

1.

2.

There exist finitely many pA torus pieces of ®, all pairwise disjoint.

® is smooth off of the pseudohyperbolic orbits, and hence each pseudohyperbolic orbit
is contained in a pA solid torus of type (n, k) for somen > 2 and k=0,...,n — 1.

. Every component of 0 M is contained in a pA torus shell of some type n > 1.

Every attracting and repelling orbit of ® is contained in some pA torus piece.

Let Zg be the union of all chain components of ¢ except for the pseudohyperbolic
orbits, attracting orbits, and repelling orbits. Let Js = J(Z3). Then Jp is a
1-dimensional hyperbolic invariant set.

. For each stable boundary periodic orbit (v, 7) of Jg, there exists a pA torus piece

H such that v is a corner orbit of H and 7 points into the adjacent s-face of H. A
similar statement holds for unstable boundary periodic orbits.

There does not exist a transverse bigon for Jg, i.e. a smoothly embedded disc-with-
two-corners D C M with edges «, 3, such that:

e D is transverse to ®.
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* a:Dmch(j.:p).
e 8= DNWE(Ja).
e da=08=DnJs.

We shall use Ag for the union of attracting orbits, Rg for the union of repelling orbits,
and Pg for the union of pseudo-hyperbolic orbits and M. We shall prove in theorem
3.3.1 that the attractor A} = J(Zs U Ag) and the repeller A§ = J(Zs URg) are very full
laminations in M, whose pared torus pieces are in 1-1 type preserving correspondence with
the pA torus pieces of .

Remark. Note that pA torus shells may have any number n > 1 of prongs. However, we
must not allow 1-pronged pA solid tori in the definition, for otherwise the laminations
A3, A} produced in theorem 3.3.1 are not essential.

Remark. If we restrict to the class of pA flows for which all pA solid tori have at least
3 prongs, then there is a natural 1-1 correspondence between (restricted) pA flows and
pseudo-Anosov flows on closed, oriented 3-manifolds, up to isotopy and reparameteriza-
tion; this correspondence is induced by the double DA operation (see the “proposition”
below). We leave the proof to the interested reader. Conditions 4, 6, 7, which impose strict
conditions on attracting orbits, repelling orbits, boundary periodic orbits, and transverse
bigons, are all needed in order for this remark to be true.

Remark. Conditions 4, 6, 7 are also needed to enforce a tight connection between pA flows,
dynamic pairs, and essential laminations (theorems 3.3.2 and 3.3.1).

Remark. In condition 5 note that the chain components of Zg form the vertex set of a
complete subgraph of the Lyaponov graph I'g, and hence J(Z3) is defined. The condition
that 7 = J(Zg) be hyperbolic is equivalent to Zg being hyperbolic plus the “transversality
condition”, which says that for any edge C; — (5 in the Lyaponov graph where C7,Cs C Z,
the weak unstable lamination of C; is transverse to the weak stable lamination of C5 at
any point where these laminations intersect.

Remark. If M is atoroidal then T3 is chain connected; this is proved by an easy adapta-
tion of the theorem proved in [Mos92a] which says that pseudo-Anosov flows on atoroidal
3-manifolds are transitive. But if M is not atoroidal then 7 need not be chain connected.
For example, starting from an intransitive Anosov flow as constructed e.g. in [FW80], the
double DA construction on any collection of periodic orbits produces a pA flow such that
T is not chain connected.

The following shows how pA flows arise from pseudo-Anosov flows via the double DA
operation. Again, this proposition should be regarded more as a conjecture, needing more
details to be made rigorous.
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“Proposition”. Let ® be a smooth, transitive pseudo-Anosov flow on a closed, oriented
3-manifold M. LetT' be a collection of periodic orbits, including all pseudohyperbolic orbits.
Choose pairwise disjoint isolating neighborhoods N., of small radius, for each v € I'. Let
&% be a flow obtained from the double DA operation on &, i.e. 8% is obtained by perturbing
¢ ‘ N, so that the mazimal invariant set T, in N, is a pA torus piece. Then ®# is a pA

flow.

Sketch of proof. For each v € IT' there exists a torus ¢, C N, such that the pseudohy-
perbolic orbit, attracting orbits, and repelling orbits of T, lie inside ¢, the corner orbits
of T, lie outside t,, and if P is the connected submanifold of M on the outside of all the
tori t,, then P is an isolating block for ®#; the torus t,, is easily sketched in figure 3.2a. In
P —J, N(7) the flow has a hyperbolic splitting, by definition of pseudo-Anosov. Also, in
the isolating block P N Uv N(7) the flow has a hyperbolic splitting, because the maximal
invariant set in this isolating block is the union of corner orbits of pA torus pieces, and these
are all hyperbolic. By applying the methods of [HT80], one can use these two hyperbolic
splittings to produce a hyperbolic splitting along the maximal invariant set J = Jg# in P.
By using shadowing arguments one can construct a semiconjugacy from J to ¢, homotopic
to the inclusion map J — M.

The fact that J is 1-dimensional follows from transitivity of ®, using the fact that the
singular leaves along which the flow is split are dense in M. If J had a transverse bigon
D, the semiconjugacy would map the corners of D to an orbit of ® along which W?* W*
are tangent, an absurdity. The remaining details needed to prove % is a pA flow are left
to the reader. O

Remark. If ® is not transitive, then the same proof will work by splitting along a larger set
of periodic orbits including the boundary periodic orbits of all chain components of ®.

3.3 pA flows, dynamic pairs, and very full laminations

In this section we define what it means for a pA flow to be carried by a dynamic pair. We
also prove theorems which give the relation between pA flows, dynamic pairs, and very full
laminations.

The following definition describes the appearance of a regular neighborhood N = N(7)
of the intersection train track 7 of a dynamic pair B®, B".

A template pair in a sutured manifold N, also called a template pair with support N,
consists of a pair of branched surfaces B3, By, C N, with 0B}, C R_N and 0B}, C Ry N,
together with a C° vector field V on N, where the quadruple (N, B%, BY, V) is built by
gluing together three different types of pieces: the transitional piece with model P;, the
diverging piece with model P;, and the converging piece with model P.. Ignoring for the
moment the branched surfaces and the vector field, these models are given as follows (see
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) 5T

transitional piece diverging piece converging piece

Figure 3.3: A bird’s eye view, looking down the z-direction. Gluing rectangles are drawn
with thin lines. Arcs which will be in o N after gluing are drawn with thick lines. The u
and z-directions are identified, as are the s and y-directions.

figure 3.3). Pick € € (0,1). The transitional piece is

Pi = {(&,9,2)eR*|0<z<1[a| < (1-e),lyl < (1-¢)' 7}
Py = {(z,9,2)€ P |z<2’—1+¢}
P. = {(z,y,2)eR|z>-y*+1—-¢}

In words, Pj and P, are obtained from P; by gouging out parabolic troths, a troth parallel
to the y axis gouged out of the top of P;, and an upside down troth parallel to the z axis
gouged out of the bottom of P.. When the vector field is defined, the incoming boundary
of each piece is the set of points where 8/0z points inward, and the outgoing boundary is
where 8/0z points outward. Each of these pieces is a manifold with corners, and the gluing
rectangles are the faces lying on either z = 0 or z = 1. The transitional piece has one
incoming and one outgoing gluing rectangle; the diverging piece has one incoming and two
outgoing gluing rectangles; and the converging piece has two incoming and one outgoing
gluing rectangle. The sutured manifold N is obtained from a collection of transitional pieces,
diverging pieces, and converging pieces, by identifying rectangles in pairs, one incoming and
one outgoing gluing rectangle in each pair.

The branched surfaces in each model are described as follows (see figure 3.4). In P, take
B; = {(0,y,2) € P} and B} = {(2,0,z) € P;}. In Py, take B} = {(#,0,2) € P;}. The
branched surface B} is described as follows. The projection of Pj onto the z, z coordinate
plane is the set Y; = {(z,2) € R? ‘ 0<z<1,z<a?-1+¢,|z| < (1—¢€)?}. Take a properly
embedded, oriented train track 7; C Yy such that: every tangent vector is transverse to
0/0z; there is one incoming endpoint on the edge Y; N {|z| = 0}; there is one outgoing
endpoint on each of the two edges Yy N {|z| = 1,2 < 0} and Yy N {|z| = 1,2 > 0}; and
there is one switch, a diverging switch. We now define B} = P; N w;zl(Td) where 7, is
projection onto the z, z plane. Note that BN B} is the oriented train track {(z,0,z) € Py ‘
(z,2) € 14}. In P, take B! = {(0,y,2) € P.}, and take BY = P. N« !(7.) where 7, is an
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Figure 3.4: Stable and unstable branched surfaces in a diverging piece P; and a converging
piece P.. In order to see the branched surfaces we have changed the viewpoint from figure
3.3; but the reader should imagine what these branched surfaces look like from a bird’s eye
view, in order to appreciate the difference between s and u-branched surfaces.

upside down version of 74, but in the yz coordinate plane. When N is glued together, the
edges where branched surfaces intersect gluing rectangles must match up, yielding branched
surfaces By, C N and B}y C N.

The vector fields in each model are described as follows. In P; take 8/0z. In P, and P;,
the vector field 8/0z is not satisfactory because it is not tangent to the branched surfaces;
instead, take vector fields which have positive z-component, are transverse to the interior
of each face, point inward on a face if and only if 8/0z points inward, and are tangent to
the branched surfaces, pointing backward along s-branch locus and forward along u-branch
locus. When N is glued together, the vector fields along the gluing rectangles must match
up, yielding the vector field V on N. This finishes the definition of a template pair.

Remark. The vector field V is forward along T B}, backward along T Bj;, and tangent to
T = B} N Bj;, making 7 an oriented train track.

Remark. There is a deformation retraction ¢: N — 7, called the rectangle collapsing map,
whose point inverse images are rectangle fibers. In each model the rectangle fibers are
components of intersection of P, P;, or P, with horizontal planes. As with I-collapsing
maps for train track neighborhoods in surfaces, the map ¢ is not a true homotopy theoreric
fibration. The union of intervals parallel to the s-direction define the s-interval fibration
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of N, and the union of intervals parallel to the u-direction define the u-interval fibration.
The map ¢ has two factorizations

s u
N+ By—>7, N1 By-or

where ¢°, ¢* are deformation retractions collapsing s and u-intervals, respectively. The
vector field V is transverse to each rectangle fiber; the transverse orientation on each fiber
induced by V is called the positive transverse orientation.

Remark. For almost all examples, the transitional piece is not necessary in the definition:
if N is connected and if there is at least one diverging or converging piece, then N can be
resubdivided into only diverging and converging pieces. However, an untwisted or twisted
round handle can only be built out of transitional pieces.

Remark. The branched surface B}, is called a “template” in the literature (at least when
T is transitive and not a circle); see the discussion on templates in the introduction.

Consider a dynamic pair B?*, B* with 7 = B* N B*. We may choose I-bundle neighbor-
hoods N(B?®), N(B") in the smooth model so that N(7) = N(B*®) N N(B") is a sutured
manifold, where R_N(7) = ON(7) N ON(B") and Ry N(7r) = ON(r) N ON(B*), and so
that B°* N N(7), B* N N(7) form a template pair in N (7). The transitional, diverging,
and converging pieces out of which N(7) is built may be chosen by taking a finite subset
X C 71 which divides 7 into arcs, diverging switch neighborhoods, and converging switch
neighborhoods, and then cutting N(r) up along the rectangles {R, = ¢7*(z) | = € X},
where ¢: N(1) — 7 is a rectangle fiber collaping map. We may choose the I-fibrations of
N(B?), N(B") to be consistent with s and u-interval fibrations of N (7). Note that there is a
natural, type preserving correspondence between dynamic torus pieces of €(M — (B* U B"))
and of €¢(M — (N(B*) U N(BY))).

We say that a pA flow ® is carried by a dynamic pair B?, B* if the following hold:

e N(7) is an isolating block for J(Zg), with ® flowing inward along 0_ N (), outward
along 04 N(7), and externally tangent along o N (7).

e & is transverse to the rectangle fibers of N(7), crossing each fiber in the positive
direction.

e N(B?) is an isolating block for A* = J(Zs U Rg), with & flowing outward along
ON(B*).

e N(B") is an isolating block for A* = J(Zg U Ag), with & flowing inward along
ON(BY).

¢ Inclusion induces a type preserving bijection between dynamic torus piece components

of ¢(M — (N(B*) U N(B"))) and pA torus pieces of ®.
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Here are our main theorems about pA flows:

Theorem 3.3.1 (pA flows yield very full laminations). If & is a pA flow on a com-
pact, oriented 3-manifold M with torus boundaries, then the isolated invariant sets A® =
J(ITsURs) and A* = J(Zs U Ag) are very full laminations; these are called the stable and
unstable laminations of .  Inclusion induces natural, type preserving 1-1 correspondences
between the following sets:

e pA torus pieces of ¢
o Components of C(M — A®)

o Components of €(M — A")

Remark. The pA torus pieces of & are precisely the compact components of €(M — (A* U
A*)). What are the remaining components? They are all noncompact dynamic manifolds
of the form (rectangle) xR, and there are infinitely many of them. Each of these may be
thought of as a “homoclinic connection” between pA torus pieces. Each pinched tetrahedron
component of &(M — (N(B*) U N(B"))) is contained in a (rectangle)xR component of
¢(M — (A® U A%)), and each (rectangle)xR contains at most one pinched tetrahedron.
There are infinitely many (rectangle) xR components which are entirely contained in N(7)
and hence contain no pinched tetrahedron.

Theorem 3.3.2 (pA flows and dynamic pairs). Let M be a compact, oriented
3-manifold with torus boundaries.

1. Fvery pA flow on M 1is carried by some dynamic pair in M.
II. Every dynamic pair carries some pA flow.

Moreover, if ® is a pA flow with stable and unstable laminations A, A*, and if ® is carried
by a dynamic pair B®, B*, then there are natural, 1-1 type preserving correspondences
between the components of €(M — A®), the components of €(M — A*), and the dynamic
torus piece components of ¢(M — (B* U BY)).

Remark. The noncompact components of €(P — (A® U A*)), which according to the above
remark are of the form (rectangle) xR, may be enumerated in terms of the dynamic train
track 7 = B* N B as follows: they are in 1-1 correspondence with finite train paths of
that start at a converging switch and end at a diverging switch.

These theorems will be proved over the next several subsections.
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Remark. For application to theorem C of the introduction, statement I of theorem 3.3.2—
that every pA flow is carried by some dynamic pair—is irrelevant, because theorem C will
be proved by first constructing a dynamic pair and then using statement Il to construct
a pA flow carried by that dynamic pair. Nevertheless a detailed proof of statement I is
included, partly for sake of completeness, but more to aid understanding; it wasn’t until
I wrote out the proof of 3.3.2 I, in particular step 4 of lemma 3.3.5, when I realized that
transverse bigons of 7 must be ruled out.

3.3.1 One-dimensional hyperbolic sets yield template pairs

We start by recalling Williams’ construction of template pairs:

Proposition 3.3.3. Let J be an isolated, 1-dimensional hyperbolic invariant set of a flow
® on a compact, oriented 3-manifold M. There exists an isolating block N for J, and a
template pair By, By, in N, with rectangle collapsing map q: N — 7 = B3, N By, such that
® | N is transverse to the rectangle fibers, crossing them in the positive direction.

When this proposition is satisfied we say that the template pair B3;, By, carries J.

The general construction of templates for one-dimensional isolated hyperbolic invariant
sets in 3-manifolds was first described by Birman and Williams [BW83]. A detailed account
of this construction is given in [GHS96] § 2.2.1. Proposition 3.3.3 is a mild variation of
these results. First we show how 3.3.3 follows from § 2.2.1 of [GHS96], with a few minor
comments. Then we will give a fuller sketch of a proof of 3.3.3.

Deriving proposition 3.3.3 from § 2.2.1 of [GHS96]. The definition of templates
given in [GHS96] does not exactly match our branched surfaces B}, By,. First, the behavior
of the vector field along 0 By, and 8 B3, is slightly different, but this part of the conclusion is
easily massaged. Second, the construction of [GHS96] requires that [ be chain connected,
i.e. transitive, and the conclusion says that the vector field on B}, generates a transitive
forward semiflow; however the construction of B}, B} goes through without assuming
transitivity of J, only that J is isolated (see next paragraph), yielding a template pair
without any transitivity property. &

Remark. We say that J is transitive if there exists a dense orbit. We say that 7 is transitive
if there exists a directed path from any 2 € 7 to any y € 7; this is also called strong
connectivity. Transitivity of J is equivalent to transitivity of 7. These conditions imply
that there is a transitive forward semiflow on Bj;, and a transitive backward semiflow
on B3, although these semiflows cannot be generated by a single vector field which is
simultaneously tangent to By, and By;.

A sketch of another proof of 3.3.3. This proof uses the same Markov partition ideas
used in [GHS96].
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Bowen proved in [Bow73] that every transitive hyperbolic invariant set has a “Markov
family of local sections”. Transitivity is, however, unnecessary for this proof—as observed
by Shub ([Shu87], commentary on p. 145), all that is needed is for J to have a “local
product structure”, and this is guaranteed by the fact that J is an isolated hyperbolic
invariant set.

Using 1-dimensionality of J as in [Bow72], the elements of the Markov family may be
taken to be the intersections with J of a finite set M of smoothly embedded rectangles
I* x I* — M, where I* I" are diffeomorphic copies of [0,1], d(I* x I*) N T = 0, and
JNI*xI*)=C" x C*® where C* C int(I*),C" C int(I") are totally disconnected. There
is a partially defined first return map f: UM — |JM, whose domain is a union of s-
subrectangles of | J M and whose union is a union of u-subrectangles, so that f maps each
s-subrectangle diffeomorphically to a u-subrectangle. This is similar to the concept of a
“Markov cell decomposition” used by Farrell and Jones [FJ93].

With a certain amount of careful work, one can arrange moreover that M has proper
overlaps, which means the following: for each R = I* x I’ € M, the components of
R N Domain( f) are proper s-subrectangles, i.e. each component has the form I’ x I* where
I' C int(I") is a compact interval; similarly, the components of R N Image(f) are proper
u-subrectangles of R. By adding extra rectangles we may assume that for each R, R’ € M
there is at most one component of f(R)N R’; it follows that there is at most one component
of RN f~1(R).

Associated to M is a directed graph I', the transition digraph, with a vertex Vg for each
R € M, and a directed edge R — R’ whenever f(R)N R’ # 0. By adding extra rectangles,
we may assume that M is generic, which means that each vertex of I' has valence 2 or 3,
and no edge connects two vertices of valence 3. For each directed edge R — R’ choose a
flow segment prps going from R to R’ with interior disjoint from [J M. The path prp is
well-defined up to an isotopy keeping the endpoints in R, R’ respectively. The digraph T
may be embedded in M, taking the vertex Vg to a point of R, and the edge R — R’ to an
embedded path connecting Vz to Vj;, and staying in a neighborhood of R U R’ U prp.

The image of I' may be smoothed, to give a train track 7 (see figure 3.5). Perturb
T so that each diverging switch Vr moves to a point just above R, and each converging
switch Vg moves to a point just below R. The components of 7 — |J M are of three types:
a transitional component which is an oriented interval; a diverging component which is a
regular neighborhood of a diverging switch; and a converging component which is a regular
neighborhood of a converging switch.

Associated to each component of 7 — JM we may embed the appropriate piece in
M, a diverging piece, a converging piece, or a transitional piece. For example, consider a
transitional component of 7 — |J M corresponding to an edge R — R’ where R has only
one outgoing edge and R’ has only one incoming edge. From the overlap condition on
M, it follows that there is a flow box H = [-1,1] x [-1,1] x [0,1] — M intersecting M
in R=1[-1,1]x[-14+¢€¢1—¢ x0and R = [-1+¢1—¢ x[-1,1] x 1. Now embed
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domain(f) —/i

Figure 3.5: Associated to each vertex Vi with two outgoing edges R — R1, R — R, the
train track 7 has a diverging switch located just above R.

a transitional piece in M, using the defining formula for P; in the coordinate system H.
Similarly, for each diverging component of 7 — |J M we may embed a diverging piece, and
for each converging component we may embed a converging piece. The union of these pieces
defines the required isolating block with template pairs, finishing the sketch of the proof of
proposition 3.3.3. &

3.3.2 Local boundary laminations

We study some features of isolated hyperbolic invariant sets: local boundary laminations.
In the course of this study we will also learn about the boundary train tracks of a template
pair.

Let J be a 1-dimensional isolated hyperbolic invariant set of a flow ¥. Choose an
isolating block N for J. Let W} , W’ _be the local stable and unstable laminations of J
with respect to N. Define the local stable boundary lamination of J with respect to N to
be the 1-dimensional lamination A{ , = OW ; this is a lamination in the surface R_N.
The local unstable boundary lamination is A} . = OW[*_, a lamination in the surface R N.
Since W , Wi _ are well-defined independent of N, the same is true of A, A{ .

A compact 1-dimensional lamination A is said to be finite depth if for each noncompact
half-leaf £ of X there exists a closed leaf 4 such that for each sequence z; € £ diverging to

the end of £, each limit point of (2;) in A is in .

Proposition 3.3.4. Given a I-dimensional compact hyperbolic invariant set J of a flow
in an oriented 3-manifold, the boundary laminations A} = OW} and X} = OW}, are
finite depth laminations with only finitely many compact leaves. Moreover, the compact
leaves of Aj . are in 1-1 correspondence with the stable boundary periodic orbits of J, and
the compact leaves of A}, are in 1-1 correspondence with the unstable boundary periodic

orbits.

Proof. The “moreover” clause is an easy consequence of the definitions.
By proposition 3.3.3 we may assume that N is an isolating block for J supporting a
template pair By, By,. Let ¢: N — 7 = B}, N By, be the rectangle fiber colapsing map.
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Let 7° = OB}, a train track in R_N carrying A; .. We may regard R_N as an I-fibered

loc”
neighborhood of 7¢, such that Aj, . is transverse to the I-fibers. Similarly, the train track

™ = 0By C R4N carries A}’ , and R4 N is an I-fibered neighborhood of 7% such that A
is transverse to the I-fibers.

There are immersions «°: 7° — 7, k*: 7™ — 7 which are homotopic to ¢ ‘ T, q ‘ T
respectively. By pulling back the orientation on 7 we get singular orientations on 7%, 7%,
whose singularities are the points where 7%, 7" are tangent to rectangle fibers of N. Each
orientation singularity z of 7" is an orientation source, and each orientation singularity = of
7% is an orientation sink. Each switch of 7 is diverging, and each switch of 7° is converging.
The train track 7" is therefore an unstable train track, and 7° is a stable train track. Note
that under k%, each source of 7" goes to a diverging switch of 7 and each converging switch
of ™™ goes to a converging switch of 7; similar comments apply to 7°.

We prove now that A* is finite depth. Any half leaf of A" determines a train path in 7,
a smooth path f: [0,00) — 7% which passes over switches infinitely many times. Consider
an arbitrary train path f: [0, 00) — 7. By lemma 2.5.6, f passes over the sources of 7" at
most once. We may therefore truncate f so that it does not pass over a source, and so there
is an orientation on [0, 00) such that f preserves orientation. By compactness of 7" there
exist s < t € [0,00) such that f(s) = f(t), and we obtain an oriented, immersed loop in
T". For any oriented immersed loop in 7", if it is not a covering map of an embedded loop
in 7 then the image contains a diverging switch of 7", a contradiction; therefore, every
oriented immersed loop in 7™ covers an embedded loop. Thus, f eventually enters a circle
¢ of 7¥. Since there are no diverging switches, once f enters ¢ it can never leave.

If f comes from a half-leaf £ of A*, and if f eventually enters the circle ¢ of 7, it follows
that the accumulation set of £ is a compact sublamination of A* carried by ¢. Let 7. be
the maximal compact sublamination of A* carried by ¢. Since " fully carries A" it follows
that 7. # 0.

It remains to show that 7. is a single compact leaf of A*. From the construction of
template pairs, the rectangle collapsing map ¢: 7 — 7 takes c to aloop of 7. Corresponding
to this loop is a boundary periodic orbit v of J, and it now follows easily that 7. is a compact
leaf of A* corresponding to this orbit. &

3.3.3 Local boundary laminations in the pA case

The discussion in §3.3.2 applies to any isolated, 1-dimensional hyperbolic invariant set 7.
Now we specialize to the case J = J(Zg) where & is a pA flow. Applying proposition
3.3.3, let N be an isolating block for J and B}, B}, a template pair supported on N and
carrying J.

For each y € Ag,let U(y) = {z € M |z -[0, 00) limits on 7} be the attracting basin of
7, an open, connected subset of M. Note that U(y)N U(y’) = 0 for v # v’ € Ag. For each
v € Rg there is a similarly defined repelling basin U(y). From the context it should be clear
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whether U(y) represents an attracting basin or a repelling basin. Let Us = U,c 4, U(7)
and Ur = Uyer, U(7)-

Each attracting or repelling orbit v of ¢ has an isolating block which is a smooth solid
torus T'(y), which may be taken to lie in an arbitrarily small neighborhood of y. If v is
attracting then ® flows inward along 07 (), and if v is repelling then ® flows outward. Let
T4q=UT(y) for v € Ag, and let T = UT'(y) for v € Rg. At first, we choose the isolating
blocks T'(v) so small that they are disjoint from N. Having made these choices, we alter
them as follows.

Note that R_N C Ug and R4+ N C Uy4. Let 0Tg flow forward until it contains R_N,
and let 0T 4 flow backward until it contains Ry N. More precisely, there exists a smooth
function p: R_N — (—00,0) such that & - p(z) € 0T for all z € R_N. There also exists a
smooth function o: 0Tg — (0, 00) such that for each z € R_N we have o(z-p(z)) = —p(2).
Now replace Tz by the set

TrU |J 2-00,0(2)]

and make similar replacements for the components T'(y) of Tr. Having done this, we have
R_N C 0Tg. Make a similar replacement of T4, so R N C 0T 4.

We now have A% C 0T 4, and so there is a decomposition A* = UveAq> A} into open and
closed sublaminations A = A" N 8T (y). There is a similar decomposition 7 = |, ¢ 4, 7"
Note that 7} fully carries AY. There are similar decompositions A* = U’YER<1> AL, TP =
U’YE'R<1> T’i'

Recall that a Reeb lamination on a surface is any lamination contained in a subannulus
A of the surface, such that the closed leaves of the lamination are the components 1,2
of 0A, there is at least one leaf in int(A), each leaf in int(A) has one end spiralling into
71 and the other end spiralling into 5, and 71,72 are oriented isotopic with respect to the
spiralling orientations; these are the orientations defined by the property that when you go
around the curve in the direction of the spiralling orientation, the holonomy map of the
lamination is contracting. A Reeb train track in a surface is a stable or unstable train
track T contained in a subannulus A of the surface, such that the components 1,2 of 0 A
are the only loops carried by 7, 7 Nint(A) # 0, each bi-infinite train path in 7 has one end
spiralling around -; and the other end spiralling around 75, and v, y2 are oriented isotopic
with respect to the orientation restricted from 7.

Lemma 3.3.5 (Local boundary laminations in the pA case). Let ® be a pA flow on
a compact oriented 3-manifold M with torus boundaries; we adopt the motation in the
preceding discussion. Given v € Ag, let F be the unique u-face of a pA torus piece such
that ¥ C F. Let c1, ¢y be the boundary components of F. Let 1,72 be the two components
of R+ N NF, with the notation chosen so that v; is a closed curve in the component of F —v
bounded by c;. The lamination XY is a Reeb lamination in 9T, with closed leaves y1,72.
The curve v; with the spiralling orientation is oriented isotopic to c¢; with the dynamic



3.3. PA FLOWS, DYNAMIC PAIRS, AND VERY FULL LAMINATIONS 101

orientation. Also, the train track 7} 1s a Reeb train track in Ty. Gwen v € Rg, similar
statements hold for A%, and 7, except that the spiralling orientations are anti-isotopic to
the dynamic orientations.

Proof. The properties of A} and 7. are proved in a sequence of steps; proofs for A} and

T;’ are similar.

Step 1. The leaves v;, ¢ = 1,2, are the only closed leaves of AJ. This follows from the
fact that corner orbits of pA torus pieces are the only unstable boundary orbits of 7, by
definition of a pA flow.

The leaves v; are not isolated in AT. To see why, note that the stable manifold Wy (c;)
is divided into two halves by c;, one half lying in the s-face of T incident to ¢;; let V(¢;) be
the other half of W*(c;). If V(¢;) N J were empty, then ¢; would be a stable boundary orbit
on both sides, and hence we would have two pA torus pieces intersecting along ¢;. This
violates the definition of a pA flow, which requires distinct pA torus pieces to be disjoint.
Thus, V(c;) N J # 0. Note that in some neighborhood of v;, Ay intersected with that
neighborhood is isotopic through W to V(¢;) N J intersected with a neighborhood of ¢;,
and so +; is not isolated.

Step 2. All nearby leaves of A" spiral into 7;, and the spiralling orientation on v; agrees
with the dynamic orientation. This is true because the holonomy of V(¢;) N J around
¢; is contracting, when you go around ¢; in the direction of the flow, and the spiralling
orientation on ¢;, as a leaf of V(¢;) N J, agrees with the dynamic orientation; the same is
therefore true of 7; as a leaf of AJ.

Step 3. The only closed, oriented loops of 7 are the loops carrying 71, 72. This follows
because 7 fully carries A}, and since 7 is an unstable train track, every closed loop of 77/
carries a closed leaf of A7; step 3 is therefore a consequence of step 2.

Step 4. For each nonclosed leaf £ of A, each end of £ spirals into one of 4; or 72. To see
why, under the I-collapsing map Ry N — 7, the leaf £ maps to a bi-infinite path in 7.

~

Since 7.} is an unstable train track, it follows that each half of £ eventually winds around
a directed loop of 7}/. Applying step 3, each half of { eventually spirals around one of the

closed leaves 71, 7s.

Step 5. For each nonclosed leaf £ of A, one end of £ spirals into v; and the other spirals
into 7s.

Suppose that both ends of £ spiral into one closed leaf, say v;. We shall show that this
leads to a transverse bigon for J, contradicting the definition of a pA flow (see figure 3.6).
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In the torus 0T'(y), one component of €(0T(y) — £) is a monogon u, a disc with one
boundary point removed, so that the two ends of £ = Ju get closer and closer to each other
as you go out the end of . The interior of y might intersect AJ. There are, however, no
closed leaves of A% in int(y), because each closed leaf of A* lies on some u-face of some pA
torus piece. There is, therefore, an innermost leaf in y, bounding a submonogon of p whose
interior is disjoint from A*. We may therefore assume that int(p) N A" = 0.

Now let y’ be obtained from u by chopping off some neighborhood of the end, so u' is
a bigon with one boundary edge 3’ C £ and another short boundary edge o', far out the
end of u, with interior disjoint from A“. Note that yu’ is tranverse to .

The arc o' is contained in an arbitrarily small neighborhood of F. There exists an
embedded rectangle @ C N with one edge on &/, another edge on @ C V(¢;), and the
remaining two edges on W (J), such that @Q is transverse to &, and int(Q ) Uint(a)Uint(a’)
is disjoint from Wi (J). We may glue Q and p’ along o, and smooth along o, to obtain
a transverse bigon for 7, obtaining the contradiction that proves step 5.

Steps 1-5 together prove the lemma for A7 and 7. &

3.3.4 Proof: pA flows yield laminations

Let & be a pA flow on a manifold with torus boundaries M. We prove that A* = J(ZgUAs)
is a very full lamination; the proof for A* = J(Zg U Rg) is similar. Adopting the notation
of §3.3.3, there is an isolating block N for J = J(Zs) supporting a template pair Bj;, Bjy.
The local weak stable and unstable laminations W)} , W% of J are properly embedded
laminations in N, with local boundary laminations A* = 0W}? . and A* = W} . Applying
lemma 3.3.5, for each v € Asg, setting A = A* N 9T (y) we have:

¢ )} is a Reeb lamination in 0T (7).

e Each closed leaf of A7, equipped with its spiralling orientation, is oriented isotopic to
v with its dynamic orientation.

Note that A™ is equal to WX U ()\“ - [0, oo)) U Ag. To prove that A" is a lamination it
therefore suffices to prove that for each v € Ag, the set A} = ()\:-[0, oo)) U+ is a lamination
in the solid torus T'(y), with boundary A%.

We claim that the triple (T(’y), $ ‘ T(v), )\:) is described up to topological conjugacy
as follows. The torus T'(y) is the quotient of T = {(z,y,2) € R3 ‘ 2? + y? < €?*} under
the map F(e,y,z) = (ex,ey,z+ 1). The forward semiflow & ‘ T(7) is the quotient of the
forward semiflow on T generated by 0/0z. The surface 8T has an F-invariant foliation
by curves of intersection with planes parallel to the yz-coordinate plane. The lamination
A4y C 0T (v) is the quotient of an F-invariant sublamination of this foliation. This claim
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Figure 3.6: If }‘jr_ has a nonclosed leaf £ with both ends spiralling into 7;, then there is a
transverse bigon. The picture shows part of the leaf W (¢;) and also part of the leaf of
W (J) having £ as a boundary component. Also shown are several flow lines of ® in these
leaves. Recall that in any leaf of W _, orbits of ® converge exponentially in backwards
time.
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follows from the the above listed facts about A}, and the fact that T'(y) is an isolating
neighborhood of the attracting orbit 7.

It follows that AT is the quotient of an F-invariant sublamination of the foliation of T
by intersections with planes parallel to the yz-coordinate plane, thereby proving that AZ is
a lamination with boundary A%.

Since A" is tangent to ®, clearly there are no sphere leaves nor Reeb components (in
fact, one can use hyperbolicity of J to show that there are no torus leaves at all).

It remains to examine the components of €(M — A*), and to prove that they are in 1-1
type preserving correspondence with the pA torus pieces of ®. Let C be a component of
¢(M — A*), which by abuse of notation we may regard as an invariant set of ®.

For each z € (', we claim that one of the following happens:

e r is contained in some pA torus piece.

e 2 ¢ int(C) and the backwards orbit z - (—oc0, 0] accumulates on some repelling orbit

of ®.

e z € JC and, letting L be the component of 9C containing z, the backwards orbit
z - (—00,0] accumulates on some stable boundary periodic orbit of ® contained in L.

To prove the claim, suppose that « is not already contained in a pA torus piece. If z € int(C')
then @ - (—o0, 0] must accumulate on a repeller of ®, and the only possibility is a repelling
periodic orbit. If z is contained in the component L of §C, then the backwards orbit
z - (—o0,0] must eventually enter W}, and since L is a boundary leaf of A* it follows that
z - (—o0,0] accumulates on a stable boundary periodic orbit contained in L.

In the above claim, each of the three cases picks out a pA torus piece T, such that either
z € T, or ¢-(—00,0] accumulates on a repelling periodic orbit or a corner orbit of T;,. Since
T, may be regarded as a subset of €¢(M — A*), and since T}, is connected, it follows that
T, CC. Let To = Uyee T

We have in fact proved something more: for each z € C — T¢, the backward orbit
z - (—o0, 0] accumulates on some s-face F,, of T¢. To see what this implies, for each s-face
F of T¢ attach to T¢ a collar neighborhood N(F) = F x [0,1] on the outside of T¢, such
that F' = F x 0, the outer face of N(F) is the annulus F’ =~ F x 1, F’ is transverse to @,
and OF x [0,1] C 0C. Let N(T¢) be obtained from T¢ by attaching N (F') for each s-face
F of T¢. It now follows that C is obtained from N(T¢) by attaching F’ - [0,00) to each
F’. Since C is connected it follows that T¢ is connected, and so T¢ is a pA torus piece.
Moreover, C' is a u-pared torus piece of the same type as T¢.

3.3.5 Proof: pA flows yield dynamic pairs

Let ® be a pA flow on a torally bounded manifold M. Apply proposition 3.3.3 to produce
an isolating block N for J = J(Ig) supporting a template pair B}, By, C N carrying J.
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Applying lemma 3.3.5, 0 B} consists of one Reeb train track 7) contained in T(7) for each
attracting periodic orbit ¥ of ®. Let F, 51,72 be as in lemma 3.3.5. For convenience we

may assume that y1, 72 are the closed loops in 75.

We now construct B* by constructing an annulus with tongues in 7'(y) whose boundary
is 7/, using methods similar to the proof of proposition 2.5.7. Start with the annulus A C F
bounded by 71,7s. Choose an enumeration @1, ...,z, of the sources of 7. Starting with
z1, attach a tongue t; to A, whose boundary consists of the path py1 C 7, connecting z; to
~1, the path p12 connecting z; to 72, and a maw arc 8y in F' connecting 77 to v2. Continuing
inductively, attach a tongue t; to AUt; U- - -Utg_1, whose boundary consists of the path pg;
connecting zj to y; Up11 U---Upg—1,1, the path pys connecting zj to y2 U p12U---Upr_1,9,
and a maw arc ;. At each stage, the tangent plane along 3; may be chosen consistently
because of the fact that 7 is a Reeb train track. This completes the construction of B".

The neighborhood N(B") must be constructed to satisfy several conditions: N(B“)
is an I-fibered neighborhood of B*; N(B") is an isolating block for ®, with & pointing
inwards along ON(B"); N(r) C N(B") with R_N(r) C ON(B"). We construct N(B")
as follows. Fix an attracting orbit 4 of ®. The surface R4 N(7) intersects 0T'(y) in an I-
fibered neighborhood N (7). The components of €(8T(y)— N(7})) consist of one annulus,
and a collection of smooth discs Dy,..., D, equal in number to the sources of 7. Let
D;, be a smooth, properly embedded disc in T(y) with 0Dy = 0Dj, meeting R_N(7)
smoothly; this can be achieved by setting D} = {z - p(z) ‘ e € Dy} where p: Di, — [0, 00)
is an appropriately chosen smooth function whose zero set is dDp. We can now define
N(B") to be the manifold with boundary R_N(r) U D] U ---U D] containing N(7). It
is obvious that there is a deformation retraction from N(B*) N T(y) to B* N T(v) whose
restriction to N(7') is the I-fiber collaping map onto 7./; we leave the reader to construct
this deformation retraction to be an I-collapsing map on all of N(B*) N T'(7y).

The branched surface B?, and its I-fibered neighborhood N(B"), are similarly described.

The only task remaining is to verify that B*, B* is a dynamic pair, and for that the
only slightly nonobvious part is that the components of ¢(M — (B* U B*)) which are not
dynamic torus pieces are pinched tetrahedra.

By construction, the components of ¢(0N(B*) — N(B")) are discs and annuli, and
similarly for €(ON(B") — N(B?)). These discs occur in pairs, a disc D* C ¢(ON(B*) —
N(B")) corresponding to a disc D* C ¢(ON(B") — N(B*)) when 0D* = dD". Note that
for each @ € D* the flow line z - [0, 00) hits D* in a unique point; the union of these flow
segments forms a topological 3-ball b with boundary D*UD" (we have not used irreducibility
of M to construct this 3-ball).

This sets up a 1-1 correspondence between the components of ¢ (M — (N (B*)UN(B“)))
which are 3-balls and the components of €(M — (B* U B*)) which are not dynamic torus
pieces, and so the latter must all be topological 3-balls with interval dynamics. Any dynamic
manifold with this property, whose faces are s and u-faces, is a pinched tetrahedron.
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3.3.6 Proof: Dynamic pairs yield pA flows

Let B®, B* be a dynamic pair on a compact, oriented 3-manifold M with torus boundaries.
Let 7 = B* N B*. Choose I-fibered neighborhoods N(B®), N(B") in the smooth model so
that N = N(7) = N(B®) N N(B") is a sutured manifold neighborhood, the I-fibrations fit
together to give a rectangle fibration ¢: N — 7, and By, = NN B*, By = NN B"is a
template pair in N. We shall define a flow &, by “induction along skeleta”: first we define
® on N, then on ¢(N(B*) — N) and ¢(N(B*) — N), finally on ¢(M — (N(B*)U N(B“))).
In each case we investigate the behavior of ®, with an eye towards proving that ® is a pA
flow.

The flow on N. We construct a semiflow with N as an isolating block, whose maximal
invariant set J is a hyperbolic invariant set carried by the template pair B3;, By;.

Choose a finite set X C 7 so that the closure of each component N — ¢~ 1(X) is a
converging piece, diverging piece, or transitional piece P. Let R, = ¢ !(X), so R, is the
result of gluing some top rectangle to some bottom rectangle, among all the gluing rectangles
of the pieces P. Notice that in the standard model for each piece P, the bottom gluing
rectangles are wider in the u-direction than in the s-direction, and the top gluing rectangles
are wider in the s-direction than in the u-direction (see figure 3.3, and also the formulas
defining the stadard models P;, Py, P.). We may therefore choose each gluing map, from a
top rectangle to a bottom rectangle, to be a linear map which stretches the u-direction and
compresses the s-direction. On each of the standard models P, Py, P., take the semiflow
generated by 8/0z, and push these semiflows forward under the gluing to define a smooth
semiflow ® on N. Clearly N is an isolating block for ®, with maximal invariant set J C N,
and there is a hyperbolic splitting along 7 with stable direction parallel to the s-coordinate
and unstable direction parallel to the u-coordinate in each piece. Also, J is carried by the
template pair B3, By;.

Using symbolic dynamics arguments from [Bow72] or [Fra82], the invariant set J is
1-dimensional. For each rectangle R, = I X I, there is a product structure R, N J ~
C¥x C2, where C2 C int(I2), C¥ C int(IY¥) are compact and totally disconnected. We have
We (J)NR, = I¥ x C and W (J)N R, = CY x I. There is a 1-1 correspondence
between directed loops of 7 and periodic orbits of J, where a loop ¢ corresponds to an
orbit 7. so that the cyclic sequences of rectangles R, intersected by ¢ and +. are identical.

We study boundary periodic orbits of J. Let A* = 0W}% , a lamination in R4 N, and
let A* = OW?., C R_N. The surface R_N is an I-fibered neighborhood of the train
track 7° = 0 €(B* — 7), and 7° carries A®. Similarly R4 N is an I-fibered neighborhood of
™ =0 C¢(B* — 1), and 7" carries A"

Each component K of €(B* — 7) is an annulus with tongues, by proposition 2.5.7; let
Ak be the annulus. The component 73 = 0K of 7° is a stable train track, contained in
a component RE of R_N, and Tk carries A = A’ N RE. Since K is an annulus with
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tongues, it follows that 73 has two directed loops, and for each orientation sink s € 73 the
backwards directed paths on either side of s go to distinct loops in 7% . It follows that A%
has exactly two closed leaves, one carried by each directed loop in 7} ; every other orbit of
A% spirals into one loop on one end and the other loop on the other end. In particular, A%
is a connected topological space.

We can now identify the stable and unstable boundary periodic orbits of 7. For each
dynamic torus piece T of ¢(M — (B* U B*)), and for each corner circle ¢ of T, we may
identify ¢ with a directed loop in 7. Corresponding to ¢ is a periodic orbit v, C J. There
are components K? of €(B* — 1) and K of €(B" — 7) such that ¢ is identified with a
directed circle in the train track 0 K? and also in the train track 0 K}, and hence 7. is both
a stable and an unstable boundary orbit. We shall need even more structure than this,
in order eventually to see that +. is a corner orbit of a pA torus piece. Corresponding to
the pair T, c is a component T’ of &(M — (N(B*) U N(B"))) and a corner circle ¢’ of T".
Consider a point € X Nc. Let 2’ = R, N¢', a corner of R,,. Let H(CZ x CY¥) be the convex
hull of C2 x C¥, a subrectangle of R,. It follows that R, N ~. is the corner of H(C2 x C¥)
corresponding to z’.

The flow on ¢(N(B*) — N)) and ¢(N(B") — N)). Fix a component K of €(B" — 7).
Corresponding to K is a component Ng of ¢(N(B*) — N), which may be regarded as a
regular neighborhood of K. We know by proposition 2.5.7 that K is a stable annulus with
tongues, and so Nx is homeomorphic to a solid torus. Let A C K be the annulus, with
boundary components 71,7v2. Corresponding to 71,72 are two unstable boundary periodic
orbits ¢1,¢s C J. The dynamic orientations on cq, ¢, agree with the dynamic orientations
on 71,72, which agree with each other. In the natural manifold-with-corners structure on
Ny, the set Nx N N is a face. We have already constructed ® along this face, and it flows
into Ng (out of N). We may now extend & over the whole solid torus Ng, so that &
flows inward on 0Nk, and so that the solid torus Nx is an isolating neighborhood of an
attracting periodic orbit v. We are free to choose the dynamic orientation on ¥ at will;
choose this orientation so that 7 is oriented isotopic to 7y and 72, and hence also to ¢; and
Co.

Note that there is an invariant annulus F,, of ® with core v and with 0F, = ¢; U ¢s,
such that the component of F, containing c; is contained in the unstable manifold of ¢;.

The flow ® is extended over N(B®) — N in a similar manner.

The flow on ¢(M — (N(B*)U N(B“))). Given a component T of ¢(M — (B* U B*)), let
K1 be the corresponding component of €(M — (N(B*) U N(BY))).

Consider first the case that 7' is a pinched tetrahedron. Note that K7 is a topological
ball, with two disc faces meeting along their boundaries at a corner circle. The flow & is
already defined on 0Kr, entering K1 along one disc face and exiting along the other disc
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face, and externally tangent along the common boundary curve. Extend ® over K1 to have
interval dynamics.

Next consider the case that 7' is a torus piece. Corresponding to each face F' of T' there
is an attracting or repelling orbit 7 and an invariant annulus F’ = F,, whose boundary
components are stable and unstable boundary periodic orbits of J. The union of the
annuli F', over all faces F of T, bounds a set T’ which has the correct manifold-with-
corners structure for a pA torus piece of the same type as T'. The flow @ is already defined
on a neighborhood of 87", and it has the correct structure for the flow on a pA torus piece:
the corners are hyperbolic orbits and the faces contain, alternately, attracting and repelling
periodic orbits. We may now extend ® over all of T’ so that 7’ is a pA torus piece of the
correct type.

$ is a pA flow. Conditions 1-6 in the definition of a pA flow are obvious from the
construction and the properties of J already noted. Disjointness of pA torus pieces follows
from the fact that for each pA torus piece T' and each corner orbit ¥ of T, the component
of W .(v) —~ not lying in T has nonempty intersection with J, and similarly for W (v),
and so ¢ is not a corner orbit of any other pA torus piece.

To check the final condition 7, suppose by contradiction that there is a transverse bigon
D for 7.

First we reduce to the case where D C int(N(B*®) U N(B")). We know already that
0D C int(N). By perturbing D we may assume that D is transverse to the surface F =
O(N(B*)UN(B*)). Each component of F bounds a component of €(M —(N(B*)UN(BY))),
either a 3-ball or a dynamic torus piece. We may easily push D out of the 3-balls by isotoping
along flow lines.

Consider a dynamic torus piece component T of ¢(M — (N (B*) U N(B"))). Let T’ be
the corresponding pA torus piece of &, so T C int(7’). We shall show that D N T’ = 0,
and so D NT = (. We know that a collar neighborhood of 8D is properly embedded in
C(N — (W, UWE.)), with one edge in W, and the other edge in Wi . It follows that
if 6D N JT" # 0 then D C IT'. But D is transverse to ®, and each circle in 8T’ that
is transverse to ® must intersect 8T — N. Therefore if 3D N T’ # 0 then 6D ¢ N, a
contradiction. We have shown that 8D N 9T’ = 0, and so D N JT' is a union of circles in
int(D). But every circle in 3T’ that is transverse to ® must intersect the corner orbits of
T’, contradicting the fact that int(D) N J = 0. It follows that D N T’ = @, and therefore
DNT =0,soDNT =0.

Next we reduce to the case where D C int(N). By perturbing D we may assume that it
is transverse to ON. Each component of D N 9N is therefore a circle, and each such circle
must be contained in int(R_N) or int(R4N), since D C int(N(B*)U N(B*)). Consider a
component C of ¢(N(B*) — N). We know that C is a solid torus isolating neighborhood
of a repelling periodic orbit v. We also know that C' is a manifold with corners, C N N is a



3.4. CONSTRUCTING PSEUDO-ANOSOV FLOWS 109

face of C, and DNOC C int(C N N). Each component of DN C is properly embedded in C
and transverse to the flow on C; it follows that D Ny = 0, because any surface transverse
to ® and properly embedded in C which intersects v must contain a meridian circle of 0C,
but no meridian circle is contained in ¢' N N. Having shown that D Ny = 0, it follows
that we can push D out of C' by flowing along trajectories of ®. The portions of D which
were in C are pushed into N, and so the number of components of D N 9N are reduced.
Repeating this for each component of ¢(N(B*) — N) and of ¢(N(B*) — N), eventually we
have D C int(N).

To finish, we rule out the possibility of a transverse bigon in N by enumerating the
three possible types of components of ¢(N — (W U WE)).

The first type is the “corner orbit piece”, the quotient of the set [0,1] x [0,1]x R C R3
with respect to the map (z,y,z) — (z,y,z + 1), equipped with the flow (z,y,2) -t =
(e'z,e'y,z +t). The z-axis becomes a boundary periodic orbit of J. There is a 1-1
corresondence between corner orbit pieces, boundary periodic orbits of 7, and components
of the suture set o N which are identified with corner circles of dynamic torus pieces of
B®, B*.

The second type is the “acqueduct piece”. To describe it, let f: (—1,1) — R be a
function which is concave upward, approaching co at the endpoints, with f(0) = 0; the
function f(z) = sec(wz) — 1 will do. Take the set {(z,y,z) € R® ‘ lz, |y < 1,z <
f(z)+1,z> f(y) — 1}, with the semiflow generated by 0/0z. There is a countable infinity
of acqueduct pieces.

The third type is the “leaky acqueduct piece”, defined as {(z,y,z) € R3 ‘ lz|, |y| <
1,z < f(2) — 1,z > f(y) + 1}. There is a 1-1 correspondence between leaky acqueduct
pieces and components of o N that are not corner circles of dynamic torus pieces.

To prove that these are the only possible types, cut open each converging piece, diverging
piece, and transitional piece along the laminations, take completions, glue together to get
the components of €¢(N — (W, U W), and see what you get.

Obviously none of the three pieces contains a transverse bigon, proving condition 7.

3.4 Constructing pseudo-Anosov flows

Having dwelt among pA flows for the last few sections, now we return to pseudo-Anosov
flows by proving:

Theorem 3.4.1. Let M be a closed, oriented 3-manifold. Given a dynamic pair B*, B*
on M, we can construct a pseudo-Anosov flow ®.

Remark. The pseudo-Anosov flow ® constructed in this theorem is said to be carried by
the pair B®, B*. To say that “we can construct” ® means, at the very least, that we can
construct a Markov partition for ®, starting from B*, B* as the input data.
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Proof. Recall that in constructing a pA flow, we started with I-fibered neighborhoods of
B?, B* in the smooth model, whose intersection was a regular neighborhood N(7) with
rectangle fibration ¢: N(7) — 7. Then we constructed a semiflow on N(7), for which
N(1) was an isolating block, whose maximal invariant set was a 1-dimensional hyperbolic
invariant set. Finally, we extended this flow to the complement of N (7).

Here is a outline of the construction of a pseudo-Anosov flow ®; details are given below.

Start with I-fibered neighborhoods U(B?®),U(B") in the cusp model. Let U(r) =
U(B?*) N U(B"), so that the I-fibers of the factors fit together to give a rectangle fibration
of U(7). Construct a flow &* on U(r) for which U(7) is a hyperbolic invariant set. Unlike
in the construction of pA flows, ®* is tangent to the boundary. To be truthful, ®* is only a
forward semiflow near culverts of U(B") and a backward semiflow near culverts of U(B*),
but that will not disturb us. There are stable and unstable foliations W**, W** defined on
U(r). There is a decomposition 0U(7) = 0sU (1) U 04U (1), where each s-face is tangent to
W#** and transverse to W**, and vice versa for u-faces. The stable foliation W** therefore
induces a foliation of 0,U(7), whose leaves are just the trajectories of ®* (again, there is a
singularity near each culvert point); W** is similarly defined on 9sU(7).

Construct a “filling map” ©: U(r) — M, a surjective map homotopic to inclusion,
which is 1-1 on int(U (7)), which identifies faces of O;U(7) in pairs, and which identifies
faces of 0,,U(7) in pairs. The filling map folds each pair of faces together along cusps. The
filling map respects foliations of faces, from which it follows that ®*, W**, and W** induce
a flow & and (singular) foliations W*, W*" on M, the desired pseudo-Anosov flow and its
weak stable and unstable foliations. We think of ® as collapsing €(M — U(7)) onto some
finite 2-complex, which will be contained in the union of stable and unstable manifolds of
the pseudohyperbolic orbits of ®. The set U(7) comes naturally equipped with a Markov
partition, which induces a Markov partition of ®. In some sense, this construction is the
reversal of Ratner’s construction of Markov partitions [Rat73], which starts with a union
of suitable chosen portions of the stable and unstable foliations of a collection of periodic
orbits.

Now we turn to the details. Let U(B?®),U(B"),U(7) be as above. We wish to regard
these objects as manifolds-with-corners, allowing for new types of singularities. First recall
that a culvert edge is an “inverted cusp edge”, locally modelled on the set {(z,y, z) ‘ z <
0or z>0,|z| > f(z)} where f: [0,00) — [0,00) is a cusp function. Second we have a new
vertex type called an outlet, whose local model is obtained by taking the intersection of the
local model for a culvert edge with the set y > 0. For example, the endpoints of a culvert
arc are outlets. The manifolds U(B?), U(B") have a culvert circle for every maw circle
of B?, B* respectively. The manifold U(7) has a culvert arc for every switch of 7; more
precisely, there is a 1-1 correspondence between converging switches of 7 and culvert arcs of
U(r) which are subarcs of culvert circles of U(B"); similarly for diverging switches. There
is a rectangle fibration gi7: U(7) — 7 which takes each culvert arc to its corresponding
switch. There is a homeomorphism w: N(7) — U(7) with the following properties:
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e w preserves rectangle fibrations.
e w is isotopic to the inclusion map N(1) — M.

¢ w is smooth except over culverts; each arc of 0y N(7) or 05 N(7) on which a rectangle
fiber is tangent is “unsmoothed” by w, to give a culvert arc of U(1).

¢ There is a commutative diagram

U(r) 2 7
where the horizontal maps are rectangle fibrations.

Recall that R_N(7) is “parallel” to the u-direction and R N(7) is parallel to the s-
direction; we define 0,U(7) = w(R_N(7)) and 9sU(7) = w(R4+N(71)).

Let X = {z1,...,21} be a finite subset of 7 consisting of all switches and two points in
the interior of each branch of 7. The closures of components of 7 — X are called edges of 7.
We thus regard 7 as a directed graph with vertex set X. For each #; € X we have arectangle
R; = q7'(2;); let M = {R; | i = 1,...,k}. For each edge e = (z; — ;) of 7 we have
a set H, = cl(g;'(int(e))). A flow boz parameterization of H, is a manifold-with-corners
homeomorphism H, ~ I* x I* x [0, 1] such that

Bottom(H.) = H. N g5 (R;) ~ I* x I* x 0.

Top(H.) = H. Nq;'(R;) ~ I* x I'* x 1.

H.NoU(r)~ I* x 0I* x [0,1].
o H.NoyU(T)= 0I°* x I* x [0,1].
e For each # xy € I* x I, the restricted map @ x y X [0, 1] — e is orientation preserving.

Note that Bottom(H,) is an s-subrectangle of R; and Top(H.) is a u-subrectangle of R;.

Given a flow box parameterization of H. there is an induced semiflow (z,y,s) -t =
(z,y,s + t), and an induced first return map Bottom(H.) — Top(H.) taking (z,y,0) to
(z,y,1). Choosing a flow box parameterization for each H., the semiflows piece together
to give a semiflow on U(7) which is forward along each uu-culvert and backward along
each ss-culvert. We shall now impose specific flow box parameterizations, by applying the
Supereigenvalue lemma 3.1.1.

We claim that the digraph T has no circular sinks or sources. To see why, consider the
two train tracks 7°, 7% constructed in the last section, and the directed maps «*: 7° — 7,
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Figure 3.7: Each component of ¢(U(B*) — U(7)) is a cloven suu-maw piece, and each
component of €(U(B*) — U(7)) is a cloven uss-maw piece. If this example represents
an suu-maw piece, the front and back faces are labelled u, and the remaining faces are

labelled s.

k%: ™ — 7. If there is a circular sink ¢ of 7, then depending on whether ¢ is orientation
preserving or reversing in B*® (or, equivalently, B"), either ¢ or its double cover lifts to
a directed loop ¢ in 7. It follows that ¢ corresponds to a boundary periodic orbit v of
a pA flow carried by B*®, B*, and hence 7 is a corner orbit of some dynamic torus piece
component of ¢(M — (B* U B*)). However, the loop of T corresponding to a corner orbit
cannot be a sink of 7, a contradiction.

We may now apply lemma 3.1.1 and impose coordinates on each rectangle R;, making
R; a V; x W; rectangle. We may also choose flow box parameterizations of each H,, so that
the induced first return map |J M — |J M stretches the u-direction and compresses the
s-direction by a factor of at least A. Using these parameterizations we obtained the desired
hyperbolic flow on U(T).

Now we describe the filling map ©: U(7) — M, by describing a collapsing decomposition
of ¢(M — U(7)), and collapsing each decomposition element to a point. Let My = ¢(M —
(U(B*)U U(B™))), let M7 = ¢(U(B*) — U(r)), and let M}* = ¢(U(B™) — U(r)). First we
decompose My, then we decompose M7 and M7

Each component of My is a dynamic solid torus or pinched tetrahedron. The collapsing
decomposition of a dynamic solid torus of type (n, k) is a fibration by 2n-sided polygons.
The collapsing decomposition of a pinched tetrahedron is a rectangle fibration, with the ss
and uu-cusps as degenerate rectangle fibers.

Consider now M;. For each component K of €(B® — 7) there is a corresponding com-
ponent of M; denoted U(K); this is a 1-1 correspondence of components. Despite the
notation, U(K) is not a neighborhood of K; it is more like a “2-handle” corresponding
to the “2-stratum” K, in a stratification of M. Figure 3.7 together with the next lemma
shows how to visualize the manifold-with-corners U(K).
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Lemma 3.4.2. The manifold-with-corners U(K) is a cloven suu-maw piece, described as
follows. There exists a surface-with-corners F, a labelling of each edge of F' with the symbol
s oruu, and a map f: F X I — U(K), with the following properties:

o F is a topological annulus.
o One component of OF is a smooth circle labelled s.

o The other component of OF is a circle with 3k edges for some k > 1, labelled in order
as ..., s, s, uu, s, s, uu, ....

o For each uu-edge a of F and each ¢ € a, the map f collapses & x I to a single point;
otherwise, and f is otherwise 1-1. Also, f(o x I) is a cusp edge of U(K).

o Fach vertez v of F incident to an s-edge and a uu-edge is a corner, and f(v) is an

suu-gable of U(K).

o FEach vertex v of F incident to two s-edges is a culvert point, locally modelled on the
z, z-plane intersected with the local model for a culvert. Also, f(v x I) is a culvert

edge of U(K).
o For each s-edge B, f(B x I) is a face of U(K), identified with some s-face of My.
o Fy = f(F x0) and F; = f(F X 1) are faces of U(K), identified with u-faces of U(T).
Similarly, each component of €(U(B") — U(T)) is a cloven uss-maw piece.

Proof. This obviously follows from the fact that K is an annulus with tongues, the annulus
is a face of a solid torus component of ¢(M — (B® U B")), one side of the annulus has no
tongues, and the other side has at least one tongue. &

It follows from this description that if 3 is the s-circle of F then f(8xI)is identified with
the s-face of some dynamic solid torus component of M. Similarly, if 3, 3’ are adjacent s-
edges of F then f((BUB’) x I) is identified with the two s-faces of some pinched tetrahedron
component of M. Taking the union of U(K) with all such pinched tetrahedra we obtain a
maw piece, so we may regard U(K ) as obtained from a maw piece by using a meat cleaver
to remove pinched tetrahedra, and hence a “cloven maw piece”.

With f specified as in the lemma, we obtain an I-fibration of U(K) with fibers of the
form f(x x I) for each # € F. When 2 is in a uu-edge of F, f collapses X I to a single
point on a cusp edge of U(K); otherwise f is injective on « X I. We want to use this
I-fibration as the collapsing decomposition for U(K), but first we must alter it by isotopy
so that it respects some of the existing structure on My and on U(7).

First, note that one component of OU(K) N My is the face F = f(8 x I) where S
is the s-circle of F'. The collapsing decomposition of My induces an interval fibration of
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Figure 3.8: The flow on a u-face of a cloven suu-maw piece.
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this face, and we require that these intervals be the I-fibers of U(K) on F. Every other
component of QU (K )N My is a union of two s-faces of a pinched tetrahedron component of
My, whose rectangle fibers intersect these faces in intervals, and we similarly require that
these intervals be the I-fibers of U(K') on the s-faces.

Next, we claim that the I-fibration can be isotoped, relative to the union of s-faces and
uu-cusps, so that the map from Fy to F; induced by the I-fibration respects flow lines.
First, note that the two corner orbits F'N Fy, F'N F; are oriented isotopic through F', using
the dynamic orientation. Next, every other orbit in F; is attracted in backwards time to
the corner orbit, and in forward time it either ends at the uu-cusp, or it hits an outlet
where it bifurcates into two orbits following two su-edges, ending at two suu-gables (see
figure 3.8). From this description the claim follows easily.

This completes the description of the I-fibration on the cloven suu-maw piece U(K),
which we take to be the collapsing decomposition of U(K). The collapsing decomposition
on a uss-maw piece is constructed similarly.

Remark. An orbit preserving map Fy — F; which restricts to the identity on the uu-cusps
cannot, in general, be made smooth. A primary obstruction to smoothness is the fact that
the derivatives of the holonomy of the flow around the corner orbits, i.e. the Lyaponov
numbers of the corner orbits, may not be equal. But even if these numbers are equal, there
is a secondary obstruction, coming from the fact that the homeomorphism is prescribed to
be the identity on the uu-cusps. For example, let S' = R/Z, and consider the foliation on
St x [0,1] tangent to the vector field @ d/dz + d/dy. We leave it as an exercise to check
that every diffeomorphism of S! x [0,1] which respects this foliation restricts to a rigid
rotation on S! x 1. These observations indicate why it is hard to smooth a topological
pseudo-Anosov or Anosov flow.

Now collapse! Let ®: M — M be a quotient map from M to itself which is homo-
topic to the identity, whose nontrivial decomposition elements are the given collapsing
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decompositions in My, M7, and M7'. Because the collapsing respects orbits of ®* and their
orientations, we obtain a well-defined oriented 1-dimensional foliation ® of M. Assigning an
arbitrary continuous parameterization to leaves of ®, we make ® into a flow. The collapsed
image of each dynamic solid torus component of My is clearly a pseudohyperbolic orbit of
®. For each u-face of U(7), each flow line on that u-face is a component of intersection
of that u-face with a weak stable leaf of U(7); since the collapsing respects flow lines, it
follows that the weak stable foliation on U() induces a foliation W* of M which is singular
along the pseudohyperbolic orbits. Similarly, the weak unstable foliation on U(7) induces
a foliation W* of M which is singular along the pseudohyperbolic orbits. The flow boxes
on U(7) induce a family of flow boxes M in M. It is now straightforward to check that &
is a topological pseudo- Anosov flow, with weak stable and unstable foliations W?, W™, and
with Markov partition M. &

3.5 Almost transversality

In [Mos89] and [Mos91] I tried to find a surface S transverse to a pseudo-Anosov flow &,
with S in a given homology class «, assuming o has non-negative intersection number with
every periodic orbit of ®. David Gabai read these papers, and pestered me with questions:
“What about this example? What about that example?” 1 answered with impatience:
“This lemma says this; that lemma says that.” Finally he asked: “What about that other
example?” At which point I realized that other lemma said 1 = —1. In other words, there
was a sign error in [Mos89]. Correcting this error in [Mos90] led naturally to the concept
of surfaces which are “almost transverse” to pseudo-Anosov flows. The main theorem of
[Mos91] says that there is a surface representing a which is almost transverse to ®.

To say that a surface or foliation is almost transverse to a pseudo-Anosov flow ¢ means
that the pseudohyperbolic orbits of ® may be “blown up” in a certain manner, producing
a new flow # which is transverse to the surface or foliation. The main result of this
section, theorem 3.5.4, says that if B?, B* is a dynamic pair, if B is a branched surface
hierarchy, and if B®, B* is “vertical” with respect to B, then a pseudo-Anosov flow carried
by B*, B* is almost transverse to a finite depth foliation carried by B.

Almost transversality is a delicate property, and so we offer a still useful but much
simpler theorem for pA flows, proposition 3.5.3, which says that if B®, B* is vertical with
respect to B, and if A®, A" are the stable and unstable laminations of a pA flow carried by
B?*,B*, then A®, A" are vertical with respect to F; in particular, they are transverse to F.

In order to state theorem 3.5.4, our main tasks are: define dynamic blowups of pseu-
dohyperbolic orbits and almost transversality (§3.5.1); and define vertical (§3.5.2). We
shall also state proposition 3.5.5 which gives a “vertical” version of proposition 2.6.2: if
an unstable dynamic branched surface B" satisfying the hypotheses of proposition 2.6.2 is
vertical with respect to a branched surface hierarchy B, then one can constuct a dynamic
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Figure 3.9: If (n,k) = (3,0) then there are three nontrivial dynamic blowups, all of type
2 — 2. If (n, k) = (4,0) then: there are four blowups of type 2 — 3 and four of type 3 — 2;
there are eight blowups of type 2 — 2 — 2; there are four blowups of type 2 — 2 « 2;
and there are four blowups of type 2 «— 2 — 2. Only the latter eight are invariant under
rotation through angle 7, and so there are eight nontrivial dynamic blowups of a fixed point
of type (4, 2).

pair which is vertical with respect to B.

3.5.1 Dynamic blowups of pseudohyperbolic orbits.

Let f: C — C be the standard model for a pseudohyperbolic fixed point of type (n, k).
Let T = {(r,0) | 0 = kx/n, k = 0,...,2n — 1} C C be the union of stable and unstable
prongs of f. Each unstable prong 0 = 2z7r/n is oriented away from O, and each stable
prong 6 = (2 + 1)m/n is oriented towards O. The orientation on a prong describes the
direction that points move under the first return map of f to that prong. Let D be a
small disc around ©. Let T# be any oriented tree that agrees with T’ outside D, such that
T# is invariant under the rotation R, /n» and such that each vertex v of T# is “pseudo-
hyperbolic”, meaning that as you go around the edges incident to v, the orientations of the
edges of T# alternate pointing toward and away from v. There are finitely many ways to
choose T#, up to compactly supported isotopy.

In order to discuss examples we define the type of T# to be a labelled, oriented planar
tree obtained from T# by labelling a vertex with the integer n if it has 2n incident edges,
and then throwing away the noncompact edges. When (n,k) = (3,0),(4,0),(4,2) the
possibilities are enumerated in figure 3.9. Note that if n, k are relatively prime then there
are no nontrivial ways to dynamically blow up a pseudohyperbolic fixed point of type (n, k).
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Figure 3.10: Some dynamic blowups of a pseudohyperbolic fixed point of type (5,0).

Given the above data, there is a CY perturbation f# of f, and a continuous map
h: C — C such that:

o f# leaves T# invariant.

o For each edge E of T#, the first return map of f# to E acts as a translation on
int(£), moving points in the direction of the orientation on E.

e h collapses the finite edges of T# to the point @, and h is otherwise 1-1.
e his a semiconjugacy from f# to f,i.e. foh = ho f#.
e h is close to the identity map in the sup norm, and h equals the identity on C — D.

We say that f# is obtained from f by dynamically blowing up the pseudohyperbolic fixed
point O. FEach choice of T# determines a unique f#, up to conjugation by compactly
supported isotopy. There are therefore finitely many ways to dynamically blow up a pseu-
dohyperbolic fixed point, up to conjugation by compactly supported isotopy. The number
of ways depends on the type of the pseudohyperbolic fixed point . An example showing
some invariant lines of f# is given in figure 3.10.

Next we use suspension to define dynamic blowups of pseudohyperbolic orbits of flows.

Given a pseudo-Anosov flow ® and a pseudohyperbolic orbit v of type (n, k), a dynamic
blowup of y is defined as follows. Choose a Poincaré section for -y, that is, a disc D transverse
to ®, and a subdisc D’ C D, such that y N D’ = {z} C int(D’), and there is a continuous
first return map ¢g: D’ — D, i.e. there is a continuous map ¢: D’ — (0,00) such that
®(z,t(z))=g(e)if e € D', and ®(z,s) ¢ Difz € D', 0 < s < t(z). Let f: C — C be the
standard model for a pseudohyperbolic fixed point of type (n, k). There is an embedding
s: (D,z) — (C,0) which is a local semiconjugacy from g to f,ie. fos =sog on D"
Now define a dynamic blowup of v by altering ® near v as follows. First, replace f by a
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dynamic blowup f#, supported on a tiny subdisc of s(D’). Next, replace g by the dynamic
blowup s~ o f# o s. Finally, alter & so that the first return map g: D’ — D is replaced by
g#: D’ — D; this has the effect of altering the generating vector field inside the “mapping
torus” T, = {®(z,s) | « € D’,0 < s < t(z)}, and leaving the generating vector field
unaltered outside of Tj,.

Dynamic blowups of distinct pseudohyperbolic orbits of ® can be performed indepen-
dently and simultaneously, by choosing sufficiently small Poincaré sections for the pseudo-
hyperbolic orbits so that the mapping tori are pairwise disjoint. We say that the resulting
flow &# is a dynamic blowup of ®; this terminology allows for the possibility that no orbits
are blown up in which case # is isotopic to ®. There is a map H: M — M homotopic to
the identity, such that H is a semiconjugacy from &# to &, i.e. H takes orbits of $# to or-
bits of ® preserving orientation, although we do not require H to preserve parameterization.
The map H is 1-1 except over the pseudohyperbolic orbits of ®. For each pseudohyperbolic
orbit v, if H is not 1-1 over v then H~!(y) is a connected union of invariant annuli of &%,
glued together along their boundary components, forming an invariant ennulus complez
associated to 4. This annulus complex may be viewed as the mapping torus of the finite
edges of T# under the map f#.

Up to isotopy and reparameterization, there are finitely many ways to dynamically blow
up a pseudo-Anosov flow ®, because there are finitely many choices for a dynamic blowup
of each pseudohyperbolic orbit of .

Given a pseudo-Anosov flow ® and a foliation or lamination F, we say that & is almost
transverse to F if there exists a flow &%, obtained from & by dynamically blowing up
certain pseudohyperbolic orbits of ®, such that $# is transverse to F. In general the
existential quantifier cannot be replaced by a universal quantifier: almost transversality
does not mean that F is transverse to every dynamic blowup of .

3.5.2 Vertical dynamic branched surfaces

Let M be a compact, oriented 3-manifold with torus boundaries. We define what it means
for a dynamic branched surface or dynamic pair to be “vertical” with respect to a trans-
versely oriented branched surface 3, or to a foliation F carried by .

Let 3 be a transversely oriented branched surface in M, such that P(8) = ¢(M —p)isa
product sutured manifold in the cusp model. If P.(3) denotes the corner model then there
is a sutured manifold homeomorphism P.(3) ~ F' x [0, 1]; now collapse each component of
OF x [0,1] to get back to the cusp model, and push forward the tangent planes of each
surface F xt to give a C° tangent plane bundle 73 on M which is an extension of the tangent
plane bundle of #. The transverse orientation on 3 extends to a transverse orientation on
T8.

A C° vector field V on M is vertical with respect to 3 if it is transverse to 75 and the
direction of V' agrees with the transverse orientation on 7g. Verticality between V and a
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transversely oriented foliation F is similarly defined. If F is carried by 3, we may isotop
F so that its tangent plane bundle is arbitrarily close to 75 in the C° topology, and so we
have:

Proposition 3.5.1. If F is a transversely oriented foliation carried by a transversely ori-
ented branched surface 8, and if the vector field V is vertical with respect to B, then V is
vertical with respect to F. &

Now consider a dynamic branched surface (B, V) in M. Suppose that V is vertical with
respect to [, so in particular B and § are transverse. A peripheral annulus in €(M — B)
carried by B is a smoothly embedded annulus A C 8 such that A is properly embedded in
¢(M — B) and A is isotopic rel boundary in €(M — B) to an annulus contained in a face
of ¢(M - B).

The dynamic branched surface (B, V) is said to be wvertical with respect to § if V is
vertical with respect to @ and there is no annulus carried by @ which is peripheral in
¢(M — B). A dynamic pair B*, B* in M, with dynamic vector field V, is said to be vertical
with respect to g if (B®,V) and (B*,V) are both vertical with respect to 5. Similarly,
B?, B* is vertical with respect to a transversely oriented foliation F if V is vertical with
respect to F and no smoothly embedded annulus in F is peripheral in a €(M — B®) or
¢(M — B*). Finally, given a pA flow & with stable and unstable laminations A®, A¥, we say
that A®, A* are vertical with respect to F if ¢ ‘ A% @ ‘ A" are vertical with respect to F,
and there are no annuli in leaves of F which are peripheral in ¢(M — A®) or in (M — A").

Proposition 3.5.2. If a dynamic pair B?, B* is vertical with respect to a transversely
oriented branched surface 3, then it is also vertical with respect to any foliation F carried

by 3.

Proof. If there is an annulus A; in a leaf of F which is peripheral in €(M — B?®) or
¢(M — B"), then there is another such annulus A, which is contained in an I-bundle
neighborhood N (f); this follows from the fact that F | ¢(M — N(8)) is a product foliation.
Under the I-fiber collapsing map N(8) — 8 the annulus A, goes to an annulus A3 smoothly
carried by 8 which is peripheral in ¢(M — B*) or ¢(M — B*). %

Proposition 3.5.3. Let F be a transversely oriented foliation of M carried by a trans-
versely oriented branched surface 3. Let ® be a pA flow carried by a dynamic pair B®, B*,
with stable and unstable laminations A*, A*. If the pair B®, B* is vertical with respect to
B, then A®, A" are both vertical with respect to F.

Proof. Suppose there is an annulus A; in a leaf of F which is peripheral in, say, €¢(M —A®).
Let N(B?®) be an I-fibered neighborhoods with A* C N(B?®) transverse to I-fibers. Now
take the annulus A; N ¢(M — N(B?)), and collape I-fibers, to get an annulus in a leaf of F
which is peripheral in €(M — B*). Applying the previous proposition finishes the proof. ¢
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Now we turn to the main result of this section:

Theorem 3.5.4 (Almost transversality theorem). Let M be a closed, oriented
3-manifold, F a Reebless, transversely oriented foliation of M transverse to M, and 8 a
transversely oriented branched surface carrying F. If B*, B* is a dynamic pair in M which
1s vertical with respect to 3, then there is a pseudo-Anosov flow ® carried by B*, B* which
s almost transverse to F.

Remark. For each pseudohyperbolic orbit v of ®, the proof shows that the structure of F
picks out one dynamic blowup of ¥ from among the finitely many choices. More precisely,
if T is the dynamic solid torus component of (M — (B® U B")) corresponding to 7, then
Brittenham’s theorem on laminated solid tori [Bri93] will be applied to show that F ‘ T
satisfies one of two possibilities:

o« F ‘ T is a foliation of T' by meridian discs.

o Letting F ‘c T be the sublamination of compact leaves of F ‘ T, each leaf of F ‘c T
is an annulus disjoint from the corners of T'.

In the first case, no dynamic blowup of ¥ is needed. In the second case, the structure of
the transversely oriented foliation F ‘c T determines a dynamic blowup of 7.

Remark. The proof of this theorem is valid without assuming that B is a branched surface
hierarchy, or that F has finite depth.

Remark. Proposition 3.5.3 cannot be strengthened to say that a pA flow carried by B*, B*
is transverse to the foliation F, because of almost transversality. On the other hand, the
proof of theorem 3.5.4 suggests a way to alter a pA flow to make it transverse to F, by
somehow generalizing the notion of almost transversality to pA flows. We will not pursue
this issue, preferring to focus only on pseudo-Anosov flows.

Recall that proposition 2.6.2 tells how to construct a dynamic pair starting from an
unstable dynamic branched surface. To complement proposition 3.5.3 and theorem 3.5.4
we have a “vertical” version of proposition 2.6.2:

Proposition 3.5.5. Let M be a compact, oriented, torally bounded 3-manifold. Let 3 be a
transversely oriented branched surface in M, transverse to OM , and suppose that  carries
a taut, transversely oriented foliation F of M. Suppose that (B,V,T) is an unstable Markov
branched surface in M satisfying the hypotheses of proposition 2.6.2, such that (B,V) is
vertical with respect to B, and each element of the Markov section T is tangent to 3. Then
we may perform the construction of proposition 2.6.2 so as to produce a dynamic pair
B?, B* in M which is vertical with respect to a branched surface carrying F and obtained
by splitting (3.

The proofs of theorem 3.5.4 and proposition 3.5.5 both require a description of F re-
stricted to cusped torus pieces, which is contained in §3.5.3. The reader who is interested
only in proposition 3.5.5 should read §3.5.3 and then go to §3.7.
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3.5.3 Foliations of cusped torus pieces

Fix a taut, transversely oriented foliation F, and fix a very full dynamic branched surface
B whose dynamic vector field V is circular on each torus piece of B, such that (B,V) is
vertical with respect to F. By perturbing B we may assume that B is in general position
with respect to F, in particular T B is transverse to F except at isolated local minima
or maxima. Throughout this section we assume that B is unstable, the stable case being
handled similarly.

Under these conditions we describe the restriction of F to ¢(M — B). We will focus
our efforts on a solid torus component T of ¢(M — B), that being the only case needed for
theorem 3.5.4.

We first describe F ‘ T on a certain maw piece neighborhood of each cusp of T' (lemma
3.5.6), and then on the rest of T' (lemma 3.5.7). Consider a properly embedded annulus
A C T and a component v of €(T — A) such that v is a maw piece with cusp circle ¢ and
opposite face A. Let Fy, F; be the other two faces of v. An I-fibration of v is a decomposition
of v into ordinary I-fibers and singular I-fibers with the following properties: there exists
an annulus F' and a quotient map ¢: v — F such that ¢ ‘ F;: F; —» F is a homeomorphism
for ¢ = 0,1, each point preimage of ¢ is an I-fiber, each singular I-fiber is a point on ¢, and
each ordinary I-fiber is an arc connecting a point of Fy—c to a point of F; —c. The foliation
F ‘ v is I-parallel if there exists an [-fibration of v such that each I-fiber is contained in a

leaf of F ‘ v.

Lemma 3.5.6. For each cusp circle ¢ of T there exists a properly embedded annulus A C T
and a component v of €(T — A) such that:

1. v is a maw piece with cusp curve ¢ and opposite face A.
2. F ‘ v is I-parallel.

3. For every annulus leaf of F ‘ v, the transverse orientation on that leaf points towards
¢ and away from A.

4. F is transverse to A.

Moreover, v is mazimal with respect to the above properties, in the following sense: if A',
V' also satisfy 1-4, then every compact leaf of F ‘ T contained in v U V' is contained in v.

Remark. 1t follows that F ‘ A is a product foliation whose leaves are arcs connecting
opposite components of JA.

Remark. It follows from 3 that F ‘ v has no (Reeb annulus)xI sublamination, for the two
boundary leaves of such a sublamination would point in opposite directions and so one of
them would point away from ¢ and towards A.
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of V. The singular foliation F ‘ H is therefore transverse to 0H. By the Euler-Poincaré
index formula the foliation F ‘ H must contain an equal number of saddle and center
singularities. Each center singularity is an external center singularity of F ‘ T lying on c,
near which there exists a cusp disc. This proves the claim.

Now we show that there exist A, v satisfying conditions 1-3, and either A satisfies
condition 4 or the following alternative condition:

4/, Aisaleafof]-"‘T.

Case 1: There are no singularities on ¢. Clearly there exist A, v contained in an
arbitrary neighborhood of ¢ satisfying conditions 1-4.

Case 2: ¢ contains singularities. Given a (pinched or unpinched) cusp disc E, let t(E)
be the closure of the simply connected component of 7' — E. Define a partial ordering of
cusp discs by E < E’ if E C t(E’). For each cusp disc F there exists a maximal cusp disc
E’ such that F < E’. Each maximal cusp disc contains a saddle singularity, and so there
is a finite number of maximal cusp discs Fy, ..., E} intersecting ¢. No two of Ey,..., E}
are comparable with respect to the relation <.

Case 2a: The discs Eq,..., Ep are “cyclically connected” which means that F; and
E;;1 have a common corner at a saddle singularity for all ¢ € Z/k (this case also occurs
when k = 1 and E; is a pinched cusp disc). In the leaf of F containing Eq U --- U Ey, a
regular neighborhood of Fy U ---U Ej is an annulus. This annulus has a core curve of the
form p = p; % -+ - % pp, where p; C E; connects the two corners of E;. If the holonomy of
F | T around p on the outside of ¢(E1) U --- U t(E}) is nontrivial, then one can find the
desired A, v satisfying conditions 1-4. If the holonomy is trivial then one can find A, v
satisfying conditions 1-3 and 4'.

Case 2b: Ifthe discs Fq, ..., E} are not cyclically connected, one can find A contained
in an arbitrary neighborhood of ¢ U (¢(E1) U - - - Ut(E})) and satisfying 1-4.

Having constructed A satisfying 1-3 and either 4 or 4’, we construct another annulus
satisfying 1-4 and the maximality requirement, as follows. Consider the set of annulus
leaves A’ of F ‘ T such that A’, v/ satisfy 1-3 and 4’ for some v’; the set of such leaves
forms a compact sublamination A of F ‘ T. If A = 0 then any A satisfying 1-4 also satisfies
maximality. If A # () then A contains a leaf A’ bounding a maw piece v’ such that A C v/;
the leaf A’ is the “farthest” leaf from ¢ in A\. The holonomy around A’ on the outside of
v/ must be nontrivial, and so we can find an annulus A just outside of v’ satisfying 1-4 as
well as the maximality condition. &
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For each cusp circle ¢ of T', choose an annulus A. bounding a maw piece v, satisfying
conditions the conclusions of lemma 3.5.6. Truncate T by removing the maw pieces v,, to
produce 7" = (T — |J, v.). Note that T” is a manifold-with-corners, with the same corner
structure as a dynamic solid torus. Note als<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>