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Introduction 

The main purpose of this monograph is to present a theorem of D. Gabai which produces 
essential laminations on a great many 3-manifolds. We shall produce these laminations via 
a construction of pseudo-Anosov flows on closed 3-manifolds, and of "pA flows" on compact 
3-manifolds M which are torally bounded, meaning that each component of 8M is a torus. 
The construction works whenever: 

• M is oriented and irreducible. 

• The rank of H 2 (M, 8M; Z) is positive (automatically true if 8M # 0). 

• M is not a Seifert fibered space. 

• M is atoroidal, which means that every incompressible torus Tin M is isotopic to a 
boundary component; in other words, Tis peripheral. 

See theorem A below for a precise statement. The laminations produced by the construction 
are "very full" laminations, which means that each complementary piece of the lamination 
is obtained from a solid torus or a (torus) x I by a simple "paring" operation. See below for 
a discussion of pseudo-Anosov and pA flows, and very full laminations. 

When 8M # 0, very full laminations and pA flows are nicely situated for Dehn filling. 
Given a very full lamination A in M, for each component T of 8 M there are coordinates 
(m, l) for H 1 (T; Z), depending on A, such that as long as the surgery coefficients l = 0, ±1 
are avoided the lamination A remains very full in the filled manifold. A similar statement 
is true for pA flows. See theorem B below. 

Along the way, we develop the theory of pseudo-Anosov and pA flows: 

• On a closed manifold there is a close relation between pseudo-Anosov flows and pA 
flows given by the "double DA" operation. 

• Associated to a pA flow there is a transverse pair of very full laminations As, Au, the 
"stable" and "unstable" laminations of the flow (theorem 4.10.3). 

4 
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We also produce combinatorial tools which aid in the construction of pseudo-Anosov and 
pA flows. By melding Markov partitions with the dynamic branched surfaces of J. Christy, 
we produce the concept of a dynamic pair of branched surfaces, and prove: 

• Every dynamic pair of branched surfaces carries a pA flow (theorem 3.3.2). On a 
closed manifold every dynamic pair carries a pseudo-Anosov flow (theorem 3.4.1). A 
converse is also true: every pA flow is carried by some dynamic pair of branched 
surfaces ( theorem 3. 3. 2). 

See chapter 2 for the theory of dynamic pairs, and chapter 3 for the relation to flows. The 
elements of this theory are extended to the setting of sutured manifolds in chapter 4. 

In the rest of this introduction, we give a more leisurely overview of the monograph. 

Laminations and flows 

Essential laminations are a simultaneous generalization of Reebless foliations and incom-
pressible surfaces in 3-manifolds [ GO89]. An essential lamination A carries topological 
information about the 3-manifold M in which it lives. For example, if a 3-manifold M has 
an essential lamination then M is irreducible and has infinite fundamental group, and if 
M is closed then the universal cover of M is homeomorphic to R 3 . Many workers have 
labored at constructing essential laminations in many different contexts; see Gabai's survey 
[Gab95]. 

There is a well known connection between foliations and Anosov flows on 3-manifolds. 
If <I> is an Anosov flow on a closed 3-manifold M, the stable manifold theory of Hirsch, 
Pugh, and Shub [HPS77] produces a transverse pair of 2-dimensional foliations, the weak 
stable and unstable foliations of <I>, and these are Ree bless foliations of M. 

There is similar well known connection between very full laminations and suspension 
flows of pseudo-Anosov flows. Suppose f: S ----+ S is a homeomorphism of a closed surface, 
with mapping torus M f = S x R/ ( x, s + 1) ,,.__, (f ( x), s), and with suspension flow susp(f) 
on Mt, the quotient of the flow on S x R given by (x, s) · t = (x, s + t). If f is a pseudo-
Anosov homeomorphism, then (by definition) there is associated to f a transverse pair of 
singular 1-dimensional foliations of S, the stable and unstable foliations off [FLP+79]. 
The flow susp (f) is an example of a pseudo-Anosov flow. On the surface S, the singular 
stable and unstable foliations may be "split" along singular leaves to produce a transverse 
pair of laminations on S, each filling the surface S; one can then suspend these laminations 
to obtain a transverse pair of very full laminations As, Au on M. 

The general concept of a pseudo-Anosov flow on a 3-manifold arises by simultaneously 
generalizing Anosov flows and suspension flows of pseudo-Anosov surface homeomorphisms 
(see §3.1). We shall offer two definitions, a smooth definition and a topological definition, 
and we shall formulate some conjectures about how these definitions are related. Mostly we 
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will stick to the topological definition, in part because that is what comes most naturally 
out of our combinatorial constructions (such as theorem 3.4.1 mentioned above). A pseudo-
Anosov flow has 2-dimensional weak stable and unstable foliations, which are singular along 
a finite number of periodic pseudohyperbolic orbits. These foliations may be split open along 
their singular leaves, producing a transverse pair of very full laminations in M. Thus if M 
supports a pseudo-Anosov flow, then M has an essential lamination, with all the topological 
consequences that entails. 

If <I> is a pseudo-Anosov flow on M, the splitting operation performed above on the 
singular stable and unstable foliations of <I> may be performed dynamically on <I> itself, 
using a variant of Smale's DA operation. The result is what we call a pA flow; see §3 
for the definition. Loosely speaking, a pA flow is one which satisfies axiom A except for 
certain basic sets which are pseudohyperbolic periodic orbits; the definition also places strict 
conditions on the connections between the pseudohyprbolic orbits and the other basic sets. 
The letters "pA" can be read as "pseudo axiom A", or as "derived from pseudo-Anosov", 
or something like that (the letters "DA" stand for "derived from Anosov"-acronyms are 
in general a bad idea, but I can't think of what else to call a pA flow). The advantage of pA 
flows over pseudo-Anosov flows is that the definition can be formulated on any compact, 
oriented, torally bounded 3-manifold M. pA flows enjoy all the topological advantages of 
pseudo-Anosov flows: they have 2-dimensional weak stable and unstable laminations which 
are very full, essential laminations in M. Also, pA flows are technically easier to work 
with than pseudo-Anosov flows, because the tools of smooth hyperbolic dynamics may be 
applied directly to pA flows. 

To see how pA flows arise in nature, consider the problem of defining a pseudo-Anosov 
homeomorphism f: S----+ S when Sis a compact, oriented surface with nonempty boundary. 
Because 8S is a union of circles invariant under f, some aspect of the definition for closed 
surfaces will have to be discarded. In [FLP+79] expose 11, a definition is offered which 
retains the property of topological transitivity ( some orbit is dense) at the expense of uni-
form hyperbolicity. Inspired by axiom A diffeomorphisms, we propose a different definition, 
discarding topological transitivity but keeping uniform hyperbolicity on the chain recurrent 
set, except on a finite collection of basic sets each of which is a pseudohyperbolic orbit. 
Thurston's classification of surface mapping classes will still hold using this definition: on 
any compact oriented surface S, any orientation preserving homeomorphism f: S ----+ S 
can be isotoped so that: f is finite order; or f preserves some system of nonperipheral, 
nontrivial simple closed curves; or f is a pA homeomorphism. By applying the suspension 
construction, we obtain a proof of theorem A for the mapping torus Mt. 

In general, given a pA flow <I> on M, we may use the stable manifold theory to associate 
to <I> a transverse pair of laminations called the stable and unstable laminations of <I>. These 
laminations are of a special type called "very full" laminations, defined as follows. Let M be 
a compact, oriented, torally bounded 3-manifold. Let A be a compact lamination contained 
in int(M). Consider the manifold with boundary MA obtained from M - A by adding on 
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boundary leaves, that is, leaves of A which are adjacent to M - A. We say that A is very 
full if there are no sphere leaves or Reeb components, and if each component C of MA falls 
into one of the following two types: 

Pared solid torus C H - K where H = D 2 x S1 and KC f)H is a nonempty family 
of nontrivial simple closed curves which is essential in the sense that the minimal 
geometric intersection number between K and the meridian curve 8 D 2 x (point) is 
at least 2. 

Pared torus shell C T 2 x [O, 1] - K x 1 where T 2 is the torus, K C T 2 is any nonempty 
family of nontrivial simple closed curves, and T 2 x O corresponds to a boundary 
component of M; in this case, the curve family K x O lives in a boundary component 
of M, and is called the degeneracy locus of that boundary component. 

These objects are jointly called pared torus pieces. Very full laminations are evidently 
essential, and they are a special case of the "full laminations" studied by Hatcher and 
Oertel [H096]. 

We can now state a simplified version of our main theorem: 

Theorem A. Let M be a compact, oriented, irreducible, torally bounded 3-manifold such 
that the rank of H 2 (M, 8M; Z) is positive. One of the following is true: 

• M is Seifert fibered. 

• M has a nonperipheral, incompressible torus. 

• M has a pA flow, and if M is closed then it has a pseudo-Anosov flow. In particular, 
M has a very full lamination. 

Remark. As a special case, the complement of every nontorus, nonsatellite knot in S 3 has 
a pA flow. This leads to a completely general existence theorem for "knot holders" in the 
sense of Birman and Williams [BW83], or "templates" as they are known in more recent 
literature [GHS96]). 

Theorem A may be regarded as a 3-dimensional generalization of Thurston's classifi-
cation of surface diffeomorphisms mentioned above. That classification has an equivalent 
reformulation which is often useful: every compact surface homeomorphism f: S -----+ S may 
be isotoped so that f preserves some family T of nontrivial, nonperipheral, pairwise dis-
joint, simple closed curves, and for each component C of S cut along T, the first return 
map off to C is isotopic to either a finite order homeomorphism or a pA homeomorphism. 
There is a similar reformulation of theorem A: 

Theorem A'. Let M be a compact, oriented, irreducible, torally bounded 3-manifold such 
that the rank of H 2 (M, 8M; Z) is positive. There exists a family T of incompressible, 
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nonperipheral, pairwise disjoint, embedded tori, such that for each component C of M cut 
along T, one of the following is true: 

• C is a Seifert fibered; or 

• C has a pA flow, and if T = 8M = 0 then C = M has a pseudo-Anosov flow. In 
particular, C has a very full lamination. 

Application to Dehn filling 

pA flows and very full laminations are nicely situated for performing Dehn filling-for 
"almost all" Dehn fillings on each boundary torus, the lamination remains essential in 
the filled manifold, and the flow remains pA. "Almost all" means that in the appropriate 
coordinates on Dehn filling space, the only bad filling coefficients ( m, l) are those with 
Ill s; 1. 

The following theorem is due to D. Gabai: 

Theorem B: Dehn Filling Theorem. Let M be a compact, oriented, irreducible, torally 
bounded 3-manifold, and suppose that 8M # 0. Suppose also that M is not Seifert fibered. 
For each component Ti C 8 M there exist Dehn filling coordinates (mi, li) : H 1 (Ti) -----+ Z EB Z 
with the following property. Let M'Y be obtained from M by filling some components Ti of 
8M along curves ti C Ti, so that lli(,i)I 2 for each Ti that is filled. Then M'Y has an 
essential lamination, and so M'Y is irreducible and has infinite fundamental group, and if 
{) M'Y is closed then the universal cover of M'Y is homeomorphic to R 3 . 

Remark. In a knot complement, the coordinates given by the theorem may not agree with 
the usual meridian-longitude coordinates; an example is given in ??? . 

Proof. Since 8M # 0 it follows that the rank of H 2 (M, 8M; Z) is positive. Applying 
theorem A' let T be a family of incompressible, nonperipheral, pairwise disjoint, embedded 
tori in M such that each component of M cut along T either is Seifert fibered or has a very 
full lamination. For each component Ti of 8 M, let C be the component of M cut along T 
which contains Ti, and choose the coordinates (mi, li) so that: 

• If C is Seifert fibered then each Seifert fiber on Ti has coordinates (mi, li) = ( 1, 0). 

• If C has a very full lamination then each component of the degeneracy locus on Ti 
has coordinates (mi,li) = (1,0). 

Now consider M'Y as in the statement of the theorem. For each component C of M cut 
along T, let C'Y C M'Y be the filling of C. If Chas a very full lamination A we shall prove 
that A remains very full in CT If C has a Seifert fibration we shall prove that this extends 
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to a Seifert fibration on C'Y, and C"I is irreducible and boundary incompressible. It follows 
that if T # 0 then Tis itself an essential lamination in M'Y, whereas if T = 0 then the very 
full lamination in M is also a very full lamination in M'Y. 

Case 1: C has a very full lamination A. Consider a component Ti of C n 8M, 
which is filled along the curve ti C Ti. Let Ki be the degeneracy locus of A on Ti. Since 
(mi(Ki), li(K1)) = (1, 0) and lli(ti)I 2:: 2, the pared torus shell containing Ti is filled in to 
form a pared solid torus in C'Y, which is essential because of the fact that (t, Ki) 2:: 2. It 
follows that A is very full in C'Y, and so C"I is irreducible and boundary incompressible. 

Case 2: C is Seifert fibered Let Q be the base orbifold of C. For any component Ti of 
C n 8M which is filled, let ti C Ti be the filling curve, let Ki be a Seifert fiber on Ti, and 
let Ci be the component of aQ to which Ti projects. By hypotheses we have ( t, Ki) # 0 
and so C"I is Seifert fibered. 

From the hypothesis that M is not Seifert fibered it follows that C contains at least one 
boundary component which arises from cutting along T, and so 8C'Y # 0. It follows that 
C"I is irreducible-the only reducible Seifert fibered spaces are those with empty boundary 
and with an S 2 x R 1 geometric structure. 

Let Q'Y be the base orbifold of CT Note that Q'Y is obtained from Q by capping off Ci 
with a disc containing a cone point of order lli(ti)I 2:: 2, for each component Ti of C n 8M 
which is filled. 

Suppose that C'Y has compressible boundary. It follows that Q'Y is a disc with at most 
one cone point. The number of cone points in Q'Y is equal to the number of cone points 
in Q plus the number of filled components of C n 8M, and so at most one component of 
C n 8 M is filled. If no components are filled then Q "I = Q, and so 8C contains a component 
of T which is compressible in M, a contradiction. If one component is filled then Q is an 
annulus with no cone points and C is a (torus)xI; it follows that 8C contains a component 
of T which is peripheral in M, also a contradiction. <) 

Remark. In many special cases this theorem can be strengthened by weakening the hypoth-
esis to say that lli(ti)I 2:: 1. 

For example, let C be a component of M cut along T, and suppose that Chas a very 
full lamination. If Ti is a component of 8 M n C, and if the degeneracy locus on Ti has two 
or more components, then the weaker hypothesis lli( ti) I 2:: 1 still implies ( ti, Ki) 2:: 2 which 
is enough to insure that the pared torus shell containing Ti gets filled in to an essential 
pared solid torus. 

For another example, suppose that C is Seifert fibered with base orbifold Q, and let 
C'Y, Q'Y be as in the proof. In almost all cases, for each component Ti of 8M n C we need 
only the weaker restriction that lli(ti)I 2:: 1. This restriction is still enough to conclude 
that C'Y is Seifert fibered; if lli(ti)I = 1 then Ci is capped off by a disc with no cone points. 
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Also, under the hypotheses that M is not Seifert fibered it still follows that 8C'Y -::/ 0 and 
so C'Y is still irreducible. The only possible problem is if C"I has a compressible boundary 
component, and the only way that fillings with lli(-,i)I = 1 could cause this problem is if: 
Q is a planar surface with s; 1 cone point; all but one component of 8C is filled; and for 
every filled component Ti we have lli(-,i)I = 1. These are precisely the assumptions which 
lead to Q'Y being a disc with s; 1 cone point. 

Remark. Because of the previous remark, it is desirable to have very full laminations whose 
degeneracy locus has two or more components on each torus boundary. There is, however, a 
certain intuition saying that generically the degeneracy locus has only one component. For 
example, the generic element of the mapping class group of a punctured surface is pseudo-
Anosov with 1-pronged singularities at the puncture, and under suspension this leads to a 
very full lamination whose degeneracy locus has one component on each boundary torus. 
On the other hand, as suggested to me by W. P. Thurston, this intuition about "generic" 
properties of the degeneracy locus may be suspicious in special situations, for example knot 
complements in the 3-sphere. 

Remark. When M is an oriented Seifert fibered space, for example the complement of a 
torus link, the hypothesis lli(-,i)I 1 is sufficient for the Seifert fibration to extend over 
the filled manifold MT As mentioned above, the base orbifold of M'Y is easily computed 
by capping off boundary components of the base orbifold of M. It is well known how to 
use the Seifert fibration to decide basic topological properties of M'Y such as irreducibility, 
incompressible boundary, and infinite fundamental group. In many cases the hypothesis 
lli(-,i)I 1 is not enough to establish these properties; for example if Mis a torus link and 
if every boundary torus is filled so that lli(-,i)I = 1 then M'Y is a lens space and so it has 
finite fundamental group. 

Finite depth foliations 

In [Gab83] Gabai proves that if M is a compact, irreducible, oriented torally bounded 
3-manifold, and if the rank of H2 (M) is positive, then M has a transversely oriented, 
Ree bless finite depth foliation :F transverse to 8 M. Recall that :F is finite depth if there 
is a nested sequence of sublaminations :Fa C · · · C :F n = :F such that each leaf of :Fa is 
compact, and for each i = 1, ... , n, each leaf L of :Fi - :Fi-l, and each sequence of points 
Xk E L leaving every compact subset of L, all limit points in M of the sequence (xk) are 
contained in :Fi-l · Recall that a Reeb component of :Fis a solid torus whose boundary is a 
leaf and whose interior is foliated by planes that accumulate on the boundary. A foliation 
is Reebless if it has no Reeb components. 

For example, if the depth is zero then :Fis a fibration over the circle with fiber F, and 
in this case theorem A follows from Thurston's classification of surface mapping classes 
[FLP+79] as remarked above. 
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In general, theorem A is an immediate consequence of [Gab83] and the following: 

Theorem C. Let M be a compact, oriented irreducible torally bounded 3-manifold, and let 
:F be a transversely oriented, Ree bless, finite depth foliation transverse to 8 M. One of the 
following is true: 

1. M is Seifert fibered. 

2. M has a nonperipheral, incompressible torus T transverse to :F and not isotopic to a 
leaf of :F. 

3. M has a pA flow whose stable and unstable laminations are transverse to :F. If M is 
closed then M has a pseudo-Anosov flow which is almost transverse to :F. 

Remark. "Almost transversality" of a pseudo-Anosov flow and a closed surface was intro-
duced in [Mos90]. The needed generalization, replacing the surface by a foliation, is given 
in §3.5; here is a rough sketch of the definition. If, is a pseudohyperbolic orbit of a flow <I>, 
there are several ways to "dynamically blow up" ,; this means that the stable and unstable 
manifolds of, are pulled apart, and invariant annuli are inserted, creating a new flow <J>#. 
There is a semi-conjugacy from <J># to <I>, homotopic to the identity, that collapses the 
invariant annuli back to 1 . A pseudo-Anosov flow <I> is said to be almost transverse to a 
foliation :F if there is a way to dynamically blow up the singular orbits of <I> so that the 
blown up flow <J># is transverse to :F. On a hyperbolic manifold M, a pseudo-Anosov flow 
<I> which is almost transverse to some finite depth foliation has strong geometric properties: 
<I> is a "quasigeodesic" flow on M [FM95]. 

Note that clause 3 of theorem C does not say that M has a pA flow which is almost 
transverse to :F. While it is possible to formulate a true statement of this sort, to do so 
requires a rather technical and perhaps not very useful definition of "almost transversality" 
between pA flows and finite depth foliations. 

Remark. In the case that M is Seifert fibered, more information is available from work of 
Brittenham [Bri93], which shows that :F has a sublamination A such that A is parallel to 
the Seifert fibration and :F - A is transverse to the Seifert fibration. As the reader will see, 
the Seifert fibrations popping out of the proof of the main theorem are easily seen to have 
this property. 

There is an equivalent reformulation of theorem C, modelled on theorem A'. 

Theorem C'. Let M be a compact, oriented, irreducible, torally bounded 3-manifold, and 
let :F be a transversely oriented, Ree bless, finite depth foliation transverse to 8 M. There 
exists a finite family T of pairwise disjoint, incompressible, nonperipheral tori transverse 
to :F, none of which are isotopic to leaves of :F, such that for each component C of M cut 
open along T, either C is Seifert fibered, or the following statements are true: 
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1. C has a pA flow whose stable and unstable laminations are transverse to :F I C. 

2. If T = 8M = 0 then the closed manifold C = M has a pseudo-Anosov flow which is 
almost transverse to :F. 

Remark. This theorem can be used to produce pseudo-Anosov flows on some 3-manifolds 
which have nonperipheral, incompressible tori, as long as each such torus is isotopic to a 
leaf of :F. Examples of this sort are given by Bonatti and Langevin [BL94], where the flows 
produced are Anosov-our construction applied to the Bonatti-Langevin example produces 
the same flows as their construction. 

Application to the Thurston norm 

Theorem Chas consequences for the structure of the Thurston's seminorm x on H2 (M; R). 
This seminorm measures the least complexity of a surface representing a class: if a C 
H 2 ( M; Z) then x (a) is the minimum of IX-(A) I where A is any surface representing a, 
and X- (A) is the Euler characteristic of A-( sphere components). When M is irreducible 
and atoroidal, e.g. when M is hyperbolic, it follows that x is a norm. The unit ball Bx 
is a finite-sided polyhedron in H2 (M; R) whose faces are defined by level sets of linear 
functionals defined over Z. 

In [Mos92b] a connection is drawn between pseudo-Anosov flows and the Thurston norm. 
Let <I> be a pseudo-Anosov flow on a closed, hyperbolic 3-manifold M. Let C<I> C H 1 (M; R) 
be the smallest closed cone containing the homology class of every periodic orbit, a finite 
cone that can be calculated from a Markov partition for <I>. Let D<1> C H 2 (M; R) be the 
dual cone of C<I> with respect to the intersection pairing. Let X<I> E H 2 (M; R) be the Euler 
class of the normal plane bundle of <I>, regarded as a linear functional on H 2 ( M; R). The 
class X<I> may be computed from the pseudo-hyperbolic orbits of <I>. The main result of 
[Mos92b] says that if <I> is quasigeodesic then ~<I> = x;1 (1) n D<1> is a subpolyhedron of some 
face of Bx. 

In [FM95] it is proved that if M is a closed, hyperbolic 3-manifold, and if a pseudo-
Anosov <I> on M is almost tranverse to a finite depth foliation on M, then <I> is indeed 
quasigeodesic, and so the results of [Mos92b] apply. 

According to [Gab83], for any surface A C M which realizes the Thurston norm in its 
homology class, there is a finite depth foliation :F containing A as a leaf. By theorem A, 
there is a pseudo-Anosov flow <I> that is almost transverse to :F. By [FM95] the flow <I> is 
quasigeodesic. Applying the results of [Mos92b] as described above, we have proved: 

Corollary D. If M is a hyperbolic 3-manifold, then the boundary of Bx C H 2 (M; R) is 

covered by the polyhedra ~<I> associated to quasigeodesic, pseudo-Anosov flows on M. <) 
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Remark. This corollary raises an important question: can a Bx be covered by finitely many 
of the polyhedra ~<I>? Conjecture: Yes. See the questions section below for some discussion 
of this conjecture. 

There should be a computational process which takes as input some finite depth foliation 
and produces as output a complete description of Bx, without invoking normal surface 
theory as is done in [Oer85] or [TW96]. This process would go as follows: construct a 
pseudo-Anosov flow <I> almost transverse to the given foliation, and compute ~<I>. Now invent 
a process for moving around 8Bx, constructing pseudo-Anosov flows whose corresponding 
~'s piece together to give all of 8Bx. 

A sketch of the proof of Theorem C 

As remarked above, when :Fis depth O theorem C follows from an application of Thurston's 
classification of surface mapping classes [FLP+ 79]. For higher depth foliations the technical 
details are quite different. 

The major elements of the construction are already present in the special case of a 
depth 1 foliation :F on M, which we now describe. We may suppose that :F has finitely 
many compact leaves, and no complementary component of the compact leaves is foliated 
as a product. The compact leaves form a compact surface S. Let N be obtained by cutting 
M open along S. The "scars" of S form disjoint subsurfaces R,_ N, R+N C 8 N, and M is 
obtained from N by gluing R+N to R,_N via a homeomorphism g: R+N-----+ R,_N. The 
surfaces R,_N, R+N give N the structure of a sutured manifold [Gab83]. The suture set 
,N = cl(aN -(R_NUR+N)) is a union of tori and annuli, each annulus with one boundary 
circle in R_ N and the other in R+ N. The restriction of :F to N - R±  N is a fibration over 
the circle. The fiber is a surface F with finitely many ends, and the monodromy map 
f: F -----+ F is end periodic, i.e. f acts as a semi-covering transformation on a neighborhood 
of each end, either attracting towards the end or repelling away from the end. Each end 
of F spirals into some component of S. The dynamics of end periodic maps have been 
analyzed by Handel and Miller, with results similar to Thurston's analysis of compact 
surface dynamics (but with significantly different proofs). An account of the Handel-Miller 
theory is given in [Fen96a]. The result of this theory is that f may be isotoped so that one 
of three alternatives happens: 

1. f permutes a finite, simple family of non-peripheral essential closed curves on F. 

2. f is a covering transformation over a compact surface. 

3. f is a pA surface homeomorphism ( defined appropriately in the category of end pe-
riodic maps), with invariant 1-dimensional stable and unstable laminations. This 
case encompasses the possibility that f respects a finite, simple family of proper lines 
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which cut off components on which f acts as a covering transformation over a compact 
surface. 

Case (1) leads to an incompressible, nonperipheral torus transverse to :F. Case (2) implies 
that N is a (surface) x I and so M is fibered over the circle. 

Case (3) is the most interesting. Suspending f and then accelerating the time parameter 
near 8 N gives a pA flow <I> N defined on N. The repelling ends of F spiral into R,_ N, and 
<I>N enters N along R,_N. The attracting ends spiral into R+N, where <I>N leaves N. 
The unstable lamination AN has boundary ..\.u C R+N, and the stable lamination AN has 
boundary A.8 C R,_N. There is a maximal compact totally invariant subset CC int(N) of 
<I>N, containing the intersection AN n AN. 

Now let R,_N and R+N be identified by g: R+N----+ R,_N to form SC M. Isotope the 
identification map g so that ..\. s and ..\. u intersect efficiently in S. There are special cases to 
handle in which this isotopy does not exist, but these cases typically lead to incompressible, 
non peripheral tori. If we make the extra assumption that closed leaves of..\. s are not isotopic 
to closed leaves of..\. u, then the isotopy exists. 

Note that AN is not a lamination in M, because it has boundary ..\. u lying on the surface 
S which is not part of 8M. To correct this problem, extend AN by flowing up past ..\.u C S 
and back into N. The points where ..\. u intersects ..\. s extend to flow lines spiralling into C, 
and the rest of the flow lines escape past C and back out to S, augmenting AN = A0 to a 
larger lamination At :J A0, with boundary 8At = ..\.t :J ..\.0 = ..\.u. Now continue the process 
inductively: isotope the identification map so that ..\.t intersects ..\. s efficiently in S, flow up 
past S, etc. This generates an increasing sequence of laminations A0 C At C A~ C · · ·. 
Passing carefully to a limit, we obtain a true, boundary less lamination Au = cl(A0UAtU · · ·) 
of M. A similar argument with AN, flowing down past A.8 CS, produces a true lamination 
A8 of M. Then one proves that one of the following occurs: 

• As, Au are very full in M, and are the stable and unstable laminations of a pA flow 
<I> on M that is transverse to :F; or 

• M has a nonperipheral, incompressible torus. 

Although we made some special assumptions about closed leaves of ..\. s and ..\. u, these as-
sumptions may be drastically weakened at the expense of losing strict transversality of <I> 
and :F, as long as one is willing to accept almost transversality. 

A combinatorial formulation: Dynamic pairs of branched sur-
faces 

Rather than trying to formalize the above proof directly, we take an indirect approach, 
via the combinatorial tools of dynamical systems: branched surfaces and Markov parti-
tions. My whole approach to this subject is highly combinatorial. This is due in part to 
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availability of good combinatorial tools. But to be honest, the actual reason for thinking 
combinatorially is because one's mind is bent that way ( apologies to M. Gromov-[Gro93], 
p. 7). As a child I loved playing with Tinker Toys and Legos, producing gothic constructions 
from a few simple brightly colored pieces whose forms I admired. This love has colored 
almost all of my mathematics. 

Branched surfaces are an important tool in dynamics. Williams first used branched 
surfaces to study 2-dimensional hyperbolic attractors of diffeomorphisms [Wil73]. Birman 
and Williams used a special class of branched surfaces with boundary, which they called 
"knot holders", to study 1-dimensional hyperbolic invariant sets of flows on the 3-sphere 
[BW83]. Nowadays knot holders are known as "templates", and a rich literature of tem-
plates has grown up. See, for example, the recent notable work of Ghrist [Ghr96], [Ghr95], 
who proves that if K is the figure-eight knot in S 3 , and if <I> is any flow transverse to the 
fibration of S 3 - K over S 1 , then <I> contains periodic orbits of every knot type in S 3 . The 
paper [Ghr96] also has a bibliography on the subject of templates. 

Closer to our present topic, Christy applied branched surfaces to the study of 2-dimensional 
hyperbolic attractors [Chr93]. Following Christy, we define an unstable dynamic branched 
surface in a 3-manifold M to be a branched surface B C M together with a nonzero vector 
field V tangent to B that always flows "into" the branch locus. In most cases of interest V 
generates a forward semiflow on B. When this semiflow is expansive, Christy's main result 
is that there a flow <I> defined in a neighborhood N(B), and a 2-dimensional lamination A 
carried by B, such that A is a hyperbolic attractor. One can also reverse the direction of the 
vector field on B to obtain a stable dynamic branched surface, which carries a hyperbolic 
repeller of some flow defined on N(B). 

The advantage of dynamic branched surfaces over templates, for our purposes, is that 
a dynamic branched surface may be regarded as an essential branched surface in the sense 
of Gabai and Oertel [GO89]. In other words, dynamic branched surfaces are more closely 
associated to the global topology of the ambient manifold. Nonetheless, template theory 
plays a crucial role in our development of dynamic branched surfaces and dynamic pairs 
(see §3.3). 

Another classical tool of dynamical systems is "symbolic dynamics", in which directed 
graphs are used to encode the dynamics of hyperbolic invariant sets of flows, with Markov 
partitions as an intermediary. According to Bowen [Bow73], the idea of symbolic dynamics 
first arose with Hadamard and later Marston Morse. The construction of Markov partitions 
for hyperbolic invariant sets of flows is due to Bowen [Bow78], [Bow73]. Fried, simultane-
ously generalizing hyperbolic invariant sets of homeomorphisms and pseudo-Anosov home-
omorphisms, introduced "finitely presented" homeomorphisms, and constructed Markov 
partitions for them [Fri87]. (Although it has not yet been done, there should be a theory of 
finitely presented flows, simultaneously generalizing hyperbolic invariant sets of flows and 
pseudo-Anosov flows, and including examples such as the geodesic flow of a word hyperbolic 
group [Gro93]). 
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Given a pA flow <I> on a torally bounded 3-manifold M, the stable and unstable lami-
nations As, Au are carried, respectively, by stable and unstable branched surfaces Es, Bu. 
We put these into a single package called a dynamic pair of branched surfaces, by requiring 
the vector fields on Es and Bu to be compatible. We also require the pair Es, Bu to "fill 
up" M, in a sense which is made precise by describing the allowed types of components of 
M - (Es U Bu). The intersection Es n Bu is an oriented train track T which, regarded as 
a directed graph, encodes a Markov partition and symbolic dynamics for the flow <I>. 

Chapter 2 contains the theory of dynamic pairs. The main results in this chapter are 
about the structure of dynamic pairs, and methods for constructing them. In particular, 
proposition 2.6.2 describes how, starting from an unstable dynamic branched surface, one 
may construct a dynamic pair. 

Chapter 3 describes the relations between dynamic pairs, pA flows, and pseudo-Anosov 
flows. Theorem 3.3.2 describes precisely how to pass back and forth between pA flows 
and dynamic pairs. Theorem 3.4.1 describes how to pass from a dynamic pair on a closed 
manifold to a pseudo-Anosov flow. 

Chapter 3 also contains transversality constructions, designed to establish transversality 
statements in the conclusion of theorems C and C'. Given a transversely oriented, Ree bless 
foliation :F carried by a branched surface /3, and given a dynamic pair Es, Bu, we define 
the property that Es, Bu is "vertical" with respect to /3. Theorem 3.5.4 says that if Es, Bu 
is vertical with respect to /3, and if the manifold M is closed, then a pseudo-Anosov flow 
carried by Es, Bu is almost transverse to :F. 

Almost transversality is a delicate property, and theorem 3.5.4 is hard to prove. We also 
offer a very simple result, proposition 3.5.3, which says that if the dynamic pair Es, Bu is 
vertical with respect to /3, then the stable and unstable laminations of a pA flow carried by 
Es, Bu are transverse to :F. This simpler result is probably adequate for most applications, 
and it does not require the ambient manifold to be closed. 

All of the theory from chapters 2 and 3 can be carried out in the setting of sutured 
manifolds, and this is the subject of chapter 4. Formulating the correct definition of a 
dynamic pair is the hardest part, and there are many new cases and extra details needed to 
supply complete proofs, but the basic structure of the sutured manifold theory is the same 
as the torally bounded theory. 

The proof of theorems C and C' are contained in chapters 5 and 6 (NOT INCLUDED 
IN THIS VERSION). Here is a sketch of the proof, for the above example of a depth 1 
foliation :Fon M. First use the Handel-Miller process, appropriately combinatorialized, to 
construct a dynamic pair of branched surfaces EN, B'!v in N, the sutured manifold obtained 
by cutting M open along the compact leaves of :F. These branched surfaces have boundary 
train tracks Ts = 8 EN C R,_ N, Tu = 8 B'!v C R+. We may not regard EN, B'!v as a dynamic 
pair in the torally bounded manifold M, because these branched surfaces have boundary 
on the surface S. To correct this problem, let B'!v = Ba "flow up" past S, generating a 
new branched surface Bf :J Ba with boundary train track Tj' :J To. Continue this process, 
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defining a sequence B~ C Bf C B~ C · · · with boundary train tracks T;f C Ti_1' C T? C · · ·. 
This train track sequence fills up more and more of S, and so must eventually stabilize at 
some finite stage: T1 = TI+l = · · ·. Once stabilization is acheived, the branched surfaces 
also stabilize: B''f +1 = B'f +2 = · · ·, and this becomes the unstable branched surface Bu 
in M. By using the tools of chapters 2-4, in particular proposition 2.6.2 and its ultimate 
generalization 4.11.2, we produce automatically the stable branched surface Bs. One shows 
that either Bs, Bu fill up M, producing the desired dynamic pair, or they do not fill up and 
M has an incompressible, nonperipheral torus. 

In general, given a sutured manifold hierarchy on a torally bounded 3-manifold M 
[Gab83], M = M 0 "-"+ M 1 "-"+ • • • "-"+ Mn, we inductively construct dynamic pairs starting 
with Mn and working down through the hierarchy, or we eventually produce a nonperiph-
eral, incompressible torus. The basis step of the induction, an adaptation of the methods 
of Handel and Miller, is proved in chapter 5. The inductive step is proved in chapter 6. 

Questions 

Here are some questions that are raised by these results. 

Tori and flows Can you have both an incompressible torus and a pseudo-Anosov flow? 
The answer is an easy yes, in fact you can have an incompressible torus and an Anosov 
flow, e.g. the geodesic flow of a hyperbolic surface. For a deeper understanding, one needs 
a geometric description of the relationship between a pseudo-Anosov flow and the torus 
decomposition of the manifold. In principle, one should be able to take a description of the 
flow and decide if there is an incompressible torus (given the geometrization conjecture, 
this would help decide if the manifold is hyperbolic). The work of Fenley should be useful 
here [Fen96b]. 

A closely related question is: For which finite depth foliations :F is there an almost 
transverse pseudo-Anosov flow? In other words, even if there exists an incompressible, 
non peripheral torus transverse to :F, not isotopic to a leaf of :F, can one still find a pA or 
pseudo-Anosov flow? 

Existence of flows Which manifolds have pseudo-Anosov flows? At this writing, the 
only closed, oriented, irreducible, atoroidal 3-manifolds with infinite fundamental group 
which are known not to have pseudo-Anosov flows are certain small Seifert fiber spaces 
which were proved, by Brittenham, not to have essential laminations [Bri93]. 

For an intriguing special case of this question, let M be a compact, oriented 3-manifold 
with 8M a torus, suppose int(M) has a finite volume hyperbolic structure, and suppose M 
has a pA flow <I> whose degeneracy locus on 8M has one component. Let M"I be obtained by 
filling M along a curve , which intersects the degeneracy locus exactly once. By choosing 
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the filling coefficients (m(,), l(,)) sufficiently close to oo, the manifold M'Y has a hyperbolic 
structure (see [Thul). Does M'Y have a pseudo-Anosov flow? Note that if M fibers over the 
circle and <I> is transverse to the fibration, and if , is parallel to the boundary of the fiber, 
then the answer is yes, because M'Y also fibers over the circle, and the monodromy map 
must be isotopic to a pseudo-Anosov homeomorphism. 

Geometrization As a special case of the geometrization conjecture one can ask: if M 
has a pseudo-Anosov flow and no incompressible torus, is M hyperbolic? Is 1r1 (M) a word 
hyperbolic group? 

Thurston's norm We alluded earlier to the following conjecture: 

Conjecture (Norm and flow finiteness conjecture). If Bx is the Thurston norm unit 
ball in H 2 (M; R), the boundary of Bx may be covered by the finitely many polygons ~<I> asso-
ciated to pseudo-Anosov flows <I> on M that are almost transverse to finite depth foliations. 

It is easy to see that if :F is a fibration of M over S 1 , and if M is atorioidal, then there 
is a unique pseudo-Anosov flow transverse to :F, up to reparameterization and isotopic 
preserving :F; this follows from the uniqueness of pseudo-Anosov surface homeomoprhisms 
in their isotopy classes [FLP+ 79]. 

Here is series of successively stronger conjectures which would resolve the finiteness 
conjecture for the Thurston unit ball. The first conjecture should be reasonably easy to 
attack, by induction down through the depths: 

Conjecture (Transverse finiteness conjecture). For any finite depth foliation :F on 
an atoroidal 3-manifold M, there are only finitely many pseudo-Anosov flows that are almost 
tranverse to :F. 

Remark. The construction used in the proof of theorem C produces at most a finite col-
lection of pseudo-Anosov flows that are almost transverse to :F, as long as there are no 
incompressible, nonperipheral tori. A good understanding of this proof should provide a 
clue to the transverse finiteness conjecture. 

The following would imply the finiteness conjecture for the Thurston norm: 

Conjecture (pseudo-Anosov finiteness conjecture). Given an atoroidal 3-manifold 
M, there exists only finitely many pseudo-Anosov flows <I> on M, up to isotopy and repa-
rameterization, such that <I> is almost tranverse to some finite depth foliation on M. 

Here is one possibility for attacking the pseudo-Anosov finiteness conjecture. Let :F, 
:F' be two Reebless finite depth foliations whose tangential Euler classes are equal. By 
the transverse finiteness conjecture, there exist finitely many pseudo-Anosov flows that are 
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almost transverse to :F. We conjecture that one of these flows is almost transverse to :F'. 
As a starting point for this conjecture, one wants to prove that for each norm-minimizing 
surface S C M such that lx(S)I = lx:r(S)I, there exists a pseudo-Anosov flow which is 
almost transverse to :F and to S. 

In general it is not true that if <I> is pseudo-Anosov and :F is finite depth, and if the 
tangential Euler class of :F is equal to the normal Euler class of <I>, then <I> is almost 
transverse to :F; a counterexample is given in [Mos92b]. 
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Chapter 1 

Preliminaries 

In this section we review material from the theory of laminations and branched surfaces 
(§1.1-1.4) and we begin the study of dynamic branched surfaces (§1.5-1.6). 

1.1 Laminations 

In this section we review from [G089] the definition of an essential lamination on a 3-man-
ifold, and we define "very full" essential laminations, a special case of the full laminations 
of[H096]. 

A familiar operation in topology is that of "cutting open" a manifold along a submani-
fold. For instance, if a closed surface is cut along an embedded circle the result is a compact 
surface with one or two boundary components, depending on whether or not the circle is 
orientation reversing. In order to make use of this cutting operation in many different 
contexts, we formalize it as follows. 

Let X be a smooth compact manifold, or a smooth compact subcomplex of a smooth 
manifold. Let Z be an open subset of X. Choosing a Riemannian metric on X, there 
is an induced Riemannian metric on Z. Define a topological metric on Z where d( x, y) 
is the infimum of path lengths from x to y. Let ct Z denote the completion of Z. Since 
any two Riemannian metrics on X are bilipschitz equivalent, as a topological space ct Z is 
well-defined independent of the metric on X. The inclusion map Z '-------+ X extends uniquely 
to a continuous map ct Z ----+ X called the overlay map. Abusing terminology we sometimes 
refer to the overlay map as the inclusion map. If Y is a subset of X, the remains of Y 
in ct Z is the inverse image of Y under the overlay map ct Z ----+ X. Sometimes we abuse 
notation and write ct( Z) n Y for the remains of Y in ct Z. 
Example. If M is a manifold and S is a codimension-1 submanifold, then ct(M - S) is 
what we usually mean when we talk about "M cut open along S". Each component of the 
remains of Sis called a scar of S. If 8M = 0 then the remains of Sis 8 ct(M - S). 
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Example. If U is an open cell in a smooth cell complex X, the overlay map takes ct U 
homeomorphically to the associated closed cell cl( U)-the overlay map "lays ct U over" 
the set cl(U). There are many similar situations where the completion operator "ct" and 
the closure operator "cl" give the same result, but when cutting along submanifolds or 
subcomplexes it is usually safer to use the completion operator. 

Example. If U is a complementary component of a codimension-1 lamination with smooth 
leaves, ct U is the union of U with boundary leaves incident to U, as described below. 

Given an n-manifold M, a k-dimensional lamination ( without boundary) is a closed 
subset A of M contained in int( M) which is decomposed into k-dimensional manifolds 
called leaves, so that A is covered by open charts of the form U Dk x Dn-k, where 
for each leaf L, each component of U n L has the form Dk x t for some t E Dn-k. A 
k-dimensional lamination with boundary (A, 8A) C (M, 8M) is similarly defined, with the 
additional requirement that 8A is a (k - 1)-dimensional lamination in 8M, and 8M has a 
collar neighborhood U 8M x [0, 1) such that An U 8A x [0, 1). 

Given a manifold M and a lamination A in M, a homeomorhism f: M ----+ M is said to 
preserve A if f takes each leaf of A to itself, and f is said to respect A is f takes each leaf 
of A to some other leaf. Dennis Sullivan told me that this terminology is due to Michael 
Gromov. 

Let M be a compact 3-manifold and A a 2-dimensional lamination without boundary 
in M. A transversely oriented leaf L of A is called a boundary leaf if L has a one-sided 
collar neighborhood L x [0, 1) '-------+ M on the positive side of L, which is 1 - 1 immersed in 
M, and whose interior L x (0, 1) is disjoint from A. Let MA = ct(M - A), a 3-manifold 
with int(MA) = M - A and 8MA identified with the union of boundary leaves of A. For 
each boundary leaf L, the one-sided collar neighborhood L x [0, 1) described above may be 
regarded as a collar neighborhood of L in MA. A lamination A is essential if the following 
conditions hold: 

• A has no sphere leaves. 

• A has no Reeb components. 

• MA is irreducible. 

• 8MA is incompressible in MA. 

• 8MA is end incompressible in MA. 

We refer the reader to [GO89] for a detailed discussion of this definition, with the following 
brief reminders. 

A Reeb component of A is a solid torus H D 2 x S 1 embedded in M such that 8H 
is a leaf of A, each leaf L C int(H) is a topological plane, L is symmetric with respect to 
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rotation of the D 2 coordinate of H, and L - L C {) H. The leaf L is like an infinite snake 
eating its tail. 

End incompressibility is defined as follows. Let E be a closed disc with one bound-
ary point removed, E = {(x,y) E R 2 I ll(x,y)II s; 1,(x,y) # (1,0)}. Given a subsur-
face F C 8 MA, an end compression of F is a proper embedding f: ( E, 8 E, int( E)) '-------+ 

(MA, F, int(MA)), where proper means that the inverse image of a compact subset of MA 
is compact. The subsurface F is end incompressible if for every end compression f, the 
restricted map 8 f: 8 E '-------+ F extends to a proper embedding f' : E '-------+ F. 

There is an equivalent formulation of end incompressibility which makes use of extra 
structure on MA, which it has by virtue of being the completion of a component of M - A. 
The manifold MA has a compact submanifold-with-corners N, a "core", having the following 
properties: 

• ahN = 8N n 8MA is a union of faces. 

• OvN = cl( 8N - ahN) is also a union of faces. 

• Each component of cl(MA - N) is noncompact. 

• cl(MA - N) is an I-bundle over a noncompact surface F, such that OvN is the re-
striction of the I-bundle to 8F. 

The existence of the "core" is a standard result in lamination theory. We say that an end 
compression f: E-----+ MA is vertical near the end if f(E)ncl(MA -N) is a union of I-fibers. 
It follows easily that a subsurface F C {)MA is end incompressible if and only if there is no 
end compression f: E -----+ MA with f( 8E) C F which is vertical near the ends. 

In the definition of essentiality for A we refer only to end incompressibility of {)MA. 
However, when we study laminations on sutured manifolds in §4.10 we will use more general 
subsurfaces of {)MA. 

A lamination A is very full if it has neither sphere leaves nor Reeb components, and 
each component of MA is an essential pared torus piece as defined in the introduction. In 
particular, MA has a core whose closed complementary components are products of the 
form F x I where the surface Fis a half-open annulus. Obviously pared torus pieces satisfy 
properties (3-5) in the definition of an essential lamination, and hence a very full lamination 
is essential; the essentiality condition in the definition of a pared solid torus guarantees that 
there are no end compressions which are vertical near the ends. Note that for each pared 
solid torus H - K, there exist integers ( m, k) with m 2 and O s; k < m, such that m, k 
are the geometric intersection number of K with, respectively, a meridian and a longitude 
of H. The pair ( m, k) is called the type of the pared solid torus. Also, given a pared torus 
shell T 2 x [O, 1] - K x 1, the number n 1 of components of K is called the type . 
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1.2 Branched surfaces 

In this section we review branched surfaces and laminations carried by branched surfaces. 
Let M be a smooth, compact n-manifold. A branched k-manifold ( without boundary) 

in Mis a smooth, compact, k-dimensional subcomplex B C int(M) with the property that 
each x E B has a neighborhood in B which is a union of smooth k-discs embedded in 
M, all tangent at x, thereby defining a unique tangent k-plane TxB C TxM. A branched 
k-manifold ( with boundary) is a smooth k-complex in M with the same property at points 
of B n int(M), with the extra requirement that 8B = B n 8M is a branched (k - 1)-
manifold without boundary, and for some collar neighborhood U 8M x [O, 1) of 8M 
we have B n U 8B x [O, 1). A branched 2-manifold is called a branched surface, and a 
branched 1-manifoldis called a train track. Given a branched k-manifold B, a point x EB, 
and a smooth k-manifold SC B with 8S =Sn 8B such that x ES, the germ of Sat xis 
called a sheet of B at x. By local finiteness of B it follows that each point of B has finitely 
many sheets. Nonmanifold points of B, i.e. points where Bis not locally a manifold with 
boundary, are characterized by having two or more sheets. 

If B is a branched surface, the set of nonmanifold points of B is a smooth 1-complex 
denoted l' B, the branch locus of B. A nonmanifold point of l' B, i.e. a point where l' B is 
not a 1-manifold with boundary, is called a crossing point of B. A completed component 
of B - l' B is called a sector of B. If T is a train track, nonmanifold points of T are called 
switches, and completed components of T-( switches) are called branches. 

Henceforth, unless specified otherwise, we shall assume that every train track and every 
branched surface has generic branch locus. For a train track T, generic branch locus means 
that every switch s E T is trivalent, with exactly two sheets. On one half of the tangent 
line T 8 T, called the one-sheeted side, the two sheets coincide. On the other half of T 8 T, the 
two-sheeted side, the two sheets are distinct. For a branched surface B, generic branch locus 
means first of all that B is trivalent at each noncrossing point x E l' B, that is, there is a 
neighborhood of x in B of the form Y x (0, 1) where Y is a neighborhood of a generic switch 
in a train track. It follows that B has two sheets at x, and l' B divides TxB into two halves, 
the one-sheeted side on which the two sheets coincide, and the two-sheeted side on which 
the two sheets are distinct. For a crossing point x E l' B, generic branching means that 
there are four ends of l' B - { x}, defining four distinct directions in TxB arranged in cyclic 
order. These four directions divide TxB into four quadrants: a one sheeted quadrant; two 
two sheeted quadrants adjacent to the one-sheeted quadrant; and a three sheeted quadrant 
opposite the one sheeted quadrant ( see figure 1.1). There are three sheets at x, arranged 
from top to bottom as S1 , S2 , S3 ; all three coincide in the one-sheeted quadrant; all three are 
distinct in the three-sheeted quadrant; in one two-sheeted quadrant S 1 and S 2 coincide and 
are distinct from S3 ; in the other two-sheeted quadrant S2 and S3 coincide and are distinct 
from S 1 . Note that l' Bis the image of a piecewise smooth immersion of a 1-manifold which 
passes from one branching direction at x to the opposite direction, whenever it passes over 
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Figure 1.1: Generic branching of a branched surface 

a crossing point x. The domain of this immersion is a 1-manifold called the maw, and its 
components are called maw curves . A maw curve is therefore either an immersion of a 
circle into B with image contained in i B = 8B, or an immersion of an arc into B with 
image contained in TB and endpoints contained in 8B. 

In figure 1.1 the maw appears smooth at each crossing point, but this is neither necessary 
nor convenient-it is useful to allow the maw to be piecewise smooth, especially when 
defining branched surface hierarchies ( see figure 1. 5). 

A branched surface BC M, possibly with boundary, has a regular neighborhood N(B) 
and a decomposition of N(B) into interval fibers or I-fibers, each I-fiber intersecting B 
transversely. The local model for N(B) near i B and near 8B is shown in figure 1.2. 
Define the frontier Fr N(B) = N(B) n cl(M - N(B)). There is a decomposition Fr N(B) = 
Frh N(B) UFrv N(B) as follows. The horizontal frontier Frh N(B) is the set of endpoints of 
the I-fibers, and the vertical frontier Frv N(B) is cl(Fr N(B) - Frh N(B)). The restriction 
of the I-fibration to Frv N(B) defines a fibration over the maw of B; we may embed the maw 
as a section of Frv N(B) transverse to the I-fibers. Note that a circular maw curve embeds 
as the core of an annulus component of Frv N(B), and an interval maw curve embeds as 
the core of a rectangle component of Frv N(B). 

There is a map q: M----+ M, homotopic to the identity, that maps N(B) onto B so that 
the inverse image of a point x E B is an I-fiber in N(B), and so that q I M - N(B) is a 
homeomorphism onto M - B; note that an I-fiber is not necessarily taken to a point where 
that fiber intersects B. We call q an I -collapsing map for B. Restricting q to the core of 
Frv N(B) we obtain the maw curve parameterization of i B. 

Note: we follow the tradition in branched surface theory of using the word "fiber" 
somewhat loosely. The map q: N(B) ----+ B is not a fibration in the sense of homotopy 
theory [Spa81], for it need not satisfy the path lifting property-given a path in B, a 
chosen lift of the starting point to N(B) need not extend to a lift of the whole path. 
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Figure 1.2: An I-fibered neighborhood of a branched surface B, showing the I-fibers of 
the vertical frontier. In (a) we show N(B) near a noncrossing point of TB, with B itself 
shaded. In (b) we show N(B) near a crossing point of B, with the horizontal frontier of 
N(B) shaded on the outside of N(B); the branched surface itself is suppressed in (b). 

Denote P(B) = cl(M - N(B)), Fr P(B) = Fr N(B), Frv P(B) = Frv N(B), and 
Frh P(B) = Frh N(B). Note that the manifold boundary of P(B) is 8P(B) = Fr P(B) U 
(P(B) n 8M). We also denote ,P(B) = Frv P(B) U (P(B) n 8M), a disjoint union of annuli 
and tori in 8P(B). Choosing a core curve for each annulus component of ,P(B), the union 
of the core curves is denoted <rP(B). Each annulus component of ,P(B) lies either in 8M, 
or in Frv P(B), or is a union of rectangles in 8M and rectangles in Frv P(B). Note that 
<rP(B) n Frv P(B) is equal to the maw curves. 

We may regard N(B) and P(B) as manifolds-with-corners: in P(B), an edge where 
Frv P(B) meets Frh P(B) is a corner, with interior angle strictly between 0° and 180°; 
whereas in N(B), an edge where Frv N(B) meets Frh N(B) is a reflex corner with interior 
angle strictly between 180° and 360°. 

The manifold-with-corners structure on P(B) and N(B) described in the last paragraph 
and depicted in figure 1.2 will be called the corner model for these manifolds. We shall use 
two other models for different purposes (figure 1.3). 

First is the cusp model, where each I-fiber of Frv P(B) and of Frv N(B) is collapsed 
to a point. The collapsed image of Frv P(B) is a cusp edge, locally modelled on the set 
{(x,y,z) E R 3 Ix 2:: 0,lzl s; f(x)}, where f: [0,oo)----+ [0,oo) is a cusp function, a 
C 00 function whose value and derivatives all vanish at 0, and which is positive on (0, oo ). 
Similarly, the collapsed image of Frv N(B) is a culvert edge, whose local model is the 
closure of the complement of the local model of a cusp edge, namely { ( x, y, z) E R 3 I x s; 
0 or lzl s; f(x)}. In the cusp model of N(B), the I-fiber over a non-crossing point of 
TB touches the culvert at a single point, and the I-fiber over a crossing point touches the 
culvert at two points. 

We also need the smooth model for N(B), where Fr N(B) is a smooth surface in M; 
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Figure 1.3: Three models of the I-fibered neighborhood of a branched surface. 

the I-fiber over a non-crossing point of TB has one tangential intersection with Fr N(B); 
and the I-fiber over a crossing point has two tangential interections with Fr N(B). 

A lamination A C M is carried by a branched surface B if A C N ( B) and A is transverse 
to the I-fibers. If A intersects each I-fiber then we say that B fully carries A. 

Next we define splitting of a branched surface B. Choose an I-bundle neighborhood 
p: N(B) -----+ B in the corner model. Let F be a compact surface embedded in N(B) 
transverse to the I-fibers, and suppose that 8F = OvF U OiF, where OvF and OiF are 
compact submanifolds with disjoint interior, and OvF = F n OvN(B). Suppose moreover 
that p I int( OiF) is in general position with respect to i B. Then we call F a splitting 
surface, and we define a branched surface BF obtained by splitting B along F, as follows. 
Let N(F) be an I-bundle over F each of whose fibers is embedded in an I-fiber of N(B). 
Let N (BF) = cl ( N ( B) - N ( F)). The branched surface BF is defined abstractly as the 
quotient of N(BF) obtained by crushing each I-fiber of N(BF) to a point. To get a 
concrete embedding of BF in M, perturb the map p I N(BF) so that it crushes distinct 
I-fibers to distinct points. Clearly BF is embedded in N(B) transverse to the I-fibers, 
so the map p I BF is defined and is a submersion called the carrying map from BF to B. 
Notice that if Fis altered by an isotopy of N(B) preserving I-fibers, then BF is unchanged. 
If p I F: F-----+ Bis an embedding, and if E = p(F), then we sometimes abuse terminology 
by saying that BF is obtained by splitting B along E; this abuse of terminology always 
assumes that E lifts to some splitting surface F unique up to an I-fiber preserving isotopy 
of N(B). 

1.3 Finite depth foliations 

Let M be a manifold with torus boundaries. A lamination covering all of M and transverse 
to 8 M is called a foliation of M. A transversely oriented foliation :F is called taut if for 
every x E M there exists an immersion S 1 -----+ M transverse to :F passing through x. If :F 
is taut then :F is Reebless. 

Let :F be a transversely oriented foliation of M. Suppose that every leaf L of :Fis proper, 
meaning that the leaf topology coincides with the subspace topology on L, that is, L is 
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covered by foliation charts each intersecting L in a disc. Define :F0 to be the sublamination 
of :F consisting of the compact leaves, and for each n 1 define :Fn by induction to be the 
sublamination consisting of Fn-l union all leaves L such that cl(L) - L C Fn-l· We say 
that :Fis a finite depth foliation if :Fn = M for some integer n 0. The depth of a leaf L 
is the minimal k such that L C :F k. 

Recall the construction of Gabai [Gab83, Gab87], which shows that taut, finite depth 
foliations are ubiquitous in 3-manifolds. Given a compact 3-manifold M, the "Thurston 
norm" on H 2 (M, 8M; R) is a semi-norm which describes the minimal complexity of a surface 
representing a given integer homology class. More precisely, given a compact surface S let 

x(S) = L -x(So) 
x(So)::;o 

where the sum is taken over components S0 of S. Given (TE H 2 (M, 8M; Z), define x((T) to 
be the infimum of x(S) over all properly embedded oriented surfaces (S, 8S) C (M, 8M) 
representing (T. Then x extends to a pseudo-norm on H 2 (M, 8M; R) called the Thurston 
norm. An oriented surface (S, 8S) C (M, 8M) is norm-minimizing if each component of S 
is incompressible, and S realizes the minimum of x in the homology class of S. 

Theorem 1.3.1 ([Gab83]). Let M be a compact, irreducible 3-manifold with torus bound-
aries. If S is a norm-minimizing surface, then there exists a taut, finite depth foliation :F 
with S as a compact leaf. <) 

1.4 Hierarchies 

In this section, we recall the combinatorial methods used by Gabai to construct finite depth 
foliations. Gabai's original construction in [Gab83] was couched in terms of "sutured mani-
fold hierarchies", and in [Gab87] constructions 4.16 and 4.17, he reworded the construction 
in terms of "branched surface hierarchies". Both points of view will be useful to us: when 
viewing the hierarchy as a whole we usually think in terms of branched surfaces; but when 
looking at a particular level in the hierarchy we think in terms of sutured manifolds. 

1.4.1 Sutured manifolds and their decompositions 

Recall that if M is an oriented manifold and S C M is a submanifold, each orientation 
on S induces a transverse orientation on S, and vice versa, giving a 1-1 correspondence; 
we use this correspondence without comment in what follows. The orientation on 8M 
corresponding to the outward transverse orientation is called the boundary orientation. 

A sutured manifold is a compact, oriented 3-manifold P, equipped with a decomposition 
8P = ,PU R_P U R+P into submanifolds with disjoint interior, so that the following 
properties are satisfied: 
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1. , P is a disjoint union of tori and annuli in 8 P. 

2. R_P n R+P = 0. 

3. 8R_P U 8R+P = 8,P. 

4. For each annulus component AC ,P, one component of 8A is in R_P and the other 
is in R+P. 

The union of annulus components is denoted ,AP, the union of torus components is ,rP, 
and we denote RP= R_P U R+P. The core of an annulus component is called a suture, 
and the union of sutures is denoted (T P. We shall sometimes regard a sutured manifold 
as a smooth manifold-with-corners, so that each component of 8,AP is a corner with 90° 
interior angle; this is called the corner model of P. 

We sometimes put a different manifold-with-corners structure on a sutured manifold 
P, called the cusp model ( compare figure 1.3), which is smooth except for a cusp along 
the suture (TP, which is locally modelled on the set {(x,y,z) E R 3 Ix~ 0,-f(x) s; 
z s; f( x)} where f: [O, oo) -----+ [O, oo) is a cusp function. In the cusp model we have 
(Tp = R_P n R+P = 8R_P = 8R+P. 
Example. Suppose M is a manifold with torus boundaries, and B C M is a transversely 
oriented branched surface with boundary. Suppose also that B is groomed which means 
that for each annulus component A of ct( 8M - 8B), the transverse orientation points 
into A along one boundary circle and out of A along the other. Then P(B) has the 
natural structure of a sutured manifold in the corner model where RP(B) = ahP(B), and 
the transverse orientation points inward along R_P(B) and outward along R+P(B); the 
transverse orientation on RP(B) is defined by pulling back the transverse orientation on 
B under the I-fiber collapsing map P(B) -----+ B. Also, ,P(B) = Frv P(B) U (P(B) n 8M), 
as defined earlier for any branched surface. 

Example. A sutured manifold P is a product if ( P, 1 P) ( F x I, 8 F x I) for some compact 
surface F. 

Now we recall Gabai's operation of sutured manifold decomposition. Consider a sutured 
manifold P in the cusp model. A properly embedded, transversely oriented surface S C P 
is a decomposing surface if the following are satisfied: 

1. S is transverse to (T P. 

2. Sis groomed, that is, for each component T of ,rP, the components of 8S n T, with 
transverse orientation induced from S, are isotopic as transversely oriented circles. 

3. No component of Sis a disc with boundary in R_P or R+P. 

4. No component of 8S is the boundary of a disc in R_P or R+P. 
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. . . 

Figure 1.4: Sutured manifold decomposition. The transverse orientation, on S as well as 
on R, is the orientation pointing out of the page. 

We define a sutured manifold decomposition P P' as follows. As a topological manifold 
we have P' = <t( P - S), with scars s-, s+, where the notation is chosen so that the pullback 
of the transverse orientation on S defines transverse orientations on s- and s+ which point 
into P' along s- and out of P' along s+. Let the remains in P' of the surfaces R_P and 
R+P be denoted R'_ and R~. Define R_P' = s- UR'_ and R+P' = s+ UR~. This gives 
P' the structure of a sutured manifold in a mixture of the cusp and corner models. To 
convert to a pure cusp model, collapse each annulus component of ,rP = S to a cusp. See 
figure 1.4 to see how the suture structure is affected near a point of 8 S n (T P. The overlay 
map P' -----+ P takes each of s-, s+ homeomorphically to S, thereby inducing a gluing map 
g: s+ -----+ s-. The overlay map P' -----+ P is the quotient map obtained by identifying each 
x E 5+ with g( x) E 5-. 
Remark. Gabai's original definition in [Gab83] works in the corner model. In place of the 
condition that S intersects (T P transversely, the requirement is that for each component A 
of I AP, every component of S n A is either an arc connecting opposite boundary circles 
of A, or a "groomed circle", a circle which, when equipped with a transverse orientation 
inherited from S, is oriented isotopic to the boundary circles of A, equipped with their 
transverse orientations inherited from RP. The difference between these two definitions 
is not very strong, because circle components of S n , AP can always be pushed out of 
1 AP by isotopy of S, and the grooming condition implies that the decomposed manifold is 
unaffected by this isotopy. 

1.4.2 Branched surface hierarchies 

Let M be a compact, oriented, torally bounded 3-manifold. A branched surface hierarchy 
in M is a sequence of transversely oriented branched surfaces B 0 C B 1 C · · · C BK in M 
such that: 

• B 0 is a surface. 

• Each component of S£ = <t(Bk - Bk-l) is a sector of Bk. 
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Figure 1.5: Given branched surfaces B 0 C B 1 such that S = S~ = rt(B 1 - B 0 ) is a sector 
of B 1, this figure shows how S attaches to B 0 at a point where 8 S crosses i B 0 , producing 
a crossing point x of B 1 . In (a) the point x is a non-smooth manifold point of i B 0 . In 
(b) the sector S has been attached, with boundary crossing i B 0 at x. In ( c) we show the 
view inside the cusp model for P(B 0 ), looking down the maw. Compare with the sutured 
manifold decomposition depicted in figure 1.4. 

• No component of S£ is a disc whose boundary is a maw circle of Bk. 

• There is no smoothly embedded disc D C Bk-l whose boundary is a maw circle of 
Bk. 

• Each annulus component A of rt(aM -8Bi) is groomed, and so P(Bi) = rt(N -N(Bi)) 
is a sutured manifold. 

• P(BK) is a product sutured manifold. 

Suppose that we convert P( Bk-l) to the cusp model by collapsing each component of 
,AP(Bk-l) to a cusp. Do this collapsing so that each component of S£ n ,AP(Bk-i), an 
arc connecting opposite boundary circles, is collapsed to a point. Let Sk be the image of S£ 
under this collapsing. It follows that Skis a decomposing surface in P(Bk-i), and moreover 

we have a sutured manifold decomposition P(Bk-l) P(Bk)- Therefore, associated to 
each branched surface hierarchy B 0 C B 1 C · · · C BK in M there is a sutured manifold 
hierarchy 

M P(Bo) P(B1) · · · ¾ P(BK) 

in the sense of [Gab83]. Figure 1.5 shows how S£ attaches to Bk-l at a point where 8S£ 
crosses i Bk-1 · 

When the whole sequence B 0 C B 1 C · · · C BK is understood, we will sometimes abuse 
notation and refer to B = BK as a branched surface hierarchy. 

Now we turn to the relation between branched surfaces and finite depth foliations. Let 
:F be a finite depth foliation and let B 0 C · · · C BN-l be a branched surface hierarchy. 
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We have previously defined what it means for a lamination to be carried by a branched 
surface. We say that the foliation :Fis carried by the hierarchy B if there are sublaminations 
:Fa C · · · C :FN-1 C :FN = :F such that :Fn is fully carried by En for O s; n < N, and if 
N(BN ), P(BN) are the I-fibered neighborhood and complementary sutured manifold of EN 
in the corner model, then :FI N(BN) is transverse to I-fibers and :FI P(BN) is transverse 
to the I-fibration of the product structure P(BN) (surface) x I. The definition does not 
require that :Fn consist exclusively of leaves of depth s; n in :F. 

The construction of finite depth foliations given by Gabai in [Gab87] starts by construct-
ing certain branched surface hierarchies ( ones which are "groomed" in a stronger sense than 
we have described), and then produces foliations carried by such hierarchies. We shall need 
the following straightforward fact, whose proof is given in [FM95] for the special case of a 
foliation with isolated levels, meaning that each leaf has a saturated neighborhood in which 
all other leaves have lower depth; the general case is similar. 

Proposition 1.4.1. Every finite depth foliation is carried by some branched surface hier-
arehy. 0 

1.4.3 Sliding a hierarchy 

Part of our strategy for proving the main theorem will be to construct a lamination or flow 
transverse to a given branched surface hierarchy, and apply the previous proposition. But 
there is a hitch: our construction requires operations which change the hierarchy, although 
the changes are quite mild and do not alter the finite depth foliations that are carried by 
the hierarchy. Here is a description of the operations needed. 

Consider a branched surface hierarchy B 0 C · · · C EN = B. If we hold En fixed and 
isotope the attaching maps of r.t(B - En), we obtain a new hierarchy B 0 C · · · C En C 
B~+l C · · · C B~ = B', which we say is obtained from B by sliding, or more specifically by 
sliding along level n. To be more precise, let N(Bn), P(Bn) be the I-fibered neighborhood 
and complementary sutured manifold in the corner model, and let q: M ----+ M be an I-fiber 
collapsing map for En, taking N(Bn) onto En. Let B~ = cl(q- 1(B - En)), a branched 
surface with boundary in P(Bn), which may be identified with B n P(Bn); think of B~ as a 
"complement" of En. Now consider a map h: P(Bn)----+ P(Bn) which is a sutured manifold 
homeomorphism isotopic to the identity relative to ,P(Bn)- Let B' = En U q(h(B~)). Note 
that there is a branched surface hierarchy 

Bo C · · · C Bn C B~+1 C · · · C B~ = B' 

where 
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The relation of sliding generates an equivalence relation among branched surface hierarchies 
in M: two branched surface hierarchies are equivalent if you can get from one to the other 
by a sequence of slidings along levels. We have the following easy fact: 

Proposition 1.4.2. If B, B' are equivalent branched branched surface hierarchies, and if 
B carries a finite depth foliation :F, then B' also carries :F. <) 

It is convenient to translate equivalence of branched surface hierarchies into sutured 
manifold terms, as follow. 

Given a sutured manifold decomposition P II, the homeomorphism g: s+ ----+ s- that 
is consistent with the quotient map II ----+ P is called the gluing map for the decomposition. 
Suppose that h+: R+II ----+ R+II and h_: R,_II ----+ R,_II are homeomorphisms isotopic to 
the identity rel boundary. Then we regard the homeomorphism h_ o go h+ 1 : h+(S+) ----+ 

h_(s-) as a new gluing map, obtained by sliding the old gluing map g. If P is the 
manifold obtained from II by using the new gluing map, then there is an obvious induced 
suture structure on P, and there is an obvious induced isotopy class of sutured manifold 
homeomorphisms P f--+ P. 

Proposition 1.4.3. Let B 0 C · · · C EN be a branched surface hierarchy in M, and for 
each n let P(Bn-l) P(Bn) be the induced sutured manifold decomposition. If we slide 
the gluing map g: S;t"----+ S;; to produce a sutured manifold P(Bn-i), and if we choose a 
sutured manifold homeomorphism P(Bn-l) ----+ P(Bn-l) in the correct isotopy class, then 
there is an induced slide in level n on the branched surface hierarchy. 

Proof. Sliding g means precomposing by h+: R+P(Bn)----+ R+P(Bn) and postcomposing 
by h_: R,_P(Bn) ----+ R,_P(Bn), where h_ and h+ are homeomorphisms isotopic to the 
identity rel boundary. The maps h_, h+ extend to a sutured manifold homeomorphism 
h: P(Bn)----+ P(Bn) isotopic to the identity rel ,P(Bn), and the effect of g on the hierarchy 
is to slide it along level n using the map h. <) 

1.5 Dynamic branched surfaces 

Branched manifolds are often used to study the structure of hyperbolic attractors. Williams 
[Wil 73] put this idea on solid mathematical ground, for expanding attractors of diffeomor-
phisms. Christy [Chr93] later extended this to expanding attractors of flows. In this section 
we shall describe several concepts due to Christy. 

Recall that a semifiow on a space X is a continuous map <p from a subset D C X x R 
to X such that 

• For all x E X, the set Ix = { t E R I ( x, t) E D} is a closed connected subset of R 
containing 0. 
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• <p(x, 0) = X. 

• For all x EX, s E Ix, and t E Icf>(x,s) we haves+ t E Ix and 

<p( X, S + t) = <p( <p( X, S), t) 

A forward semiflow is one whose domain contains Xx [O, oo ), and the domain of a backward 
semiflow contains XX (-oo, O]. The trajectory through a point xis the map Ix ----+ X given 
by t ----+ ¢( x, t). If Xis a smooth sub complex of a manifold then we can speak about smooth 
or piecewise smooth semiflows on X. Also, a vector field V on X generates the semiflow <p 
if Vx is the tangent vector to the trajectory through x, for each x E X. If <p is understood, 
we often write x · t as a shorthand for ¢( x, t). Similarly given A C X and J C R such that 
JC Ix for each x EA, we write A· J = {x · t I x EA, t E J}. 

A sink of a forward semiflow on X is a closed subset S C X such that for all x E X 
there exists t 0 such that x · t ES, and if x ES then x · [O,oo) CS. A source of a 
backward semiflow is similarly defined. 

Consider a branched surface B C M and a nowhere zero vector field V in M tangent 
to B. We say that V points forward along l' B if: 

• For each noncrossing point x E l' B, the vector Vx points from the two-sheeted side 
to the one-sheeted side. 

• For each crossing point x E B, the vector Vx points from the three-sheeted quadrant 
to the one-sheeted quadrant. 

In the top view of figure 1.1, a vector field tangent to the branched surface and pointing 
towards the northwest is a forward vector field. We say that V points backward along l' B 
if - V points forward. 

Remark. Note that if l' B -::/ 0, and if V is tangent to B and forward along l' B, then V 
cannot be smooth or even Lipschitz on M, because V has at least two local trajectories 
through each point of l' B, violating uniqueness of trajectories for Lipschitz vector fields. 

An unstable dynamic branched surface in a compact 3-manifold M is a pair ( B, V) 
where B C M is a branched surface without boundary and: 

• V is a nowhere zero, C0 vector field on M. 

• V is tangent to B. 

• V points forward along l' B. 

Despite the above remark, we say that V is smooth if it is smooth in the ordinary sense 
on M - l' B, and V has a unique smooth forward trajectory starting at each point of M, 
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which depends continuously on the initial point. In other words, V generates a unique 
forward semiflow on M with smooth trajectories. It is easy to construct local models for 
vector fields near i B which satisfy these properties. Notice that B is invariant under the 
forward semiflow generated by a smooth V, and so the restriction V I B generates a forward 
semiflow on B. Note that the definition of an unstable, dynamic branched surface ( B, V) 
does not require smoothness of V. 

A stable dynamic branched surface ( B, V) is similarly defined by requiring V to point 
backward along i B. We say that V is smooth if it generates a unique backward semiflow 
with smooth trajectories. 

When ( B, V) is a ( stable or unstable) dynamic branched surface, we often abuse ter-
minology and say that B is a ( stable or unstable) dynamic branched surface with dynamic 
vector field V. 

Sectors of a dynamic branched surface B are described as follows. Given a sector ~, 
a point p E 8~ is called an external tangency if the overlay map ----+ B takes p to a 
crossing point s and takes a neighborhood of p to one of the two-sheeted quadrants at 
s. Equivalently, p has a neighborhood in~ locally modelled on the subset {(x,y) E R 2 I 
x 0 and - lxl s; y s; lxl}, where p corresponds to (0, 0), and the vector field near p 
corresponds to 8 / ay. Note that if p E 8~ is not an external tangency, then the vector field 
either points into or out of~ at p. An application of the Euler-Poincare index theorem, 
using that the vector field is nowhere zero, shows: 

Proposition 1.5.1. Each sector~ of a dynamic branched surface has one of the following 
types: a torus or Klein bottle, an annulus or Mobius band with no external tangencies, or 
a disc with two external tangencies. <) 

The latter type will be called a bigon sector. 

Remark. Given any branched surface B C M, the existence of a dynamic vector field V is 
a purely combinatorial property of B and of the inclusion B '-------+ M. To see why, first note 
that one can always construct V I i B to point forward. Then, for each sector (T, one can 
extend V over (T if and only if (T has zero index in the sense of proposition 1.5.1. Finally, 
for each component C of r.t(M - B), one can extend V over C if and only if C has zero 
index in a certain sense. 

Thus, in some sense the concept of a dynamic vector field is purely combinatorial, and 
we often regard the dynamic vector field V as a purely combinatorial object associated to 
the branched surface B. 

Remark. Christy [Chr93] requires that the forward semiflow on B generated by V be expan-
sive, which means that there exists E, R > 0, such that for any two trajectories a, /3: R----+ B, 
if d(a(t),j3(t)) < E for all t ER, then there exists r < IRI such that a(t + r) = f3(t) for all 
t ER. 
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For our purposes, we do not want to worry about the global dynamics of the forward 
semiflow, which leaves us free to choose any vector field satisfying the defining properties. 
This allows us to regard V as a purely combinatorial object. 

Nevertheless, in §2.6 the idea of expansivity is re-introduced in the combinatorial dis-
guise of a "Markov section" for V (see proposition 2.6.3). 

Let ( B, V) be an unstable dynamic branched surface. We define "dynamic splitting" of 
B as follows. Let F C N(B) be a splitting surface (or an embedded surface in B). The 
map from F to B is a submersion, so we may pull V back to a smooth vector field V' on 
F. Suppose that V' points into F along OvF and out of F along OiF. Then we say that 
F is a dynamic splitting surface, and BF is a dynamic splitting of B along F. There is a 
vector field VF on M whose restriction to BF is the pullback of V under the submersion 
p I BF. Since Fis a dynamic splitting surface, it is easily checked that VF points toward the 
one-sheeted side of each noncrossing point in i BF, and VF points toward the one-sheeted 
quadrant of each crossing point. 

Dynamic splitting is similarly defined for stable dynamic branched surfaces, except that 
the vector field on the splitting surface F points outward along OvF and inward along OiF. 
We have: 

Lemma 1.5.2. If (BF, VF) is obtained by dynamic splitting from an unstable (resp. sta-
ble) dynamic branched surface (B, V), then (BF, VF) is an unstable (resp. stable) dynamic 
branched surface. <) 

1.6 The taffy pulling example 

Some examples of dynamic branched surfaces are given in [Chr93]. Here we shall describe 
how to produce examples on mapping tori of pseudo-Anosov homeomorphisms. These 
examples have previously been described in the language of "affine branched surfaces" by 
Oertel [ Oer96]. 

Let S be a compact, connected, oriented surface of genus g and with n boundary 
components, such that if g = 0 then n 4. By work of Thurston, such a surface always 
has a pseudo-Anosov homeomorphism f: S ----+ S ( see [FLP+ 79]). Moreover the map f 
has an invariant train track T, which means that f ( T) is isotopic to a train track in N ( T) 
transverse to the I-fibers of N ( T). An invariant train track can be found concretely by 
results of Bestvina and Handel [BH95]. Using an invariant train track, one can construct an 
unstable dynamic branched surface B in the mapping torus M f = S x I/ ( x, 1) ,..__, (f ( x), 0). 
We shall illustrate this construction with a single example. 

Let S be the four holed sphere, depicted in figure 1.6 as a disc with three holes. Let 
t 1 : S ----+ S be the "half Dehn twist" under which the left and middle holes are rotated 
halfway through a circle in the counterclockwise direction, and let t 2 be the half Dehn twist 
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for the middle and right holes. Let f = t11 ot 2 : S----+ S. This is the "taffy-pulling example", 
one of the simplest examples of pseudo-Anosov phenomena. 

The topmost diagram in figure 1.6 shows an invariant train track T for f, the middle 
diagram shows t 2 (T), and the bottom diagram shows t11 o t 2 (T) = f(T). Also shown are 
eight points marked ( a-h) which partition T into ten segments, each segment identified by 
its endpoints, e.g. [a, bl, [b, c], [b, d], .... These segments form a "Markov partition" of T, 

as in [BH92] (see §2.6 for Markov partitions in the context of unstable dynamic branched 
surfaces). The vertex and edge maps are: 

f,h f---+ a ab f---+ bd 
a f---+ b be f---+ de 
d f---+ C cf f---+ ehgfcba 

b,e f---+ d bd f---+ dehgfc 
C f---+ e de f---+ cbafghed 
g f---+ g eh f---+ dba 

Jg f---+ afg 
gh f---+ gha 
fa f---+ ab 
ha f---+ ab 

To construct the unstable dynamic branched surface in M, first we construct a branched 
surface B' CS x [0,1], with B' n (S x 1) = T x 1 and B' n (S x 0) = f(T) x 0. The 
branched surface B' "interpolates" between f ( T) and T, realizing the folding map f ( T) f---+ T. 
To describe the folding map, we regard f(T) as embedded in an I-fibered neighborhood 
N(T). If G is the grey area in the lower diagram of figure 1.6, for each component C of 
<t( G- f( T)), the I-fibration of N( T) induces an I-fibration of C which may be parameterized 
as a0 : [0, 1] x I ----+ C, where af = a0 ( t x I) is an I-fiber, ag is the "degenerate" fiber 
mapped to the cusp of C, and af C 8C. We require that these parameterizations are 
"generic" in the sense that for each t E [0, 1], there are at most two I-fibers of the form 
af, af' which share an endpoint. There is a 1-parameter family of train tracks Tt, where 
T1 = T, To = f ( T), and Tt is obtained from f ( T) by collapsing the fibers af for each C and 
each s E [0, t]. The branched surface B' is defined by B' n (S x t) = Tt x t. A crossing 
point of B' occurs on a level surface S x t if there exist fibers af, af' which share an 
endpoint. Since the I-fiber parameterizations are generic, the branched surface B' has 
generic branching. There are two kinds of crossing points, depicted in figure 1. 7. The 
branched surface B' CS x [0,1] glues up, under the map (x,1) f---+ (f(x),0), to give the 
desired unstable dynamic branched surface B C M. The dynamic vector field on B is 
induced by a vector field on S x [0, 1] which points tranverse upward on each S x t and is 
tangent to B'. The method of folding guarantees that the vector field is forward along l' B' 
( see figure 1. 7 for the vector field near a crossing point). 
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Figure 1.6: The action off= t11 ot 2 on T, and the folding map from f(T) to T. The folding 
map is obtained by collapsing the grey areas. Notice that each switch is folded, that is, the 
grey area contains one component for each cusp of ct( S - f ( T)). 

Figure 1. 7: Two kinds of crossing points. One kind occurs when two folds pass by each 
other going in opposite directions. Another kind occurs when one fold overtakes another 
going in the same direction. 
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The example of this section can be generalized to any compact, oriented, connected 
surface S and any map f: S ----+ S with pseudo-Anosov mapping class. Apply the results 
of [BH95] to get an invariant train track T with a Markov partition. By twiddling their 
construction, we may assume that T is trivalent, and that every switch is folded. Then 
follow the exact same method described in this section to produce an unstable dynamic 
branched surface in the mapping torus Mt = (S x [O, 1 ])/( x, 1) ,..__, (f( x ), 0). Using 1-1 one 
can also produce a stable dynamic branched surface. 



Chapter 2 

Dynamic pairs 

In this section we define and study dynamic pairs of branched surfaces on oriented 3-
manifolds with torus boundaries. One starts with a pair of branched surfaces Bs, Bu C M 
in general position, from which it follows that Bs and Bu are transverse to each other 
and to each other's branch locus, and their branch loci are disjoint. Then one takes a C0 

vector field V on M such that ( Bs, V) is a stable dynamic branched surface and (Bu, V) is 
unstable. The manifold Q = ct( M - ( Bs U Bu)) inherits, by pullback from M, the structure 
of a smooth manifold-with-corners. Also, Q has a vector field obtained by pulling back 
V. Certain faces of Q that come from Bs are labelled with the symbol "s", faces coming 
from Bu are labelled "u", and faces coming from f)M are labelled "b" for "bare". The 
manifold-with-corners Q, equipped with its vector field and labelling, is an example of a 
"dynamic manifold". We will require that each component of Q is topologically simple and 
has "simple dynamics", which says roughly that trajectories of Q are either intervals or 
circles. The main work in defining dynamic pairs is to formulate the precise requirements 
on Q. 

In §2.2 we define manifolds with corners, and in §2.3 we define dynamic manifolds. The 
definition of dynamic pairs is given in §2.4. In the remaining sections, we explore some 
properties of dynamic pairs and develop tools for constructing dynamic pairs. In §2.5 we 
study "dynamic train tracks", which occur for example as the intersection of the branched 
surfaces in a dynamic pair. We use dynamic train tracks to investigate the branched surfaces 
which make up a dynamic pair. In §2.6 we study Markov branched surfaces, a concept due 
to Joe Christy, and we use them to give a method for constructing a dynamic pair starting 
from just an unstable dynamic branched surface. In §2. 7 we show by example how to 
contruct a dynamic pair on any pseudo-Anosov mapping torus. 

The results in this section are combinatorial in nature, and yet they are motivated by 
dynamical considerations. The motivations may not, however, become clear until section 
§3; on the other hand many of the results in §3 depend on technical results from this section. 

42 
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This has led to some difficulties in ordering the presentation. The reader may want to shift 
back and forth between the present section and §3, as needed in order to understand the 
material. 

2.1 Motivation: dynamic pairs in pseudo-Anosov mapping 
tori 

The definition of a dynamic pair will be conceptually simple, but the formal definition re-
quires some unfamilar combinatorial machinery, and it may be helpful to visualize dynamic 
pairs in a familiar situation before launching into the formal definition. To simplify the 
discussion we will stick to the boundaryless case, making a few comments afterward to 
explain the case of nonempty boundary. 

Let f: S -----+ S be a pseudo-Anosov homeomorphism. Let M f = S x I/ ( x, 1) ,..__, (f ( x), 0) 
be the mapping torus off. Recall the construction of an unstable dynamic branched surface 
Bu C M in §1.6. Start from an invariant train track Tu for f. Choose a 1-parameter 
sequence of foldings T;' where T;f = f( Tu) and Tf = Tu, so folding occurs as t increases. 
Construct Bu so that it intersects S X t/ r-v in T;' X t/ r-v. Because folding occurs as t 
increases, there is an upward pointing vector field V tangent to Bu such that (Bu, V) is an 
unstable dynamic vector field. 

Let's examine the components of r.t(M - Bu). Recall that a pseudo-Anosov homeomor-
phism has finitely many "pseudohyperbolic" periodic orbits. At each point x in such an 
orbit, the stable and unstable foliations each have n-prongs for some n 3, and the first 
return map of x induces a k-fold cyclic rotation on these prongs for some k = 0, ... , n - 1. 
Associated to x there is a component of r.t( S - Tu) which is an n-cusped disc. As t increases, 
one traces out an n-cusped disc component of r.t( S - T;'), and the n-cusped disc for x at level 
t = 1 is glued to then-cusped disc for f( x) at level t = 0. Continuing around the orbit of x, 
the n-cusped disc associated to x at level t = 0 eventually returns to itself, with the cusps 
undergoing a k-fold cyclic rotation. Thus, associated to the orbit of x there is a component 
of ct( M - Bu) which has the structure of a solid torus with cusps on its boundary, and 
these cusps trace out an ( n, k) torus knot on the boundary of the solid torus; this will be 
called a u-cusped solid torus in the next section. 

One may similarly construct a stable dynamic branched surface Bs C M: choose an 
invariant train track Ts for f; choose a 1-parameter sequence of foldings T/ where TJ = Ts 
and T1 = J- 1 (Ts), so folding occurs as t decreases; and construct Bs so that it intersects 
S X t / r-v in T/ X t / r-v. The components of r.t( M - Bu) are u-cusped solid tori. 

The key observation is that the train tracks T;' and T/ can be chosen to intersect 
"efficiently", after possibly replacing T;' by r( T;') for some sufficiently large n. After this 
is done, the same vector field V on M will suffice as a dynamic vector field for both Bs and 
Bu. Moreover, we may also assume that for each t E [0, 1] and for each pseudohyperbolic 
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Figure 2.1: A 3-cusped disc of ct(S - Tf), intersected by T/. 

point x of f, if ps is the n-pronged disc of ct( S - Tt) associated to x, and if pu is the 
n-pronged disc of ct(S - Tf) associated to x, then ps n pu has a component which is a 
2n-sided polygon P, with sides of P alternating between arcs in T/ and arcs in Tf. 

With the above assumption, we now describe how components of ct(M - Es) interact 
with components of ct( M - Bu). First, if Ts, Tu are the cusped solid torus components of 
ct(M - Es), ct(M - Bu) associated to the same periodic orbit off, then Ts n Tu contains 
a component of ct(M - (Es U Bu)) which is a solid torus T with corners on its boundary, 
and these corners trace out a ( 2n, 2k) torus knot on 8T. In the next section we shall refer 
to T as a "dynamic solid torus". 

Now we describe the remaining components of ct( M - ( Es U Bu)). If Dt is an n-cusped 
disc component of ct(S - Tf), figure 2.1 shows how Dt might intersect T/. One component 
of ct( Dt - Tt) is a disc with 2n corners, leading to a dynamic solid torus as described 
above. Each remaining component is either a rectangle, a disc with 4 corners, or a one-
cusped triangle, a disc with 2 corners and one cusp. As t increases, the cusps of Dt are 
folded, and meanwhile the cusps of T/ are being split, creating and destroying rectangles 
and one-cusped triangles, or converting one into the other. 

In figure 2.2, we examine the creation and destruction of a certain component of ct(S -
(T/ U Tf)) as t increases, yielding the component of ct(M - (Es U Bu)) shown in figure 2.3. 
In the next section objects of this type are referred to as "pinched tetrahedra" ( see figure 
2.6). 

In conclusion, the components of ct( M - ( Es U Bu)) are either dynamic solid tori or 
pinched tetrahedra. This statement is the main clause in the definition of a dynamic pair 
in M. Other clauses in the definition describe how components fit together in M. 

In the following sections we give detailed descriptions of objects encountered when 
studying ct( M - Es), ct( M - Bu) and ct( M - ( Es U Bu)); in addition to dynamic solid tori 
and pinched tetrahedra, we will also need "dynamic torus shells" which arise when M has 
torus boundaries. 
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Figure 2.2: At time t0 a cusp of T/
0

, while being split, pierces through a branch of T4i, giving 
birth to a 1-cusped triangle at greater times t1 . At time t 2 this cusp has passed through to 
an adjacent branch, converting the 1-cusped triangle into a rectangle at greater times t3 . 

At time t4 a cusp of Tl::i, while being folded, converts this rectangle into a 1-cusped triangle 
for greater times t 5 • At time t6 , this cusp continues to fold, leading to the death of the 
1-cusped triangle. 

Figure 2.3: If the shaded regions in figure 2.2 are stacked one atop the other, the corre-
sponding component of r.t(M - (B 8 U Bu)) is a "pinched tetrahedron" (figure 2.6). 
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2.2 Manifolds with corners 

Let N be a compact topological n-manifold, possibly with boundary. A stratification of N 
is a filtration N( 0 ) C N(l) C · · · C N(n) = N such that N( 0 ) is a finite set (i.e. a compact 
0-manifold), and for each n > 0 the set N(n) - N(n-l) is an n-manifold without boundary, 
the completion of which is a compact n-manifold whose boundary immerses topologically in 
N(n-l). A component of N(n) - N(n-l) ( or its completion) is called an n-stratum. 0-strata 
are called vertices, 1-strata are called edges, and 2-strata are called faces. Note that a 
stratum may be compact and boundaryless, and it may also be empty. 

A surface with corners is a compact 2-manifold F equipped with a covering by charts 
that are locally modelled on certain closed subsets of E2 , with C 00 overlap maps. The 
closed subsets, called standard local models at the origin 0, are as follows: 

• (Interior point) E2 

• (Boundary point) y 2:: 0 

• (Corner) x 2:: 0 and y 2:: 0 

• (Cusp) x 2:: 0 and -f(x) s; y s; f(x), where f: [O,oo)-----+ [O,oo) is a cusp function. 

Formally, a chart for a surface with corners F at p E F is an open set U containing p and a 
homeomorphism ( U, p) ( D 2 n C, 0), where D 2 is the open unit disc in E2 , and C is one 
of the four sets above, the names of which define the type of the point p. A surface with 
corners F has a natural stratification of the form 8° F C 8 1 F = 8F C F, where the vertex 
set 8° F is the set of corners and cusps. 

A 3-manifold with corners is similarly defined, using the following standard local models 
at the origin in E3 = {(x,y,z)} (with fa cusp function): 

• (Interior point) E3 

• (Boundary point) z 2:: 0 

• ( Corner edge) x 2:: 0 and y 2:: 0 

• (Cusp edge) z s; 0 and - f(z) s; x s; f(z). 

• (Apex) x 2:: 0 and y 2:: 0 and z s; 0 

• (Gable) z s; 0 and y 2:: 0 and -f(z) s; x s; f(z) 

A 3-manifold with corners Q has a natural stratification of the form 8°Q C 8 1Q C 8 2Q = 
8Q C Q, where the vertex set 8°Q is the set of apexes and gables, and 8 1Q is the closure 
of the union of all corner and cusp edges. Note that each face of a 3-manifold with corners 
is a surface with corners. 
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2.3 Dynamic manifolds 

A dynamic manifold consists of a 3-manifold with corners Q, a C 0 vector field V on Q, and 
a labelling of each face of Q with one of the symbols b, u, s, p, m, (for bare, unstable, 
stable, plus, minus) such that the following axioms hold ( on first reading it may be easier 
to ignore all axioms involving p and m labels, since these occur only in the context of 
sutured manifolds): 

1. For each face F of Q: 

(a) If F is an m-face then V is transverse to F, pointing out of Q along int ( F). 
(b) If F is a p-face then V is transverse to F, pointing into Q along int ( F). 
( c) If F is a b, u, or s-face then V is tangent to F. 

2. Labelling each edge of Q with the pair of symbols labelling the faces on either side of 
the edge, we have: 

(a) Each uu, ss, and pm-edge is a cusp edge. 
(b) There are no pp, mm, bb, bu, or bs-edges. 
( c) All other edges are corners. 
( d) If E is a uu-edge, then V is transverse to E, pointing out of Q along E ( see 

figure 2 .4 for a concrete local model); in particular, if F is a u-face incident to 
E then V points out of F along E. 

(e) If Eis an ss-edge and Fis ans-face incident to Ethen V points into F along 
E (reverse the direction of the vector field in item 2d). 

(f) If E is an su-edge then V is tangent to E at each point; more precisely in the 
standard local model for a corner edge, V(x,y,z) = (0,0,1). (This property 
follows from ( c)). 

The union of b-faces of Q is denoted abQ, and similarly for 8uQ, a5 Q, apQ, and 8mQ. 
Formally a dynamic manifold is a triple ( Q, V, £) where: V is a C0 vector field on Q; £ is 

a function from the set of faces of Q to the set {b, u, s, p, m}; and the above conditions are 
satisfied. We shall also say that V is a dynamic vector field on Q. Notice in the local model 
for an ss or uu-edge, the formula for V given in figure 2.4 forces V to be C 00 except at a 
point p on the edge itself; V obviously does not have a unique integral curve at p, therefore 
V is not even Lipschitz at p, by the uniqueness theorem for solutions of ordinary differential 
equations. Nevertheless we shall say that V is smooth if it is C 00 at each point not on an 
ss or uu-edge; but it should be emphasized that we do not always require smoothness. 

Despite the formal nature of the definition of a dynamic manifold, there is some geomet-
ric meaning to the labels b, u, s, p, and m, which hopefully will be clarified as properties 
and examples of dynamic manifolds are presented. 
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Figure 2.4: The vector field near a uu-edge and a pm-edge, in cross-section, using the 
standard local model z 0, - f(z) x f(z) for cusp edges. Near a uu-cusp edge 
the vector field is tangent to each curve of the form (x,y,z) =(a· f(t),b,t), where t 
parameterizes the curve, a E [-1, + 1] is a constant, and b E R is a constant. Near a pm-
cusp edge in the standard local model, the vector field points in the positive x-direction. 

From the defining axioms of a dynamic manifold, other properties are deduced as follows. 
If Eis a pm-edge then Vis not tangent to E at any point; more precisely, in the standard 
local model for a cusp edge we can write V(x, y, z) = (1, 0, 0) (see figure 2.4). The types of 
corner edges are: su, pb, ps, pu, mb, ms, mu. If E is a pb, ps, or pu-edge and if F is 
the b, s, or u-face incident to Ethen V points out of F along E; take V(x, y, z) = (0, 0, 1) 
in the standard local model for a corner edge; similar descriptions hold for mb, ms, and 
mu-edges. Labelling each vertex with the triple of symbols associated to the three faces 
incident to the vertex, the types of gables are: uus, uup, uum; ssu, ssp, ssm; pmb, pmu, 
pms; and the types of apexes are psu or msu( apexes will rarely occur). At uus, uup, and 
uum-gables Vis described as follows (see figure 2.5). At a uus-gable, in the standard local 
model for gables, we can use the same formula for V(x, y, z) as given above for uu-edges. 
At a uup-gable, we may use the same formula for V ( x, y, z) but a nonstandard local model 
for the gable, namely z 0, y z, - f(z) x f(z). At a uum-gable, again we may 
use the same formula for V(x,y,z), but we use a nonstandard local model for the gable, 
namely z 0, y -z, - f(z) x f(z). At an ssu, ssp, or ssm-gable V is similarly 
described. At a pmb, pmu, or pms-gable with the standard local model for gables, we 
may take V(x, y, z) = (1, 0, 0) as in figure 2.4 for a pm-edge, intersected with y 0. At a 
corner edge with the standard local model, take V = (0, 0, 1). 

The distinction between b, u, ands-faces-all of which are tangent to the vector field-
is clarified by using the Euler-Poincare formula together with the restrictions on edge and 
vertex labels to list the possible types of faces, a tedious but finite task. Rather than give 
an exhaustive list of the possible types, we point out that only an s-face can have a cusp 
where the vector field leaves the face, as in the uus-gable in figure 2.5; for example one 
possible type of s-face is a one-cusped triangle with two us-edges meeting at a uus-gable, 
and the third edge being an ss-cusp edge (see figure 2.6). Similarly, only au-face can have 
a cusp where the vector field enters the face. The idea is that on a "stable" face flow lines 
converge in forward time, while on an "unstable" face flow lines converge in backward time. 
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Figure 2.5: The vector field near gables incident to a uu-edge. 

If V is a dynamic vector field on Q, a trajectory of V is a differentiable path a: J ----+ Q, 
where J is a connected subset of R, such that for each t0 E J we have da / dt( t 0 ) = V ( a( t 0 )). 

The trajectory is complete if it is not the restriction of a trajectory with larger domain; in 
this case each point of a( 8J) lies in an m-face, p-face, ss-edge, or uu-edge. We also allow 
the degenerate case of a complete trajectory which is a single point lying on a pm-edge, 
or a single point on an muu-gable or a pss-gable. When Vis smooth, each point of Q lies 
on some trajectory, and the trajectory passing through each point not on an ss or uu-edge 
is unique; this follows from the existence and uniqueness theorem for solutions of ordinary 
differential equations. Notice that each us-edge is a trajectory; the orientation on a us-edge 
inherited from V is called the dynamic orientation on that edge. On any us-edge E which 
is not a circle, the dynamic orientation on E is determined by the labelling structure: the 
negative endpoint of E is either a uss-gable or msu-corner, and the positive endpoint is 
either an suu-gable or a psu-corner. 

If V is smooth, we say that ( Q, V) has interval dynamics if each trajectory is a closed 
interval, and circle dynamics if each trajectory is a circle. Roughly speaking, "simple 
dynamics" means either interval dynamics or circle dynamics (but see the "maw pieces" 
below). 

Here are some examples of dynamic manifolds. 

Example. If M is a torally bounded 3-manifold and V is a vector field on M tangent to the 
boundary, then (M, V) is a dynamic manifold where 8M is labelled b. 

Example. Suppose M is a manifold with torus boundaries, V is a vector field on M, and 
( Bs, V) is a stable dynamic branched surface. Let Q = ct( M - Bs). The pullback of V 
to Q defines a dynamic manifold with only b and s-faces, and only ss-edges. A similar 
construction works with unstable dynamic branched surfaces. 

Example. A dynamic manifold Q is ans-cusped solid torus if Q is a solid torus, all edges are 
ss-circles, all faces ares-annuli, and the ss-circles form a family of homotopically nontrivial, 
simple closed curves, which intersects any meridian curve of Q in at least two points. There 
is an ordered pair ( n, k) called the type of Q, where n 2 is the minimal intersection number 
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of the ss-circle family with a meridian curve, and Q is the mapping torus of a rotation on 
an n-cusped disc through an angle 21rk/n. Au-cusped solid torus is similarly defined. 

The only requirement on the dynamic vector field Von Q is that it be tangent to faces, 
exit along a uu-cusp edge and enter along an ss-cusp edge. If V is smooth, one can use 
this property to prove that there exist bi-infinite trajectories of V, using the Conley index 
[Con78]. We say that Vis circular on Q if there exists a homotopy equivalence Q -----+ 5 1 

such that each trajectory of V, when mapped to 5 1 , has positive derivative with respect 
to the standard orientation on 5 1 . Pulling back the standard generator of H 1 ( 5 1 ) Z we 
obtain a generator of H 1 ( Q) called the positive generator. 
Example. A dynamic manifold Q is an s-cusped torus shell if Q T 2 x [O, 1], T 2 x O is a 
b-face, all edges on T 2 x 1 are ss-circles, and all faces on T 2 x 1 ares-annuli. The number n 
of ss-circles is called the type of Q. A u-cusped torus shell is similarly defined. Circularity 
of V on cusped torus shells is defined as for cusped solid tori. 

If the symbol s or u is understood, we will drop it from the terminology for a cusped 
solid torus or torus shell. Cusped solid tori and torus shells are known collectively as 
cusped torus pieces. Note, for example, that if Mt is the mapping torus of a pseudo-Anosov 
homeomorphism f: 5 -----+ 5, and if B C M f is the unstable dynamic branched surface 
constructed by the method of §1.6, then each component of r.t(MJ - B) is au-cusped torus 
piece: there is one u-cusped solid torus for each orbit of singular points of f, and there is 
one u-cusped torus shell for each orbit of boundary components off. 
Example. Let P be a sutured manifold in the corner model, and let V any smooth vector 
field on P which points inward along R_P, outward along R+P, and is tangent along 
,P. Labelling 8P so that 8mP = R_P, apP = R+P, and f)bp = ,P, the pair (P, V) is 
called a dynamic sutured manifold. We can always alter V by a homotopy supported in 
a neighborhood of ,AP so that V restricted to ,AP has interval dynamics, each trajectory 
connecting opposite boundary components. Assuming V is so altered, if we collapse the 
each trajectory of Von ,AP to a point, the result is a dynamic manifold which is the cusp 
model for Q, and each suture becomes a pm-cusp. 

A dynamic sutured manifold is also called an isolating block in the terminology of [ CE 71]. 
Isolating blocks are useful in studying Conley's homotopy index for isolated invariant sets of 
flows. Indeed, in our present context the complementary sutured manifolds of a branched 
surface hierarchy will be isolating blocks for the pseudo-Anosov flow that we eventually 
construct. 
Example. If Bs, Bu is a transverse pair of branched surfaces, and if Vis a vector field on M 
such that ( Bs, V) is a stable dynamic branched surface and (Bu, V) is an unstable dynamic 
branched surface, then Q = ct( M - ( Bs U Bu)) equipped with the pullback of V is a dynamic 
manifold. These examples have b, s, and u-faces, as well as ss, uu, and su-edges. 

As in the example just considered, the examples to follow will have only b, s, and 
u-faces, and only ss, uu, and su-edges. The vector field V will be implicitly determined 
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Figure 2.6: A pinched tetrahedron 

up to homotopy on edges of Q by the labelling structure on aQ, except that the dynamic 
orientation on us-circles must be given explicitly. In each example with "simple" dynamics 
it is easy to construct V explicitly, and we usually leave the construction to the reader. 

Example. A pinched tetrahedron, shown in figure 2.6, is a topological 3-ball with two u-faces 
and two s-faces fitting together in a tetrahedral pattern, with one uu-edge, one ss-edge, 
four us-edges, two suu-gables and two uss-gables. Note that a smooth dynamic vector 
field may be chosen to have interval dynamics. The trajectories make the tetrahedron into 
the join of the ss-edge and the uu-edge. 

Example. A dynamic solid torus is a solid torus Q whose edges form a nonempty family of 
oriented isotopic, nontrivial, nonmeridinal us-circles. Each face is an s or u-annulus, and 
there are no vertices. There exist integers m 1 and O k < m such that Q is the mapping 
torus of a rotation on a 2m-gon through an angle 21rk/m; the number of us-circles, and 
the number of annulus faces, is 2 · gcf(m, k). The pair (m, k) is called the type of Q. We 
say that Q is essential if m 2. 

The only restriction on the dynamic vector field V is that the us-circles all be oriented 
isotopic in Q. There are many vector fields satisfying this condition. One reasonably 
canonical choice is a vector field tangent to a Seifert fibration of Q; when k # 0 there is one 
singular fiber at the core of the solid torus; and when k = 0 there are no singular fibers. 
Another less canonical but still reasonable property is that V be circular, which means 



52 CHAPTER 2. DYNAMIC PAIRS 

that there is a fibration of Q over 5 1 such that each trajectory of V, when mapped to 5 1 , 

have positive derivative with respect to the standard orientation on 5 1 . 

Example. A dynamic torus shell is a torus shell Q T x [O, 1] such that T x O is a b-face, 
and the edges on T x 1 form a nonempty family of oriented isotopic us-circles. The dynamic 
vector field may be homotoped to have circle dynamics, making T a product circle bundle 
over an annulus. The faces on T x 1 are alls and u-annuli, and there are no vertices. The 
number of annulus faces is 2n for some integer n 1 called the type of the dynamic torus 
shell. 

We refer to dynamic solid tori and dynamic torus shells collectively as dynamic torus 
pieces. When the context is clear the adjective "dynamic" may be dropped. 

Example. Our final example (for now) of a dynamic manifold is a maw piece (see figure 
2.7). Topologically, a maw piece is a solid torus. As a manifold with corners, a maw piece 
is the cartesian product of a circle with a one-cusped triangle, a triangle with one cusp and 
two corners. There are two types of maw pieces: a uss and an suu-maw piece. A uss-maw 
piece has one u-annulus and two s-annuli as faces. The edges consist of one ss-circle and 
two oriented isotopic us-circles, each homotopic to the core of the solid torus. The vector 
field on a uss-maw piece can be homotoped so that the u-annulus is foliated by circular 
trajectories, and so that every other trajectory is the 1-1 immersed image of [O, oo ), starting 
at a point on the ss-circle and spiraling asymptotically into a circular trajectory on the 
u-annulus ( as with torus pieces, later we will use other models for V). An suu-maw piece is 
defined similarly. Note that maw pieces have neither interval dynamics nor circle dynamics, 
but some kind of hybrid; we still consider maw pieces to have "simple dynamics". 

Maw pieces will not occur in the definition of a dynamic pair, but they will appear in 
later results which describe the structure of a dynamic pair. For now, we observe that if 
Q is a dynamic torus piece with u-faces F1 , . .. , Fn, and if µ1 , . .. , µn are uss-maw pieces, 
then we may attach µ1 , ... , µn to Q by identifying Fi with the u-face of µi; the result of 
these identifications is an s-cusped torus piece of the same type as Q. Similarly, attaching 
suu-maw pieces to the s-faces of Q results in a u-cusped torus piece of the same type as 
Q. 

2.4 Definition of dynamic pairs 

A dynamic pair of branched surfaces, on a compact, oriented, torally bounded 3-manifold 
M, is a pair of branched surfaces B 8

, Bu C M in general position, disjoint from 8 M, 
together with a C0 vector field V on M, so that the following are satisfied. 

1. (M, V) is a dynamic manifold, in other words Vis tangent to 8M. 
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2. (BS, V) and (Bu, V) are stable and unstable dynamic branched surfaces. Let Q = 
<t(M - (Es U Bu)), a dynamic manifold with dynamic vector field obtained by pulling 
back V under the overlay map Q ----+ M. 

3. The vector field V is smooth on M, except along l' Es where backward trajectories 
are locally unique, and along l' Bu where forward trajectories are locally unique. 

4. Q has simple dynamics. Each component of Q is either a pinched tetrahedron, an 
essential dynamic solid torus, or a dynamic torus shell. In a dynamic torus piece, V 
is circular. 

5. Transience of forward trajectories. For each component K of <t(Bu - Es), there exists 
a u-face F of some torus piece such that F C K and F is a sink of the forward 
semiflow on K. 

6. Transience of backward trajectories. For each component K of <t(Bs - Bu), there 
exists an s-face F of some torus piece such that F C K and F is a source of the 
backward semiflow on K. 

7. Separation of torus pieces. Let Qr be the union of torus piece components of Q. 
The overlay map Qr f---+ M has no face gluings, where a face gluing is a factorization 
Qr -~ X f---+ M such that the quotient map f: Qr ----+ X either identifies two faces 
homeomorphically or identifies one face to itself by a double covering map over a 
Mobius band. 
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Here are some remarks to clarify various points. 

Remark. To clarify the axiom 5 Transience of forward trajectories, note that by axiom 
3 each point of Bu - Es has a unique forward trajectory defined for all future time and 
similarly for axiom 6. Also note that the vector field on Q is smooth, as a consequence of 
axiom 3. 

Remark. Given a dynamic pair Es, Bu on M, the intersection train track T = Es n Bu has 
an orientation induced by V, and T is called the dynamic train track. The intuition behind 
a dynamic pair is that the "interesting" trajectories are the ones contained in T: the set of 
trajectories staying in T may be regarded as a Markov flow, with stable direction tangent 
to Es and unstable direction tangent to Bu. On the other hand, trajectories not contained 
in T have "boring" behavior. For example, trajectories in a dynamic solid torus just wind 
around and around and around. Now a circular flow on a solid torus can still have pretty 
interesting dynamics, but the point is that the trajectories are boring from a homotopic 
perspective-for example, all periodic orbits in the solid torus are homotopic to an iterate 
of the core. 

Trajectories that stay entirely within Tare called orbits of T. An orbit R----+ Tis said to 
be periodic if it factors through a map R ----+ 5 1 ----+ T, where R ----+ 5 1 is a universal covering 
map; we also say that the map 5 1 ----+Tis a periodic orbit. Given a periodic orbit f: 5 1 ----+ T, 

there is a plane bundle f*(T Bu) defined over 5 1 , where T Bu is the tangent plane bundle 
of Bu. If the total space of f*(TBu) is an annulus we say that f is an untwisted periodic 
orbit; otherwise, the total space is a Mobius band, and we say that f is a twisted periodic 
orbit. Note that twistedness may be defined equivalently using f*(T Es). 

Remark. Axioms 5- 7 may seem technical and mysterious at this stage, but they are very 
important for getting good dynamical and topological behavior. For example, they will 
be crucial in the proof of proposition 2.5.1 which says in part that each component C of 
<t( M - Bu) is a u-cusped torus piece. This is a key component in the proof that the unstable 
manifold of a dynamic pair carries a very full lamination (theorems 3.3.1 and 3.3.2). 

Remark. Axiom 7 is independent of the others-here is an example of a pair Es, Bu satis-
fying axioms 1-6 but not axiom 7. Let p: M ----+ 5 be a Seifert fibration of M over some 
compact, oriented 2-orbifold Q. Let cs, cu be closed 1-manifolds in 5 which are trans-
verse to each other and disjoint from the cone points of 5, such that each component of 
<t(5 - (Cs u cu)) is either an even-sided polygon with at most one cone point, or an annu-
lus without cone points and with one boundary circle in 85 and the other boundary circle 
an even sided polygonal curve. Then Es = p- 1 (Cs) and Bu = p- 1 (Cu) give the desired 
example. Note that the overlay map ct( M - ( Es U Bu)) ----+ M identifies faces of torus pieces 
in pairs ( see also the next remark). 

In the presence of axioms 1-6, the nonexistence of face gluings may be reformulated as 
follows: 
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Proposition 2.4.1 (Equivalence of face and corner gluings). Suppose M is a com-
pact, oriented, torally bounded 3-manifold, and suppose Bs, Bu, V satisfy axioms 1-6. Let 
Qr be the union of torus piece components of Q = ct( M - ( Bs U Bu)). Then Qr has face 
gluings if and only if it has "corner gluings". That is, axiom 7 Separation of torus pieces 
is satisfied if and only if Qr has no corner gluings, where a corner gluing is a factorization 
Qr ____!!____, Y -----+ M where g: Qr -----+ Y either identifies two corner circles homeomorphically 
or identifies one corner circle to itself by a double covering map over a circle. 

Proof. If there is a face gluing then by looking at boundary circles of the glued faces we 
obtain corner gluings. 

Suppose there is a corner gluing. Let , be the periodic orbit in T resulting from the 
gluing. Consider first the case that , is untwisted, and suppose for the moment that , 
is embedded in T. Let N ( 1 ) be a regular neighborhood of , in M, and let As C N ( 1 ) n 
BS, Au C N(,) n Bu be smooth, properly embedded annuli in N(,), dividing the solid 
torus N(,) into four quadrants q1, q2, q3, q4 numbered in circular order. By assumption 
at least two of these quadrants lie in dynamic torus pieces. If two adjacent quadrants lie 
in dynamic torus pieces then there is a face gluing, a contradiction. Suppose that two 
opposite quadrants lie in dynamic torus pieces, say q1 and q3 . Choose the notation so that 
As separates q1 U q2 from q3 U q4, and Au separates q2 U q3 from q4 U q1. Since Bun q1 = 0 it 
follows that Bun q2 = 0. Since Bs n q3 = 0 it follows that Bs n q2 = 0. Therefore, q2 lies in 
a dynamic torus piece ( and similarly q4 lies in a dynamic torus piece). Therefore the two 
adjacent quadrants q1 , q2 both lie in dynamic torus piecees, and so there is a face gluing, a 
contradiction. 

This argument did not really depend on I being embedded: if, is not embedded replace 
N( 1 ) by an immersed solid torus. And if, is twisted, there is an analogous argument where 
As,Au are Mobius bands. ¢ 

Remark. Another possible alternative to axiom 7 Separation of torus pieces is Torus piece 
disjointness, which says that the union of torus pieces embeds in Munder the overlay map. 
However, Torus piece disjointness is strictly stronger than Separation of torus pieces-in 
section 2. 7 we give an example of a dynamic pair which violates Torus piece disjointness 
by having two corner circles of torus pieces intersect nontrivially under the overlay map. 

This is a somewhat unfortunate state of affairs-several technical details would be 
simplified if one had Torus piece disjointness. On the other hand, from a constructive point 
of view, Torus piece disjointness is more difficult to verify, being stronger than Separation 
of torus pieces. The reader is encouraged, over the next several sections, to imagine how 
the theory might be changed by requiring Torus piece disjointness. 
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2.5 Dynamic train tracks 

The main results of this section describe the structure of the two branched surfaces that 
make up a dynamic pair, and the train track which occurs as their intersection. 

Suppose that ( B, V) is an unstable dynamic branched surface in a compact, oriented 
3-manifold M with torus boundaries. Note that ct(M - B) is a dynamic 3-manifold (with 
respect to the pullback of V), all faces of which are labelled u orb. We say that B is very 
full in M if each component of ct(M - B) is au-cusped torus piece. Very full is similarly 
defined for a stable dynamic branched surface. 

Proposition 2.5.1. Let M be a compact, oriented 3-manifold with torus boundaries. Sup-
pose that Bs, Bu is a dynamic pair in M. Let Q = ct( M - ( Bs U Bu)), ps = ct( M - Bs), 
pu = ct(M - Bu). Then: 

1. Bs is very full in M. 

2. Inclusion induces a type preserving, 1-1 correspondence between dynamic torus pieces 
of Q and components of ps. If T C Q and C C ps are corresponding components, 
then ( abusing notation) each component of ct( C - T) is a uss-maw piece µ, andµ is 
attached to T by identifying the u-face ofµ with some u-face of T. 

3. The dynamic vector field on each component of ps is circular. 

4. Bs does not carry a closed surface. 

5. No sector of Bs contains a periodic trajectory of the dynamic vector field. 

Similar statements hold for Bu and pu. 

Remark. With T, C as above, the proof will show that for each maw piece component µ 
of ct( C - T), the branched surface Bu n µ consists of "tongues" dividing µ into pinched 
tetrahedra, as shown for example in figure 2.8. 

Remark. This proposition shows that the axiom Separation of torus pieces of a dynamic 
pair implies a seemingly stronger property, namely that the interiors of faces of torus pieces 
map disjointly under the overlay map. 

Remark. From proposition 1.5.1 and the fact that Bs carries no closed surface it follows 
that each sector is either a bigon, an annulus, or a Mobius band. If we knew that Bs 
contained no annulus or Mobius band sectors, then property 5 of proposition 2.5.1 would 
follow easily, because if a bigon sector (T contained a periodic trajectory of V then the 
Euler-Poincare formula would imply that (T contains a zero of V, but V has no zeroes. 
We would therefore have a stronger theorem if we could prove that Bs has no annulus or 
Mobius band sectors. I suspect that this is true, at least in the "transitive" case when T is 
strongly connected, but I am not certain. 
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Figure 2.8: A uss-maw piece divided into six pinched tetrahedra by tongues. The model 
vector field depicted in figure 2. 7 must be homotoped, to make it tangent to the tongues. 
After homotopy, the vector field is not uniquely integrable along the unstable branch locus, 
but it does generate a forward semiflow. 
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The rest of this section is devoted to the proof of proposition 2.5.1. The proof will use 
some tools whose importance will grow throughout the rest of this paper, so we will take a 
leisurely path through the proof, taking care to develop the tools in some generality. 

The main tool used in the proof is a "dynamic train track" on a dynamic branched 
surface, a concept motivated by the train track T = Bs n Bu associated to a dynamic pair 
Bs,Bu. 

Let T be a train track with generic branching, let s be a switch, and suppose Tis oriented 
in a neighborhood of s. We say that s is a converging switch if the orientation points from 
the two-sheeted side to the one-sheeted side, and s is a diverging switch if the orientation 
points the other way. 

A dynamic train track in an unstable dynamic branched surface ( B, V) is an oriented 
train track T embedded in B such that for some dynamic vector field V' on B we have: 

1. V' is tangent to T, and V' is smooth on B, except at diverging switches of T. It 
follows that each x E ct( B - T) which is not a cusp of ct( B - T) has a unique forward 
trajectory. 

2. T is disjoint from the crossing points of B, and the set of converging switches of T is 
Tn TB. 

3. Transience of forward trajectories. For each component K of ct(B - T), there exists 
a smooth, compact, connected surface A C K such that 8 A C 8 K, and A is a sink of 
the forward semiflow on K generated by V'. 

As a consequence of item 2 we have: 

4. Each diverging switch of T lies in B - TB, i.e. in the interior of some sector of B. 

Given a component K of ct( B - T), if A is the sink of K, then V' is tangent to A and to 
8A, and so A is a torus, Klein bottle, annulus, or Mobius band. We say that T fills up B 
if the sink of each component of ct( B - T) is an annulus or Mobius band. 

The definition of a dynamic train track T in a stable branched surface B, and the 
definition of filling up, are obtained by obvious analogy with the word "sink" replaced by 
"source". 

Lemma 2.5.2. Given a dynamic pair Bs, Bu in M, the train track T = Bs n Bu is a 
dynamic train track filling up each of the dynamic branched surfaces Bs, Bu. <) 

In order to further understand dynamic train tracks, we study the structure of ct(B - T) 
in more detail. 

A cusped branched surface is an object K satisfying the definition of a branched surface 
with boundary, except that a boundary point may be locally modelled on a cusp point, as in 
the definition of a surface with corners. Given a cusped branched surface K, the boundary 
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8K is a train track, with nongeneric behavior at the cusp points: each cusp point of K 
is a switch of 8K whose one-sheeted side is empty. Each cusp point of K is a topological 
1-manifold point of 8 K, so we may smooth 8 K at each cusp point to obtain a train track 
with generic switching. Now consider a vector field VK on K such that VK is tangent to 
8K, VK points inward along each cusp, and VK points forward along TK; we call K a 
cusped unstable dynamic branched surface. As an immediate consequence of items 2-1 in 
the definition of a dynamic train track, we have: 

Lemma 2.5.3. If B C Mis an unstable dynamic branched surface and TC Bis a dynamic 
train track, then rt( B - T) is a cusped unstable dynamic branched surface. Moreover, pulling 
V back via the overlay map we obtain a vector field making rt( B - T) into a cusped unstable 
dynamic branched surface. <) 

The structure of the train track 8 rt( B - T) is described in the following definition. 
A singular orientation on a train track /3 is an orientation defined on the complement 

of a finite set of manifold points of /3 called singularities, such that the orientations point in 
opposite directions on the two sides of a singularity. Given a singularity s, if the orientations 
point away from s then we say that sis a source, or more specifically an orientation source; 
if the orientations point away from s then s is a sink or an orientation sink. A trivalent 
train track /3 equipped with a singular orientation is called unstable if each singularity is a 
source, and each switch is converging. Similarly, /3 is stable if each singularity is a sink and 
each switch is diverging. As a further consequence of the definitions we have: 

Lemma 2.5.4. Continuing the notation from the above lemma, the restriction of the vector 
field to 8 rt( B - T) makes it into an unstable train track with one orientation source for 
each cusp. Similar statements hold for a dynamic train track in a stable dynamic branched 
surface. <) 

The train track 8 rt( B - T) might be called the "tangentially peripheral train track" 
associated to T. We can also associate a "transversely peripheral train track", as follows: 

Lemma 2.5.5. Continuing the above notation, consider rt(M - B), a dynamic manifold 
with u and b-faces, and uu-cusps. Let T 1 be the remains of T in rt( M - B). The restriction 
of the vector field on rt(M - B) to T 1 determines an orientation which is singular at the 
cusps, making T 1 into a stable train track. Similar statements hold for a dynamic train 
track in a stable dynamic branched surface. <) 

Further structure of stable and unstable train tracks is described as follows. 
Given a train track /3 and a smoothly embedded circle , C /3, a spiralling orientation 

on, is an orientation for which, if extended continuously to a neighborhood of, in /3, each 
switch of /3 on the curve , is a converging switch. In other words, all train paths arriving 
at , agree with the spiralling orientation on 1 . The train track /3 is said to be rational if: 
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• There are only finitely many smoothly immersed circles in /3, called cycles. 

• Each cycle is embedded, and the cycles are pairwise disjoint. 

• Each cycle has a spiralling orientation. 

Note that any infinite train path in a rational train track /3 eventually spirals around a 
cycle. 

The notions of stable and unstable train tracks are related to rationality by the following 
easily proved fact: 

Lemma 2.5.6. Suppose /3 is a connected train track not homeomorphic to a circle. If /3 is 
unstable then: 

• /3 is rational. 

• For each cycle I C /3, there are no singularities on 1 , and the orientation of /3 
restricted to I is a spiralling orientation. We say that I is a circular sink of /3. 

• A branch of /3 contains a source if and only if both ends of the branch are on the 
two-sheeted side of a switch. 

• No branch of /3 has both ends on the one-sheeted side of a switch. 

• Given a train path p : [ 0, 1] ----+ /3, there is at most one point t E [ 0, 1] such that p( t) is 
a source of /3. 

If /3 is stable, the same statements hold replacing the word "agrees" with "disagrees" and 
"circular sink" with "circular source". 

When a dynamic train track T fills up an unstable dynamic branched surface B, propo-
sition 2.5.7 will give us more detail about the structure of each component K of r.t(B - T). 
In particular, if A is the sink of K -so A is an annulus or Mobius band, also called a ring-
then K can be built up from A by inductively attaching certain sectors called "tongues" 
and so we will call Ka "ring with tongues" (figure 2.9 shows a tongue, and figure 2.8 shows 
tongues attached to a ring). It will follow that the unstable train track 8K has either one 
or two circular sinks, depending on whether A is a Mobius band or annulus. We turn to 
the description of a "ring with tongues". 

Let T be a disc with one cusp c and at least two corners (see figure 2.9). Let a,/3 be 
the two edges adjacent to the cusp, and let a, b be the corners of T which are at the ends 
of a, /3 opposite c. Let 1 = cl( 8T - ( a U /3)), an arc connecting a and b consisting of one or 
more edges of T meeting at corners. Let Vr be a vector field on T which is tangent to a 
and /3, pointing inwards at c, and transverse outwards at each point of,. Then (T, Vr) is 
called a tongue, or more specifically an unstable tongue, and , is the attaching arc of T. If 
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Figure 2.9: An unstable tongue with cusp c and attaching arc , . 

Vr points outward at the cusp and inward along, then (T, Vr) is a stable tongue. When 
Vr is understood we may drop it from the notation and say simply that T is a tongue. 

Let K' be a cusped unstable branched surface. Let ,' be an embedded arc in K' with 
81 ' C 8K' such that,' is transverse to the vector field on K'. Form a new cusped unstable 
branched surface K by gluing an unstable tongue T to K', identifying the base , of T with 
the arc ,', so that the gluing map is smooth, the tangent planes match up along the gluing 
locus, and the vector fields agree along the attaching arc. We say that K is obtained from 
K' by attaching a tongue. 

A cusped unstable dynamic branched surface K is called a ring with tongues if K is 
built up from a ring-an annulus or Mobius band-by inductively attaching tongues. That 
is, there exists a sequence K 0 C K 1 C · · · C Kn = K, each a cusped unstable dynamic 
branched surface with respect to the vector field obtained by restriction from K, such that: 

• 8Ki C 8K. 

• K O is an annulus or Mobius band smoothly embedded in K. 

• Ki is obtained from Ki-l by attaching a tongue Ti C K. 

Note that l' K is the union of the attaching arcs for the tongues. 

Proposition 2.5. 7. Let B be an unstable dynamic branched surface, and let T C B be a 
dynamic train track. Then T fills up B if and only if each component of <t( B - T) is a 
ring with tongues. A similar statement holds for a dynamic train track in a stable dynamic 
branched surface. 

Proof. One direction is an immediate consequence of the observation that in a ring with 
tongues, the ring is a sink. 
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To prove the converse, consider a component K of r.t(B - T), and let R be the sink. Let 
c be a cusp of K. Let ,' be the boundary of a regular neighborhood of c in K, so ,' is a 
properly embedded arc in K, which we may choose to be transverse to V. 

We claim that for each x E ,' the forward trajectory x · [O, oo) intersects i K. To 
see why, we know that x · [O, oo) eventually lands in R. Note that R n ,' = 0, because 
each backward trajectory from ,' ends at c, but each point in R has at least one infinite 
backward trajectory. Thus, x · [O, oo) has a first intersection point with R, and this point 
must be in i K, proving the claim. 

Let y( x) be the first point of i K hit by x E ,', and let , = {y( x) I x E ,'}. Clearly 
y: ,' -----+ , is a homeomorphism, and , is the attaching curve of a tongue T with cusp c. 
Removing T - 1 from K produces a connected, cusped branched surface with one fewer 
cusp which still has R as a sink. Continuing inductively, eventually we obtain a connected 
sub-branched surface R' C K which has no cusps. Note that R' is a sink of the forward 
semiflow on K. Note also that R C R', because each point of R has at least one infinite 
backward trajectory, but no point of K - R' does. 

It remains to show that R = R'. Arguing by contradiction, suppose R -::/ R' and let 
x E R' - R. Although x does not have a uniquely defined backward trajectory, nonetheless 
we claim that there exists an infinite backward trajectory. To define it, start flowing 
backward from x, and whenever the trajectory hits i R', choose an arbitrary sheet to 
continue backward along. This process may be continued as long as the trajectory never hits 
a cusp, but R' has no cusps. There exists, therefore, a backward trajectory p = x · (-oo, O] 
in R'. Since R is invariant under the forward semiflow, and since x ff. R, it follows that 
p n R = 0. Choose an accumulation point y for p, i.e. a limit point of x - ti for some sequence 
ti -----+ - oo. Since p is transverse to i R', and since p is disjoint from the sub-branched surface 
R C R', it follows that y ff. R. We claim that the forward trajectory through y is disjoint 
from R, for if y · t E R for some t > 0 then by taking ti sufficiently close to -oo so that 
p( ti) is close to y it follows that p( x, ti + t) E R, contradicting the fact that p n R = 0. The 
forward trajectory through y is therefore disjoint from R, contradicting the fact that R is 
a sink of K. 

This shows that R = R', and therefore K is obtained from the ring R by inductively 
attaching tongues. <) 

Now we turn to: 

Proof of proposition 2.5.1. We start by simultaneously proving items 1 and 2. Let C 
be a component of ps. First we claim there exists a torus piece T of Q such that T C C. 
Choose x E int(C). In the first case, x E T for some torus piece T, and it follows that 
T C C. In the second case x E Bu - Bs, and by applying axiom 5 in the definition of 
a dynamic pair, Transience of forward trajectories, it follows that the forward trajectory 
of x is disjoint from Bs and eventually lies in a u-face of some torus piece T, from which 



2.5. DYNAMIC TRAIN TRACKS 63 

it follows that T C C. The only remammg case is that x E int(t) for some pinched 
tetrahedron t, and then the forward trajectory of x eventually hits the uu-edge of t at a 
point of int( C) n ( Bu - Bs), reducing to the previous case. This establishes the claim. 

Let A be (the image in C of) a u-face of T. Let K be the component of r.t(Bu - Bs) 
containing A. By proposition 2.5. 7, A is an annulus or Mobius band, and K is obtained 
from A by attaching a possibly empty set of tongues. We claim that in fact A is an annulus, 
and there is at least one tongue: if A were a Mobius band then A would be double covered 
by a u-face of T, violating axiom 7; and if there were no tongues then K = A would be 
equal to (the image of) another face of a torus piece, also violating axiom 7. 

Let µ be the component of r.t( C - T) containing A as a u-face. Then K C µ, from 
which it follows that µ has an ss-cusp circle , intersecting K in one or more cusp points 
of K. The points of Kn, yield a circular subdivision of, into arcs 11 * · · · * tn· Each ti 
is the ss-cusp edge of a pinched tetrahedron component Ti of Q. Orient , so that for each 
i E Z/n we have Head(,i) = Tail(,i+i), and denote this point by Xi. 

Following the proof of 2.5.7, define by induction K = K 0 :J K 1 :J · · · :J Kn= A, where 
Ki-l is obtained from Ki by attaching a tongue Ti with cusp Xi. Note that the tongue T1 
is a subset of au-face of T 1 , and also of au-face of T 2 ; we may glue T 1 and T 2 along the 
tongue T 1 to obtain a pinched tetrahedron denoted T~. Continuing inductively, we may glue 
T[ and Ti+l along Ti to obtain a pinched tetrahedron denoted Tf+ 1 . Consider the pinched 
tetrahedron T~. The tongue Tn is the entirety of one u-face of T~, and a subset of the other 
u-face; gluing these two u-faces together along Tn one obtains a uss-maw piece with u-face 
A, and clearly this maw piece is identified with µ. 

This shows that the components of r.t( C - T) are maw pieces, one attached to each 
u-face of T, and hence C is a u-cusped torus piece of the same type as T. This proves 
statements 1 and 2 of proposition 2.5.1. Statement 3 follows easily from the dynamical 
properties of maw pieces combined with the circularity of the vector field on dynamic torus 
pieces. The analogues of statements 1-3 for Bu follow by similar arguments. 

Next we prove statement 4, switching our point of view to the branched surface Bu: we 
show that Bu carries no closed surface. Assuming that Bu carries the closed surface F, we 
derive a contradiction. Since V points forward along l' Bu it follows that any trajectory of 
V that starts in F stays in F. If Bu n T were empty it would follow that F is contained 
in the sink of a component of r.t( Bu - T), contradicting the fact that all sinks are annuli 
and Mobius bands. Therefore TF = T n F -::/ 0. The train track TF is oriented and has 
no converging switches, and therefore TF is a stable train track with no orientation sinks. 
A simple combinatorial exercise shows that a stable train track with no orientation sinks 
can have no diverging switches, and therefore each component of TF is a circle. Let , be a 
component of TF. If Thad a diverging switch s lying on,, thens would also be a diverging 
switch of TF, a contradiction. It follows that every switch of T lying on , is a converging 
switch, and so , is a "circular sink" of T. We have therefore shown that if Bu carries a 
closed surface then T has a circular sink. 
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Now we show that if, is a circular sink of T then , is a corner circle of some torus piece 
of Q. Let R be a smoothly embedded annulus or Mobius band in Bu with core 1 . Let C be 
a component of ct( R- 1 ), and let , c be the component of 8C mapped to , under the overlay 
map C f---+ R. There exists a component K of <t(Bu - T) such that C C K and ,c C 8K. 
Applying proposition 2.5. 7, K is obtained from an annulus A by attaching tongues. Clearly 
CC A and ,c C 8A. There exists a torus piece component T of <t(M - (Bs U Bu)) having 
A as au-face, and it follows that , is a corner circle of T. 

Finally, we show that a corner circle , of a torus piece T cannot be a circular sink of T, 

and so T has no circular sinks, providing the contradiction that proves statement 4. Let A' 
be the s-face of T incident to , , let µ' be the suu-maw piece attached to T along A', and 
let F be the u-face ofµ' incident to , . We know that µ' n Bs is obtained from the annulus 
A' by attaching at least one stable tongue. The intersection of F with the boundary of the 
first stable tongue contains a branch of T that intersects , at a diverging switch, and so , 
is not a circular sink. 

In proving statement 4 we have proved slightly more, namely that T has no circular 
sinks. Repeating the argument for Bs it also follows that T has no circular sources. 

Next we prove statement 5 for Bu, that no sector (T of Bu contains a periodic trajectory 
of V. Arguing by contradiction, let , C (T be a periodic trajectory of V. There are two 
cases, depending on whether, n T = 0. 

If, n T-::/ 0 then, C T, because Vis smooth on Bu except at diverging switches, and 
hence backwards trajectories starting in T n (T stay in T as long as they stay in (T. Also, the 
only switches of T on, are diverging switches, and hence , is a circular source of T. But 
we have just proved that T has no circular sources. 

If, n T = 0, then there exists a component K of <t(Bu - T), with annulus sink R, such 
that , C R. Note that , is isotopic to a core curve of the annulus R, for otherwise , is 
homotopically trivial and bounds a disc, whose interior contains a zero of V by the Euler-
Poincare formula, a contradiction. By the Separation of torus pieces axiom of dynamic 
pairs, together with proposition 2.5. 7, K has at least one tongue attached to R along 
an arc a C T K such that a connects opposite components of 8R. It follows that , , 
like any homotopically nontrivial curve in R, has nonempty intersection with a C T Bu, 
contradicting that I is contained in a sector of Bu. <) 

Remark. A converse to proposition 2.5.1 is also true: if Bs, Bu is a pair satisfying axioms 
(1-4) of a dynamic pair, and if each component of ps and pu is obtained from a torus 
piece and some divided maw pieces by identifying annulus faces as in the conclusion of 
proposition 2.5.1, then Bs, Bu satisfy axioms 5-7 and hence Bs, Bu is a dynamic pair. To 
prove axiom 7 Separation of torus pieces, each u-face of each torus piece embeds properly 
in ps, and the interior of ps embeds in M, and so different u-faces of torus pieces have 
interiors mapping disjointly to M. The proof of axioms 5, 6 Transience of forward and 
backward trajectories follows from the behavior of the semiflow in a divided maw piece. 
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The definition of a dynamic pair can therefore be formulated in two equivalent ways: 
with axioms 5-7; or with the description of ps and pu in proposition 2.5.1. In practice 
axioms 5- 7 seem easiest to verify and so are more appropriate for a definition. 

2.6 Unstable Markov branched surfaces yield dynamic pairs 

In proposition 2.6.2 we give a construction which provides a partial converse to proposition 
2.5.1: starting from a dynamic branched surface B which satisfies the conclusions of 2.5.1, 
and assuming that the dynamics on B are "Markov" in a certain sense, we show how to 
construct a dynamic pair. We begin with a discussion of Markov branched surfaces. 

Let ( B, V) be an unstable dynamic branched surface with smooth V generating a for-
ward semiflow <p. A Markov section of <p is a collection I of closed intervals smoothly 
embedded in B satisfying the following properties: 

1. Each I E I is transverse to <p. 

2. For each IE I, either int(I) n TB= 0 or IC TB. 

3. For each I# I' EI we have In I' C f)J n fJI'. 

4. I is a cross section. For each x E B there exists t > 0 such that x · t E LJ I. The 
smallest such value of t, called the first return time of x, is denoted tx, and the 
function x f---+ tx is a bounded function on B. The map f ( x) = </>( x, tx) is called the 
first return map. 

5. The Markov property. For any I E I and x E fJI, there exists I' E I such that 
f(x)EfJI'. 

If <p has a Markov section I then we say that (B, V,I), or more informally B, is a Markov 
branched surface. 

An important property of a Markov branched surface is that for every p E B, every 
backward trajectory starting from p intersects LJ I after a bounded time; this is true despite 
the nonuniqueness of backward trajectories. To prove this, suppose that there were an infi-
nite backward trajectory that was disjoint from LJ I. Let q be an accumulation point of that 
trajectory. Then the forward trajectory from q would be disjoint from LJ I, contradicting 
that I is a cross section. 

The following proposition says that the Markov property is necessary, in order for a 
dynamic branched surface to be part of a dynamic pair: 

Proposition 2.6.1. Given a dynamic pair B 8
, Bu in a compact, oriented, torally bounded 

3-manifold M, there exists a dynamic vector field V for Bu such that (Bu, V, I) is a Markov 
branched surface for some I. 
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Sketch of proof. If one is given a Markov section I, the set 

/3 = u X • [O, 00) 
xE8l,IEI 

is a finite 1-complex. Our approach is to construct the appropriate 1-complex /3 and then 
construct the Markov section. 

Consider a component K of r.t(Bu - Es). By proposition 2.5.1 K is obtained from an 
annulus A by attaching tongues. For each cusp z of K choose a point Xz E K - 8K near 
the cusp, so that the backward trajectory from Xz hits z after a short time. Let XK be 
the collection of all the points x z for cusps z E K, together with all branch points of B 
lying in K. For each x E XK, the forward trajectory x · [O, oo) eventually lands in A. By 
homotoping the vector field, we may assume that x · [O, oo) is eventually periodic, once it 
hits A. In other words, there exists a periodic orbit ,x C A such that the image of x · [O, oo) 
intersected with A is tx· We can, moreover, homotope so that this property is true for all 
x EX= LJK XK. Having done this, define /3 = UxEX x · [O, oo ), a finite 1-complex parallel 
to the dynamic vector field, consisting of finitely many periodic orbits plus finitely many 
finite trajectories each ending on one of these periodic orbits. 

The Markov section I may now be constructed by taking sufficiently many intervals 
transverse to V whose endpoints lie on (3. To construct a typical element of I, start 
at a point of f3 and trace out an arc transverse to V, avoiding l' Bu and any previously 
constructed elements of I, and passing right through T = Es n Bu, stopping the first time 
you hit (3. A cross-section I may be constructed in this manner, by taking the starting 
points to be an E-dense subset of /3 for some E > 0. By construction the Markov property 
is satisfied, and the remaining properties of a Markov section are easily verified. <) 

Combining the above proposition with proposition 2.5.1 we obtain a list of necessary 
condition for an unstable branched surface B to be part of a dynamic pair. The following 
proposition says that these conditions are also sufficient, after some minor adjustments 
on B: 

Proposition 2.6.2. Let M be a compact, oriented, torally bounded 3-manifold. Suppose 
that (B, V,I) is an unstable Markov branched surface. Suppose moreover that: 

• B is very full in M. 

• The dynamic vector field on each component of r.t(M - B) is circular. 

• B carries no closed surfaces. 

• No sector of B contains a periodic trajectory of V. 

Then we can construct a dynamic pair Es, Bu in M such that Bu is obtained from B by 
dynamic splitting. 
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Remark. The proof will show that B is split along a dynamic splitting surface consisting of 
a disjoint union of annuli and Mobius bands, thereby creating some new cusped solid tori 
of type (2,0) or (2,1). 

Proof. The proof breaks into three major steps. Step 1 uses the Markov section to con-
struct a dynamic train track T C B which fills up B. Step 2 consists of a sequence of 
alterations on T and B, including possibly some dynamic splitting of B. Step 3 constructs 
a stable branched surface Bs so that T = Bs n B, and shows that Bs, Bu = B is a dynamic 
pair in M. In each step the dynamic vector field V will be altered, but we make sure to 
do this so that V is still a dynamic vector field on B, and after step 3 we check that V is 
a dynamic vector field for the pair Bs, Bu. 

Step 1: From Markov section to dual dynamic train track. Our immediate goal 
is to homotop V through dynamic vector fields on B to a new dynamic vector field V', and 
construct a dynamic train track T tangent to V', so that T fills up B. This T will be called 
the dual dynamic train track to I. In some sense the construction of T is the inverse of the 
construction in proposition 2.6.1. 

Let I = {I1, ... ,IM}. From the definition of Markov section it follows that each Ii 
has a unique partition into subintervals as Ii = Iii * Ii 2 * · · · * Iin, so that the first return 
map f is continuous on int(Iij) for each j = 1, ... , n, and f I int(Iij) extends continuously 
to a homeomorphism Iij -----+ I' for some I' E I; by abuse of terminology this extension 
is called the first return map of the subinterval Iij. Define the transition matrix of the 
Markov section I to be the M x M matrixµ where µ( i, j) is the number of subintervals of 
Ii mapping homeomorphically onto Ij under the first return map. 

Choose a base point Xi E int(Ii) for each Ii E I. For each i we construct a piece T/ of 
T starting from Xi (figure 2.10a) and another piece Ti- ending at Xi (figure 2.10b ). 

To construct T/, consider the partition Ii = Iii * Ii 2 * · · · * IiK defined above; the integer 
K = Ki depends only on i, and is the sum of the entries in row i ofµ. For each k = 1, ... , K 
let Ijk E I be the element of the Markov section such that the first return map takes Iik to 
Ijk. There is a unique point lik E int(Iik) taken to Xjk under the first return map Iik -----+ Ijk. 
Let II be a compact subinterval of int(Ii) containing fo, ... , liK; we obtain II from Ii by 
removing a tiny neighborhood of each endpoint of h Choose a number t > 0 so small that 
II · [O, t] n (i B U LJ I) = II- Let Yik = lik · t. Construct a piece of oriented train track 
T/ C II· [O, t] with one backwards endpoint at Xi and K forward endpoints at Yi1, . .. , YiK, 
and with K - 1 diverging switches, as shown in figure 2.10a. 

Next, let Jl, ... , If be the collection of subintervals of elements of I whose first return 
maps take them homeomorphically to I;; now L = Li is the sum of column i of µ. Let 
yJ = Yjk where j, k are chosen so that IJ = Ijk· Recalling that Yjk is on the trajectory from 
ljk to Xi, we may construct a piece of oriented train track Ti- consisting of the trajectories 
from each y}, ... , yp to Xi, as shown in figure 2.10b. Notice that the intersection of any two 
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Figure 2.10: Constructing a dynamic train track from a Markov section. 

of these trajectories contains Xi, and the first point of intersection is a converging switch 
of Ti- which is transverse to B; it follows that Ti- has exactly L - 1 converging switches. 

Now define the dual train track T of I to be 

T = u ( T/ LJ Ti-) 
i=l, ... ,M 

Note that T has exactlyµ( i, j) oriented paths going from Xi to Xj whose interiors are disjoint 
from LJ I. We must prove that T is a dynamic train track in B. 

We first prove that T n l' B consists of the converging switches of T. By construction 
every converging switch of T lies in l' B. We must show that for each i = 1, ... , M, each 
point p E Ti- n l' B is a converging switch. To see why this is true, note first that for some 
l = 1, ... , Li the point plies on the trajectory from yJ to Xi. Going backward from p, this 
trajectory follows one of the two sheets on the two-sheeted side of p. Now go backward 
from p along a trajectory that follows the other sheet, and after a bounded time one must 
intersect LJ I. The first such intersection point must be xf for some k = 1, ... , Li, and so 
p also lies on the trajectory from yf to Xi, proving that pis a converging switch of T. 

We must homotop V through dynamic vector fields to make V tangent to T. Fix 
i = 1, ... , Mand consider T/; see figure 2.10a. Note that T/ is contained in II· [O, t] which 
lies in some sector (T of B. In figure 2.10a, the vector field V points straight upward. We 
may alter V by a homotopy supported in II· [O, t] so that V is tangent to T/, retaining a 
positive upward coordinate in figure 2.10a. Doing this for all i = 1, ... , M, and noticing 
that V is automatically tangent to Ti-, it follows that Vis now tangent to T. 

It remains to verify the property Transience of forward trajectories. 
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Let K be a component of r.t(B - T), a cusped unstable dynamic branched surface. 
From the construction we know that 8K-::/ 0. Following the proof of proposition 2.5.7, we 
inductively remove tongues to obtain a sub-branched surface R C K, also a cusped unstable 
dynamic branched surface, such that 8R C 8K, K is obtained from R by inductively 
attaching tongues, and R has no cusps. Removal of a tongue does not affect connectivity, 
and so R is connected. The only diverging switches of the oriented train track 8R occur 
at cusps of R, but R has no cusps and so 8R has no diverging switches. It follows that 
8R has no converging switches, and therefore 8R is a union of circles. Removal of tongues 
preserves the property that the boundary is nonempty, and so 8R-::/ 0. 

We shall show that l' R = 0, which together with the previous paragraph implies that 
R is an annulus or Mobius band, and so K is a ring with tongues. 

Each I E L is subdivided into two arcs at the point x I = I n T; the components are 
called half-intervals of L. Let LK be the collection of half-intervals of L contained in K. 
For each a ELK, if int( a) n R -::/ 0 then a C R, because int( a) n l' K = 0. Let LR be the set 
of half-arcs contained in R. Each a E LR has one boundary point Xa on 8R and the other 
boundary point Ya in int(R). For each Ya, the first return of Ya to LR is another point Ya'; 
let ,aa' be the flow segment from Ya to Ya'. Let Y C R be the directed graph with vertices 
Ya and directed edges taa'· Note that each vertex of Y has exactly one outgoing edge. 

We claim that every vertex of Y has at least one incoming edge. To prove this statement, 
suppose there is a vertex Ya with no incoming edges. There exists an infinite backwards 
trajectory y · (-oo, O] staying entirely in R, for if one follows any trajectory backwards 
from Ya, making arbitrary choices whenever l' R is hit, the only obstruction to continuing 
backward forever occurs at a cusp of 8R, but there are no cusps. Now it is evident that every 
infinite backward trajectory eventually hits LJ L, and so we can choose a point z = y·t E LJ L 
with ltl > 0 minimal. By the hypothesis that Ya has no incoming edges, it follows that 
z E int(I) for some I E L. However, from the construction of T it follows that the flow 
segment from z to Ya must intersect T, contradicting that this flow segment is contained in 
the interior of RC r.t(B - T), thereby proving the claim. 

Each vertex of Y therefore has exactly one outgoing edge and at least one incoming 
edge, from which it follows that each vertex has exactly one incoming edge, and therefore 
Y is a disjoint union of circles. 

We claim also that Y n l'R = 0. If not, there would be a vertex Ya, a backward 
trajectory Ya · (-oo, O], and a number T < 0 such that Ya · T E Y but Ya · (-oo, O] diverges 
from Y for t < T. But then arguing as above there would be a first value t < T such that 
Ya · t E LJ L and Ya · t is a boundary point, from which it follows that Ya · t is a vertex of Y. 
But then the next vertex of Y going forward from Ya · t would have two incoming vertices, 
a contradiction. 

Consider now the branched surface r.t(R - Y). Each element of LR pulls back to a 
properly embedded arc in r.t(R - Y), and so we may regard LJLR as a subset of r.t(R - Y). 
The first return map on LJ LR is a local homeomorphism which restricts to a bijection on 
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8 LJ LR, from which it follows that the first return map is a homeomorphism on LJ LR. Thus, 
r.t(R - Y) is the mapping torus of a homeomorphism on a union of closed intervals, and so 
r.t(R- Y) is a union of annuli and Mobius bands. It follows that Risa union of annuli and 
Mobius bands, and so by connectivity it is a single annulus or Mobius band, completing 
the proof that K is a ring with tongues. 

We have constructed a dynamic train track T that fills up B, with dynamic vector field 
V' tangent to T. 

It is not hard to check that V' is still circular in each component T of r.t(M - B). 

Step 2 Ideally we would now like to construct a branched surface Bs so that the pair 
Bs, Bu = B is a dynamic pair with T = Bs n B. However, the intersection train track of a 
dynamic pair satisfies several properties that T may not satisfy. In a sequence of substeps, 
we shall describe how to alter B and T so as to establish each needed property. 

The first property is true without any alterations: 

Step 2a: Each component K of r.t(B - T) has at least one tongue. If this is not 
so, then K is an annulus or Mobius band. There exists a sector (T of B such that K C (T. 

Each boundary circle c of K is a periodic trajectory of V' contained in (T. We now show 
that V also has a periodic trajectory in (T, contradicting the hypothesis of proposition 2.6.2 
and therby proving the claim. 

The circle c is a periodic trajectory in T contained in (T. From the construction of T, 

corresponding to c is a cycle of elements in L, namely Iio, Ii 1 , ••• , IiK = Iio, such that 
µ(ik-l,ik) # 0 fork= 1, ... ,K, and each Iik is contained in (T. Moreover, there exist 
subintervals Jik C Iik such that the first return map of <p takes Jik-i homeomorphically 
onto Jik for k = 1, ... , K, the trajectories from Jik-i to Jik all lie in (T, and JiK = IiK = Iio. 
The K-fold iterate of the first return map therefore takes Jio C Iio homeomorphically onto 
Iio, and so there is a periodic trajectory of <p entirely contained in (T, i.e. there is a periodic 
trajectory of V contained in (T, a contradiction. 

For the remainder of the proof let K = ct( B - T). Let R be the union of sinks of 
components of K. 

Step 2b: Eliminating circular sinks of T. A circular sink of T is a smoothly embedded 
circle , C T such that each switch of T on , is a converging switch. Recall from the proof of 
proposition 2.5.1 that if T were the intersection train track of a dynamic pair then T would 
have no circular sinks. 

We describe how to alter T so as to eliminate a circular sink , . Let b C T be the "basin 
of attraction" of,, the set of all y E T such that the directed path in T going forward from 
y never encounters any diverging switches and eventually lands in,. Alter T by deleting b, 
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to produce a train track T 1. It is obvious that T 1 is a dynamic train track, except perhaps 
for the property Transience of forward orbits, which we now verify. 

The inverse image of, under the overlay map K f---+ B is a subset ,' C 8R and the map 
1 1 

f---+ 1 is double covering. Similarly, the inverse image of cl( b) is a subset b' C 8 K, and 
the map b' ----+ cl( b) is a double covering. If, is an orientation preserving curve in B, then 
each of the covering maps ,' f---+ , , b' f---+ cl( b) is a disconnected double covering; whereas if 
, is orientation reversing then the covering maps are connected. 

Regarding bas a subset of ct(B - T 1), note that K is obtained from ct(B - T 1) by cutting 
open along cl( b), and b' is the remains of cl( b) in K. Let C' be the component of ct( B - T 1) 

containing cl( b), and let C C K be the inverse image of C'. Clearly C is a union of one or 
two components of K, and ,' is contained in the boundary of the sink( C) ( = the union of 
sinks of components of C). It is now easy to see that C' has a sink obtained from sink( C) 
by gluing ,' to itself via the covering transformation of the double covering ,' ----+ , , proving 
Transience of forward orbits for the train track T 1 and thereby showing that T 1 is a dynamic 
train track in B. Also, T 1 fills B, for if sink( C') were a torus or Klein bottle then this 
surface would be carried by B contrary to the hypothesis. 

We have described how to eliminate one circular sink of T, replacing T by a dynamic 
train track T 1 that fills up B. Clearly there is a finite number of circular sinks, and the 
number in T 1 is one fewer than in T. Also, T 1 still has the property that each component of 
ct( B - T 1) has at least one tongue. By repeating the process we may therefore assume that 
T has no circular sinks. 

Step 2c: Splitting rings having tongues on both sides. Given a component K of 
ct( B - T) with sink R, the surface R is either a two-sided annulus or one-sided Mobius band. 
We may ask, for each side of R, whether there is a tongue attached to that side. Since 
there is at least one tongue attached to R, there are three cases: 

(a) R is a Mobius band, with at least one tongue attached ( to its unique side). 

(b) R is an annulus, with at least one tongue attached to each side. 

( c) R is an annulus, with tongues attached to only one side. 

We remark that if T is the intersection train track of a dynamic pair, only case ( c) can 
occur. 

If any ring R is of type (a) or (b), we shall split it as follows. Let R' be a smoothly 
embedded ring in B such that R C int(R') C R' C N(R) where N(R) is a small neigh-
borhood of R. After perturbing the dynamic vector field on B, we may assume that R' 
is a splitting surface, i.e. the vector field points outward along R'. Now split B along R', 
resulting in a branched surface B' with oriented train track T 1. It is easy to verify that 
B', T 1 still satisfy the hypotheses, as well as the earlier properties that have already been 
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established for B, T. Also, the dynamic vector field on B tangent to T can be perturbed 
to become a dynamic vector field on B' tangent to T 1

• Note that r.t(M - B') has one more 
component than r.t(M - B): a cusped solid torus, of type (2, 0) when R is an annulus, or 
of type (2, 1) when R is a Mobius band. Observe also that r.t( B' - T 1

) has one fewer sink of 
types (a), (b). 

After a finite number of such alterations, we may therefore assume that each sink of a 
component of r.t( B - T) is of type ( c), and therefore is contained in a face of a component 
of r.t(M - B). 

Step 2d: Splitting lonely face orbits of T. Let T be a component of r.t(M - B), let 
A be a face of T, and let TA = T n A. Since T fills up B it follows that TA # 0. Also, 
OTC oA. Since Vis tangent to T and points forward on l' Bit follows that TA points out 
of A at each point of OT. Finally, each switch of TA is a diverging switch in int(A). From 
these properties it follows that TA has at least one periodic orbit, every periodic orbit is 
embedded, and distinct periodic orbits in TA are disjoint. There cannot be three or more of 
these orbits, because the ones in the middle would be circular sinks of T, which have been 
eliminated in an earlier step. Thus, TA contains either one or two orbits. 

Note that if T were the intersection train track of a dynamic pair, then TA would contain 
two orbits. 

Suppose, then, that TA contains a unique periodic orbit,. We alter T as follows. There 
is a regular neighborhood K ( 1 ) of I in B, consisting of a ring A with tongues attached 
disjointly, one tongue for each point where l'B crosses, (see figure 2.11). The intersection 
of T with each tongue is a short arc from the cusp of the tongue to a converging switch of 
T. Let (T be the union of, with slightly shorter arcs, one for each converging switch of Ton 
1 . Now split T along the 1-complex (T, creating a new train track T 1. Perturb the dynamic 
vector field on B to be tangent to T 1. The pair B, T 1 still satisfies the hypotheses of the 
proposition, as well as all the previously established properties. Note that r.t(B - T 1) has 
one more component than r.t(B - T); this component is an annulus with tongues. 

We have now reduced to the case where the inclusion of sinks of components of r.t( B - T) 
into faces of r.t(M - B) induces a 1-1 correpondence between components of r.t(B - T) and 
faces of components of r.t(M - B). 

Step 3: Constructing the stable branched surface. Now take Bu = B. We construct 
Bs so that T = Bs n Bu and prove that Bs, Bu is a dynamic pair. 

Consider a component T of r.t(M - B); we construct B!j,, the remains of Bs in T. Let 
TT be the remains of Tin oT, a stable train track by lemma 2.5.5. Let F1 , ... , FN be 
the faces of T, and let Ri C Fi be the unique annulus whose boundary lies in TT. For 
each n E Z/N there is a uu-cusp circle Cn = oFn-1 n oFn. Note that Cn n TT -::/ 0 for 
each n = 1, ... , N, because no component of r.t( B - T) contains a maw circle. Since TT is 
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Figure 2.11: If the orbit , is the only orbit of T contained in a certain face of a cusped 
torus piece, split T along a 1-complex (T obtained from, by adding a short arc adjacent to 
each convering switch on 1 . 

stable, given x E en n TT, the backward trajectory in TT that starts from x and stays in the 
face Fn-l must eventually hit a circular source of TT, and that circular source must be a 
component dn 1 of 8Rn_ 1; similarly, going backward from x in Fn n TT you must eventually 
hit the component dn 2 of 8Rn. It follows that TT has a component TTn containing the 
circular sources dn 1 , dn 2 and containing each point of TT n Cn. By hypothesis, the flow on 
T is circular, and so the circular sources dn 1 , dn 2 are oriented isotopic in T. 

Now we construct a stable ring with tongues which will be inserted into T, with bound-
ary TTn· Let A~ be the subannulus of 8T containing Cn with aA~ = dn1 U dn2· Let An be 
a properly embedded annulus in T with boundary dn 1 U dn 2 , obtained by perturbing the 
inclusion map A~ '-------+ T. Note that there is an suu-maw piece µn C T with cusp circle Cn 

and boundary A~ U An. 

Since dn 1 , dn 2 are oriented isotopic in T, we may homotop the dynamic vector field on 
int(T) to be tangent to An, without altering the fact that the vector field is circular on T. 
We may also homotop so that all forward trajectories in µn - An eventually hit the cusp 
circle en, and all backward trajectories limit on An. 

Now we attach tongues to An. Enumerate the points of Cn n TT in circular order around 
Cn as x 1 , ... , x K of the points of Cn n TT. Attach one tongue for each of the points Xi, as 
follows. 

Consider first X1. Let ,11, ,12 be the paths in TT connecting X1 to dn1, dn2 respectively. 
We wish to attach a stable tongue t1 to An, tangent to V, with edges 111 , 112 adjacent to 
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x 1 , and with base curve 113 C An. To do this, first let t~ C µn be a small 1-cusped triangle 
tangent to V, with cusp at x 1 , and with two edges on short subsegments of 111 , 112 incident 
to x 1 . The third edge oft~, denoted 1~3 , is a properly embedded arc in µn. Now let 1~3 
flow backward in µn to an arc ,f 3 which is contained in a very small neighborhood of An. 
There is a 1-cusped triangle t{ which is the union oft~ with the trajectories from 1~3 to 
,f 3 . By a perturbation of V and t{ supported near An, we obtain the desired stable tongue 
t1. 

Next consider X2. Let ,21, ,22 be the paths in TT going from X2 to dn1 U ,11, dn2 U ,12 

respectively. We wish to attach a stable tongue t 2 to An U t1 , tangent to V, with edges 121 , 

122 incident to x 2 , and with base curve 123 C An U t1 . Again start with a small 1-cusped 
triangle t; near x 2 and flow backward to obtain another 1-cusped triangle t; whose base 
edge is contained in a very small neighborhood of An U t 1 . By a perturbation of V and t{ 
supported near An U t1 we obtain t 2 • 

Continuing in this manner, we construct an annulus with tongues B!j,n = AnUt 1 U· · ·UtK. 
Let B!j, = LJ~=l B!j,n. 

Now let Bs be the ( overlay image of the) union of the B!j,, over all components T of 
r.t(M - B). From the construction it is easy to check all the axioms of a dynamic pair for 
Bs, Bu, except possibly for axiom 7, to which we now turn. 

Suppose that there is ans-face gluing of dynamic torus pieces of Bs, Bu. This s-face is 
contained in some sector (T of Bs, and any boundary component of (T is a periodic trajectory 
in (T, violating the fact that no sector contains a periodic orbit. Au-face gluing is similarly 
ruled out. 

This finishes the proof of proposition 2.6.2. 

Recall that when unstable dynamic branched surfaces were defined, we did not require 
that the dynamic vector field generate an expansive forward semiflow, contrary to the 
definition adopted by Christy [ Chr93]. It is interesting to note that the existence of a 
Markov section is closely related to expansivity: 

Proposition 2.6.3. If ( B, V) is an unstable dynamic branched surface, the following are 
equivalent: 

1. The dynamic vector field V can be chosen so that it generates an expansive forward 
semifiow. 

2. B does not carry a torus or Klein bottle, and the dynamic vector field V can be chosen 
so that it has a Markov section. 

Proof. We only sketch the proof, since this proposition is not needed elsewhere. 
The space of dynamic vector fields on B is path connected, that is, any two dynamic 

vector fields on B are homotopic through dynamic vector fields. We are therefore free to 
replace V by any other dynamic vector field. 



2. 7. THE TAFFY-PULLING EXAMPLE REVISITED 75 

To prove that 2 implies 1, carry out the above proof up to step 2b, using the nonexistence 
of tori and Klein bottles. Show that the transition matrix has no non-negative eigenvectors 
of eigenvalue 1. Use that to construct an expansive first return map to the Markov section, 
and suspend to get an expansive semiflow. 

The proof that 1 implies 2 follows standard methods for construction of Markov parti-
tions, as in [Bow73]. If B carried a torus or Klein bottle S, the restriction of V to S would 
generate an expansive flow on S; but a torus or Klein bottle does not support an expansive 
flow. <) 

2. 7 The taffy-pulling example revisited 

We may now use theorem 2.6.2 to give the first rigorous example of a dynamic pair. Let 
B C M be the unstable dynamic branched surface in the mapping torus of the taffy pulling 
map on the four-holed sphere, as described in section 1.6 and figure 1.6. The reader may 
easily check that the set of arcs 

I= { ab, be, cf, bd, de, eh, f g, gh, fa, ha} 

is a Markov section for B. Applying the proof of proposition 2.6.2 we obtain a dynamic 
train track T C B. It is easy to check directly that T fills B. 

The branched surface B does not carry a torus or Klein bottle; indeed B carries no closed 
surface at all. To check this, apply the following lemma, whose proof is easily extracted 
from the proof of statement 4 of proposition 2.5.1. 

Lemma 2. 7 .1. Let T be a dynamic train track filling an unstable dynamic branched surface 
B. Suppose that T has no circular sinks. Then B carries no closed surface. <) 

In the taffy pulling example, it is easy to check that the train track constructed in 
proposition 2.6.2 has no circular sinks, and so B carries no closed surface. Proposition 
2.6.2 now applies, and so B may be split to form Bu, and Bs may be constructed, so that 
( Bs, Bu) is a dynamic pair. 

Indeed, if one traces through the proof of proposition 2.6.2 with this example, it is easily 
seen that the dynamic train track T already satisfies all the needed properties so that there 
is a dynamic pair (Bs, Bu) with B = Bu and T = Bs n B; none of the alterations needed 
for the general proof are necessary for this example. 

For a general pseudo-Anosov map f, the construction of an invariant train track and 
Markov partition given by [BH95] can be combined with the methods of 1.6 to produce a 
Markov unstable dynamic branched surface Bin the mapping torus Mt, whose completed 
complementary components are cusped torus pieces with a circular flow. It is not hard 
to show that T is strongly connected, using the fact that f is transitive, and so T has no 
circular sinks and B carries no closed surface. It is easily checked that B has no annulus 
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or Mobius band sectors, and no periodic trajectory can lie in a bigon sector. Proposition 
2.6.2 therefore applies, yielding a construction for a dynamic pair in Mt. 

We remark that the above example does not satisfy "torus piece disjointness"-the 
union of torus pieces of r.t( M - ( B 8 U Bu)) does not embed in M under the overlay map. To 
see why, refer back to figure 1.6, and note that there are two dynamic torus shells, each 1-
pronged. One torus shell arises from the outer boundary component of the disc. The other 
torus shell arises from the three inner boundary components, which are cyclically permuted 
by f. We claim that this "inner" torus shell does not embed in M. To see why, it suffices 
to identify the corner circles of this torus shell, as periodic cycles in T, and to show that one 
of these circles is not embedded. One can check that all the entries in the transition matrix 
µ are zeroes and ones, and so a periodic cycle of T is determined by a periodic sequence 
In 0 , In 1 , ••• , InK = In 0 of elements in the Markov section such that µ( nk-1, nk) = 1 for all 
k = 1, ... , K. The periodic cycle in T corresponding to such a sequence is embedded in T 

if and only if the sequence is 1-1. The two periodic cycles yielding the corner orbits for 
the inner dynamic torus shell are ( ed, de, cb) and ( eh, db, cf). We write each element of the 
Markov section as an oriented edge, so that the reader can trace out the cycle in figure 1.6. 
The oriented edges ed and de represent the same element of the Markov section, and so the 
first corner orbit is not embedded. 



Chapter 3 

Flows 

In this section we consider pseudo-Anosov flows and pA flows. Because pA flows are 
technically easier to work with-they are more closely related to dynamic pairs and to very 
full laminations, and they may be analyzed by direct application of classical tools rather 
than by reconfiguring those tools-our main focus will be pA flows, and certain proofs 
involving pseudo-Anosov flows will be sketchy or even conjectural. In order to smooth the 
exposition we will start with the more familiar territory of pseudo-Anosov flows, and we 
will show how the double DA operation leads naturally to the definition of pA flows. 

The reader who is interested only in essential laminations can safely skip the latter 
subsections 3.4-3.5, which deal solely with pseudo-Anosov flows and constitute about half 
of chapter 3. Also, section 3.1 need only be skimmed to review concepts of hyperbolic 
dynamics and to learn about pseudohyperbolic orbits. 

3.1 Pseudo-Anosov flows 

If <I> is a flow on a Riemannian 3-manifold M, and if I C M is a <I> invariant set, a stable 
bundle for <I> on I is a <I> invariant sub bundle Es of TM I I such that for some 0 > 0, a> 1, 
if v E Es then ID<I>t(v)I s; 0a-tlvl fort> 0. An unstable bundle Eu is similarly defined 
by requiring ID<I>t(v)I s; 0atlvl fort< 0. We say that the exponential expansion rate is at 
least a. 

Recall that a smooth flow <I> on a closed 3-manifold M is Anosov if for some ( and hence 
any) Riemannian metric on M there is a continuous <I>-invariant splitting of the tangent 
bundle TM= T<I> EB Es EB Eu into 1-dimensional subbundles, such that T<I> is tangent to <I>, 
Es is a stable bundle for <I>, and Eu is an unstable bundle. An important feature of an 
Anosov flow is the Stable manifold theorem [HPS77], which says that the plane bundle 
T<I> EB Es is integrable, defining a continuous 2-dimensional foliation :Fu called the weak 
unstable foliation of <I>. The bundle T<I> EB Eu is also integrable, defining the weak stable 

77 
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foliation :Fs of <I>. Other important features are the existence of a Markov partition [Rat73], 
and symbolic dynamics [Bow73]. 

In [Mos92a] a topological definition of pseudo-Anosov flows is offered which avoids 
smoothness issues, by requiring the flow to have (singular) weak stable and unstable fo-
liations with appropriate expansion properties. In [FM95] a smooth definition is offered, 
which mimics the above definition of Anosov flows. Here we present the smooth definition 
and an improved topological definition, and we give a conjectural explanation for how the 
two definitions are related. 

We begin at the point of departure from the land of hyperbolic flows, with the concept 
of a "pseudohyperbolic" orbit. 

Given n 2, consider the quadratic differential zn- 2dz 2 on the complex plane C. 
Away from the origin 0, there are holomorphic coordinate charts that take zn- 2dz 2 to dz 2; 
these charts are well defined up to Euclidean translation and 180° rotation in the range. 
Pulling back horizontal lines with transverse measure ldyl under such a chart, we obtain 
the horizontal singular foliation Ju with transverse measure µu. Pulling back vertical lines 
and I dx I, we obtain the vertical singular foliation f8 with transverse measure µs. In polar 
coordinates, for each k = 0, ... , n - 1 there is a horizontal leaf 0 = 2k7r / n and a vertical 
leaf 0 = (2k + 1 )1r / n; these are called prongs. The singularities of f8, r at O are called 
n-pronged singularities. A way from O the foliations are regular, and transverse to each 
other. The Euclidean metric dx 2 + dy 2 pulls back to a well-defined Riemannian metric 
µ~ + µ; on C - 0. The topological metric defined by this formula may be completed to a 
metric on C denoted dn. 

Given As, Au > 0, let 1Pn: C -----+ C be the unique map which respects f8 and Ju, preserves 
each prong of f8 and Ju, compresses leaves of f8 by the factor As, and stretches leaves of r by the factor Au. Let Re: C -----+ C be rotation about O through angle 0, that is 
Re( z) = e21re z. If O s; k < n the map Rk/n commutes with 1Pn and respects f8, r, inducing 
a cyclic permutation of the prongs. The map 1Pnk = Rk/n o 1Pn defines the local model for a 
pseudohyperbolic fixed point with stretching Au, compression As, n prongs, and rotation k. 
We also say that 1Pnk has type ( n, k). Note that 

1Pnh(µ~ + µ;) = x;2µ; + A~µ~ 

Now take the suspension flow of 1Pnk, a flow \]ink defined on the mapping torus Nnk = 
C X R/(z, r+ 1) r-v ( 1Pnk(z), r ), where \]ink is induced by the flow (z, s) ·t = (z, s+t) on C X R. 
The suspension of the origin defines a periodic orbit tnk C Nnk, and we say that (Nnk,tnk) 
is the local model for a pseudohyperbolic periodic orbit of a flow, with compression As, 
expansion Au, and type (n, k). The Riemannian metric 

x;;2t µ~ + A;t µ; + dt2 

on (C - 0) X R is preserved by the covering transformation (z,r + 1) f----+ (1Pnk(z),r), and 
so it descends to a Riemannian metric on Nnk - tnk, which completes to a geodesic metric 
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on Nnk denoted dsnk; note that although all definitions depend on the compression As and 
the expansion Au, these numbers are suppressed in the notation. Note that the suspension 
of the foliations Ju, f8 define 2-dimensional foliations on N nk, singular along tnk, called the 
local weak stable and unstable foliations of \]ink. 

Let <I> be a flow without stationary points on a closed, oriented smooth 3-manifold M. 
We say that <I> is a smooth pseudo-Anosov flow if there exists a geodesic metric dM on M 
such that the following are satisfied. 

• There is a finite set r of periodic orbits, called singular orbits, such that when re-
stricted to M - LJ r, the flow <I> is smooth and dM is a smooth Riemannian metric. 

• Each I E r is pseudohyperbolic, defined as follows. For some As, Au > 1, n 3, and 
k = 0, ... , n - 1, there exists a neighborhood U of 1 , and an embedding f: U '-------+ Nnk 
taking, to tnk, such that: 

f respects orbits. 

f is smooth on U - 1 . 

f is bilipschitz with respect to the metrics dM and dsnk· 

• On M - r, there is a continuous splitting of the tangent bundle into three 1-dimensional 
<I>-invariant line bundles T<I> EB Es EB Eu, such that T<I> is tangent to trajectories of <I>, 
Es is a stable bundle and Eu is an unstable bundle for <I>, with respect to the metric 
dM. 

• Near a pseudohyperbolic orbit 1 , the bundles Es, Eu are tangent to the local weak 
stable and unstable foliations near , , respectively. 

Remark. Given a pseudohyperbolic orbit , , the condition that the local conjugacy f be 
bilipschitz implies that on the complement of I the norm of D f is bounded, where the 
norm is computed with respect to the metrics dM and dnk· Note that the local conjugacy 
need not respect the parameterization of the flow; but it is easily checked that the parameter 
ratio is a smooth function bounded away from zero and infinity. 

Remark. Given a pseudohyperbolic periodic orbit I of type ( n, k), compression As and 
expansion Au, the numbers n, k, As, Au are invariants of, under local bilipschitz conjugacy. 
Under topological conjugacy the numbers As, Au are no longer invariant, but n, k still are. 

Remark. The final condition in the definition may be unnecessary. It seems likely that in 
the presence of the preceding conditions, each local conjugacy f can be replaced by one 
which also satisfies the final condition. 

Next we turn to the definition of a topological pseudo-Anosov flow. Roughly speaking, 
<I> is a topological pseudo-Anosov flow if <I> has weak stable and unstable foliations, singular 
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along a collection of pseudohyperbolic orbits, and <I> has a Markov partition which is ex-
pansive in a certain sense. This definition is tailored to serve two purposes. First, it reflects 
many of the essential dynamic features of a smooth pseudo-Anosov flow, in particular the 
stable manifold theory and the existence of Markov partitions. Second, it is easy to verify 
in specific cases, as we shall see in section 3.4. 

Let M be a compact, oriented 3-manifold and <I> a flow on M without stationary points. 
We say that <I> is a topological pseudo-Anosov flow if there exists a finite collection of 
periodic orbits r, a pair of 2-dimensional <I>-invariant singular foliations ws, wu called the 
weak stable and unstable foliations, and a finite set M called a Markov partition for <I>, 
satisfying the following conditions: 

1. Each I E r is pseudo-hyperbolic: for some As, Au > 1, n 3, and k with 0 s; k < n, 
there exists a neighborhood U of 1 , and an embedding f: U '-------+ Nnk taking, to tnk, 
such that f respects orbits. 

2. The foliations ws, wu are regular and transverse away from the pseudohyperbolic 
orbits, and they agree with the local weak stable and unstable foliations near the 
pseudohyperbolic orbits. 

3. There exists a metric don M and constants C > 0, 0 > 0, a > 1 with the following 
properties. For any two points x, y in the same leaf of ws, if d( x, y) s; C then there is 
a proper, monotonic increasing functions: [0, oo) ----+ R such that d( x-t, y·s(t)) s; 0a-t 
for all t 0. A similar condition holds for two points in the same leaf of wu. 

Before continuing with the definition, let I8, Ju be homeomorphic copies of [0, 1], and define 
afiow box to be an embedding H: Ju x I8 x [0, 1]----+ M such that Bottom(H) = Ju x I8 x 0 
and Top(H) = Ju x I8 x 1 are transverse to <I>, the set Ju x t x [0, 1] is contained in a leaf of 
wu for each t E I8, the set t x I8 x [0, 1] is contained in a leaf of ws for each t E Ju, and the 
[0, 1 ]-orientation on each segment t x t' x [0, 1] agrees with the direction of the flow <I>. An 
s-subrectangle of Bottom(H) is a rectangle of the form J x I8 x 0 where J is a subinterval 
of Ju; s-subrectangles of Top(H), and u-subrectangles of Bottom(H), Top(H) are similarly 
defined. 

4. Mis a finite set of flow boxes with disjoint interiors, forming the 3-cells of a regular cell 
decomposition of M. For each H, H' EM, each component of Top(H) n Bottom(H') 
is both an s-subrectangle of Top(H) and a u-subrectangle of Bottom(H'). 

To complete the definition, define the transition digraph of M to be the directed graph r 
with vertex set M and with one edge from H E M to H' E M for each component of 
Top(H) n Bottom(H'). A strong component of r is a directed subgraph r' C r such that 
there is a directed path in r' from any vertex to any other vertex, and r' is maximal with 
respect to this property. We say that r' is a sink if every edge E of r - r' adjacent to r' 
points towards r', and r' is a source if every adjacent edge points away from r'. 
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5. The transition digraph of M has no circular sinks or sources. 

There is some redundancy in this definition-as we shall see in the conjecture below, items 
3 and 5 are equivalent in the presence of the other conditions. 

These two definitions should be related as follows: 

Conjecture. Let M be a closed 3-manifold. Every smooth pseudo-Anosov flow on M is 
a topological pseudo-Anosov flow. Conversely, every topological pseudo-Anosov flow <I> on 
M is smoothable, i.e. there exists a smooth structure on M with respect to which <I> is a 
smooth pseudo-Anosov flow. 

Remark. This conjecture is interesting even in the Anosov case. A lot of work has gone 
into classifying smooth conjugacy classes of smooth Anosov diffeomorphisms and flows ( see 
[Caw93] and the references there). But so far the existence of a smooth structure on a topo-
logical Anosov homeomorphism or flow has been overlooked. For Anosov homeomorphisms 
of tori, the results of Adler and Weiss can easily be tailored to prove the existence of an 
invariant smooth structure. In the flow case it seems somewhat harder, but Elise Cawley 
has told me how to do it, and her methods almost certainly adapt to pseudo-Anosov flows. 

We shall suggest a proof of the above conjecture, based on known techniques of Anosov 
dynamical systems. In order to make this proof rigorous, work is needed to generalize these 
techniques to pseudo-Anosov dynamical systems. 

Remark. One can formulate a higher dimensional analogue of this conjecture, for Anosov 
diffeomorphisms and flows. It would be very interesting if there were any nonsmoothable 
examples. 

Sketch of a proof. Suppose <I> is a smooth pseudo-Anosov flow with singular orbits r and 
splitting TM = T<I> EB Es EB Eu on M - r. The stable manifold theory of [HPS77] can be 
adapted to show that T<I> EB Es is integrable in M - r, yielding a foliation ws in M which 
is singular along r, and which agrees with the local weak stable foliation near each orbit in 
r. The singular foliation wu is similarly obtained by integrating T<I> EB Eu. The foliations 
ws, wu satisfy the requirements for the weak stable and unstable foliations of a topological 
pseudo-Anosov flow. 

In [Rat73] there is a construction of Markov partitions for transitive Anosov flows. 
As remarked by Shub in [Shu87] p. 145, transitivity is not needed to construct Markov 
partitions, as long as there is a local product structure, which follows from the existence of 
stable and unstable foliations. Thus, the construction of Markov partitions can be carried 
out for smooth pseudo-Anosov flows. 

Suppose that condition 5 fails, so there is, say, a circular sink in r. This corresponds to 
a cycle of flow boxes H 1 , ... , Hk such that Top(Hi) C Bottom(Hi+i) for all i E Z/k, which 
in turn yields a periodic orbit , of <I> intersecting this cycle of flow boxes. Let Ai be the 
intersection of the unstable manifold of, with Hi, and let A = LJ Ai. It follows that A is 
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an embedded, closed annulus in M, contained in a leaf of wu, invariant under <I>. But this 
contradicts item 3. 

Conversely, suppose <I> is a topological pseudo-Anosov flow. The first proof that <I> is 
smoothable uses Birkhoff sections as in Fried's work [Fri83] together with orbit surgery 
methods of Goodman [Goo83]. The second proof uses techniques of Cawley [Caw93], as 
applied to flows [Caw96]. 

For the first proof, use the Markov partition and apply the methods of [Fri83] to obtain 
a Birkhoff section for <I>, an embedded surface S C M such that int( S) is transverse to 
<I>, 8S is a union of periodic orbits of <I>, and every orbit of <I> hits S in bounded time. 
Then using S as in [Fri83] one shows that the flow <I> is obtained by orbit surgery from the 
suspension flow of a pseudo-Anosov homeomorphism. Note that suspension pseudo-Anosov 
flows are obviously smooth. The methods of [Goo83] (see also [HT80]) may be applied to 
show that any pseudo-Anosov flow obtained by orbit surgery from a smooth pseudo-Anosov 
flow is also smooth. 

For the second proof, we start by using "super-eigenvectors" of M to impose coordinates 
on each rectangle Bottom(H) for HEM. Choose an enumeration M = {H 1 , ... , Hk} and 
letµ be the k x k transition matrix, where µij is the number of components of Top(Hi) n 
Bottom(Hj)- Thus µij is the number of edges in r from Hi to Hj. 

Lemma 3.1.1 (Super-eigenvector lemma). There exists A > 1, a positive row vector 
W, and a positive column vector V such that (W µ )i > A Wi and (µ V)i > XV;, for i = 
1, ... , k. 

Proof. Without loss of generality we may assume that the flow boxes are enumerated so 
that the vertices of each strong component of r are adjacent in the enumeration, and if 
there is an edge Hi----+ Hj with Hi, Hj in different strong components then i < j. Thus,µ 
has an upper block decomposition: each strong component of r corresponds to a block on 
the diagonal, and all entries below these blocks are zero. A circular strong component of r 
corresponds to a diagonal block which is a permutation matrix; condition 5 guarantees that 
each such permutation block has some nonzero entries above it and some nonzero entries 
to the right of it. 

We construct the column vector V; the construction of W is similar. For each nonper-
mutation block Bn, the Perron-Frobenius theorem provides a positive column eigenvector 
for that block, with eigenvalue An > 1; put this eigenvector into the positions of V corre-
sponding to the block Bn. Choose A > 1 less than each An. We must still define an entry¼ 
corresponding to each Hi lying in a circular strong component of r. By condition 5 there 
exists a directed path from a noncircular strong component to Hi; let Xi be the shortest 
length of such a path. If Xi = 1 then choose Hj to be any vertex in a noncircular strong 
component such that H j ----+ Hi is an edge of r, and define ¼ = Vj / ( 2A). If Xi > 1, then 
choose Hj to be any vertex such that Xj = Xi - 1 and Hj ----+ Hi is an edge, and define 
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We may now impose coordinates on Bottom(Hi), making it a¼ x Wi matrix, so that 
for each edge Hi -----+ Hj the first return map from Bottom(Hi) to Top(Hj) stretches the 
V-coordinate by at least ..\. and compresses the W-coordinate by at least ..\.. 

These coordinates determine well-defined transverse Holder structures on ws, wu, which 
agree along the vertical sides of the flow boxes. Moreover, in these structures, the transverse 
holonomy of ws is exponentially contracting in the backward direction and the holonomy 
of wu is exponentially contracting in the forward direction ( exponential convergence is a 
well-defined concept in any Holder structure). 

From [Caw93] it follows that for any topological Anosov map f: T 2 -----+ T 2 , given any /-
invariant transverse Holder structures on the stable and unstable foliations with exponential 
contraction properties as above, there is an /-invariant smooth structure consistent with 
these transverse Holder structures. The same techniques work for a topological Anosov 
flow [Caw96]. Applying these techniques to a pseudo-Anosov flow <I>, using the transverse 
Holder structures on ws, wu constructed above, we obtain a smoothing of <I>. <) 

3.2 pA flows 

Pseudo-Anosov flows are not well adapted to torally bounded3-manifolds. On closed 
3-manifolds, moreover, pseudo-Anosov flows have the disadvantage of requiring one to work 
with singular foliations. These disadvantages are overcome by the concept of pA flows. The 
definition is motivated by melding the idea of pseudohyperbolic orbits with two ideas from 
hyperbolic dynamics: the DA operation, and axiom A flows. 

The DA operation is performed on an Anosov flow <I> by "splitting open" the unstable 
leaves of a finite collection r of periodic orbits of <I>, creating a hyperbolic attractor ( see 
below for the definition of attractors and repellers). More precisely, for each, E r one alters 
<I> on an isolating neighborhood N(,) as shown in figure 3.la. As proved in [BW83], the 
result of this operation is an axiom A flow <I>* having an attractor A which is a 2-dimensional 
lamination. Associated to each, E r there is a <I>* -invariant ring A-y such that int( Ar) nA = 
0, 8A-y is a union of hyperbolic periodic orbits in A, and the core of A-y is a repelling orbit 
of <I>* isotopic to 1 . If, is untwisted then A-y is an annulus, otherwise A-y is a Mobius band. 
The union of repelling orbits of A-y, for , E r, is a link in M isotopic to r. 

One can also split open along stable manifolds of r to get a flow with a 2-dimensional 
repeller and isolated attracting orbits (figure 3.lc). 

There is also a "double DA" operation [Mos92a], in which one splits along the stable 
and unstable manifolds of r simultaneously. In other words, the flow <I> is altered on N( 1 ) 
as shown in figure 3.lb. The double DA operation on an Anosov flow produces an Axiom 
A flow <J># with a 1-dimensional hyperbolic invariant set I (for a sketch of the proof, see 
proposition 3.2 below). For each, E r, there is an invariant set T-y of <J># having the 
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Figure 3.1: The unstable DA, double DA, and stable DA operations. Each figure shows a 
Poincare section-a local cross-section for the flow-and a phase diagram on the Poincare 
section, i.e. a planar flow whose orbits are invariant sets of the first return map of the 
3-dimensional flow. Note: phase lines are not generally leaves of stable or unstable folia-
tions. 

structure of a manifold-with-corners fibering over the circle with fiber a square. If , is 
untwisted this fibration is a product; if, is twisted, the monodromy map is a 180° rotation 
on the square. The dynamic structure of T'Y is as follows. The edges of T'Y are hyperbolic 
orbits in I. The faces of T'Y are labelled s and u, according to whether they are tangent to 
the stable or unstable directions of the corner orbits. The core of each face is a periodic 
orbit: an attracting orbit of <J># in each u-face, and a repelling orbit in each s-face. At the 
core of T'Y is a hyperbolic orbit, whose unstable manifolds go out to the attracting orbits at 
the s-face cores, and whose stable manifolds come from the repelling orbits at the u-face 
cores. All other orbits in T'Y are transient, going from a repelling orbit in backwards time 
to an attracting orbit in forwards time. The union of the cores of the T'Y form a link in M 
which is isotopic to r. 

Roughly speaking, a pA flow is what you get from a pseudo-Anosov flow by doing a 
double DA operation on each singular orbit. Before turning to the formal definition, we 
review topological dynamics and Axiom A flows. 
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First we review the ideas of chain recurrence as developed by Conley [Con78]. Consider 
a semiflow <I> on a compact space X. An invariant set of <I> is a subset I C X such that for 
all x E I and t E R, the point x · t is defined and is in I. The maximal invariant set of <I> 
is a compact subset of X. 

Given E,T > 0 and x,y EX, an E,T-chainfrom x toy is a sequence of flow segments 
X1 · [O, t1], ... , Xn · [O, tn] such that 

• d( Xi · ti, Xi+ 1) < E for all i = 1, ... , n - 1. 

• ti > T for all i = 1, ... , n. 

The chain recurrent set of <I> is the set C<I> consisting of all x E X such that for all E, T > 0 
there exists an E, T-chain from x to x. Note that C<I> is a closed invariant set of <I>. 

A closed <I>-invariant set I C X is chain connected if for each x, y E I and all E, T > 0 
there exists an E, T-chain from x toy. Clearly a chain connected set I is a subset of C<I>. We 
say that I is a chain component of C<I> if I is a maximal chain connected set. A basic result 
of topological dynamics is that C<I> decomposes into chain components. Chain component 
are also called basic sets. 

Let C1, C2 be basic sets. A connecting point from C1 to C2 is a point y EX such that 
for all x 1 E C1, x2 E C2 and all E, T > 0 there exists an E, T chain from x 1 to y and one 
from y to x2. The join of C1 and C2, denoted J(C1,C2), is the union of C1 U C2 with 
all connecting points from C1 to C2. Given any collection C of basic sets, define the join 
J(C) = LJ{J(C1,C2) I C1,C2 EC}. Note that J(C) is a <I>-invariant set, and if LJC is 
compact then J(C) is compact. 

Define a directed graph r <I>, called the Lyaponov graph, whose vertices are the basic sets, 
and with an edge C1 -----+ C2 defined between basic sets C1 -::/ C2 if there exists a connecting 
point from C1 to C2. The Lyaponov graph is: 

• Transitive: If C1 -----+ C2 and C2 -----+ C3 are directed edges then so is C1 -----+ C3. 

• Acyclic: There there are no cycles C1 -----+ C2 -----+ • • ·-----+ Cn-----+ C1. 

Given a subgraph r' C r <I>, let J (r') be the join of the basic sets forming the vertices of 
r'. 

A subgraph r' C r<I> is complete if for any two adjacent edges C1 -----+ C2 -----+ C3 in r<I> 
such that C 1, C 3 E r', the edges C 1 -----+ C 2 and C 2 -----+ C 3 are also in r'. Each subgraph 
r' C r <I> is contained a unique, minimal complete subgraph called the completion of r', and 
the join of r' is equal to the join of its completion. If r' is a complete subgraph of r <I>, then 
the Lyaponov graph of <I> I J(r') is naturally isomorphic tor'. 
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Now let <I> be a flow without stationary points on a compact manifold M. An isolated 
invariant set of <I> is a closed <I>-invariant set I such that for some neighborhood U of I in 
M' the set I is the largest <I>-invariant set contained in u' that is I = ntER u . t = { X E 
M I x · R C U}. The neighborhood U is called an isolating neighborhood of I. As special 
cases, we say that I is an attractor if I= nt>O u. t, and I is a repeller if I= nt<O u. t. 

Suppose that U is an isolating neighborhood of an isolated invariant set I, and U is a 
codimension-0 compact submanifold of M whose boundary decomposes as 8B = R,_B U 
R+B where R,_B, R+B have disjoint interiors, <rB = f)R,_B = 8R+B, the flow exits 
B along int(R+B), enters along int(R_B), and is externally tangent along <rB. Then 
U is called an isolating block for I. If M is a 3-manifold, an isolating block has the 
natural structure of a sutured manifold in the cusp model. Conley and Easton proved 
that if <I> is smooth on some neighborhood of I then I has an isolating block [CE71]. In 
proposition 3.3.3 we shall review Bob Williams' explicit construction of isolating blocks for 
1-dimensional hyperbolic invariant sets in dimension 3 [BW83]. 

Given an isolated invariant set I C M such that <I> is smooth on some isolating neigh-
borhood U of I, a hyperbolic splitting of index k on I is a splitting of the bundle TM I I into 
continuous, <I>-invariant sub-bundles T<I> EB Es EB Eu, where T<I> is the 1-dimensional tangent 
bundle for <I>, Es is a k-dimensional stable bundle for <I>, and Eu is an m - k - 1-dimensional 
unstable bundle, with respect to some Riemannian metric on M. If there is a hyperbolic 
splitting on I then we say that I is a hyperbolic invariant set. 

Suppose that I is an isolated hyperbolic invariant set. Choose an isolating block U for 
I. Define the local weak stable lamination of I with respect to U, denoted W1~c' to be the 
set of all x E U such that x · t is defined for all t O; since U is an isolating block for I it 
is evident that x · t accumulates in I as t ----+ oo. Define the local weak unstable lamination 
W1~c similarly. The Stable manifold theorem of Pugh and Shub [HPS77] says that that 
these are, in fact, laminations: if I has index k then W1~c is a k + 1-dimensional lamination, 
and W1~c is an m - k-dimensional lamination. The laminations W1~c' W1~c are transverse, 
and their intersection is the 1-dimensional lamination I. Given a subset X E I, the set of 
leaves of W1~c intersecting X is denoted W1~c(X). 

Note that W1~c' W1~c are independent of the choice of isolating block U in the following 
sense. If U' is another isolating block, and if W'foc' W'tc are the weak stable and unstable 
laminations of I with respect to U', then there are neigborhoods V C U of W1~c U W1~c and 
V' C U' of W'foc U W'tc, and a diffeomorphism V ----+ V' that takes each flow line to itself, 
and takes W1~c to W'foc and W1~c to W'tc preserving the lamination structure. The proof 
is easy if U' C U: take the diffeomorphism obtained by flowing U' forward until R+ U' hits 
R+ U. The proof is also easy if U' is a slight perturbation of U. In general, use the fact 
that after replacing U' be a slight perturbation, the intersection Un U' is an isolating block 
of I. 

Suppose that I is an index 1 hyperbolic invariant set in an oriented 3-manifold M. 
Consider a periodic orbit, in I. Formally, we may regard, as an immersion of an oriented 
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circle into M, mapping as a finite covering space over some embedded oriented circle called 
an embedded periodic orbit. Note that , preserves orientation in the surface W1~c(,) if 
and only if it preserves orientation in the surface W1~c(,), in which case we say that, is 
untwisted; otherwise, , is twisted. If, is an embedded untwisted orbit then W1~c(,) and 
W1~c( 1 ) are both annuli; if, is embedded and twisted then these surfaces are Mobius bands. 
If,: S 1 -----+ I is a twisted periodic orbit, and if,': S 1 -----+ I is the k-fold cover of ,-i.e. ,' 
factors as S 1 -----+ S 1 -2-+ I where the first map is a k-fold covering map-then,' is twisted 
if and only if k is odd. 

A "stable boundary periodic orbit" of I is a periodic orbit , which may be moved off of 
I by homotoping, into W1~c(, ). To be more explicit we must specify the direction in which 
, may be homotoped. Let I C I be either an untwisted embedded periodic orbit, or the 
double cover of a twisted embedded periodic orbit; in either case, 1 is itself untwisted. Let 
T be a transverse orientation of, in W1~c(,); if, is an embedded twisted orbit then there 
are two choices for T; whereas if , is the double cover of a twisted embedded orbit then 
there is an essentially unique choice of T. We say that the pair (,, T) is a stable boundary 
periodic orbit of I if the component of W1~c( 1 ) - 1 into which T points is disjoint from 
I. Note that if, is embedded and untwisted, then it may be a boundary periodic orbit 
with respect to either, neither, or both of its transverse orientations in W1~c(,). Unstable 
boundary periodic orbits of I are similarly defined. 

Here are some observations and terminology which describe various types of chain con-
nected, isolated hyperbolic invariant sets on a 3-manifold M. If a chain connected hyper-
bolic invariant set has index 2 then is an attracting periodic orbit, and if the index is 0 
then it is a repelling periodic orbit. 

The term "strange attractor" is used in the literature to refer to a hyperbolic invariant 
set of index 1 which is a boundary less 2-dimensional lamination A tangent to Eu, that is 
A = W1~c(A). The transversals are totally disconnected, and if A is chain connected then 
the transversals are Cantor sets ( which is regarded as strange, I guess). One could also talk 
about a "strange repeller", though I have never heard the term. 

Another common example is a 1-dimensional hyperbolic invariant set of index 1; this is 
always a 1-dimensional lamination tangent to Tit!. A local transversal of this lamination is 
totally disconnected (with a "local product structure" as described below). The local weak 
stable and unstable laminations are 2-dimensional, with totally disconnected transversals. 
If I is chain connected, and if I is not a periodic orbit, then a local transversal is a Cantor 
set, with a local product structure of the form ( Cantor set) x ( Cantor set). 

A flow if! without stationary points on a smooth, closed manifold M is axiom A if its 
chain recurrent set is hyperbolic. More generally, an isolated if!-invariant set I is axiom A 
if the chain recurrent set of if! I I is hyperbolic. The main result in the theory of axiom 
A flows is the Spectral decomposition theorem [Sma67], which says that if I is an axiom 
A invariant set ( e.g. the chain recurrent set of an axiom A flow) then the chain recurrent 
set of I has finitely many chain components. If M is 3-dimensional, these all fall into 
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one of several types: attracting periodic orbits (index 2); repelling periodic orbits (index 
0); 2-dimensional hyperbolic attractors or "strange attractors"; 2-dimensional hyperbolic 
repellers; and 1-dimensional hyperbolic invariant sets. The latter three types are all of 
index 1. 

Now we turn to the new concepts needed to define pA flows. Roughly speaking, a 
pA flow is like an axiom A flow, in that the chain recurrent set has finitely many chain 
components-some of the chain components are axiom A, and the remainder are pseudohy-
perbolic orbits. We put very strong restrictions on the pseudohyperbolic orbits, imprisoning 
them inside special invariant sets which inhibit their interaction with the other chain com-
ponents. These invariant sets are the ones which arise in the double DA operation on a 
pseudo-Anosov flow. We put similarly strong restrictions on the components of 8M. 

To imprison a pseudohyperbolic orbit we use a "pA solid torus", which is what you get 
by doing a double DA operation on a pseudohyperbolic orbit (figure 3.2a). To be precise, 
fix integers n 1, 0 s; k < n. Let G be a regular 2n-sided polygon in C centered on 0. 
Label the sides of G alternately s and u. Let ( be a homeomorphism of C that preserves 
G, commutes with the symmetry group of G, and has the following properties. Each corner 
of G is a hyperbolic fixed point of ( with stable direction tangent to the adjacent s-side 
of G and unstable direction tangent to the adjacent u-side. Each s-side of G contains a 
repelling fixed point of(, each u-side of G contains an attracting fixed point, and there are 
no other fixed points on 8G. The origin O is an n-pronged pseudohyperbolic fixed point 
of (, whose unstable manifolds go out to the attractors on 8G and whose stable manifolds 
come from the repellers on 8G. All other orbits in G go from a repelling fixed point on 
8G in backwards time to an attracting fixed point on 8G in forwards time. The map ( is 
smooth except at 0. Now take the suspension flow of the map Rkjn o (, a flow defined on 
the mapping torus of Rk/n o (. The suspension of G is an isolated invariant set for this 
flow, the local model for a pA solid torus of type ( n, k). 

To imprison a component of 8M we use a "pA torus shell" (figure 3.2b ). To define it, let 
G be as above, and choose a small, round Euclidean disc D C G centered on the origin. Let 
c = 8D. Let ( be obtained by altering ( near D so that c is preserved, with 2n hyperbolic 
fixed points on c. The map ( I c therefore has n attracting and n repelling fixed points 
alternating around c. In the annulus A bounded by c and 8G, each attractor of ( I c has 
an unstable manifold going out to an attractor on 8G; similarly for repellers of ( I c. All 
other orbits inc go between two fixed points on c, and all other orbits in A - c go between 
two fixed points on 8G. The annulus G - int(D) is a closed invariant set of(. Now throw 
away int(D), so ( is only defined on C-int(D). Take the suspension flow of the map(; the 
suspension of G - int( D) is the local model for a pA torus shell of type n. The suspensions 
of the attracting fixed points of ( I c are called boundary attractors of the suspension flow; 
boundary repellers are similarly defined. Note that a boundary attractor of the suspension 
flow is not an attractor of the suspension flow on the whole mapping torus; indeed it has 
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Figure 3.2: A pA solid torus and a pA torus shell are obtained by suspending Rkjn o (, 
where ( is depicted here for n = 3. 

one unstable manifold transverse to the boundary of the mapping torus. 
pA solid tori and torus shells are called, collectively, pA torus pieces. 
Let M be a smooth, compact 3-manifold with torus boundaries. Let <I> be a flow on M 

with no stationary points, and let C<I> be the chain recurrent set of <I>. We say that <I> is a 
pA flow if the following hold: 

1. There exist finitely many pA torus pieces of <I>, all pairwise disjoint. 

2. <I> is smooth off of the pseudohyperbolic orbits, and hence each pseudohyperbolic orbit 
is contained in a pA solid torus of type ( n, k) for some n 2 and k = 0, ... , n - 1. 

3. Every component of 8M is contained in a pA torus shell of some type n 1. 

4. Every attracting and repelling orbit of <I> is contained in some pA torus piece. 

5. Let 'I<1> be the union of all chain components of <I> except for the pseudohyperbolic 
orbits, attracting orbits, and repelling orbits. Let J<1> = J(I<1> ). Then J<1> is a 
1-dimensional hyperbolic invariant set. 

6. For each stable boundary periodic orbit (,, T) of J<1>, there exists a pA torus piece 
H such that , is a corner orbit of H and T points into the adjacent s-face of H. A 
similar statement holds for unstable boundary periodic orbits. 

7. There does not exist a transverse bigon for J<1>, i.e. a smoothly embedded disc-with-
two-corners D C M with edges a, /3, such that: 

• D is transverse to <I>. 
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• a = D n W1~c(J<1> ). 
• /3 = D n W1~c(J<1> ). 
• aa=a/3=DnJ<1>-

We shall use A<1> for the union of attracting orbits, R<1> for the union of repelling orbits, 
and P<1> for the union of pseudo-hyperbolic orbits and 8M. We shall prove in theorem 
3.3.1 that the attractor A'i = J(I<1> U A<1>) and the repeller A~ = J(I<1> U R<1>) are very full 
laminations in M, whose pared torus pieces are in 1-1 type preserving correspondence with 
the pA torus pieces of <I>. 

Remark. Note that pA torus shells may have any number n 1 of prongs. However, we 
must not allow 1-pronged pA solid tori in the definition, for otherwise the laminations 
A~, A'i produced in theorem 3.3.1 are not essential. 

Remark. If we restrict to the class of pA flows for which all pA solid tori have at least 
3 prongs, then there is a natural 1-1 correspondence between (restricted) pA flows and 
pseudo-Anosov flows on closed, oriented 3-manifolds, up to isotopy and reparameteriza-
tion; this correspondence is induced by the double DA operation ( see the "proposition" 
below). We leave the proof to the interested reader. Conditions 4, 6, 7, which impose strict 
conditions on attracting orbits, repelling orbits, boundary periodic orbits, and transverse 
bigons, are all needed in order for this remark to be true. 

Remark. Conditions 4, 6, 7 are also needed to enforce a tight connection between pA flows, 
dynamic pairs, and essential laminations (theorems 3.3.2 and 3.3.1). 

Remark. In condition 5 note that the chain components of 'I<1> form the vertex set of a 
complete subgraph of the Lyaponov graph r <I>, and hence J(I<1>) is defined. The condition 
that J = J(I<1>) be hyperbolic is equivalent to 'I<1> being hyperbolic plus the "transversality 
condition", which says that for any edge C1 ----+ C2 in the Lyaponov graph where C1 , C2 CI, 
the weak unstable lamination of C1 is transverse to the weak stable lamination of C2 at 
any point where these laminations intersect. 

Remark. If M is atoroidal then 'I<1> is chain connected; this is proved by an easy adapta-
tion of the theorem proved in [Mos92a] which says that pseudo-Anosov flows on atoroidal 
3-manifolds are transitive. But if M is not atoroidal then 'I<1> need not be chain connected. 
For example, starting from an intransitive Anosov flow as constructed e.g. in [FW80], the 
double DA construction on any collection of periodic orbits produces a pA flow such that 
'I<1> is not chain connected. 

The following shows how pA flows arise from pseudo-Anosov flows via the double DA 
operation. Again, this proposition should be regarded more as a conjecture, needing more 
details to be made rigorous. 
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"Proposition". Let <I> be a smooth, transitive pseudo-Anosov flow on a closed, oriented 
3-manifold M. Let r be a collection of periodic orbits, including all pseudohyperbolic orbits. 
Choose pairwise disjoint isolating neighborhoods N "I of small radius, for each I E r. Let 
<J># be a flow obtained from the double DA operation on <I>, i.e. <J># is obtained by perturbing 
<I> I N'Y so that the maximal invariant set T'Y in N'Y is a pA torus piece. Then <J># is a pA 
flow. 

Sketch of proof. For each , E r there exists a torus t'Y C N'Y such that the pseudohy-
perbolic orbit, attracting orbits, and repelling orbits of T'Y lie inside t"I, the corner orbits 
of T'Y lie outside t'Y, and if P is the connected submanifold of M on the outside of all the 
tori t'Y then P is an isolating block for <J>#; the torus t'Y is easily sketched in figure 3.2a. In 
P - LJ'Y N (,) the flow has a hyperbolic splitting, by definition of pseudo-Anosov. Also, in 
the isolating block P n LJ"I N ( 1 ) the flow has a hyperbolic splitting, because the maximal 
invariant set in this isolating block is the union of corner orbits of pA torus pieces, and these 
are all hyperbolic. By applying the methods of [HT80], one can use these two hyperbolic 
splittings to produce a hyperbolic splitting along the maximal invariant set J = .Jp# in P. 
By using shadowing arguments one can construct a semiconjugacy from J to <I>, homotopic 
to the inclusion map J '-------+ M. 

The fact that J is 1-dimensional follows from transitivity of <I>, using the fact that the 
singular leaves along which the flow is split are dense in M. If J had a transverse bigon 
D, the semiconjugacy would map the corners of D to an orbit of <I> along which ws, wu 
are tangent, an absurdity. The remaining details needed to prove <J># is a pA flow are left 
to the reader. <) 

Remark. If <I> is not transitive, then the same proof will work by splitting along a larger set 
of periodic orbits including the boundary periodic orbits of all chain components of <I>. 

3.3 pA flows, dynamic pairs, and very full laminations 

In this section we define what it means for a pA flow to be carried by a dynamic pair. We 
also prove theorems which give the relation between pA flows, dynamic pairs, and very full 
laminations. 

The following definition describes the appearance of a regular neighborhood N = N ( T) 
of the intersection train track T of a dynamic pair B 8

, Bu. 
A template pair in a sutured manifold N, also called a template pair with support N, 

consists of a pair of branched surfaces B1v, B'!v C N, with f)BN C R,_N and 8B'!v C R+N, 
together with a C 0 vector field Von N, where the quadruple (N,B1v,B'!v, V) is built by 
gluing together three different types of pieces: the transitional piece with model Pt, the 
diverging piece with model Pd, and the converging piece with model Pc. Ignoring for the 
moment the branched surfaces and the vector field, these models are given as follows ( see 
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L 
Figure 3.3: A bird's eye view, looking down the z-direction. Gluing rectangles are drawn 
with thin lines. Arcs which will be in (TN after gluing are drawn with thick lines. The u 
and x-directions are identified, as are the s and y-directions. 

figure 3.3). Pick EE (0, 1). The transitional piece is 

Pt {(x,y,z) E R 3 IO:::; z:::; 1, lxl:::; (1- E}2, IYI:::; (1- E)1-z} 
Pd {(x,y,z)EPtlz:::;x 2 -l+E} 
Pc {(x,y,z)EPtlz2::-y 2 +1-E} 

In words, Pd and Pc are obtained from Pt by gouging out parabolic troths, a troth parallel 
to the y axis gouged out of the top of Pd, and an upside down troth parallel to the x axis 
gouged out of the bottom of Pc. When the vector field is defined, the incoming boundary 
of each piece is the set of points where 8 / 8 z points inward, and the outgoing boundary is 
where 8 / oz points outward. Each of these pieces is a manifold with corners, and the gluing 
rectangles are the faces lying on either z = 0 or z = 1. The transitional piece has one 
incoming and one outgoing gluing rectangle; the diverging piece has one incoming and two 
outgoing gluing rectangles; and the converging piece has two incoming and one outgoing 
gluing rectangle. The sutured manifold N is obtained from a collection of transitional pieces, 
diverging pieces, and converging pieces, by identifying rectangles in pairs, one incoming and 
one outgoing gluing rectangle in each pair. 

The branched surfaces in each model are described as follows (see figure 3.4). In Pt take 
Bf = {(0, y, z) E Pt} and Bf = {(x, 0, z) E Pt}. In Pd, take B':J: = {(x, 0, z) E Pd}- The 
branched surface Ed is described as follows. The projection of Pd onto the x, z coordinate 
plane is the set Yd= {(x, z) E R 2 I 0 :::; z:::; 1, z:::; x2 - 1 +E, lxl :::; (1-E}2}. Take a properly 
embedded, oriented train track Td C Yd such that: every tangent vector is transverse to 
8/ax; there is one incoming endpoint on the edge Yd n {lzl = 0}; there is one outgoing 
endpoint on each of the two edges Yd n {lzl = 1, x < 0} and Yd n {lzl = 1, x > 0}; and 
there is one switch, a diverging switch. We now define Ed = Pd n 1r;;}(Td) where 1rxz is 
projection onto the x, z plane. Note that Ed n B':J: is the oriented train track { ( x, 0, z) E Pd I 
(x, z) E Td}- In Pc, take Bi = {(0, y, z) E Pc}, and take B~ = Pc n 1r;/(Tc) where Tc is an 
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Figure 3.4: Stable and unstable branched surfaces in a diverging piece Pd and a converging 
piece Pc. In order to see the branched surfaces we have changed the viewpoint from figure 
3.3; but the reader should imagine what these branched surfaces look like from a bird's eye 
view, in order to appreciate the difference betweens and u-branched surfaces. 

upside down version of Td, but in the yz coordinate plane. When N is glued together, the 
edges where branched surfaces intersect gluing rectangles must match up, yielding branched 
surfaces B'1v C N and B''fv C N. 

The vector fields in each model are described as follows. In Pt take o / oz. In Pc and Pd, 
the vector field o / oz is not satisfactory because it is not tangent to the branched surfaces; 
instead, take vector fields which have positive z-component, are transverse to the interior 
of each face, point inward on a face if and only if o /oz points inward, and are tangent to 
the branched surfaces, pointing backward along s-branch locus and forward along u-branch 
locus. When N is glued together, the vector fields along the gluing rectangles must match 
up, yielding the vector field V on N. This finishes the definition of a template pair. 

Remark. The vector field V is forward along l' B'!v, backward along l' B'1v, and tangent to 
T = B'!v n B'1v, making T an oriented train track. 

Remark. There is a deformation retraction q: N ----+ T, called the rectangle collapsing map, 
whose point inverse images are rectangle fibers. In each model the rectangle fibers are 
components of intersection of Pt, Pd, or Pc with horizontal planes. As with I-collapsing 
maps for train track neighborhoods in surfaces, the map q is not a true homotopy theoreric 
fibration. The union of intervals parallel to the s-direction define the s-interval fibration 
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of N, and the union of intervals parallel to the u-direction define the u-interval fibration. 
The map q has two factorizations 

q' N -----+ B1v----+ T, 

where qs, qu are deformation retractions collapsing s and u-intervals, respectively. The 
vector field V is transverse to each rectangle fiber; the transverse orientation on each fiber 
induced by V is called the positive transverse orientation. 

Remark. For almost all examples, the transitional piece is not necessary in the definition: 
if N is connected and if there is at least one diverging or converging piece, then N can be 
resubdivided into only diverging and converging pieces. However, an untwisted or twisted 
round handle can only be built out of transitional pieces. 

Remark. The branched surface B'!v is called a "template" in the literature ( at least when 
T is transitive and not a circle); see the discussion on templates in the introduction. 

Consider a dynamic pair Bs, Bu with T = Bs n Bu. We may choose I-bundle neighbor-
hoods N(Bs), N(Bu) in the smooth model so that N(T) = N(Bs) n N(Bu) is a sutured 
manifold, where R,_N(T) = 8N(T) n 8N(Bu) and R+N(T) = 8N(T) n 8N(Bs), and so 
that Bs n N(T), Bun N(T) form a template pair in N(T). The transitional, diverging, 
and converging pieces out of which N ( T) is built may be chosen by taking a finite subset 
X C T which divides T into arcs, diverging switch neighborhoods, and converging switch 
neighborhoods, and then cutting N(T) up along the rectangles {Rx = q- 1 (x) I x E X}, 
where q: N(T)----+ Tis a rectangle fiber collaping map. We may choose the I-fibrations of 
N(Bs), N(Bu) to be consistent withs and u-intervalfibrations of N(T). Note that there is a 
natural, type preserving correspondence between dynamic torus pieces of ct( M - ( Bs U Bu)) 
and of <t(M - (N(Bs) U N(Bu))). 

We say that a pA flow <I> is carried by a dynamic pair Bs, Bu if the following hold: 

• N ( T) is an isolating block for .J'('Iil?), with <I> flowing inward along {)_ N ( T), outward 
along 8+N(T), and externally tangent along <rN(T). 

• <I> is transverse to the rectangle fibers of N ( T), crossing each fiber in the positive 
direction. 

• N(Bs) is an isolating block for As J(Iil? U RiJ?), with <I> flowing outward along 
8N(Bs). 

• N(Bu) is an isolating block for Au J(Iil? U Ail?), with <I> flowing inward along 
8N(Bu). 

• Inclusion induces a type preserving bijection between dynamic torus piece components 
of <t(M - (N(Bs) U N(Bu))) and pA torus pieces of <I>. 
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Here are our main theorems about pA flows: 

Theorem 3.3.1 (pA flows yield very full laminations). If <I> is a pA flow on a com-
pact, oriented 3-manifold M with torus boundaries, then the isolated invariant sets As = 
J(IT U RT) and Au = J(IT U AT) are very full laminations; these are called the stable and 
unstable laminations of <I>. Inclusion induces natural, type preserving 1-1 correspondences 
between the following sets: 

• pA torus pieces of <I> 

• Components of ct(M - As) 

• Components of ct( M - Au) 

Remark. The pA torus pieces of <I> are precisely the compact components of ct(M - (As U 
Au)). What are the remaining components? They are all noncompact dynamic manifolds 
of the form (rectangle) x R, and there are infinitely many of them. Each of these may be 
thought of as a "homoclinic connection" between pA torus pieces. Each pinched tetrahedron 
component of ct(M - (N(Bs) U N(Bu))) is contained in a (rectangle)xR component of 
ct(M - (As U Au)), and each (rectangle)xR contains at most one pinched tetrahedron. 
There are infinitely many (rectangle)xR components which are entirely contained in N(T) 
and hence contain no pinched tetrahedron. 

Theorem 3.3.2 (pA flows and dynamic pairs). 
3-manifold with torus boundaries. 

Let M be a compact, oriented 

I. Every pA flow on M is carried by some dynamic pair in M. 

II. Every dynamic pair carries some pA flow. 

Moreover, if <I> is a pA flow with stable and unstable laminations As, Au, and if <I> is carried 
by a dynamic pair Bs, Bu, then there are natural, 1-1 type preserving correspondences 
between the components of ct(M - As), the components of ct(M - Au), and the dynamic 
torus piece components of ct( M - ( Bs U Bu)). 

Remark. The noncompact components of ct(P - (As U Au)), which according to the above 
remark are of the form (rectangle) x R, may be enumerated in terms of the dynamic train 
track T = Bs n Bu as follows: they are in 1-1 correspondence with finite train paths of T 

that start at a converging switch and end at a diverging switch. 

These theorems will be proved over the next several subsections. 
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Remark. For application to theorem C of the introduction, statement I of theorem 3.3.2-
that every pA flow is carried by some dynamic pair-is irrelevant, because theorem C will 
be proved by first constructing a dynamic pair and then using statement II to construct 
a pA flow carried by that dynamic pair. Nevertheless a detailed proof of statement I is 
included, partly for sake of completeness, but more to aid understanding; it wasn't until 
I wrote out the proof of 3.3.2 I, in particular step 4 of lemma 3.3.5, when I realized that 
transverse bigons of J must be ruled out. 

3.3.1 One-dimensional hyperbolic sets yield template pairs 

We start by recalling Williams' construction of template pairs: 

Proposition 3.3.3. Let J be an isolated, 1-dimensional hyperbolic invariant set of a flow 
<I> on a compact, oriented 3-manifold M. There exists an isolating block N for J, and a 
template pair EN, E'!v in N, with rectangle collapsing map q: N ----+ T = EN n E'!v, such that 
<I> I N is transverse to the rectangle fibers, crossing them in the positive direction. 

When this proposition is satisfied we say that the template pair EN, E'!v carries J. 
The general construction of templates for one-dimensional isolated hyperbolic invariant 

sets in 3-manifolds was first described by Birman and Williams [BW83]. A detailed account 
of this construction is given in [GHS96] § 2.2.1. Proposition 3.3.3 is a mild variation of 
these results. First we show how 3.3.3 follows from § 2.2.1 of [GHS96], with a few minor 
comments. Then we will give a fuller sketch of a proof of 3.3.3. 

Deriving proposition 3.3.3 from § 2.2.1 of [GHS96]. The definition of templates 
given in [GHS96] does not exactly match our branched surfaces EN, E'!v. First, the behavior 
of the vector field along 8 EN and 8 EN is slightly different, but this part of the conclusion is 
easily massaged. Second, the construction of [GHS96] requires that J be chain connected, 
i.e. transitive, and the conclusion says that the vector field on EN generates a transitive 
forward semiflow; however the construction of EN, E'!v goes through without assuming 
transitivity of J, only that J is isolated ( see next paragraph), yielding a template pair 
without any transitivity property. <) 

Remark. We say that J is transitive if there exists a dense orbit. We say that Tis transitive 
if there exists a directed path from any x E T to any y E T; this is also called strong 
connectivity. Transitivity of J is equivalent to transitivity of T. These conditions imply 
that there is a transitive forward semiflow on E'!v, and a transitive backward semiflow 
on EN, although these semiflows cannot be generated by a single vector field which is 
simultaneously tangent to EN and E'!v. 
A sketch of another proof of 3.3.3. This proof uses the same Markov partition ideas 
used in [GHS96]. 
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Bowen proved in [Bow73] that every transitive hyperbolic invariant set has a "Markov 
family of local sections". Transitivity is, however, unnecessary for this proof-as observed 
by Shub ([Shu87], commentary on p. 145), all that is needed is for J to have a "local 
product structure", and this is guaranteed by the fact that J is an isolated hyperbolic 
invariant set. 

Using 1-dimensionality of J as in [Bow72], the elements of the Markov family may be 
taken to be the intersections with J of a finite set M of smoothly embedded rectangles 
Ju x I8 -----+ M, where I8 ,Ju are diffeomorphic copies of [O, 1], a(Iu x I8) n J = 0, and 
J n (Ju X I8) = cu X cs where cs C int(I8), cu C int(Iu) are totally disconnected. There 
is a partially defined first return map f: LJ M -----+ LJ M, whose domain is a union of s-
subrectangles of LJ M and whose union is a union of u-subrectangles, so that f maps each 
s-subrectangle diffeomorphically to a u-subrectangle. This is similar to the concept of a 
"Markov cell decomposition" used by Farrell and Jones [FJ93]. 

With a certain amount of careful work, one can arrange moreover that M has proper 
overlaps, which means the following: for each R = Ju x I8 E M, the components of 
Rn Domain(!) are proper s-subrectangles, i.e. each component has the form J' x I8 where 
J' C int(Iu) is a compact interval; similarly, the components of Rn Image(!) are proper 
u-subrectangles of R. By adding extra rectangles we may assume that for each R, R' EM 
there is at most one component off( R) n R'; it follows that there is at most one component 
of Rn 1-1 (R'). 

Associated to M is a directed graph r, the transition digraph, with a vertex VR for each 
REM, and a directed edge R-----+ R' whenever f(R) n R'-::/ 0. By adding extra rectangles, 
we may assume that M is generic, which means that each vertex of r has valence 2 or 3, 
and no edge connects two vertices of valence 3. For each directed edge R -----+ R' choose a 
flow segment PRR' going from R to R' with interior disjoint from LJ M. The path PRR' is 
well-defined up to an isotopy keeping the endpoints in R, R' respectively. The digraph r 
may be embedded in M, taking the vertex VR to a point of R, and the edge R -----+ R' to an 
embedded path connecting VR to ViJ, and staying in a neighborhood of RU R' U PRR'· 

The image of r may be smoothed, to give a train track T (see figure 3.5). Perturb 
T so that each diverging switch VR moves to a point just above R, and each converging 
switch VR moves to a point just below R. The components of T - LJ M are of three types: 
a transitional component which is an oriented interval; a diverging component which is a 
regular neighborhood of a diverging switch; and a converging component which is a regular 
neighborhood of a converging switch. 

Associated to each component of T - LJ M we may embed the appropriate piece in 
M, a diverging piece, a converging piece, or a transitional piece. For example, consider a 
transitional component of T - LJ M corresponding to an edge R -----+ R' where R has only 
one outgoing edge and R' has only one incoming edge. From the overlap condition on 
M, it follows that there is a flow box H = [-1, 1] x [-1, 1] x [O, 1] '-------+ M intersecting M 
in R = [-1,1] x [-1 + E,1- E] x O and R' = [-1 + E,1- E] x [-1,1] x 1. Now embed 
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Figure 3.5: Associated to each vertex VR with two outgoing edges R ----+ R1 , R ----+ R2 , the 
train track T has a diverging switch located just above R. 

a transitional piece in M, using the defining formula for Pt in the coordinate system H. 
Similarly, for each diverging component of T - LJ M we may embed a diverging piece, and 
for each converging component we may embed a converging piece. The union of these pieces 
defines the required isolating block with template pairs, finishing the sketch of the proof of 
proposition 3.3.3. <) 

3.3.2 Local boundary laminations 

We study some features of isolated hyperbolic invariant sets: local boundary laminations. 
In the course of this study we will also learn about the boundary train tracks of a template 
pan. 

Let J be a 1-dimensional isolated hyperbolic invariant set of a flow \]i. Choose an 
isolating block N for J. Let W1~e' W1~e be the local stable and unstable laminations of J 
with respect to N. Define the local stable boundary lamination of J with respect to N to 
be the 1-dimensional lamination ..\.foe = 8W 1~e; this is a lamination in the surface R_N. 
The local unstable boundary lamination is ..\.k>e = 8W 1~e' a lamination in the surface R+N. 
Since W1~e' W1~e are well-defined independent of N, the same is true of ..\.foe' ..\.k>e· 

A compact 1-dimensional lamination..\. is said to be finite depth if for each noncompact 
half-leaf£ of..\. there exists a closed leaf, such that for each sequence Xi E £ diverging to 
the end of£, each limit point of (xi) in..\. is in,. 

Proposition 3.3.4. Given a 1-dimensional compact hyperbolic invariant set J of a flow 
in an oriented 3-manifold, the boundary laminations ..\.10c = 8Wz~c and ..\.10c = 8Wtc are 
finite depth laminations with only finitely many compact leaves. Moreover, the compact 
leaves of ..\.10c are in 1-1 correspondence with the stable boundary periodic orbits of J, and 
the compact leaves of ..\.10c are in 1-1 correspondence with the unstable boundary periodic 
orbits. 

Proof. The "moreover" clause is an easy consequence of the definitions. 
By proposition 3.3.3 we may assume that N is an isolating block for J supporting a 

template pair B1v, B'!v. Let q: N ----+ T = EN n B'!v be the rectangle fiber colapsing map. 
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Let Ts = 8B1v, a train track in R,_N carrying ..\.foe· We may regard R,_N as an I-fibered 
neighborhood of Ts, such that ..\.foe is transverse to the I-fibers. Similarly, the train track 
Tu = 8B'!v C R+N carries ..\.k>e' and R+N is an I-fibered neighborhood of Tu such that ..\.k>e 
is transverse to the I-fibers. 

There are immersions K,s: Ts -----+ T, K,u: Tu -----+ T which are homotopic to q I Ts, q I Tu 

respectively. By pulling back the orientation on T we get singular orientations on Ts, Tu, 

whose singularities are the points where Ts, Tu are tangent to rectangle fibers of N. Each 
orientation singularity x of Tu is an orientation source, and each orientation singularity x of 
Ts is an orientation sink. Each switch of Tu is diverging, and each switch of Ts is converging. 
The train track Tu is therefore an unstable train track, and Ts is a stable train track. Note 
that under "'u, each source of Tu goes to a diverging switch of T and each converging switch 
of Tu goes to a converging switch of T; similar comments apply to Ts. 

We prove now that ..\. u is finite depth. Any half leaf of..\. u determines a train path in Tu, 

a smooth path f: [O, oo) -----+ Tu which passes over switches infinitely many times. Consider 
an arbitrary train path f: [O, oo) -----+ Tu. By lemma 2.5.6, f passes over the sources of Tu at 
most once. We may therefore truncate f so that it does not pass over a source, and so there 
is an orientation on [O, oo) such that f preserves orientation. By compactness of Tu there 
exists< t E [O,oo) such that f(s) = f(t), and we obtain an oriented, immersed loop in 
Tu. For any oriented immersed loop in Tu, if it is not a covering map of an embedded loop 
in Tu then the image contains a diverging switch of Tu, a contradiction; therefore, every 
oriented immersed loop in Tu covers an embedded loop. Thus, f eventually enters a circle 
c of Tu. Since there are no diverging switches, once f enters c it can never leave. 

If f comes from a half-leaf£ of..\. u, and if f eventually enters the circle c of Tu, it follows 
that the accumulation set of£ is a compact sublamination of ..\.u carried by c. Let ,c be 
the maximal compact sublamination of..\. u carried by c. Since Tu fully carries ..\. u it follows 
that /C # 0. 

It remains to show that ,c is a single compact leaf of ..\.u. From the construction of 
template pairs, the rectangle collapsing map q: Tu -----+ T takes c to a loop of T. Corresponding 
to this loop is a boundary periodic orbit, of J, and it now follows easily that ,c is a compact 
leaf of ..\.u corresponding to this orbit. <) 

3.3.3 Local boundary laminations m the pA case 

The discussion in §3.3.2 applies to any isolated, 1-dimensional hyperbolic invariant set J. 
Now we specialize to the case J = J(IT) where <I> is a pA flow. Applying proposition 
3.3.3, let N be an isolating block for J and B1v, B'!v a template pair supported on N and 
carrying J. 

For each, E AT, let U( 1 ) = { x E M I x · [O, oo) limits on,} be the attracting basin of 
, , an open, connected subset of M. Note that U ( 1 ) n U ( ,') = 0 for , -::J 1 1 E AT. For each 
, E RT there is a similarly defined repelling basin U ( 1 ). From the context it should be clear 
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whether U ( 1 ) represents an attracting basin or a repelling basin. Let U A = LJ-yEA<p U ( 1 ) 
and Un= u-yEn¢ U(,). 

Each attracting or repelling orbit , of <I> has an isolating block which is a smooth solid 
torus T(,), which may be taken to lie in an arbitrarily small neighborhood of,. If, is 
attracting then <I> flows inward along 8T ( 1 ), and if, is repelling then <I> flows outward. Let 
TA= UT(,) for, E A<1>, and let Tn = UT(,) for, E Rep. At first, we choose the isolating 
blocks T( 1 ) so small that they are disjoint from N. Having made these choices, we alter 
them as follows. 

Note that R,_N C Un and R+N CUA. Let 8Tn flow forward until it contains R,_N, 
and let {)TA flow backward until it contains R+N. More precisely, there exists a smooth 
function p: R,_ N -----+ ( -oo, 0) such that x · p( x) E 8Tn for all x E R,_ N. There also exists a 
smooth function (T: 8Tn -----+ ( 0, oo) such that for each x E R,_ N we have (T( x · p( x)) = - p( x). 
Now replace Tn by the set 

Tn u LJ x · [O, (T( x )] 
xEBTn 

and make similar replacements for the components T( 1 ) of Tn. Having done this, we have 
R,_N C 8Tn. Make a similar replacement of TA, so R+N C {)TA. 

We now have ..\_U C {)TA, and so there is a decomposition ..\_U = u-yEA<p ..\.~ into open and 
closed sublaminations ..\.~ = ..\.u n 8T(,). There is a similar decomposition Tu= U-rEA<p T;. 

Note that T; fully carries ..\.~. There are similar decompositions A.8 = u-yEn<p ..\.;, T8 = 
u-yEn<p T;. 

Recall that a Reeb lamination on a surface is any lamination contained in a subannulus 
A of the surface, such that the closed leaves of the lamination are the components 11 , 12 
of 8A, there is at least one leaf in int(A), each leaf in int(A) has one end spiralling into 
11 and the other end spiralling into 12 , and 11 , 12 are oriented isotopic with respect to the 
spiralling orientations; these are the orientations defined by the property that when you go 
around the curve in the direction of the spiralling orientation, the holonomy map of the 
lamination is contracting. A Reeb train track in a surface is a stable or unstable train 
track T contained in a sub annulus A of the surface, such that the components 11 , 12 of 8 A 
are the only loops carried by T, T n int(A) c/ 0, each bi-infinite train path in T has one end 
spiralling around 11 and the other end spiralling around 12 , and 11 , 12 are oriented isotopic 
with respect to the orientation restricted from T. 

Lemma 3.3.5 (Local boundary laminations in the pA case). Let <I> be a pA flow on 
a compact oriented 3-manifold M with torus boundaries; we adopt the notation in the 
preceding discussion. Given I E A<1>, let F be the unique u-face of a pA torus piece such 
that I C F. Let c1 , c2 be the boundary components of F. Let 11 , 12 be the two components 
of R+N n F, with the notation chosen so that ti is a closed curve in the component of F - 1 
bounded by Ci. The lamination ..\.~ is a Reeb lamination in 8T-y, with closed leaves 11 , 12 . 
The curve ti with the spiralling orientation is oriented isotopic to Ci with the dynamic 
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orientation. Also, the train track T; is a Reeb train track in T'Y. Given t E Rif?, similar 
statements hold for ..\.; and T;, except that the spiralling orientations are anti-isotopic to 
the dynamic orientations. 

Proof. The properties of..\.~ and T; are proved in a sequence of steps; proofs for ..\.; and 
T; are similar. 

Step 1. The leaves ti, i = 1, 2, are the only closed leaves of..\.~. This follows from the 
fact that corner orbits of pA torus pieces are the only unstable boundary orbits of J, by 
definition of a pA flow. 

The leaves ti are not isolated in ..\.t. To see why, note that the stable manifold W1~c( ci) 
is divided into two halves by Ci, one half lying in the s-face of T incident to ci; let V( ci) be 
the other half of W 8

( ci)- If V( ci) n J were empty, then Ci would be a stable boundary orbit 
on both sides, and hence we would have two pA torus pieces intersecting along Ci. This 
violates the definition of a pA flow, which requires distinct pA torus pieces to be disjoint. 
Thus, V( ci) n J -::/ 0. Note that in some neighborhood of ti, ..\.~ intersected with that 
neighborhood is isotopic through W1~c to V( ci) n J intersected with a neighborhood of Ci, 
and so ti is not isolated. 

Step 2. All nearby leaves of ..\.u spiral into ti, and the spiralling orientation on ti agrees 
with the dynamic orientation. This is true because the holonomy of V( ci) n J around 
Ci is contracting, when you go around Ci in the direction of the flow, and the spiralling 
orientation on Ci, as a leaf of V(ci) n J, agrees with the dynamic orientation; the same is 
therefore true of ti as a leaf of..\.~. 

Step 3. The only closed, oriented loops of T; are the loops carrying tl, t 2. This follows 
because T; fully carries ..\.~, and since T; is an unstable train track, every closed loop of T; 
carries a closed leaf of..\.~; step 3 is therefore a consequence of step 2. 

Step 4. For each nonclosed leaf £ of ..\.~, each end of£ spirals into one of tl or t 2. To see 
why, under the I-collapsing map R+N -----+ T;, the leaf£ maps to a bi-infinite path in T;. 
Since T; is an unstable train track, it follows that each half of£ eventually winds around 
a directed loop of T;. Applying step 3, each half of£ eventually spirals around one of the 
closed leaves tl, t2. 

Step 5. For each nonclosed leaf£ of..\.~, one end of£ spirals into tl and the other spirals 
into t2· 

Suppose that both ends of£ spiral into one closed leaf, say ti· We shall show that this 
leads to a transverse bigon for J, contradicting the definition of a pA flow (see figure 3.6). 
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In the torus 8T(,), one component of <t(aT(,) - £) is a monogon µ, a disc with one 
boundary point removed, so that the two ends of£ = 8 µ get closer and closer to each other 
as you go out the end ofµ. The interior ofµ might intersect >.~. There are, however, no 
closed leaves of>.~ in int(µ), because each closed leaf of >.u lies on some u-face of some pA 
torus piece. There is, therefore, an innermost leaf inµ, bounding a submonogon ofµ whose 
interior is disjoint from >.u. We may therefore assume that int(µ) n >.u = 0. 

Now let µ' be obtained fromµ by chopping off some neighborhood of the end, so µ' is 
a bigon with one boundary edge /3' C £ and another short boundary edge a', far out the 
end ofµ, with interior disjoint from >. u. Note that µ' is tranverse to <I>. 

The arc a' is contained in an arbitrarily small neighborhood of F. There exists an 
embedded rectangle Q C N with one edge on a', another edge on a C V(ci), and the 
remaining two edges on W1~c(J), such that Q is transverse to <I>, and int( Q) Uint( a) Uint( a') 
is disjoint from W1~c(J). We may glue Q andµ' along a', and smooth along a', to obtain 
a transverse bigon for J, obtaining the contradiction that proves step 5. 

Steps 1-5 together prove the lemma for >.~ and T;. 
3.3.4 Proof: pA flows yield laminations 

Let <I> be a pA flow on a manifold with torus boundaries M. We prove that Au = J(Iil? UAil?) 
is a very full lamination; the proof for As = J(Iil? U Ril?) is similar. Adopting the notation 
of §3.3.3, there is an isolating block N for J = J(Iil?) supporting a template pair B1v, B'!v. 
The local weak stable and unstable laminations W1~c' W1~c of J are properly embedded 
laminations in N, with local boundary laminations A8 = 8W 1~c and >.u = 8W 1~c· Applying 
lemma 3.3.5, for each, E Ail?, setting>.~= >.u n 8T(1) we have: 

• >.~ is a Reeb lamination in 8T(,). 

• Each closed leaf of>.~, equipped with its spiralling orientation, is oriented isotopic to 
, with its dynamic orientation. 

Note that Au is equal to W1~c U (>.u · [O,oo)) U AiJ?. To prove that Au is a lamination it 
therefore suffices to prove that for each , E Ail?, the set A~ = ( >.~ · [ 0, oo)) U, is a lamination 
in the solid torus T(,), with boundary>.~. 

We claim that the triple (T(,), <I> IT(,),>.~) is described up to topological conjugacy 
as follows. The torus T(,) is the quotient of T = {(x, y, z) E R 3 I x2 + y 2 s; e2z} under 
the map F(x,y,z) = (ex,ey,z+ 1). The forward semiflow <I> IT(,) is the quotient of the 
forward semiflow on T generated by 8 / oz. The surface 8T has an F-invariant foliation 
by curves of intersection with planes parallel to the yz-coordinate plane. The lamination 
>.~ C 8T( 1 ) is the quotient of an F-invariant sublamination of this foliation. This claim 
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Figure 3.6: If ..X.t has a nonclosed leaf£ with both ends spiralling into ti, then there is a 
transverse bigon. The picture shows part of the leaf W1~c( ci) and also part of the leaf of 
W1~c(J) having£ as a boundary component. Also shown are several flow lines of <I> in these 
leaves. Recall that in any leaf of W1~c' orbits of <I> converge exponentially in backwards 
time. 
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follows from the the above listed facts about A~, and the fact that T(,) is an isolating 
neighborhood of the attracting orbit 1 . 

It follows that A~ is the quotient of an F-invariant sublamination of the foliation of T 
by intersections with planes parallel to the yz-coordinate plane, thereby proving that A~ is 
a lamination with boundary A~. 

Since Au is tangent to <I>, clearly there are no sphere leaves nor Reeb components (in 
fact, one can use hyperbolicity of J to show that there are no torus leaves at all). 

It remains to examine the components of r.t( M - Au), and to prove that they are in 1-1 
type preserving correspondence with the pA torus pieces of <I>. Let C be a component of 
ct( M - Au), which by abuse of notation we may regard as an invariant set of <I>. 

For each x E C, we claim that one of the following happens: 

• x is contained in some pA torus piece. 

• x E int( C) and the backwards orbit x · (-oo, O] accumulates on some repelling orbit 
of <I>. 

• x E 8C and, letting L be the component of 8C containing x, the backwards orbit 
x · (-oo, O] accumulates on some stable boundary periodic orbit of <I> contained in L. 

To prove the claim, suppose that xis not already contained in a pA torus piece. If x E int( C) 
then x · (-oo, O] must accumulate on a repeller of <I>, and the only possibility is a repelling 
periodic orbit. If x is contained in the component L of 8C, then the backwards orbit 
x · (-oo, O] must eventually enter W1~c' and since Lis a boundary leaf of Au it follows that 
x · (-oo, O] accumulates on a stable boundary periodic orbit contained in L. 

In the above claim, each of the three cases picks out a pA torus piece Tx such that either 
x E Tx or x · (-oo, O] accumulates on a repelling periodic orbit or a corner orbit of Tx. Since 
Tx may be regarded as a subset of r.t( M - Au), and since Tx is connected, it follows that 
Tx C C. Let Tc= UxEC Tx. 

We have in fact proved something more: for each x E C - Tc, the backward orbit 
x · (-oo, O] accumulates on some s-face Fx of Tc. To see what this implies, for each s-face 
F of Tc attach to Tc a collar neighborhood N(F) F x [O, 1] on the outside of Tc, such 
that F F x 0, the outer face of N(F) is the annulus F' F x 1, F' is transverse to <I>, 
and 8F x [O, 1] C 8C. Let N(Tc) be obtained from Tc by attaching N(F) for each s-face 
F of Tc. It now follows that C is obtained from N(Tc) by attaching F' · [O, oo) to each 
F'. Since C is connected it follows that Tc is connected, and so Tc is a pA torus piece. 
Moreover, C is au-pared torus piece of the same type as Tc. 

3.3.5 Proof: pA flows yield dynamic pairs 

Let <I> be a pA flow on a torally bounded manifold M. Apply proposition 3.3.3 to produce 
an isolating block N for J = J(Iil?) supporting a template pair B1v, B'!v C N carrying J. 
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Applying lemma 3.3.5, 8B'!v consists of one Reeb train track T; contained in T(,) for each 
attracting periodic orbit, of <I>. Let F, 11 , 12 be as in lemma 3.3.5. For convenience we 
may assume that 11 , 12 are the closed loops in T;. 

We now construct Bu by constructing an annulus with tongues in T( 1 ) whose boundary 
is T;, using methods similar to the proof of proposition 2.5. 7. Start with the annulus A C F 
bounded by 11 , 12 . Choose an enumeration x 1 , ... , Xn of the sources of T;. Starting with 
x 1, attach a tongue t 1 to A, whose boundary consists of the path p11 C T; connecting x 1 to 
,1, the path P12 connecting x1 to ,2, and a maw arc /31 in F connecting ,1 to ,2- Continuing 
inductively, attach a tongue tk to AU t 1 U · · · U tk-l, whose boundary consists of the path Pkl 

connecting Xk to ,1 U Pn U · · · U Pk-1,1, the path Pk2 connecting Xk to ,2 U P12 U · · · U Pk-1,2, 
and a maw arc f3k-At each stage, the tangent plane along f3k may be chosen consistently 
because of the fact that T; is a Reeb train track. This completes the construction of Bu. 

The neighborhood N(Bu) must be constructed to satisfy several conditions: N(Bu) 
is an I-fibered neighborhood of Bu; N(Bu) is an isolating block for <I>, with <I> pointing 
inwards along 8N(Bu); N(T) C N(Bu) with R,_N(T) C 8N(Bu). We construct N(Bu) 
as follows. Fix an attracting orbit, of <I>. The surface R+N(T) intersects 8T(,) in an I-
fibered neighborhood N(T;). The components of ct(aT(,)- N(T;)) consist of one annulus, 
and a collection of smooth discs D1, ... , Dn equal in number to the sources of T;. Let 
D~ be a smooth, properly embedded disc in T(,) with 8Dk = 8D~, meeting R,_N(T) 
smoothly; this can be achieved by setting D~ = { x · p( x) I x E Dk} where p: Dk -----+ [O, oo) 
is an appropriately chosen smooth function whose zero set is 8Dk. We can now define 
N(Bu) to be the manifold with boundary R,_N(T) U D~ U · · · U D~ containing N(T). It 
is obvious that there is a deformation retraction from N(Bu) n T(,) to Bun T(,) whose 
restriction to N ( T;) is the I-fiber collaping map onto T;; we leave the reader to construct 
this deformation retraction to be an I-collapsing map on all of N(Bu) n T(,). 

The branched surface Bs, and its I-fibered neighborhood N(Bu), are similarly described. 
The only task remaining is to verify that Bs, Bu is a dynamic pair, and for that the 

only slightly nonobvious part is that the components of ct( M - ( Bs U Bu)) which are not 
dynamic torus pieces are pinched tetrahedra. 

By construction, the components of ct( 8 N ( Bs) - N (Bu)) are discs and annuli, and 
similarly for ct(aN(Bu) - N(Bs)). These discs occur in pairs, a disc ns c ct(aN(Bs) -
N(Bu)) corresponding to a disc Du c ct(aN(Bu) - N(Bs)) when 8Ds = 8Du. Note that 
for each x E ns the flow line x · [O, oo) hits nu in a unique point; the union of these flow 
segments forms a topological 3-ball b with boundary nsunu (we have not used irreducibility 
of M to construct this 3-ball). 

This sets up a 1-1 correspondence between the components of ct ( M - ( N ( Bs) UN (Bu))) 
which are 3-balls and the components of ct(M - (Bs U Bu)) which are not dynamic torus 
pieces, and so the latter must all be topological 3-balls with interval dynamics. Any dynamic 
manifold with this property, whose faces are s and u-faces, is a pinched tetrahedron. 
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3.3.6 Proof: Dynamic pairs yield pA flows 

Let B 8
, Bu be a dynamic pair on a compact, oriented 3-manifold M with torus boundaries. 

Let T = B 8 n Bu. Choose I-fibered neighborhoods N(B 8
), N(Bu) in the smooth model so 

that N = N(T) = N(B 8
) n N(Bu) is a sutured manifold neighborhood, the I-fibrations fit 

together to give a rectangle fibration q: N -----+ T, and EN = N n B 8
, B'!v = N n Bu is a 

template pair in N. We shall define a flow <I>, by "induction along skeleta": first we define 
<I> on N, then on ct(N(B 8

) - N) and ct(N(Bu) - N), finally on ct(M - (N(B 8
) U N(Bu))). 

In each case we investigate the behavior of <I>, with an eye towards proving that <I> is a pA 
flow. 

The flow on N. We construct a semiflow with N as an isolating block, whose maximal 
invariant set J is a hyperbolic invariant set carried by the template pair EN, B'!v. 

Choose a finite set X C T so that the closure of each component N - q- 1 (X) is a 
converging piece, diverging piece, or transitional piece P. Let Rx = q- 1 (X), so Rx is the 
result of gluing some top rectangle to some bottom rectangle, among all the gluing rectangles 
of the pieces P. Notice that in the standard model for each piece P, the bottom gluing 
rectangles are wider in the u-direction than in the s-direction, and the top gluing rectangles 
are wider in the s-direction than in the u-direction ( see figure 3.3, and also the formulas 
defining the stadard models Pt, Pd, Pc)- We may therefore choose each gluing map, from a 
top rectangle to a bottom rectangle, to be a linear map which stretches the u-direction and 
compresses the s-direction. On each of the standard models Pt, Pd, Pc, take the semiflow 
generated by 8 / 8 z, and push these semiflows forward under the gluing to define a smooth 
semiflow <I> on N. Clearly N is an isolating block for <I>, with maximal invariant set J C N, 
and there is a hyperbolic splitting along J with stable direction parallel to the s-coordinate 
and unstable direction parallel to the u-coordinate in each piece. Also, J is carried by the 
template pair EN, B'!v. 

Using symbolic dynamics arguments from [Bow72] or [Fra82], the invariant set J is 
1-dimensional. For each rectangle Rx = I'/:; X I;, there is a product structure Rx n J 
C'//; x c;, where c; C int(I;), C'//; C int(I'//;) are compact and totally disconnected. We have 
W1~c(J) n Rx = I'/:; x c; and W1~c(J) n Rx = C'/:; x I;. There is a 1-1 correspondence 
between directed loops of T and periodic orbits of J, where a loop c corresponds to an 
orbit ,c so that the cyclic sequences of rectangles Rx intersected by c and ,c are identical. 

We study boundary periodic orbits of J. Let ..\.u = 8W1~c' a lamination in R+N, and 
let A.8 = 8W1~c C R,_N. The surface R,_N is an I-fibered neighborhood of the train 
track T8 = 8ct(B 8 

- T), and T8 carries A.8 • Similarly R+N is an I-fibered neighborhood of 
Tu= 8 ct(Bu - T), and Tu carries ..\.u 

Each component K of ct(B8 
- T) is an annulus with tongues, by proposition 2.5.7; let 

AK be the annulus. The component Tk = 8K of T8 is a stable train track, contained in 
a component R~ of R,_ N, and Tk carries ..\. 'k = ..\. s n R~. Since K is an annulus with 
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tongues, it follows that Tk has two directed loops, and for each orientation sink s E Tk the 
backwards directed paths on either side of s go to distinct loops in Tk- It follows that )..K 
has exactly two closed leaves, one carried by each directed loop in Tk; every other orbit of 
).. K spirals into one loop on one end and the other loop on the other end. In particular, ).. K 
is a connected topological space. 

We can now identify the stable and unstable boundary periodic orbits of J. For each 
dynamic torus piece T of ct( M - ( Bs U Bu)), and for each corner circle c of T, we may 
identify c with a directed loop in T. Corresponding to c is a periodic orbit ,c C J. There 
are components Kg of ct(Bs - T) and K-:: of ct(Bu - T) such that c is identified with a 
directed circle in the train track 8 Kg and also in the train track 8 K-::, and hence , c is both 
a stable and an unstable boundary orbit. We shall need even more structure than this, 
in order eventually to see that ,c is a corner orbit of a pA torus piece. Corresponding to 
the pair T, c is a component T' of ct(M - (N(Bs) U N(Bu))) and a corner circle c' of T'. 
Consider a point x E X n c. Let x' = Rx n c', a corner of Rx. Let 1t( ci x C":);) be the convex 
hull of ci X c;:;' a subrectangle of Rx. It follows that Rx n /C is the corner of 1t( ci X C";) 
corresponding to x'. 

The flow on ct(N(Bs) - N)) and ct(N(Bu) - N)). Fix a component K of ct(Bu - T). 
Corresponding to K is a component NK of ct(N(Bu) - N), which may be regarded as a 
regular neighborhood of K. We know by proposition 2.5.7 that K is a stable annulus with 
tongues, and so N K is homeomorphic to a solid torus. Let A C K be the annulus, with 
boundary components 11 , 12 . Corresponding to 11 , 12 are two unstable boundary periodic 
orbits c1 , c2 C J. The dynamic orientations on c1 , c2 agree with the dynamic orientations 
on 11 , 12 , which agree with each other. In the natural manifold-with-corners structure on 
N K, the set N K n N is a face. We have already constructed <I> along this face, and it flows 
into N K ( out of N). We may now extend <I> over the whole solid torus N K, so that <I> 
flows inward on 8 N K, and so that the solid torus N K is an isolating neighborhood of an 
attracting periodic orbit 1 . We are free to choose the dynamic orientation on , at will; 
choose this orientation so that, is oriented isotopic to 11 and 12 , and hence also to c1 and 
C2. 

Note that there is an invariant annulus F'Y of <I> with core I and with f)F'Y = c1 U c2 , 

such that the component of F'Y containing Ci is contained in the unstable manifold of Ci. 

The flow <I> is extended over N ( Bs) - N in a similar manner. 

The flow on ct(M - (N(Bs) U N(Bu))). Given a component T of ct(M - (Bs U Bu)), let 
KT be the corresponding component of ct ( M - ( N ( Bs) U N (Bu))). 

Consider first the case that T is a pinched tetrahedron. Note that KT is a topological 
ball, with two disc faces meeting along their boundaries at a corner circle. The flow <I> is 
already defined on 8Kr, entering Kr along one disc face and exiting along the other disc 
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face, and externally tangent along the common boundary curve. Extend <I> over Kr to have 
interval dynamics. 

Next consider the case that Tis a torus piece. Corresponding to each face F of T there 
is an attracting or repelling orbit , and an invariant annulus F' = F'Y, whose boundary 
components are stable and unstable boundary periodic orbits of J. The union of the 
annuli F', over all faces F of T, bounds a set T' which has the correct manifold-with-
corners structure for a pA torus piece of the same type as T. The flow <I> is already defined 
on a neighborhood of 8T', and it has the correct structure for the flow on a pA torus piece: 
the corners are hyperbolic orbits and the faces contain, alternately, attracting and repelling 
periodic orbits. We may now extend <I> over all of T' so that T' is a pA torus piece of the 
correct type. 

<I> is a pA flow. Conditions 1-6 in the definition of a pA flow are obvious from the 
construction and the properties of J already noted. Disjointness of pA torus pieces follows 
from the fact that for each pA torus piece T and each corner orbit , of T, the component 
of W1~c (,) - 1 not lying in 8T has nonempty intersection with J, and similarly for W1~c (,), 

and so c is not a corner orbit of any other pA torus piece. 
To check the final condition 7, suppose by contradiction that there is a transverse bigon 

D for J. 
First we reduce to the case where D C int(N(B 8

) U N(Bu)). We know already that 
8D C int(N). By perturbing D we may assume that D is transverse to the surface F = 
8(N(B 8 )UN(Bu)). Each component of F bounds a component of <t(M -(N(B 8 )UN(Bu))), 
either a 3-ball or a dynamic torus piece. We may easily push D out of the 3-balls by isotoping 
along flow lines. 

Consider a dynamic torus piece component T of <t ( M - ( N ( B 8
) U N (Bu))). Let T' be 

the corresponding pA torus piece of <I>, so T C int(T'). We shall show that D n T' = 0, 
and so D n T = 0. We know that a collar neighborhood of 8D is properly embedded in 
<t(N - (W1~c U W1~c)), with one edge in W1~c and the other edge in W1~c· It follows that 
if 8 D n 8T' -::/ 0 then 8 D C 8T'. But D is transverse to <I>, and each circle in 8T' that 
is transverse to <I> must intersect 8T - N. Therefore if 8 D n 8T' -::/ 0 then 8 D </.-N, a 
contradiction. We have shown that 8D n 8T' = 0, and so D n 8T' is a union of circles in 
int( D). But every circle in 8T' that is transverse to <I> must intersect the corner orbits of 
T', contradicting the fact that int(D) n J = 0. It follows that D n 8T' = 0, and therefore 
D n T' = 0, so D n T = 0. 

Next we reduce to the case where D C int(N). By perturbing D we may assume that it 
is transverse to 8 N. Each component of D n 8 N is therefore a circle, and each such circle 
must be contained in int(R_N) or int(R+N), since D C int(N(B 8

) U N(Bu)). Consider a 
component C of <t(N(B8

) - N). We know that C is a solid torus isolating neighborhood 
of a repelling periodic orbit 1 . We also know that C is a manifold with corners, C n N is a 
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face of C, and D n 8C C int( C n N). Each component of D n C is properly embedded in C 
and transverse to the flow on C; it follows that D n, = 0, because any surface transverse 
to <I> and properly embedded in C which intersects , must contain a meridian circle of 8C, 
but no meridian circle is contained in C n N. Having shown that D n , = 0, it follows 
that we can push D out of C by flowing along trajectories of <I>. The portions of D which 
were in C are pushed into N, and so the number of components of D n 8N are reduced. 
Repeating this for each component of r.t(N(Bs) - N) and of r.t(N(Bu) - N), eventually we 
have D C int(N). 

To finish, we rule out the possibility of a transverse bigon in N by enumerating the 
three possible types of components of r.t(N - (W1~c U W1~c)). 

The first type is the "corner orbit piece", the quotient of the set [O, 1] x [O, 1] x R C R 3 

with respect to the map (x,y,z)-----+ (x,y,z + 1), equipped with the flow (x,y,z) · t = 
( etx, e-ty, z + t). The z-axis becomes a boundary periodic orbit of J. There is a 1-1 
corresondence between corner orbit pieces, boundary periodic orbits of J, and components 
of the suture set (TN which are identified with corner circles of dynamic torus pieces of 
Bs,Bu. 

The second type is the "acqueduct piece". To describe it, let f: ( -1, 1) -----+ R be a 
function which is concave upward, approaching oo at the endpoints, with f(O) = O; the 
function f(x) = sec(1rx) - 1 will do. Take the set {(x,y,z) E R 3 I lxl, IYI s; 1,z s; 
f( x) + 1, z 2:: f(y) - 1 }, with the semiflow generated by 8 / oz. There is a countable infinity 
of acqueduct pieces. 

The third type is the "leaky acqueduct piece", defined as { ( x, y, z) E R 3 I Ix I, I y I s; 
1, z s; f ( x) - 1, z 2:: f (y) + 1}. There is a 1-1 correspondence between leaky acqueduct 
pieces and components of (TN that are not corner circles of dynamic torus pieces. 

To prove that these are the only possible types, cut open each converging piece, diverging 
piece, and transitional piece along the laminations, take completions, glue together to get 
the components of r.t(N - (W1~c U W1~c)), and see what you get. 

Obviously none of the three pieces contains a transverse bigon, proving condition 7. 

3.4 Constructing pseudo-Anosov flows 

Having dwelt among pA flows for the last few sections, now we return to pseudo-Anosov 
flows by proving: 

Theorem 3.4.1. Let M be a closed, oriented 3-manifold. Given a dynamic pair Bs, Bu 
on M, we can construct a pseudo-A nosov flow <I>. 

Remark. The pseudo-Anosov flow <I> constructed in this theorem is said to be carried by 
the pair Bs, Bu. To say that "we can construct" <I> means, at the very least, that we can 
construct a Markov partition for <I>, starting from Bs, Bu as the input data. 
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Proof. Recall that in constructing a pA flow, we started with I-fibered neighborhoods of 
B 8

, Bu in the smooth model, whose intersection was a regular neighborhood N ( T) with 
rectangle fibration q: N ( T) -----+ T. Then we constructed a semiflow on N ( T), for which 
N ( T) was an isolating block, whose maximal invariant set was a 1-dimensional hyperbolic 
invariant set. Finally, we extended this flow to the complement of N ( T). 

Here is a outline of the construction of a pseudo-Anosov flow <I>; details are given below. 
Start with I-fibered neighborhoods U(B 8

), U(Bu) in the cusp model. Let U(T) = 
U(B 8

) n U(Bu), so that the I-fibers of the factors fit together to give a rectangle fibration 
of U(T). Construct a flow <I>* on U(T) for which U(T) is a hyperbolic invariant set. Unlike 
in the construction of pA flows, <I>* is tangent to the boundary. To be truthful, <I>* is only a 
forward semiflow near culverts of U(Bu) and a backward semiflow near culverts of U(B 8

), 

but that will not disturb us. There are stable and unstable foliations W 8 *, Wu* defined on 
U(T). There is a decomposition oU(T) = o5 U(T) U OuU(T), where each s-face is tangent to 
W 8 * and transverse to Wu*, and vice versa for u-faces. The stable foliation W 8 * therefore 
induces a foliation of Ou U ( T), whose leaves are just the trajectories of <I>* ( again, there is a 
singularity near each culvert point); Wu* is similarly defined on o5 U(T). 

Construct a "filling map" 0: U ( T) -----+ M, a surjective map homotopic to inclusion, 
which is 1-1 on int(U(T)), which identifies faces of o5 U(T) in pairs, and which identifies 
faces of Ou U ( T) in pairs. The filling map folds each pair of faces together along cusps. The 
filling map respects foliations of faces, from which it follows that <I>*, W 8 *, and Wu* induce 
a flow <I> and (singular) foliations ws, wu on M, the desired pseudo-Anosov flow and its 
weak stable and unstable foliations. We think of 0 as collapsing r.t(M - U(T)) onto some 
finite 2-complex, which will be contained in the union of stable and unstable manifolds of 
the pseudohyperbolic orbits of <I>. The set U ( T) comes naturally equipped with a Markov 
partition, which induces a Markov partition of <I>. In some sense, this construction is the 
reversal of Ratner's construction of Markov partitions [Rat73], which starts with a union 
of suitable chosen portions of the stable and unstable foliations of a collection of periodic 
orbits. 

Now we turn to the details. Let U(B 8
), U(Bu), U(T) be as above. We wish to regard 

these objects as manifolds-with-corners, allowing for new types of singularities. First recall 
that a culvert edge is an "inverted cusp edge", locally modelled on the set { ( x, y, z) I z s; 
0 or z 0, lxl f(z)} where f: [0, oo)-----+ [0, oo) is a cusp function. Second we have a new 
vertex type called an outlet, whose local model is obtained by taking the intersection of the 
local model for a culvert edge with the set y 0. For example, the endpoints of a culvert 
arc are outlets. The manifolds U(B 8

), U(Bu) have a culvert circle for every maw circle 
of BS, Bu respectively. The manifold U(T) has a culvert arc for every switch of T; more 
precisely, there is a 1-1 correspondence between converging switches of T and culvert arcs of 
U(T) which are subarcs of culvert circles of U(Bu); similarly for diverging switches. There 
is a rectangle fibration qu: U ( T) -----+ T which takes each culvert arc to its corresponding 
switch. There is a homeomorphism w: N(T)-----+ U(T) with the following properties: 
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• w preserves rectangle fibrations. 

• w is isotopic to the inclusion map N ( T) '-------+ M. 

• w is smooth except over culverts; each arc of OuN(T) or a5 N(T) on which a rectangle 
fiber is tangent is "unsmoothed" by w, to give a culvert arc of U ( T). 

• There is a commutative diagram 

N(T) 

wl 
U(T) 

q 
-----+ T 

1= 
qu 

-----+ T 

where the horizontal maps are rectangle fibrations. 

Recall that R,_N(T) is "parallel" to the u-direction and R+N(T) is parallel to the s-
direction; we define OuU(T) = w(R_N(T)) and a5 U(T) = w(R+N(T)). 

Let X = { x1 , ... , xk} be a finite subset of T consisting of all switches and two points in 
the interior of each branch of T. The closures of components of T - X are called edges of T. 
We thus regard T as a directed graph with vertex set X. For each Xi E X we have a rectangle 
Ri = qi;:1(xi); let M = {Ri I i = 1, ... , k}. For each edge e = (xi -----+ Xj) of T we have 
a set He = cl(qi;:1(int(e))). A flow box parameterization of He is a manifold-with-corners 
homeomorphism He I8 X Ju X [O, 1] such that 

• Bottom(He) =Hen qr/(Ri) I8 x JU x 0 . 

• Top(He) =Hen qr/(Rj) I8 X JU X 1. 

• Hen OsU(T) I8 x {)JU x [O, 1]. 

• Hen OuU(T) f}J8 x JU x [O, 1]. 

• For each xx y E I8 x Ju, the restricted map xx y x [O, 1] -----+ e is orientation preserving. 

Note that Bottom(He) is an s-subrectangle of Ri and Top(He) is a u-subrectangle of Rj. 
Given a flow box parameterization of He there is an induced semiflow ( x, y, s) · t = 

(x,y,s + t), and an induced first return map Bottom(He)-----+ Top(He) taking (x,y,O) to 
( x, y, 1). Choosing a flow box parameterization for each He, the semiflows piece together 
to give a semiflow on U(T) which is forward along each uu-culvert and backward along 
each ss-culvert. We shall now impose specific flow box parameterizations, by applying the 
Supereigenvalue lemma 3.1.1. 

We claim that the digraph T has no circular sinks or sources. To see why, consider the 
two train tracks Ts, Tu constructed in the last section, and the directed maps "'s : Ts -----+ T, 



glue

112 CHAPTER 3. FLOWS 

Figure 3.7: Each component of <t(U(Bs) - U(T)) is a cloven suu-maw piece, and each 
component of rt( U (Bu) - U ( T)) is a cloven uss-maw piece. If this example represents 
an suu-maw piece, the front and back faces are labelled u, and the remaining faces are 
labelled s. 

"'u: Tu ----+ T. If there is a circular sink c of T, then depending on whether c is orientation 
preserving or reversing in Bs (or, equivalently, Bu), either c or its double cover lifts to 
a directed loop cu in Tu. It follows that c corresponds to a boundary periodic orbit I of 
a pA flow carried by Bs, Bu, and hence I is a corner orbit of some dynamic torus piece 
component of <t(M - (Bs U Bu)). However, the loop of T corresponding to a corner orbit 
cannot be a sink of T, a contradiction. 

We may now apply lemma 3.1.1 and impose coordinates on each rectangle Ri, making 
Ri a¼ x Wi rectangle. We may also choose flow box parameterizations of each He, so that 
the induced first return map LJ M ----+ LJ M stretches the u-direction and compresses the 
s-direction by a factor of at least ..\.. Using these parameterizations we obtained the desired 
hyperbolic flow on U(T). 

Now we describe the filling map 0 : U ( T) ----+ M, by describing a collapsing decomposition 
of rt(M - U(T)), and collapsing each decomposition element to a point. Let M0 = rt(M -
(U(Bs) U U(Bu))), let M{ = rt(U(Bs) - U(T)), and let Mf = rt(U(Bu) - U(T)). First we 
decompose M 0 , then we decompose M{ and Mf. 

Each component of M 0 is a dynamic solid torus or pinched tetrahedron. The collapsing 
decomposition of a dynamic solid torus of type ( n, k) is a fibration by 2n-sided polygons. 
The collapsing decomposition of a pinched tetrahedron is a rectangle fibration, with the ss 
and uu-cusps as degenerate rectangle fibers. 

Consider now M{. For each component K of <t(Bs - T) there is a corresponding com-
ponent of M{ denoted U(K); this is a 1-1 correspondence of components. Despite the 
notation, U(K) is not a neighborhood of K; it is more like a "2-handle" corresponding 
to the "2-stratum" K, in a stratification of M. Figure 3.7 together with the next lemma 
shows how to visualize the manifold-with-corners U(K). 
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Lemma 3.4.2. The manifold-with-corners U(K) is a cloven suu-maw piece, described as 
follows. There exists a surface-with-corners F, a labelling of each edge of F with the symbol 
s or uu, and a map f: F x I-----+ U(K), with the following properties: 

• F is a topological annulus. 

• One component of 8 F is a smooth circle labelled s. 

• The other component of 8 F is a circle with 3k edges for some k 1, labelled in order 
as ... , s, s, uu, s, s, uu, .... 

• For each uu-edge a of F and each x E a, the map f collapses x x I to a single point; 
otherwise, and f is otherwise 1-1. Also, f(a x I) is a cusp edge of U(K). 

• Each vertex v of F incident to an s-edge and a uu-edge is a corner, and f ( v) is an 
suu-gable of U(K). 

• Each vertex v of F incident to two s-edges is a culvert point, locally modelled on the 
x, z-plane intersected with the local model for a culvert. Also, f( v x I) is a culvert 
edge of U(K). 

• For each s-edge /3, f(/3 XI) is a face of U(K), identified with some s-face of Mo. 

• Fa= f(F X 0) and F1 = f(F X 1) are faces of U(K), identified with u-faces of U(T). 

Similarly, each component of <t(U(Bu) - U(T)) is a cloven uss-maw piece. 

Proof. This obviously follows from the fact that K is an annulus with tongues, the annulus 
is a face of a solid torus component of rt( M - ( B 8 U Bu)), one side of the annulus has no 
tongues, and the other side has at least one tongue. <) 

It follows from this description that if /3 is the s-circle of F then f (/3 x I) is identified with 
the s-face of some dynamic solid torus component of M 0 . Similarly, if /3, /3' are adjacent s-
edges of F then f( (/3 U /3') x I) is identified with the twos-faces of some pinched tetrahedron 
component of M 0 . Taking the union of U(K) with all such pinched tetrahedra we obtain a 
maw piece, so we may regard U(K) as obtained from a maw piece by using a meat cleaver 
to remove pinched tetrahedra, and hence a "cloven maw piece". 

With f specified as in the lemma, we obtain an I-fibration of U(K) with fibers of the 
form f( x x I) for each x E F. When x is in a uu-edge of F, f collapses x x I to a single 
point on a cusp edge of U(K); otherwise f is injective on x x I. We want to use this 
I-fibration as the collapsing decomposition for U(K), but first we must alter it by isotopy 
so that it respects some of the existing structure on M0 and on U ( T). 

First, note that one component of 8U(K) n M0 is the face F = f(/3 x I) where /3 
is the s-circle of F. The collapsing decomposition of M 0 induces an interval fibration of 
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Figure 3.8: The flow on a u-face of a cloven suu-maw piece. 

this face, and we require that these intervals be the I-fibers of U(K) on F. Every other 
component of 8U(K) n M 0 is a union of twos-faces of a pinched tetrahedron component of 
M 0 , whose rectangle fibers intersect these faces in intervals, and we similarly require that 
these intervals be the I-fibers of U(K) on the s-faces. 

Next, we claim that the I-fibration can be isotoped, relative to the union of s-faces and 
uu-cusps, so that the map from F0 to F1 induced by the I-fibration respects flow lines. 
First, note that the two corner orbits F n F0 , F n F1 are oriented isotopic through F, using 
the dynamic orientation. Next, every other orbit in Fi is attracted in backwards time to 
the corner orbit, and in forward time it either ends at the uu-cusp, or it hits an outlet 
where it bifurcates into two orbits following two su-edges, ending at two suu-gables ( see 
figure 3.8). From this description the claim follows easily. 

This completes the description of the I-fibration on the cloven suu-maw piece U(K), 
which we take to be the collapsing decomposition of U(K). The collapsing decomposition 
on a uss-maw piece is constructed similarly. 

Remark. An orbit preserving map F0 ----+ F1 which restricts to the identity on the uu-cusps 
cannot, in general, be made smooth. A primary obstruction to smoothness is the fact that 
the derivatives of the holonomy of the flow around the corner orbits, i.e. the Lyaponov 
numbers of the corner orbits, may not be equal. But even if these numbers are equal, there 
is a secondary obstruction, coming from the fact that the homeomorphism is prescribed to 
be the identity on the uu-cusps. For example, let 5 1 = R/Z, and consider the foliation on 
5 1 x [O, 1] tangent to the vector field x d/dx + d/dy. We leave it as an exercise to check 
that every diffeomorphism of 5 1 x [O, 1] which respects this foliation restricts to a rigid 
rotation on 5 1 x 1. These observations indicate why it is hard to smooth a topological 
pseudo-Anosov or Anosov flow. 

Now collapse! Let 0: M ----+ M be a quotient map from M to itself which is homo-
topic to the identity, whose nontrivial decomposition elements are the given collapsing 
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decompositions in M 0 , M{, and Mf. Because the collapsing respects orbits of <I>* and their 
orientations, we obtain a well-defined oriented 1-dimensional foliation <I> of M. Assigning an 
arbitrary continuous parameterization to leaves of <I>, we make <I> into a flow. The collapsed 
image of each dynamic solid torus component of M 0 is clearly a pseudohyperbolic orbit of 
<I>. For each u-face of U ( T), each flow line on that u-face is a component of intersection 
of that u-face with a weak stable leaf of U(T); since the collapsing respects flow lines, it 
follows that the weak stable foliation on U ( T) induces a foliation ws of M which is singular 
along the pseudohyperbolic orbits. Similarly, the weak unstable foliation on U(T) induces 
a foliation wu of M which is singular along the pseudohyperbolic orbits. The flow boxes 
on U ( T) induce a family of flow boxes M in M. It is now straightforward to check that <I> 
is a topological pseudo-Anosov flow, with weak stable and unstable foliations ws, wu, and 
with Markov partition M. <) 

3.5 Almost transversality 

In [Mos89] and [Mos91] I tried to find a surface S transverse to a pseudo-Anosov flow <I>, 
with Sin a given homology class a, assuming a has non-negative intersection number with 
every periodic orbit of <I>. David Gabai read these papers, and pestered me with questions: 
"What about this example? What about that example?" I answered with impatience: 
"This lemma says this; that lemma says that." Finally he asked: "What about that other 
example?" At which point I realized that other lemma said 1 = -1. In other words, there 
was a sign error in [Mos89]. Correcting this error in [Mos90] led naturally to the concept 
of surfaces which are "almost transverse" to pseudo-Anosov flows. The main theorem of 
[Mos91] says that there is a surface representing a which is almost transverse to <I>. 

To say that a surface or foliation is almost transverse to a pseudo-Anosov flow <I> means 
that the pseudohyperbolic orbits of <I> may be "blown up" in a certain manner, producing 
a new flow <J># which is transverse to the surface or foliation. The main result of this 
section, theorem 3.5.4, says that if Bs, Bu is a dynamic pair, if B is a branched surface 
hierarchy, and if Bs, Bu is "vertical" with respect to B, then a pseudo-Anosov flow carried 
by Bs, Bu is almost transverse to a finite depth foliation carried by B. 

Almost transversality is a delicate property, and so we offer a still useful but much 
simpler theorem for pA flows, proposition 3.5.3, which says that if Bs, Bu is vertical with 
respect to B, and if As, Au are the stable and unstable laminations of a pA flow carried by 
Bs, Bu, then As, Au are vertical with respect to :F; in particular, they are transverse to :F. 

In order to state theorem 3.5.4, our main tasks are: define dynamic blowups of pseu-
dohyperbolic orbits and almost transversality (§3.5.1); and define vertical (§3.5.2). We 
shall also state proposition 3.5.5 which gives a "vertical" version of proposition 2.6.2: if 
an unstable dynamic branched surface Bu satisfying the hypotheses of proposition 2.6.2 is 
vertical with respect to a branched surface hierarchy B, then one can constuct a dynamic 
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**** 
Figure 3.9: If (n, k) = (3, 0) then there are three nontrivial dynamic blowups, all of type 
2 ----+ 2. If ( n, k) = ( 4, 0) then: there are four blowups of type 2 ----+ 3 and four of type 3 ----+ 2; 
there are eight blowups of type 2 ----+ 2 ----+ 2; there are four blowups of type 2 ----+ 2 +-----2; 
and there are four blowups of type 2 +-----2 ----+ 2. Only the latter eight are invariant under 
rotation through angle 1r, and so there are eight nontrivial dynamic blowups of a fixed point 
of type ( 4, 2). 

pair which is vertical with respect to B. 

3.5.1 Dynamic blowups of pseudohyperbolic orbits. 

Let f: C ----+ C be the standard model for a pseudohyperbolic fixed point of type ( n, k). 
Let T = {(r,0) I 0 = k1r/n, k = 0, ... ,2n-1} CC be the union of stable and unstable 
prongs of f. Each unstable prong 0 = 2i1r / n is oriented away from O, and each stable 
prong 0 = (2i + l)1r/n is oriented towards 0. The orientation on a prong describes the 
direction that points move under the first return map of f to that prong. Let D be a 
small disc around 0. Let T# be any oriented tree that agrees with T outside D, such that 
T# is invariant under the rotation Rkjn, and such that each vertex v of T# is "pseudo-
hyperbolic", meaning that as you go around the edges incident to v, the orientations of the 
edges of T# alternate pointing toward and away from v. There are finitely many ways to 
choose T#, up to compactly supported isotopy. 

In order to discuss examples we define the type of T# to be a labelled, oriented planar 
tree obtained from T# by labelling a vertex with the integer n if it has 2n incident edges, 
and then throwing away the noncompact edges. When ( n, k) = (3, 0), ( 4, 0), ( 4, 2) the 
possibilities are enumerated in figure 3.9. Note that if n, k are relatively prime then there 
are no nontrivial ways to dynamically blow up a pseudohyperbolic fixed point of type ( n, k). 
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Figure 3.10: Some dynamic blowups of a pseudohyperbolic fixed point of type (5, 0). 

Given the above data, there is a C0 perturbation J# of f, and a continuous map 
h: C----+ C such that: 

• J# leaves T# invariant. 

• For each edge E of T#, the first return map of J# to E acts as a translation on 
int(E), moving points in the direction of the orientation on E. 

• h collapses the finite edges of T# to the point O, and h is otherwise 1-1. 

• h is a semiconjugacy from J# to f, i.e. f o h = h o J#. 

• h is close to the identity map in the sup norm, and h equals the identity on C - D. 

We say that J# is obtained from f by dynamically blowing up the pseudohyperbolic fixed 
point O. Each choice of T# determines a unique J#, up to conjugation by compactly 
supported isotopy. There are therefore finitely many ways to dynamically blow up a pseu-
dohyperbolic fixed point, up to conjugation by compactly supported isotopy. The number 
of ways depends on the type of the pseudohyperbolic fixed point 0. An example showing 
some invariant lines of J# is given in figure 3.10. 

Next we use suspension to define dynamic blowups of pseudohyperbolic orbits of flows. 
Given a pseudo-Anosov flow <I> and a pseudohyperbolic orbit , of type ( n, k), a dynamic 

blowup of, is defined as follows. Choose a Poincare section for,, that is, a disc D transverse 
to <I>, and a subdisc D' CD, such that, n D' = {x} C int(D'), and there is a continuous 
first return map g: D' ----+ D, i.e. there is a continuous map t: D' ----+ (0, oo) such that 
<I>(x,t(x)) = g(x) if x ED', and <I>(x,s) 't-D if x ED', 0 < s < t(x). Let f: C----+ C be the 
standard model for a pseudohyperbolic fixed point of type ( n, k). There is an embedding 
s: (D,x) '-------+ (C,O) which is a local semiconjugacy from g to f, i.e. f o s =so g on D'. 
Now define a dynamic blowup of, by altering <I> near , as follows. First, replace f by a 
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dynamic blowup J#, supported on a tiny subdisc of s(D'). Next, replace g by the dynamic 
blowup s- 1 o J# o s. Finally, alter <I> so that the first return map g: D' -----+ D is replaced by 
g# : D' -----+ D; this has the effect of altering the generating vector field inside the "mapping 
torus" T9 = { <I>( x, s) I x E D', 0 s; s s; t( x )}, and leaving the generating vector field 
unaltered outside of T9 . 

Dynamic blowups of distinct pseudohyperbolic orbits of <I> can be performed indepen-
dently and simultaneously, by choosing sufficiently small Poincare sections for the pseudo-
hyperbolic orbits so that the mapping tori are pairwise disjoint. We say that the resulting 
flow <J># is a dynamic blowup of <I>; this terminology allows for the possibility that no orbits 
are blown up in which case <J># is isotopic to <I>. There is a map H: M -----+ M homotopic to 
the identity, such that H is a semiconjugacy from <J># to <I>, i.e. H takes orbits of <J># to or-
bits of <I> preserving orientation, although we do not require H to preserve parameterization. 
The map H is 1-1 except over the pseudohyperbolic orbits of <I>. For each pseudohyperbolic 
orbit , , if H is not 1-1 over , then H- 1 ( 1 ) is a connected union of invariant annuli of <J>#, 
glued together along their boundary components, forming an invariant annulus complex 
associated to , . This annulus complex may be viewed as the mapping torus of the finite 
edges of T# under the map J#. 

Up to isotopy and reparameterization, there are finitely many ways to dynamically blow 
up a pseudo-Anosov flow <I>, because there are finitely many choices for a dynamic blowup 
of each pseudohyperbolic orbit of <I>. 

Given a pseudo-Anosov flow <I> and a foliation or lamination :F, we say that <I> is almost 
transverse to :F if there exists a flow <J>#, obtained from <I> by dynamically blowing up 
certain pseudohyperbolic orbits of <I>, such that <J># is transverse to :F. In general the 
existential quantifier cannot be replaced by a universal quantifier: almost transversality 
does not mean that :F is transverse to every dynamic blowup of <I>. 

3.5.2 Vertical dynamic branched surfaces 

Let M be a compact, oriented 3-manifold with torus boundaries. We define what it means 
for a dynamic branched surface or dynamic pair to be "vertical" with respect to a trans-
versely oriented branched surface /3, or to a foliation :F carried by /3. 

Let /3 be a transversely oriented branched surface in M, such that P(/3) = <t( M - /3) is a 
product sutured manifold in the cusp model. If Pc(/3) denotes the corner model then there 
is a sutured manifold homeomorphism Pc(/3) F X [O, 1]; now collapse each component of 
8F x [O, 1] to get back to the cusp model, and push forward the tangent planes of each 
surface F x t to give a C 0 tangent plane bundle Tf3 on M which is an extension of the tangent 
plane bundle of /3. The transverse orientation on /3 extends to a transverse orientation on 
Tf3. 

A C 0 vector field V on M is vertical with respect to /3 if it is transverse to Tf3 and the 
direction of V agrees with the transverse orientation on T13. Verticality between V and a 



3.5. ALMOST TRANSVERSALITY 119 

transversely oriented foliation :F is similarly defined. If :F is carried by /3, we may isotop 
:F so that its tangent plane bundle is arbitrarily close to Tf3 in the C 0 topology, and so we 
have: 

Proposition 3.5.1. If :F is a transversely oriented foliation carried by a transversely ori-
ented branched surface /3, and if the vector field V is vertical with respect to /3, then V is 
vertical with respect to :F. <) 

Now consider a dynamic branched surface ( B, V) in M. Suppose that V is vertical with 
respect to /3, so in particular B and /3 are transverse. A peripheral annulus in r.t(M - B) 
carried by /3 is a smoothly embedded annulus A C /3 such that A is properly embedded in 
r.t(M - B) and A is isotopic rel boundary in r.t(M - B) to an annulus contained in a face 
of r.t(M - B). 

The dynamic branched surface ( B, V) is said to be vertical with respect to /3 if V is 
vertical with respect to /3 and there is no annulus carried by /3 which is peripheral in 
r.t(M - B). A dynamic pair Es, Bu in M, with dynamic vector field V, is said to be vertical 
with respect to /3 if ( BS, V) and (Bu, V) are both vertical with respect to /3. Similarly, 
Es, Bu is vertical with respect to a transversely oriented foliation :F if V is vertical with 
respect to :F and no smoothly embedded annulus in :F is peripheral in a r.t( M - Es) or 
ct( M - Bu). Finally, given a pA flow <I> with stable and unstable laminations As, Au, we say 
that As, Au are vertical with respect to :F if <I> I As, <I> I Au are vertical with respect to :F, 
and there are no annuli in leaves of :F which are peripheral in r.t(M - As) or in r.t(M -Au). 

Proposition 3.5.2. If a dynamic pair Es, Bu is vertical with respect to a transversely 
oriented branched surface /3, then it is also vertical with respect to any foliation :F carried 
by /3. 

Proof. If there is an annulus A 1 in a leaf of :F which is peripheral in r.t( M - Es) or 
r.t(M - Bu), then there is another such annulus A2 which is contained in an I-bundle 
neighborhood N(/3); this follows from the fact that :FI r.t(M - N(/3)) is a product foliation. 
Under the I-fiber collapsing map N(/3) -----+ /3 the annulus A 2 goes to an annulus A3 smoothly 
carried by /3 which is peripheral in r.t(M - Es) or r.t(M - Bu). <) 

Proposition 3.5.3. Let :F be a transversely oriented foliation of M carried by a trans-
versely oriented branched surface /3. Let <I> be a pA flow carried by a dynamic pair Es, Bu, 
with stable and unstable laminations As, Au. If the pair Es, Bu is vertical with respect to 
/3, then As, Au are both vertical with respect to :F. 

Proof. Suppose there is an annulus A 1 in a leaf of :F which is peripheral in, say, r.t( M -As). 
Let N(Bs) be an I-fibered neighborhoods with As C N(Bs) transverse to I-fibers. Now 
take the annulus A1 n r.t(M - N(Bs)), and collape I-fibers, to get an annulus in a leaf of :F 
which is peripheral in r.t(M - Es). Applying the previous proposition finishes the proof. <) 
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Now we turn to the main result of this section: 

Theorem 3.5.4 (Almost transversality theorem). Let M be a closed, oriented 
3-manifold, :F a Reebless, transversely oriented foliation of M transverse to 8M, and /3 a 
transversely oriented branched surface carrying :F. If Bs, Bu is a dynamic pair in M which 
is vertical with respect to /3, then there is a pseudo-A nosov flow <I> carried by Bs, Bu which 
is almost transverse to :F. 
Remark. For each pseudohyperbolic orbit , of <I>, the proof shows that the structure of :F 
picks out one dynamic blowup of, from among the finitely many choices. More precisely, 
if T is the dynamic solid torus component of ct( M - ( Bs U Bu)) corresponding to , , then 
Brittenham's theorem on laminated solid tori [Bri93] will be applied to show that :F I T 
satisfies one of two possibilities: 

• :F I Tis a foliation of T by meridian discs. 

• Letting :F I c T be the sublamination of compact leaves of :F I T, each leaf of :F I c T 
is an annulus disjoint from the corners of T. 

In the first case, no dynamic blowup of , is needed. In the second case, the structure of 
the transversely oriented foliation :F I c T determines a dynamic blowup of 1 . 
Remark. The proof of this theorem is valid without assuming that B is a branched surface 
hierarchy, or that :F has finite depth. 
Remark. Proposition 3.5.3 cannot be strengthened to say that a pA flow carried by Bs, Bu 
is transverse to the foliation :F, because of almost transversality. On the other hand, the 
proof of theorem 3.5.4 suggests a way to alter a pA flow to make it transverse to :F, by 
somehow generalizing the notion of almost transversality to pA flows. We will not pursue 
this issue, preferring to focus only on pseudo-Anosov flows. 

Recall that proposition 2.6.2 tells how to construct a dynamic pair starting from an 
unstable dynamic branched surface. To complement proposition 3.5.3 and theorem 3.5.4 
we have a "vertical" version of proposition 2.6.2: 

Proposition 3.5.5. Let M be a compact, oriented, torally bounded 3-manifold. Let /3 be a 
transversely oriented branched surface in M, transverse to 8 M, and suppose that /3 carries 
a taut, transversely oriented foliation :F of M. Suppose that ( B, V, I) is an unstable Markov 
branched surface in M satisfying the hypotheses of proposition 2.6.2, such that (B, V) is 
vertical with respect to /3, and each element of the Markov section I is tangent to /3. Then 
we may perform the construction of proposition 2.6.2 so as to produce a dynamic pair 
Bs, Bu in M which is vertical with respect to a branched surface carrying :F and obtained 
by splitting /3. 

The proofs of theorem 3.5.4 and proposition 3.5.5 both require a description of :F re-
stricted to cusped torus pieces, which is contained in §3.5.3. The reader who is interested 
only in proposition 3.5.5 should read §3.5.3 and then go to §3.7. 
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3.5.3 Foliations of cusped torus pieces 

Fix a taut, transversely oriented foliation :F, and fix a very full dynamic branched surface 
B whose dynamic vector field V is circular on each torus piece of B, such that ( B, V) is 
vertical with respect to :F. By perturbing B we may assume that B is in general position 
with respect to :F, in particular i B is transverse to :F except at isolated local minima 
or maxima. Throughout this section we assume that B is unstable, the stable case being 
handled similarly. 

Under these conditions we describe the restriction of :F to r.t(M - B). We will focus 
our efforts on a solid torus component T of r.t(M - B), that being the only case needed for 
theorem 3.5.4. 

We first describe :F I T on a certain maw piece neighborhood of each cusp of T (lemma 
3.5.6), and then on the rest of T (lemma 3.5.7). Consider a properly embedded annulus 
A C T and a component v of r.t(T - A) such that vis a maw piece with cusp circle c and 
opposite face A. Let Fa, F1 be the other two faces of v. An I -fibration of vis a decomposition 
of v into ordinary I-fibers and singular I-fibers with the following properties: there exists 
an annulus F and a quotient map q: v -----+ F such that q I Fi : Fi -----+ F is a homeomorphism 
for i = 0, 1, each point preimage of q is an I-fiber, each singular I-fiber is a point on c, and 
each ordinary I-fiber is an arc connecting a point of Fa - c to a point of F1 - c. The foliation 
:F I v is I-parallel if there exists an I-fibration of v such that each I-fiber is contained in a 
leaf of :F I v. 

Lemma 3.5.6. For each cusp circle c ofT there exists a properly embedded annulus ACT 
and a component v of r.t(T - A) such that: 

1. v is a maw piece with cusp curve c and opposite face A. 

2. :F I v is I -parallel. 

3. For every annulus leaf of :F I v, the transverse orientation on that leaf points towards 
c and away from A. 

4. :F is transverse to A. 

Moreover, v is maximal with respect to the above properties, in the following sense: if A', 
v' also satisfy 1-4, then every compact leaf of :F I T contained in v U v' is contained in v. 

Remark. It follows that :F I A is a product foliation whose leaves are arcs connecting 
opposite components of 8A. 
Remark. It follows from 3 that :F I v has no (Reeb annulus) x I sublamination, for the two 
boundary leaves of such a sublamination would point in opposite directions and so one of 
them would point away from c and towards A. 
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Figure 3.11: Singularities of a foliation along a cusp curve. 

Figure 3.12: Cusp discs. 

Proof. First we describe the singularities of :F I T, which occur only along cusps of T. 
Fix a local model for T near a cusp, namely {(x,y,z) E R 3 I z 0,-f(z) < x < f(z)} 
where f: [O, oo) -----+ [O, oo) is a cusp function. Near a saddle singularity the foliation is 
locally modelled on the level surfaces of the function z - y 2 , and near an external center 
singularity the foliation is locally modelled on the level surfaces of z + y 2 ( see figure 3 .11). 
A leaf of :FI Tis defined to be the completion of a leaf of :FI (T - (singularities)). One 
special type of leaf is a cusp disc, shown in figure 3.12. An ordinary cusp disc is modelled 
on z + y 2 = E ( E > 0), intersected with the above local model for a cusp. A pinched cusp 
disc wraps all around the cusp, approaching a saddle singularity from both sides; a local 
model is obtained from z + y 2 = E by madding out by the action of ( x, y, z) -----+ ( x, y + -JE, z). 
By Reeb stability a pinched cusp disc is a limit of ordinary cusp discs. Also note that if L 
is a pinched cusp disc, then a regular neighborhood of L in the leaf of :F containing L is an 
annulus. 

We claim that singularities exist on c if and only if there is a cusp disc intersecting c. If a 
cusp disc exists then its boundary cuts off a disc in 8T which contains a center singularity, 
by the Euler-Poincare index formula. Conversely, suppose there exist singularities on c. 
Since the vector field V points inward on each boundary circle of each face of T, it follows 
that each face of T has a circular trajectory, and so there exists an annulus H C 8T 
containing c and disjoint from the other cusps of T such that 8H is a union of trajectories 
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of V. The singular foliation :F I H is therefore transverse to 8 H. By the Euler-Poincare 
index formula the foliation :F I H must contain an equal number of saddle and center 
singularities. Each center singularity is an external center singularity of :F I T lying on c, 
near which there exists a cusp disc. This proves the claim. 

Now we show that there exist A, v satisfying conditions 1-3, and either A satisfies 
condition 4 or the following alternative condition: 

41
• A is a leaf of :F I T. 

Case 1: There are no singularities on c. Clearly there exist A, v contained in an 
arbitrary neighborhood of c satisfying conditions 1-4. 

Case 2: c contains singularities. Given a (pinched or unpinched) cusp disc E, let t(E) 
be the closure of the simply connected component of T - E. Define a partial ordering of 
cusp discs by E < E' if EC t(E'). For each cusp disc E there exists a maximal cusp disc 
E' such that E < E'. Each maximal cusp disc contains a saddle singularity, and so there 
is a finite number of maximal cusp discs E 1, ... , Ek intersecting c. No two of E 1, ... , Ek 
are comparable with respect to the relation <. 

Case 2a: The discs E 1, ... , Ek are "cyclically connected" which means that Ei and 
Ei+l have a common corner at a saddle singularity for all i E Z / k ( this case also occurs 
when k = 1 and E 1 is a pinched cusp disc). In the leaf of :F containing E 1 U · · · U Ek, a 
regular neighborhood of E 1 U · · · U Ek is an annulus. This annulus has a core curve of the 
form p = P1 * ···*Pk where Pi C Ei connects the two corners of Ei. If the holonomy of 
:F I T around p on the outside of t(E 1) U · · · U t(Ek) is nontrivial, then one can find the 
desired A, v satisfying conditions 1-4. If the holonomy is trivial then one can find A, v 
satisfying conditions 1-3 and 41

• 

Case 2b: If the discs E 1, ... , Ek are not cyclically connected, one can find A contained 
in an arbitrary neighborhood of c U (t(E 1) U · · · U t(Ek)) and satisfying 1-4. 

Having constructed A satisfying 1-3 and either 4 or 41
, we construct another annulus 

satisfying 1-4 and the maximality requirement, as follows. Consider the set of annulus 
leaves A' of :F I T such that A', v' satisfy 1-3 and 41 for some v'; the set of such leaves 
forms a compact sublamination ..\. of :F I T. If ..\. = 0 then any A satisfying 1-4 also satisfies 
maximality. If ..\. c/ 0 then ..\. contains a leaf A' bounding a maw piece v' such that ..\. C v'; 
the leaf A' is the "farthest" leaf from c in ..\.. The holonomy around A' on the outside of 
v' must be nontrivial, and so we can find an annulus A just outside of v' satisfying 1-4 as 
well as the maximality condition. <) 
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For each cusp circle c of T, choose an annulus Ac bounding a maw piece Ve satisfying 
conditions the conclusions of lemma 3.5.6. Truncate T by removing the maw pieces Ve, to 
produce T' = r.t(T - Uc vc)- Note that T' is a manifold-with-corners, with the same corner 
structure as a dynamic solid torus. Note also that :F I T' is transverse to 8T' and to the 
corner curves of T'. We describe :F I T' by using Brittenham's theorem on laminated solid 
tori (theorem 3.1 of [Bri93]), as follows: 

Lemma 3.5.7. Let T' be a solid torus embedded in M, such that T' is a manifold-with-
corners of the same type as an essential dynamic solid torus. Suppose that :F is transverse 
to 8T' and to each corner circle of T'. Either :F I T' is a foliation by meridian discs of T', 
or there is a Seifert fibration of T' such that: 

1. :F I T' has at least one compact leaf. 

2. Each compact leaf is tangent to the Seifert fibration. 

3. Each noncompact leaf is simply connected and transverse to the Seifert fibration, and 
all of its boundary components are noncompact. 

4. Each compact leaf is an annulus. 

5. Each corner circle of T' is a Seifert fiber. 

Proof. Suppose that :F I T' is not a foliation by meridian discs of T'. The existence of 
a Seifert fibration satisfying (1-3) is an immediate consequence of Brittenham's theorem 
on laminated solid tori ([Bri93] 3.1). Property (4) follows from the fact that :Fis Reebless 
and transversely oriented. To prove ( 5), consider a corner circle C of T'. If C intersects 
a compact leaf A of :F I T' then there exist two points at which C crosses A in opposite 
directions, contradicting the fact that :F is transversely oriented and transverse to C. It 
follows that C is isotopic to any boundary circle of any compact leaf, in other words C is 
isotopic to the generic Siefert fiber. By isotoping the Seifert fibration we may arrange that 
C is actually a fiber. <) 

3.6 Constructing almost transverse pseudo-Anosov flows 

In this section we prove theorem 3.5.4. Recall the setting: Mis a closed, oriented 3-manifold; 
:F is a taut, transversely oriented foliation of M transverse to 8 M; /3 is a transversely ori-
ented branched surface in M carrying :F; B 8

, Bu is a dynamic pair in M which is vertical 
with respect to /3. 

Recall the notation used in theorem 3.4.1 to construct a pseudo-Anosov flow carried 
by Bs,Bu. There are I-fibered neighborhoods U(B 8 ),U(Bu) in the cusped model whose 
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intersection U ( T) is a rectangle fibered neighborhood. The rectangle fiber collapsing map 
induces a manifold-with-corners homeomorphism 

Henceforth the terms "dynamic solid torus", "pinched tetrahedron", "u or s-cusped solid 
torus" etc. will refer to components of ct(M - (U(Bs) U U(Bu))), ct(M - U(Bs)), or ct(M -
U (Bu)) as appropriate. Inclusion induces a 1-1 correspondence between dynamic solid torus 
components of ct(M - (U(Bs) U U(Bu))), components of ct(M - U(Bs)), and components 
of ct(M - U(Bu)). If Tis a dynamic solid torus, the corresponding components of ct(M -
U ( Bs)) and ct( M - U (Bu)) are denoted Ts, Tu, and these are cusped solid tori of the same 
type as T. The closure of each component of ct(Ts - T) is an suu-maw piece µ attached 
to T along an s-face of T, and µ is the union of a "cloven maw piece" component of 
ct( U ( Bs) - U ( T)) and several pinched tetrahedra of ct ( M - ( U ( Bs) U U (Bu))); a similar 
statement holds for each component of ct(Tu - T). Henceforth the term "maw piece of T" 
refers to one of the maw pieces just described. See the leftmost diagrams in figure 3.15 for 
an illustration of the notation. 

Let <I>* be the flow on U(T) constructed in theorem 3.4.1. Since Bs,Bu is vertical with 
respect to /3, and hence with respect to :F, it follows easily that <I>* is transverse to :F. By 
perturbing U(Bs) and U(Bu) we may assume that all culvert curves of U(Bs) and U(Bu) 
(i.e. all cusp curves of ct(M - U(Bs)) and ct(M - U(Bu))) are in general position with 
respect to :F. Lemma 3.5.6 applies to each cusp of ct(M - U(Bs)) and of ct(M - U(Bu)). 

To understand the idea of theorem 3.5.4, recall how a pseudo-Anosov flow <I> was con-
structed from <I>*. The key idea was to define a collapsing of ct( M - U ( T)) that respects <I>*. 
The collapsing was specified by cutting ct( M - U ( T)) into three types of pieces: torus pieces, 
pinched tetrahedra, and cloven maw pieces. Collapsing decompositions were constructed 
in each piece, respecting the restriction of <I>* to the boundary of each piece, and so when 
each decomposition element was collapsed to a point there was a well-defined flow <I>, the 
desired pseudo-Anosov flow. 

Suppose we try to follow the same general outline, but with the further goal of getting 
the flow on M to be transverse to :F. To do this, we want to construct a collapsing 
decomposition of ct( M - U ( T)) that not only respects <I>* I 8 ct( M - U ( T)), but also respects 
:F I ct( M - U ( T)). This added constraint presents us with an interesting technical delicacy. 

Consider a dynamic solid torus T contained in an s-cusped solid torus Ts and a u-
cusped solid torus Tu. Suppose that :FI Tu has an annulus leaf L. Given a uss-maw piece 
componentµ of ct(T- Tu), the leaf L could wend its way deeply intoµ, and the collapse of 
µ would not respect L: the collapsing decomposition ofµ is a foliation by arcs connecting 
the two faces ofµ adjacent to the cusp, and if L enters µ then it must cut transversely 
across some collapsing arcs. The same problem occurs in suu-maw pieces. 

In an attempt to solve this problem, one could isotop :F so as to push all annulus leaves 
of :F I Tu out of the uss-maw pieces and into T. However, this just pushes the problem 
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out of uss-maw pieces and into suu-maw pieces! There is no room to push annulus leaves 
of :F I Ts and :F I Tu into T simultaneously, for a very simple reason: T n 8 <t( M - U ( T)) is 
just the union of corner circles of T, and there may be an infinite number of annulus leaves 
whose boundaries are forced into a finite number of corner circles. 

In a more serious attempt to solve the problem, we shall "dynamically blow up" the 
corner circles of T, using the pattern of annulus leaves of :F I T as a guideline. These 
corner blowups convert the semiflow <I>*, whose support is U ( T), into a new semiflow <J>*#, 
whose support is denoted U#(T) (see figure 3.15). Now there is enough room to isotope 
:F so that it looks nice in each solid torus and each maw piece. We can define collapsing 
decompositions of blownup solid tori, pinched tetahedra, and cloven maw pieces, which 
respect both :F and <J>*# I ct( M - u# ( T)). The collapsing map takes :F to itself and it takes 
<J>*# to the desired flow <J>#, so that :F and <J># are transverse. The relation between <J># 
and <I> is that the pseudohyperbolic orbit , of <I> corresponding to each dynamic solid torus 
T is dynamically blown up in a manner determined by the annulus leaves of :F I T. 

Thus we are led to study the foliation :F I Tin §3.6.1. The results are used in §3.6.2 to 
convert Tinto T# by dynamically blowing up corner orbits, to isotope :F I T to a foliation 
on T#, and to define a collapsing decomposition on T#. In §3.6.3 the isotopy of :F I T 
is extended to an isotopy of all of :F, collapsing decompositions are defined on pinched 
tetrahedra and cloven maw pieces, and the collapse is carried out. 

3.6.1 Foliations of dynamic solid tori 

Fix a dynamic solid torus component T of <t(M -(U(Bs) U U(Bu))), with associated cusped 
solid tori Ts, Tu, and associated pseudohyperbolic orbit I of <I>. Let ( n, k) be the type of T 
and,. In this section we assume that :F I Tis not a foliation by meridian discs. Fix a Seifert 
fibration of T satisfying the conclusions of lemma 3.5. 7 with respect to the foliation :F I T. 
Let O be the quotient orbifold of T; if k = 0 then the Seifert fibration is a product and 0 
is a disc without singular points; if k # 0 then the Seifert fibration has one singular orbit 
and the orbifold O is a disc with one cone point of order n/ gcf( n, k ). The constructions 
that we carry out in this and subsequent sections will all be invariant with respect to the 
Seifert fibration on T. 

Recall the conclusions oflemma 3.5.7. First, each leaf of :F le Tis a properly embedded 
annulus in T disjoint from corner circles. Second, for each noncompact leaf L, each end of 
L spirals into some leaf of :F I c T, and each component of 8 L is noncom pact. In lemma 
3.6.1 we obtain further information by taking advantage of the transverse orientation that 
:F I T inherits from :F. 

Consider a corner circle C of T. The faces of 8T adjacent to C consist of a u-face 
and ans-face. Viewing C as a codimension-1 submanifold of 8T, define the us-transverse 
orientation on C to be the transverse orientation pointing from the u-face to the s-face. 
Note that the us-transverse orientation on C agrees with the horizontal component of the 
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tangent vectors of <I>* near (but not on) C (see the leftmost diagrams in figure 3.15). If L 
is a leaf of :F le T and dis a component of 8L, the transverse orientation on Lin T induces 
a transverse orientation on din 8T. We say that dis parallel to a corner circle C of T if d 
lies in one of the two faces incident to C, and the isotopy from d to C takes the transverse 
orientation on d to the us-transverse orientation on C. Each boundary component of each 
leaf of :F I e T is parallel to a unique corner circle of T. 

Given two corner circles C, C' of T and a leaf L of :F I e T, we say that L is a { C, C'} 
leaf if one component of f)L is parallel to C and the other is parallel to C'. The following 
lemma describes the key structure of :F I e T that will be used to determine a dynamic 
blowup of,. 

Lemma 3.6.1. The foliation :F le T has the following properties. 

1. For all C, C', if there exists a {C, C'} leaf of :F le T then C, C' have "opposite parity" 
in 8T which means that C, C' are separated by an odd number of faces of 8T; in 
particular C -::/ C'. 

2. For all C, C', if there exists a {C, C'} leaf of :F le T then C, C' do not bound a single 
face of T. 

3. For all C, C~, C~, if Li is a {C, CI} leaf of :F le T for i = 1, 2, if Lis a leaf of :F le T, 
and if L separates L 1 from L 2, then there exists C' such that L is a {C, C'} leaf. 

4. For all C, C', if L1, L2 are {C, C'} leaves of :F le T, if L is a leaf of :F le T, and if L 
lies in the component of r.t(T - (L 1 U L 2 )) containing L 1 and L 2, then L separates L 1 
from L2 and L is a { C, C'} leaf. 

Example. If T has type (3, 0) with corner circles C1 , C2 , C3 , C4 , C5 , C6 ordered cyclically, 
then lemma 3.6.1 implies that the possible types of annulus leaves are: {C1 , C4 }, {C2 , C5 }, 

and { C3 , C6 }, and these are mutually exclusive. Compare the fact that a pseudo-hyperbolic 
orbit of type (3, 0) has three non-trivial dynamic blowups. 

Proof. Statement (1) follows from the fact that if Lis a leaf of :F le T with boundary circles 
d, d' parallel to corner circles C, C' respectively, then d, d' with their transverse orientations 
are anti-isotopic in 8T, and so C, C' with their us-transverse orientations are anti-isotopic, 
which implies that they have opposite parity. 

Statements (2-4) of the lemma are each a consequence of the following (see figure 3.13): 

Sublemma 3.6.2. Let C be a corner circle of T, let F be a face of T incident to C, letµ 
be the maw piece attached to T along F, and let F' be the other face ofµ incident to C. 
Let L be a leaf of :F le T having a boundary circle d in F, let L' be the leaf of :F le µ such 
that d C 8 L', and let d' be the other component of 8 L'. Then d is parallel to C if and only 
if d' CF'. 
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Figure 3.13: dis parallel to C if and only if d' C F'. 

Proof. Note that d' </.-F, for otherwise :Fis tangent to Fat some point in the subannulus 
of F bounded by d U d', but we know that :F is transverse to 8T. It follows that d' is 
contained in one of the two faces ofµ incident to the cusp circle. 

We give the proof in the case that F is a u-face of T; the other case is similar. In this 
case the us-orientation on C points out of F. Also, all trajectories of the dynamic vector 
field inµ are oriented from the cusp curve towards F, and so the transverse orientation on 
d' points towards F. From this we obtain the following chain of equivalent statements: 

• d is parallel to C. 

• The transverse orientation on L' points towards the component of ct(µ- L') containing 
C. 

• d' CF'. 

Now we prove lemma 3.6.1. 
To prove statement (2) suppose there is a leaf L of :F le T with boundary circles d1 , d2 

parallel to corner circles C1 , C2 , such that C1 U C2 = f)F for some face F of T. We show 
that there is an annulus L in a leaf of :F that is peripheral in Ts or Tu, contradicting that 
Bs, Bu are vertical with respect to :F. For i = 1, 2, let Fi be the face of T incident to 
F along Ci, let µi be the maw piece attached to T along Fi, and let Ff be the face of µi 
incident to Fi along Ci, so Ff U F U F~ is a face of Ts or Tu. If di C Fi, let L~ be the leaf of 
:F le µi containing di, and let d~ be the other component of L~; applying the sublemma it 
follows that d~ C Ff. To construct the annulus L that contradicts verticality, there are four 
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cases, depending on whether d1 CF or F1, and whether d2 CF or F2. If d1, d2 CF then 
L = L; if d1 C F and d2 C F2 then L = LU L;; if d1 C F1 and d C F then L = L~ UL; 
finally if d1 C F1 and d2 C F2 then L = L~ UL UL;. 

To prove statement ( 3) let di be the boundary circle of Li parallel to C, and let d be the 
boundary circle of L between d1 and d2 . Let Fj, j = 1, 2 be the faces of T incident to C, 
let µj be the maw piece attached to T along Fj, and let F5 be the other face of µj incident 
to C. If di C Fj, let L~ be the leaf of :F le µj containing di, and let d~ be the opposite 
component of f)L~; applying the sublemma we have d~ C F5; similarly, if d C Fj let L' be 
the leaf of :F le µj containing d and let d' be the opposite component of 8L'. Again there 
are cases, depending on whether d1 C F1 or F2, and whether d2 C F1 or F2. If d1, d2 C F1 
then L' is forced to lie between L~ and L; in µ1 and so d' lies between d~ and d; in F{; it 
follows by the sublemma that d is parallel to C. The case where d1, d2 C F2 is similar. If 
d1 C F1 and d2 C F2 then dis forced to lie either in F1 between d1 and C, or in F2 between 
d2 and C; we consider only the former case, from which it follows that L' is lies between 
L~ and C in µ1, and so d' lies between d~ and C in F{; it follows by the sublemma that d 
is parallel to C. The case where d1 C F2 and d2 C F1 is similar. 

To prove statement ( 4) note that if L does not separate L 1 from L 2 then from ( 3) it 
follows that Lis either a { C, C} leaf or a { C', C'} leaf, both of which violate (1). Therefore 
L separates L 1 from L 2, and from ( 3) it follows that L is a { C, C'} leaf. <) 

3.6.2 Using foliations to specify dynamic blowups 

We continue with the notation of the previous section: a dynamic solid torus T of <t(M -
(U(B 8

) U U(Bu))) such that :F I T is not a meridian disc foliation, and the objects ac-
companying T. We use the structure of :F le T to carry out the following steps, which are 
visualized in figure 3.14: 

Step 1 Construct a certain annulus complex A= Ay in T (figure 3.14a). 

Step 2 Dynamically blow up the corners of T to produce a new torus T#, thereby replacing 
<I>* with a "blown up" flow <J>*# (see figure 3.15, and figure 3.14b ). 

Step 3 Isotope :F I T to give a foliation in T# with good properties with respect to <J>*# 
(figure 3.14c ). 

Step 4 Define a collapsing decomposition of T# whose quotient is A (figure 3.14d). 

In the next section §3.6.3, after the collapsing decomposition is extended over pinched 
tetrahedra and cloven maw pieces, and the collapse is carried out, the annulus complex A 
will be precisely the annulus complex arising from some dynamic blowup of 1 , as shown in 
figure 3.14d. 

Now we begin to implement the above steps. 
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Consider the foliation :F le T. Note that if L, L' are two {C, C'} leaves, and if K is the 
component of r.t(T - (LU L')) containings L, L', then by lemma 3.6.1 it follows that each 
leaf of :F le K is a {C, C'} leaf, and by lemma 3.5.7 it follows that each noncompact leaf 
of :FI K is caught between two {C, C'} leaves, with two ends spiralling into two different 
{ C, C'} leaves. Therefore, for each C, C' there is a connected subset :F( C, C') of T consisting 
of all {C, C'} leaves, together with any noncompact leaves of :F I T caught between two 
{C,C'} leaves. Note that :F(C,C') = :F(C',C). The foliation:F(C,C') is either empty, or 
a single { C, C'} leaf, or the subset of T between two "outermost" { C, C'} leaves. Note that 
if {C0 ,Cb} c/ {C 1 ,CU then :F(C 0 ,Cb) n :F(C 1 ,C~) = 0. The results oflemma 3.6.1 can 
be translated into this new language: if :F( C, C') -::/ 0 then C, C' are separated by an odd 
number 2:: 3 of faces of T; and if :F( C, C1) and :F( C, C2) are separated by some :F( CL C~) 
then either C = C~ or C = C~. 

Step 1: Constructing the annulus complex A The annulus complex A will be dual to 
the collection of subsets {:F( C, C')} of T, as follows. Let £ = Uc C' :F( C, C'). The annulus 
complex A has one circle for each component of r.t(T - £), and 'one annulus A( C, C') for 
each nonempty component :F( C, C') of £. Also, A will be invariant with respect to the 
Seifert fibration on T-in other words, A will be a union of Seifert fibers. An example is 
given in figure 3.14a. Here is a precise description. 

Consider first a component K of r.t(T - £). There are finitely many leaves in :F le K, 
each of which is an annulus in 8K where K intersects some :F( C, C'). The Seifert fibration 
of T restricts to a Seifert fibration of K such that each leaf of :F le K is a union of Seifert 
fibers, and each noncompact leaf of :F I K is transverse to the Seifert fibration. Since K is 
a solid torus, there is at most one nongeneric Seifert fiber; let ,K be the nongeneric fiber if 
it exists, or a generic fiber in int(K) otherwise. Also, for each leaf L of :F le K, let AK,L be 
an annulus transverse to :F I K with one boundary circle on ,K, the other boundary circle 
in int(L), such that AK,L is a union of Seifert fibers. 

Next consider some nonempty :F( C, C'). Let K 1 , K 2 be the two components of r.t(T- £) 
incident to :F( C, C'), and let Li = Ki n :F( C, C'). Let A( C, C') be an annulus with the 
following properties: 

• A(C, C') c K1 U :F(C, C') U K2 

• A(C,C') n Ki= AK;,L; 

• A( C, C') n :F( C, C') is a properly embedded annulus in :F( C, C'), transverse to the 
foliation there. 

• A( C, C') is a union of Seifert fibers. 

Altogether we get A( C, C') C int(T) and A( C, C') is transverse to :F I T. We remark that 
A(C,C') is a function of the unordered pair {C,C'}, that is A(C,C') = A(C',C). 
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Figure 3.14: The foliation :FI T determines a dynamic blowup of,. Each compact leaf is 
either a { C, C1} leaf or a { C, C2} leaf. The figure shows a meridian disc of T intersected 
with the various features. The sublaminations :F( C, C1) and :F( C, C2) are drawn with thick 
lines. Figure ( a) shows the annulus complex A= A( C, C1) UA( C, C2 ). Figure (b) shows the 
result of blowing up the corners C, C1 , C2 , converting Tinto T#. Figure ( c) shows :F( C, C1) 

and :F( C, C2) after they have been isotoped into R( C, C1) and R( C, C2); components of 
r.t(T# - (R( C, C1) UR( C, C2))) are shaded. Figure ( d) shows the result of collapsing T# 
onto A. 
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Define the annulus complex to be 

A= LJ A(C,C') 
C,C' 

and note that it is transverse to :F I T and invariant under the Seifert fibration on T. 

Step 2: Blowing up corners of T Given a corner circle C of T, consider the set of 
corner circles C' such that :F( C, C') # 0. This set may be enumerated as C~, ... , C~(C)' 
where the enumeration is chosen so that :F( C, CI) separates :F( C, CL 1) from :F( C, CI+1) 

in T, and so that the enumeration goes from the u-direction to the s-direction ( see figure 
3.14a). 

For each corner circle C alter <I>* by doing an n( C)-fold corner blowup of C. This 
means that <I>* is altered by replacing C with an invariant annulus, so that the interior 
of the annulus has n - 1 periodic orbits cutting it into n invariant annuli, each with no 
periodic orbits in the interior (see figures 3.15 and 3.14b). We refer to the newly created 
annuli as corner annuli, and we denote them in order as H( C, C~), ... , H( C, C~(c)). The 
altered version of T is denoted T#. These alterations may be done independently on all 
the dynamic solid tori of Bs,Bu; the altered versions of <I>*, U(B 8

), U(B 8
), and U(T) are 

denoted <J>*#, u#(B 8
), u#(Bu), and u#(T). 

Note that H( C, C') is a function of the ordered pair ( C, C'), and H( C, C') # H( C', C). 
The corner annuli are therefore naturally paired up: associated to each unordered pair 
{ C, C'} such that :F( C, C') # 0, there is a pair of corner annuli H( C, C'), H( C', C). 

Step 3: Isotop :F I T to a foliation of T# By abusing notation, we will denote the 
result of this isotopy as :F I T#, although the isotopy will not be extended over all of :F until 
the following section. The goal is to arrange that the restriction of :F I T# to corner annuli 
is transverse to <J>*# (see figure 3.14c). To do this, isotop :F(C,C') so that the boundary 
circles parallel to C move into the interior of H( C, C') and the boundary circles parallel 
to C' move into the interior of H( C', C). This isotopy can be accomplished so that the 
restriction of :F to each corner annuli of aT# is transverse to <J>*#-to see why, it suffices 
to note that :F I 8T has no Reeb annulus whose boundary circles are both parallel to the 
same corner orbit, because the boundary circles of a Reeb annulus are anti-isotopic (see 
figure 3.16). 

Step 4: A collapsing decomposition of T# with quotient A First we partition 
T# into certain subsets, which will be the preimages of the various circles and annuli of A 
under the collapse. 

Given corner circles C, C' such that :F( C, C') # 0, let R( C, C') be the image of an 
embedding S 1 x Ix J '-------+ T#, with I= J = [O, 1], such that: 
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Figure 3.15: For each dynamic torus piece component T of r.t(M - (U(B 8
) U U(Bu)), and 

for each corner orbit C of T, the flow <I>* on U ( T) can be altered by blowing up C into any 
number of invariant annuli; we choose the number of invariant annuli to be n( C) = the 
number of corner orbits C' such that :F( C, C') # 0 (see figure 3.14b ). The effect of corner 
blowups on various objects is indicated with the symbol "#". 
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Figure 3.16: The restriction of <J>*# and :F to the corner annuli of T# associated to a corner 
orbit C, viewed from inside T#. In this example n( C) = 2. When the C-parallel circles 
of :F( C, C~), ... , :F( C, C~(c)) are isotoped into H( C, C~), ... , H( C, C~(c)) respectively, the 
foliation :F I T# is transverse to <J>*# on each corner annulus, because the restriction of :F 
to a subannulus of 8T bounded by two C-parallel circles cannot be a Reeb annulus. 

• 5 1 x Ix f)J H(C,C') U H(C',C) . 

• 51 XIX ½ A( C, C') 

• :F( C, C') C 5 1 x int(I) x J. 

• :F I 5 1 x I x J has the form f x J where f is a foliation of 5 1 x I transverse to 
8(5 1 XI). 

• The map 5 1 x Ix O ----+ 5 1 x Ix 1, given by ( s, t, 0) f---+ ( s, t, 1), is a topological conjugacy 
between the restrictions of <J>*#. 

We make the following additional requirements on how R( C0 , Cb) and R( C1, C~) intersect: 

• If C0 = C1 = C and if H( C, Cb), H( C, C~) are adjacent corner annuli associated to C, 
then R( C, Cb) n R( C, C~) is a common annulus on the boundary of each, connecting a 
circle of A to the circle H( C, Cb) n H( C, C~)- Moreover the ]-directions of R( C, Cb), 
R( C, C~) agree along their intersection. 

• If C0 , Cb, C1, C~ are all distinct, and if there are no compact leaves between :F(C 0 , Cb) 
and :F( C1, C~), then R( Co, Cb) n R( C, C~) is a circle of A. 

• Otherwise, R( C0 , Cb) n R( C1, C~) = 0. 
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Define a collapsing decomposition of T# as follows. On each R( C, C') 5 1 x Ix J, for each 
xx t E 5 1 x I the arc xx t x J is a decomposition element, which is collapsed onto the point 
xx t x ½ where it intersects A( C, C'). Note that this decomposition is well-defined where two 
of the sets R( Co, Cb), R( C1, C~) intersect. Each component K of r.t(T# - Uc,C' R( C, C')) 
is a solid torus manifold-with-corners, and :F I K is a polygon fibration of K; each leaf 
of :F I K is a decomposition element, which is collapsed onto the unique point where it 
intersects A. Again, this decomposition is well-defined where K intersects any R( C, C'). 

Note that the collapsing decomposition of T# respects the restriction of <J>*# to corner 
annuli, and it respects :F I T#. Since <J>*# and :F are transverse on corner annuli, at the 
very least it is clear that when T# is collapsed onto A, we will have <J># I A transverse to 
FIA. 
3.6.3 Finishing the construction 

The remaining tasks: extend the partially defined isotopy to all of :F; and extend the 
partially defined collapsing decomposition to all of r.t( M - u# ( T)). 

The set r.t( M - U ( T)) is decomposed into solid torus pieces, pinched tetrahedra, and 
cloven maw pieces. Blowing up corner circles of dynamic solid tori converts U(T) and <I>* 
into U#(T) and <J>*#, but it has no effect on pinched tetrahedra and cloven maw pieces. 

Recall that in step 3, for each dynamic solid torus T such that :F I Tis not a meridian 
disc foliation, we isotoped :F ! T to give a foliation :F I T#, and in step 4 we defined a 
collapsing decomposition of T . 

Next, given a dynamic solid torus T such that :F I T is a meridian disc foliation, set 
T# = T and define the collapsing decomposition elements to be the leaves of :F I T. 

To continue the process we carry out the following steps: 

Step 5 The isotopy from :F I LJ{T} to :F I LJ{T#} is extended to each suu-maw piece µ, 
so that :F I µ is I-parallel, and :F I Ouµ is transverse to <J>*# I Ouµ. 

Step 6 Repeat step 5 for each uss-maw piece, without disturbing the results of step 5 in the 
suu-maw pieces. The delicate issue here is that suu-maw pieces and uss-maw pieces 
are typically not disjoint, intersecting in some number of pinched tetrahedra. Putting 
together steps 3,5,6 we get an isotopy from :FI r.t(M - U(T)) to :FI r.t(M - U#(T)). 
This is easily extended to an isotopy on all of M so that :F I U# ( T) is transverse to 
<J>#. 

Step 7 Define collapsing decompositions on pinched tetrahedra, and on cloven maw pieces, 
so that the collapsings respect both :F and <J>*#. 

Having completed step 7, we then collapse, taking <J>*# to the dynamically blown up pseudo-
Anosov flow <J>#. We will then have proved that :F is transverse to <J>#. 
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Step 5: suu-maw pieces Let T# be a dynamic solid torus with blown up corner annuli 
in U#(T). Letµ be an suu-maw piece attached to T# along ans-face F, let F1 , F2 be the 
u-faces ofµ, let c = F1 n F2 be the cusp curve, and let Ci = F n Fi be the corner circles, 
i = 1, 2. Choose a properly embedded annulus A C µ and a component v of ct(µ - A) 
satisfying the conclusions of lemma 3.5.6, in particular :F I v is I-parallel. Note that if A 
is an annulus leaf of :FI v, and if An T-::/ 0, then An Tis a {C 1 , C2 } leaf, in violation of 
condition 2 oflemma 3.6.1. Therefore each annulus leaf of :F I vis contained in µ-F, and so 
we may assume that v C µ-F. Letµ'= r.t(µ-v), a (rectangle)xS 1 manifold-with-corners. 

We claim that before the isotopy from :F I T to :F I T#, either :F le µ' = :F I µ' is 
a foliation by meridian discs, or there exist disjoint sublaminations :F(µ, C1 ), :F(µ, C2) of 
:F I µ' with the following properties: 

• Every compact leaf in :F(µ, Ci) has one boundary circle in F and the other in Fi; we 
say that such a leaf cuts off the corner circle Ci. 

• Either :F(µ, Ci) is empty, or it consists of a single annulus leaf cutting off Ci, or 
:F(µ, Ci) is the region ofµ' between two annulus leaves cutting off Ci. 

• We can choose A and v so that A is contained in an arbitrarily small neighborhood 
of Fu :F(µ, C1) U :F(µ, C2). 

To justify this claim, consider a leaf L of :F I c µ'. The two boundary circles of L cannot lie 
in the same face ofµ', and neither of them can lie in A. By maximality of v, there cannot 
be one boundary circle in F1 and the other in F2 . It follows that L has one boundary circle 
in F and the other in F1 or F2 , and so L cuts off C1 or C2 . 

The isotopy from :F I T to :F I T# moves circle leaves of :F I F out of F and into corner 
annuli of T#. We can now alter this, to obtain an isotopy from :FI (TUµ) to :FI (T# U µ), 
which moves :F(µ, C1 ) U :F(µ, C2 ) out ofµ, leaving an I-parallel foliation in µ (see figure 
3.17), so that the restriction of :F to the union of corner annuli and u-faces ofµ is transverse 
to the restriction of <J>*#. 

Step 6: uss-maw pieces Let µ1 be a uss-maw piece. Mimicking step 6, we push annulus 
leaves of :F I µ~ out of µ1 , leaving an I-parallel foliation in µ1 , so that the restriction of 
:F to the union of corner annuli and s-faces of maw pieces is transverse to the restriction 
of <J>*#. However, we must check that this can be done without disturbing the properties 
established in step 5 for each suu-maw piece µ. 

Let t be a component of µ1 n µ, so t is a pinched tetrahedron. Let L be a leaf of :F I µ1 
which is moved by the isotopy in step 6, so either Lis an annulus cutting off a corner circle 
of µ1 , or L is close to such an annulus, or L lies between such an annulus and the corner 
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Figure 3.17: This figure shows a closeup of the lower portions of figure 3.14a,b,c. If dis a 
circle leaf of :F I F parallel to the corner circle Ci, and if d is a boundary circle of some 
annulus leaf L of :F I µ that cuts off Ci, then we can isotope :F so as to move L out ofµ. 

circle. Notice that if L n t # 0 then L has nonempty intersection with the uu-cusp oft. In 
particular, L has nonempty intersection with the uu-cusp ofµ. In other words, the isotopy 
that fixes up :F I µ1 , when looked at from inside µ, only moves points lying on leaves of 
:F I µ which intersect the uu-cusp circle ofµ, and therefore this isotopy does not produce 
any new annulus leaves of :F I µ cutting off corner circles of µ. It follows that after the 
isotopy, the foliation :F I µ still satisfies the properties established in step 5. 

Step 7: Collapsing Before defining the collapsing decomposition on the rest of r.t(M -
U# ( T)), consider the isotopy from :F I r.t( M - U ( T)) to :F I r.t( M - U# ( T)) defined in steps 
3,5,6. After corner blowups but before the isotopy, :F is transverse to <J>#, and after the 
isotopy we still have transversality on 8 r.t(M - U#(T)) = f)U#(T). Clearly the isotopy can 
be extended over all of U#(T) so that points are stationary except near f)U#(T), and so 
that :F remains transverse to <J># on all of u# ( T). 

Consider a pinched tetrahedron t. We say that :F I t is linear if it is conjugate to the 
foliation of R 3 by horizontal planes, restricted to a rectilinear simplex none of whose edges 
are horizontal. Note that :F I tis linear if and only if it has no saddle tangencies or external 
tangencies in the interior of a cusp edge of t. Also note that :F I t is linear if and only if 
the leaf space is an arc CXt. If :F I t is not linear then the leaf space is a tree. 

We may alter U#(T) so that :FI tis linear for each pinched tetrahedron, as follows. If 
:F I t is not transverse to a uu-cusp edge a of t, let µ be the uss-maw piece containing 
t, so a is an arc connecting the two s-faces ofµ. We know that :F I µ is I-parallel. By 
perturbation we may assume that the two endpoints of a do not lie on the same leaf of 
:F I µ. By isotoping the edge a in µ, we may make :F transverse to a; in the process we 
might create a tangency of :Fat some endpoint of a, but that is not bothersome. Proceeding 
in the same manner for the ss-cusp edge of t, and repeating for each pinched tetrahedron 
t, we may assume that :F I t is linear. 

Define the collapsing decomposition on a pinched tetrahedron t to be the leaves of the 
foliation :F I t. 
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Figure 3.18: A partial collapse of a pinched tetrahedron t in a maw piece with cusp curve 
c. Any leaf of :F I t intersecting c is collapsed to a point; the union of these points is a 
segment CXt. Any leaf of :F I t not intersecting c is collapsed to a segment; the union of these 
segments is a disc. The figure shows trajectories of <J>*# on F1 before the collapse, and on 
F{ after the collapse. Also shown, as dashed lines in the background, are the trajectory on 
F2 that intersects t, and the trajectory on F~ that contains at; remaining trajectories on 
F2 and F~ are left to the imagination of the viewer. 

Now fix a maw piece, for concreteness a uss-maw piece µ with ss-cusp c, corner circles 
C 1 , C 2 , and u-face F. Let K = ct(µ - (pinched tetrahedra)) be the associated cloven maw 
piece. Let Fi be the s-face of K with Ci C Fi. 

In describing the collapsing decomposition on K, it is inconvenient that F1 n F2 is not 
a common component of 8F1 and 8F2 , and it is also inconvenient that <J>*# is not a flow at 
culvert points of F1 and F2-since µ is a uss-maw piece, <J>*# is a forward semiflow at these 
culvert points, but not a backward semiflow. To avoid these minor inconveniences, we alter 
K by doing a partial collapse of each pinched tetrahedron component t of ct(µ - K) ( see 
figure 3.18; imagine a shark with an overbite). First collapse to a point each leaf of :F I t 
which intersects the ss-cusp edge oft (one such leaf is shown in figure 3.18); let CXt be the 
union of these points, a topological arc. Next, for each leaf L of :F I t which is disjoint from 
the ss-cusp edge, let a1 , a2 be the intersections of L with the two u-faces oft, fiber L by 
arcs connecting a1 to a2 with a degenerate fiber at each point of a1 n a2 , and collapse each 
fiber (two such leaves L are shown in figure 3.18). Let K' be the quotient of K under the 
partial collapse on each component of ct(µ - K). Note that K' is a solid torus. 

Let F{, F~ be the two u-faces of K'. The surface Ff may be regarded as a surface with 
ordinary corners and reflex corners: for each pinched tetrahedron t C K, one endpoint of 
CXt is an ordinary corner of Ff and the other endpoint is a reflect corner. Let c' = F{ n F~, 
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a component of 8F{ and of 8F~. Let c~et = Ut CXt where the union is taken over all pinched 
tetrahedra t C K, and let c~usp = <t( c' - c~et). 

The structure of <J>*# I Ff is as follows. The corner circle Ci is an orbit. Each component 
CXt of c~et is contained in an orbit whose backward endpoint is the ordinary corner in 
oat, and whose forward end spirals into Ci. Every other orbit has a backward endpoint 
ending transversely on c~usp, and a forward end spiralling into Ci. There is therefore a 1-1 
correspondence between orbits of <J>*# I F{ and of <J>*# I F~, where noncompact orbits £1 , £2 

correspond if and only if £1 n £2 # 0, and C1 corresponds to C2 . Note that corresponding 
noncompact orbits £1, £2 have the property that £1 n £2 is either a point of c~usp or a 
component CXt of c~et; in particular note that £1 U £2 is contractible. 

The collapsing of K' will identify F{ and F~ homeomorphically. This identification is 
uniquely determined as follows: 

Lemma 3.6.3. There exists a unique homeomorphism h: F{ ----+ F~ with the following prop-
erties: 

• h is the identity map on c' = F{ n F~. 

• h takes C1 to C2 by the unique map compatible with the collapsing decomposition 
already defined on F. 

• For each leaf L of :FI K', h takes L n F{ to L n F~. 

• Given corresponding noncompact trajectories £i of <J>*# I Ff, i = 1, 2, the map h takes 
£1 to £2; it follows that x E £1 is connected to h( x) E £2 by a path qx C £1 U £2 whose 
path homotopy class is well-defined. 

• For each simply connected leaf L of :FI K', and for each x E F{ n L, let Px be a path 
in L connecting x to h( x). Then Px is path homotopic to qx in K'. 

Proof. To prove uniqueness, let £1 ,£2 be corresponding noncompact trajectories. First, 
note that for each compact leaf L of :F I K', there is a unique point Xi E L n £i, and so we 
must have h(x 1 ) = x 2 . Second, note that for each noncompact leaf L, there is a countable 
infinity of points Xik E L n £i, k E Z. The indexing may be chosen so that if Pk connects 
xlk to X2k in L, and if qk connect xlk to X2k in £1 U £2, then Pk is path homotopic to qk in 
K'. In particular, if k # k' E Z then Pk * q1;,1 is k - k' times a generator of H 1 ( K') Z, 
and hence we must have h( xlk) = x 2k for each k. 

The proof of uniqueness also gives us the definition of h. 
h- 1 are continuous. 

It easy to check that h and 
<) 

It is now straightforward to define a collapsing decomposition of K', each element of 
which is either a point of c' or an arc Px in a leaf L of :F I K' connecting some x E F{ to 
h( x) E F~, such that Px is path homotopic to qx. 
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Now collapse K' for each cloven uss-maw piece K, and similarly for each cloven suu-
maw piece. This completes the collapsing of ct( M - u# ( T)). By construction, the collapsing 
respects :F and <J>*#. Therefore there is an oriented 1-dimensional foliation <J># induced from 
<J>*# by collapse, and by choosing a parameterization we make <J># into a flow. Clearly <J># is 
a dynamic blowup of <I>. Since :F I U# ( T) is transverse to <J>*# it follows that :Fis transverse 
to <J>#. This completes the proof of theorem 3.5.4. 

3. 7 Constructing vertical dynamic pairs 

In this section we prove proposition 3.5.5. Recall the statement. Let /3 be a transversely 
oriented branched surface that carries a taut, transversely oriented foliation :F of M. Let 
( B, V, I) be an unstable Markov branched surface such that ( B, V) is vertical with respect 
to /3, and therefore also with respect to :F. Suppose that I is tangent to /3. Suppose also 
that ( B, V) satisfies the hypotheses of proposition 2.6.2: B is very full in M, B carries no 
closed surfaces, the restriction of V to each component of ct(M - B) is circular, and no 
sector of B contains a closed trajectory of V. 

In order to construct a dynamic pair (Bs, Bu) which is vertical with respect to /3, we 
go through the proof of proposition 2.6.2 and check every step, verifying that all changes 
in ( B, V) preserve the property that ( B, V) is vertical with respect to /3. Also, after 
constructing Bs, we verify that no annulus carried by /3 is peripheral in ct( M - Bs). 

In step 1 we constructed a dynamic train track T dual to I. Recall how V was altered. 
The train track T was constructed in pieces as T = LJ I; EI T/ U Ti- ( see figure 2 .1 0a). For each 
Ii E I, we chopped off a tiny neighborhood of each endpoint of Ii to obtain a subinterval 
II, we chose a small number t > 0, and we constructed T/ in II· [0, t]. Then V was altered 
by homotopy in II· [0, t] to be tangent to T/, still having an upward vertical component in 
the coordinate system II · [0, t]. Since II is tangent to B, before we start the construction 
of T/ we can alter the parameterization of V and choose t so that for each s E [0, t] the 
horizontal segment II · s is tangent to the product structure on ct( M - /3). Since V still 
has an upward vertical component after homotopy, it follows that V is still vertical with 
respect to /3. 

In step 2, the vector field Vis altered by perturbation in steps 2c and 2d, so verticality is 
preserved. In step 2c the branched surface B is altered by splitting along annuli and Mobius 
bands, introducing cusped torus pieces of type (2, 0) and (2, 1). Since B was transverse to 
/3 before splitting along these annuli and Mobius bands, it is clear that the new torus pieces 
contain no peripheral annuli carried by /3. 

Recall that in step 3, after setting B = Bu the construction of Bs is carried out. In 
the present "vertical" setting we need some preliminary work. Consider a component T 
of ct(M - Bu). We shall describe in detail how to construct Bs I T. In our construction 
we will apply lemma 3.5.6-although this lemma was only stated for cusped solid tori, the 
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proof applies without change for cusped torus shells. 
Reviewing the notation of step 3, the annulus faces and cusp circles of T are enumerated 

in circular order as F1, ... , FN, c1, ... , CN so that Cn = 8Fn-1 n8Fn for each n E Z/N. The 
remains of Tin 8T is denoted TT = TTl U · · · U TTN where TTn is the component intersecting 
Cn. The stable train track TTn has two circular sources dn1 C Fn-1 and dn2 C Fn, and they 
are oriented isotopic in T. There is a subannulus Rn C Fn with boundary dn2 U dn+l,l and 
interior disjoint from TT. There is a subannulus A~ C 8T containing Cn with boundary 
dn1 LJ dn2, satisfying TT n A~= TTn· 

In the proof of proposition 2.6.2 the annulus A~ was perturbed to obtain a properly 
embedded annulus An C T with 8An = dn1 U dn2, and this annulus An became part of an 
annulus-with-tongues component of r.t(B 8 

- Bu). Now we must proceed with much more 
care, in order to insure that V can be homotoped to be tangent to An while maintaining 
verticality. To do this we take lemma 3.5.6, which describes the structure of :F I T near 
each cusp, and use it to describe the structure of /3 I T near each cusp. 

Recall from lemma 3.5.6 that there exists an annulus which we denote Hn, and a 
component Vn of r.t(T - Hn), such that Vn is a maw piece with cusp curve en, and: 

• :F is transverse to Hn. 

• :F I Vn is I-parallel. 

• For each annulus leaf of :F I Vn, the transverse orientation on that leaf points away 
from Hn and towards Cn. 

Moreover Vn is maximal, in the sense that if v~ also satisfies these properties then each 
annulus leaf of :F I T contained in Vn U v~ is also contained in Vn. 

It follows that by perturbing Hn and then splitting /3, the restriction of /3 to Vn satisfies 
analogous properties: 

1. /3 is transverse to Hn. 

2. /3 I Vn is I-parallel. 

3. For each annulus carried by /3 I Vn, the transverse orientation on that annulus points 
toward Cn and away from Hn. 

4. If v~ also satisfies the above properties then every annulus carried by /3 I (vn U v~) is 
also carried by Vn. 

To clarify 2, we say that /3 I Vn is I-parallel if there is an integrable line field on Vn tangent 
to /3, which is uniquely integrable except along i /3 I Vn, such that each integral curve 
connects the two u-faces of Vn. 

Now there is a technical glitch. We will need the following property, which unfortunately 
may not be true: 
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5. Vn n (dnl LJ dn2) = 0. 
This property says intuitively that all annuli carried by /3 I T that "cut off" the cusp Cn 

are "close to" Cn. We will need this property in order to prove that /3 carries no annulus 
that is peripheral in r.t(M - B 8

) ( c.f. the proof of lemma 3.6.1-2, and the relation of that 
property to nonexistence of peripheral annuli). To establish this property we will isotope 
:F and /3. There are two cases: 

Case 1: /3 I Vn carries no annulus Each cusp disc carried by /3 I Vn is obviously disjoint 
from dn1 U dn2. By mimicking the proof of lemma 3.5.6, we may choose Hn to be contained 
in a neighborhood of the union of Cn and all maximal cusp discs intersecting en, in which 
case Vn is disjoint from dn1 U dn2. 

Case 2: /3 I Vn carries some annulus By splitting /3 we may assume that the annuli 
carried by /3 I Vn are pairwise disjoint. Let A be the outermost such annulus, and let L be 
the outermost annulus leaf of :F I T carried by A. 

Holonomy Claim. The holonomy of :F around L, on the side away from en, going around 
the generator of 1r1 ( L) in the positive direction, is repelling. 

Accepting the claim for the moment, we show how to use it to fix up /3. Suppose that 
dni C Vn, let Cni be the corresponding corner circle of Vn, and let d~i be a circle in 8T - Vn 
very close to Cni · Orient d~i so that it is oriented isotopic to dni · By the holonomy claim, 
it follows that d~i is positively transverse to /3. Of course, dni is also positively transverse 
to /3. 

Now we do an ambient isotopy of /3 taking d~i to dni· More precisely, choose a smooth 
annulus a in 8T with dni U d~i C a. Note that we can homotope V in a so that every 
trajectory in the region between dni and d~i crosses d~i in forward time and is asymptotic 
to dni in backward time; this follows from the fact that each annulus carried by /3 I Vn 
is transversely oriented away from en, and so each circle carried by the train track /3 I a 
is transversely oriented from dni towards d~i; also, no obstructions to this homotopy are 
presented by the train track T, which does not intersect the region between dni and d~i· 
We can therefore choose a parameterization a [O, 1] x S 1 so that every vector in V I a 
points into the first quadrant, except those based on dni which point straight upward, 
and every tangent line of /3 I a has either negative slope or infinite slope. Define a map 
0: M ----+ M isotopic to the identity which equals the identity outside a small neighborhood 
of a, preserves a, preserves the S1-factor of a, and takes d~i to dni· Note that Vis vertical 
with respect to 0(/3), and all the other good properties of /3 are shared by 0(/3). In addition, 
we have arranged that 0(/3) satisfies property 5, and we replace /3 by 0(/3). 

To prove the holonomy claim, consider the component K of r.t(T - :F le T) such that 
A C 8K and K is on the side of A away from Cn. Note that K is a solid torus, :F le K 
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Figure 3.19: In the annulus a, the map 0 takes d~i to dni· The branched surface /3 is 
replaced by 0(/3). Note that V is still vertical with respect to 0(/3). 
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consists of a finite number of annuli A = A 0 , ... , An located in 8 K, and every noncom pact 
leaf of :F le K is simply connected with one end spiralling into each of A 0 , ... , An. We may 
regard K as a solid torus manifold-with-corners of type ( m, l), obtained from a 2m-gon 
as the mapping torus of a rotation through angle 21rl/m, with m 2. In order to prove 
the claim it suffices to show that V may be perturbed to a vector field V' having a closed 
trajectory I in int( K)-for, by circularity of V I T, it follows that , is a positive multiple 
of the core of T. First perturb V so that it is smooth in K, and hence uniquely integrable. 
If it were true that every trajectory entering K through A 0 exited through some other 
face, it would follow that (m, l) = (2, 0) and V exits K through the face A 1 , contradicting 
maximality of Vn. It follow therefore that some trajectory of V in K is forward infinite, 
accumulating on some point p E K. By perturbing V we can create a closed trajectory 
through p. 

Having established property 5, we can perturb V to satisfy the following additional 
property: 

6. Each trajectory of V I Vn is a compact arc from a point of Hn to a point of Cn. 

If this property were not true, then there would exist two annuli carried by /3 I Vn and a 
circular trajectory of V between these two annuli. However, since the transverse orientation 
on both annuli points away from c and toward Hn, we can perturb V between the two annuli 
so that any trajectory piercing one annulus also pierces the other. 

Now construct the annulus An as follows. Let A~ be the annulus in 8 r.t(T-vn) bounded 
by dn1 U dn2 and containing Hn. Perturb A~ to obtain a properly embedded annulus An in 
T, disjoint from Vn, with boundary dn1 U dn2, and so that An is transverse to /3 I T. 

Note that the vector field Vis tangent to the boundary circles of An, but not necessarily 
to An itself. To fix this, note that each component of r.t( An - /3) is of index 0, and so we can 
extend V I 8An to a vector field VAn tangent to An and transverse to /3 I An, pointing in 
the positive direction with respect to the transversely oriented plane field T13. Now we can 
choose a small neighborhood of An, and an isotopy of V supported in that neighborhood, 
so after the isotopy the restriction of V to An becomes equal to VAn. 

Finally, we attach a tongue tn for each point of TTn n en, exactly as in the proof of 
proposition 2.6.2, to produce an annulus with tongues B!j,n as in the proof of proposition 
2.6.2. The construction of tn works because of property 6; since the construction requires 
only a perturbation of V, verticality of V with respect to /3 is preserved. 

We now construct Es = Ur Un B!j,n exactly as in proposition 2.6.2, and note that Vis 
tangent to Es. 

To complete the proof of proposition 3.5.5 we must check that /3 carries no annulus which 
is peripheral in r.t(M - Es). Suppose that such an annulus A' exists. Let T' be the torus 
piece component of r.t(M - Es) containing A'. Let T be the corresponding component of 
r.t(M - Bu). Let F' be the face of T' containing 8A'. Let c be the cusp of T corresponding 
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to F'. There is an annulus component F of T n F' and a maw piece component µF of 
r.t(T - F) such that c is the cusp curve of µF. Similarly, there is an annulus component A 
of T n A and a maw piece component µA of r.t(T - A) such that c is the cusp curve of µA. 

Choose an annulus H CT bounding a maw piece v with cusp curve c such that H, v satisfy 
1-6. Since v C µFit follows that A</.-µF, and so by maximality of v there is an annulus 
A 1 carried by /3 I T which cuts off c such that A 1 C µA but the transverse orientation 
on A 1 points towards c. Now we can mimic the arguments of lemma 3.6.1 to obtain a 
contradiction: either A 1 has a boundary circle in µA which contradicts that trajectories of 
V I µA all go from F to c; or A 1 n T' extends to a properly embedded annulus A~ in T' 
which leads to a similar contradiction in some maw piece contained in T'. 

This finishes the proof of proposition 3.5.5. 



Chapter 4 

Sutured manifolds 

In this section the theory of dynamic pairs and pseudo-Anosov flows is extended to the 
setting of sutured manifolds. The statements and proofs in this section share many features 
with those in §2 and §3, and we use this opportunity to be brief when we can refer to those 
sections for details. There are, however, many interesting differences which we will be 
highlighted. 

In §4.1 we generalize branched surface hierarchies to the suured manifold setting, and in 
§4.2 we generalize dynamic branched surfaces. The sutured manifold definition of dynamic 
pairs is developed in §4.3-4.5. In §4.6 we generalize the results of §2.5, using dynamic 
train tracks to analyze the branched surfaces of a dynamic pair. The most important 
new features of a dynamic pair Bs, Bu in a sutured manifold P are the boundary train 
tracks ;3s = f)Bs C R+P and ;3u = {)Bu C R,_P. These train tracks and their properties 
are investigated in §4. 7. In §4.10 we generalize pA flows and their stable and unstable 
laminations to the setting of sutured manifolds. 

One interesting pedagogical feature is that the simplest sutured 3-manifolds are simpler 
by many degrees than the simplest closed or torally bounded 3-manifolds. Big guns were 
used to construct just a single example of a dynamic pair in a closed 3-manifold. By 
contrast, in §4.8-4.9 we use our bare hands to construct simple and instructive examples 
of dynamic pairs in sutured 3-manifolds, starting with Dan Asimov's "round handle" = 
(square) x S 1 [ Asi 75]. 

In §4.11 we generalize the results of §2.6, constructing a dynamic pair from a Markov 
unstable branched surface. However, an interesting new feature arises, present in the Dy-
namic Pair Theorem of the introduction but not yet in chapter 2, namely the emergence 
of incompressible, nonperipheral tori. The sutured manifold version of proposition 2.6.2-
constructing dynamic pairs from Markov branched surfaces-yields either a dynamic pair 
or a family of nonperipheral incompressible tori bounding a Seifert fibered submanifold. 
The manner in which these tori arise, in an attempt to construct dynamic pairs, is one of 

146 
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the most interesting features of the sutured manifold theory. This feature will, of course, 
also arise in later sections in an attempt to construct dynamic pairs that are vertical with 
respect to sutured manifold hierarchies. 

4.1 Hierarchies in sutured manifolds 

In order to formulate branched surface hierarchies in sutured manifolds we need a new 
class of branched surfaces, designed specially for sutured manifolds. Roughly speaking, an 
"R branched surface" in a sutured manifold Q is a branched surface containing RQ and 
transverse to ,Q. 

To be more precise, let Q have the corner model for sutured manifolds. An R branched 
surface in Q is a smooth, transversely oriented 2-complex B C Q such that: 

• RQ C B, and the transverse orientation on B agrees with the transverse orientation 
on RQ. 

• Each point x E B - 8B has a neighborhood in B which is a union of smooth 2-discs 
embedded in Q, all tangent at x. 

• Bis transverse to ,Q, i.e. in some collar neighborhood U(,Q) = ,Q x [O, 1) we have 
B n U(,Q) = 8B x [O, 1), where 8B = B n ,Q is a train track in ,Q. 

• B is groomed in the sense that for each annulus component A of <t(,Q - 8B), the 
transverse orientation points into A along one boundary circle and out of A along the 
other. 

• B has generic branching. 

As in the sutureless case, there is an I-bundle neighborhood N(B), a sutured manifold 
P(B) = cl(Q - N(B)), and an I-collapsing map Q -----+ Q, whose obvious definitions and 
properties are left to the reader. Note that as in the sutureless case, ,P(B) = Frv P(B) U 
(P(B) n ,Q). 

A branched surface hierarchy B0 C · · · C BK in a sutured manifold Q is defined word 
for word like in a manifold with torus boundaries, except that B0 = RQ and each Bk is an 
R branched surface; in particular, <t( Q - BK) is required to be a product sutured manifold. 
Equivalence among branched surface hierarchies in sutured manifolds is also defined exactly 
as for manifolds with torus boundaries. 

Note that if M is a 3-manifold with torus boundaries, if B0 C · · · C BK is a branched 
surface hierarchy in M, and if we fix k and define Bi C P( Bk) to be the union of RP( Bk) 
with the closure of the pullback of Bk+i, then Eb C · · · C B~ -k is a branched surface 
hierarchy in P(Bk)-
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Figure 4.1: A local model for the dynamic vector field near a boundary switch of an 
unstable, dynamic branched surface. R+P corresponds to a horizontal plane in R 3 and the 
dynamic vector field corresponds to d/dz. The branch locus, as it moves away from R+P, 
slants towards the one-sheeted side; this is necessary in order for d/ dz to point forward 
along the branch locus. 

4.2 Dynamic branched surfaces in sutured manifolds 

Let P be a sutured manifold. An unstable dynamic branched surface in P is a branched 
surface Bu C Panda nowhere zero, C0 vector field Von P, with the following properties: 

• ( P, V) is a dynamic sutured manifold. 

• V is tangent to Bu. 

• V points forward along l' Bu. 

Note that {)Bu is a train track in R+P. The set of switches of {)Bu is the same as l' Bu n 
R+P; these points are called boundary switches of Bu. Figure 4.1 explains the appearance 
of V near a boundary switch. Figure 4.2 shows a Reeb annulus of {)Bu, an annulus AC R+P 
such that {)Bun A is a Reeb train track in A. 

A stable dynamic branched surface Bs C P is similarly defined, except that 8 Bs C R,_ P, 
and the conditions on V along l' Bs are reversed. To see the picture near l' Bs n R,_ P, turn 
figure 4.1 upside down. Boundary Reeb annuli for Bs are defined just as for Bu. 

The complementary dynamic manifold. Consider an unstable dynamic branched 
surface Bu C P in a sutured manifold. Note that pu = <t( P - Bu) is naturally a dynamic 
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Figure 4.2: A Reeb train track. 

manifold, with vector field obtained by pulling back V via the overlay map pu f---+ P, and 
with faces labelled b, m, p, or u depending on whether the image lies in ab, m, or p-face 
of P or in Bu. The overlay map restricted to b and m-faces is a homeomorphism. The 
edges of pu are: uu-cusps mapping to maw components of Bu; pu-corners mapping to 
paths in {)Bu; and pb and mb-corner circles mapping homeomorphically to similar circles 
in P. Each corner of pu is a puu-gable mapping to a boundary switch. 

Consider au-face A of pu_ Note that the dynamic vector field points outward on A; 
this is obvious at points of {)A mapping into uu-cusps and pu-corners of pu, and it is also 
obvious for puu-gables as a glance at figure 4.1 shows. Since P is oriented so is pu, and 
therefore so is A. The vector field on A is nowhere zero, and so from the Euler-Poincare 
index formula it follows that A is an annulus or torus. In most situations tori will not 
occur, so A is almost always an annulus. If A is an annulus we say that V I A is circular 
if there is a homotopy equivalence A f---+ 5 1 such that the map from each trajectory in A to 
5 1 has positive derivative. Pulling back the standard generator of H 1(5 1 ) Z we obtain a 
generator of H 1 (A), called the positive generator. 

For example, suppose T is a component of pu which is a u-cusped torus piece. If V 
is circular on T then V is circular on all annulus u-faces of T. Moreover, the positive 
generators on the u-faces of Tare all homologous to the same positive element of H1 (T); 
if T has type ( n, k) this element is n / gcf ( n, k) times the positive generator of H 1 ( T). 

Consider a uu-cusp circle c of pu, and let F1 , F2 be the u-faces on either side of c. The 
inclusion c '-------+ Fi induces an isomorphism H 1 ( c) H 1 (Fi), and we can ask whether the 
composition H 1(F1 ) H 1(F2 ) preserves positive generators. If positive generators are not 
preserved then we say that c is incoherent, otherwise c is coherent. For example, if V is 
circular on a cusped torus T then the cusp circles of T are all coherent. 

Similarly, suppose A is an annulus p-face of pu such that {)A= tlUt 2 , and suppose that 
Vis circular on the u-face Fi containing ti· The inclusion maps of ti into A and Fi induce 
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homology isomorphisms, and by composition we obtain an isomorphism H 1 (F1 ) H 1 (F2 ). 

If this does not preserve positive generators then we say that A is incoherent, and otherwise 
A is coherent. 

Dynamic splitting. We need to define dynamic splitting in the sutured manifold con-
text. Let ( B, V) be an unstable dynamic branched surface in a sutured manifold P. Let 
p: N(B) ----+ B be the projection map of an I-fibered neighborhood of B. First we de-
fine a splitting surface to be any surface with corners F C N(B) tranverse to the I-fibers 
such that 8F decomposes into compact 1-manifolds with disjoint interior OvF U OiF U 8aF, 
where 8vF = F n 8vN(B), 8aF = F n 8P, OiF is properly embedded in N(B), and F has 
cusps wherever OiF and OvF meet and corners wherever 8aF meets the other two. We say 
moreover that F is a dynamic splitting surface if, letting V' be the lift of V under the sub-
mersion of F to B, the vector field V' enters F at each point of OvF, is externally tangent 
at each endpoint of OvF, and leaves F at each point of OiF U 8aF. The branched surface 
BF obtained by splitting along F is defined as in the unsutured case: choose an I-fibered 
neighborhood N(F) C N(B) whose fibers are subsets of fibers of N(B), then collapse each 
I-fiber of N(BF) = cl(N(B) - N(F)), by perturbing the map p I N(BF) so that it maps 
each I-fiber of N(BF) to a separate point. Dynamic splitting of stable dynamic branched 
surfaces is similarly defined. We have: 

Proposition 4.2.1. Any branched surface obtained by dynamic splitting of an unstable 
dynamic branched surface on a sutured manifold is an unstable dynamic branched surface, 
and similarly for stable. <) 

As a special case of a dynamic splitting surface, let B C P be an unstable dynamic 
branched surface, and let A be a smoothly embedded annulus in B such that one component 
of 8A lies in 8B C apP and the other component of A is a cusp circle of B. The annulus A 
is called a maw-boundary annulus of B. Splitting along A produces an unstable dynamic 
branched surface B'. Note that the train track 8 B' is obtained from 8 B by splitting along 
the circle c = An 8pP, resulting in an annulus p-face F of r.t(P - B') whose boundary 
components are pu-corners. 

We will also need the opposite operation. Start with an unstable dynamic branched 
surface B' C P and an annulus p-face F of r.t(P - B') whose boundary circles are pu-
corners. Choose a parameterization F 5 1 x [O, 1] so that for each fiber (point) x [O, 1], 
at least one of the endpoints is not a boundary switch. Choose a regular neighborhood 
N ( F) C ct( P - B') and extend the parameterization N ( F) ( 5 1 x [ 0, 1]) x [ 0, 1] so that 
for each fiber ((point) x [ 0, 1 l) x (point)) at least one of the endpoints is not in i B'. Now 
collapse each of these fibers, by using a quotient map from P to itself that is homotopic to 
the inclusion and is the identity outside of a neighborhood of N(F). Let B be the image of 
B' under this collapsing. We say that B is obtained from B' by collapsing the p-annulus 
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F. Notice that B' is obtained by splitting along a maw-boundary annulus of B, namely 
the image of N(F) under the collapsing. 

Suppose B' is obtained by splitting along a maw boundary annulus A of B, resulting in 
an annulus p-face F of r.t(P - B'). Let c be the cusp circle on 8A. Note that the dynamic 
vector field V is circular on the u-faces of r.t( P - B) incident to c if and only if V is circular 
on the u-faces of r.t( P - B') incident to F; if this is the case, note moreover that c is coherent 
if and only if F is coherent. 

Pairing a stable and an unstable dynamic branched surface. Suppose that P is 
a sutured manifold, Bs, Bu is a pair of branched surfaces in general position, and V is a 
vector field on P such that (Bu, V) is an unstable dynamic branched surface, ( Bs, V) is a 
stable dynamic branched surface. Set T = Bs n Bu, so V is necessarily tangent to the train 
track T. Then Q = r.t(P - (Bs U Bu)) is naturally a dynamic manifold, with vector field 
obtained by pulling back V via the overlay map Q f----+ P, and with faces labelled b, p, m, s, 
or u depending on whether they map to b, p, or m-faces of Porto Bs or Bu. The uu-cusps 
of Q map to l' Bu - T, the ss-cusps to l' Bs - T, the su-corners to T, the pu-corners to 8 Bu, 
the ms-corners to 8Bs, and the remaining corners to similarly labelled corners of P. The 
puu-gables map to boundary switches of Bu, the mss-gables to boundary switches of Bs, 
the suu-gables to points of Bs n l' Bu, and the uss-gables to points of Bu n l' Bs. 

In order for Bs, Bu to be a dynamic pair on P we shall require each component of Q 
to have "simple dynamics". As in the case of a torally bounded manifold we formalize this 
definition by enumerating the allowed types of components of Q. Besides torus pieces and 
maw pieces, the components of Q are closely related to products over surfaces-with-corners, 
whose description we now turn to. 

4.3 Index of an even surface-with-corners 

A surface-with-corners Fis even if it is compact, connected, oriented, and each boundary 
component has an even number of corners ( cusps are ignored in determining whether F is 
even). If F is even, the index of Fis an integer defined as an obstruction, as follows. Let 
L -----+ F be the tangent line bundle over F, an oriented S 1 bundle. Choose two symbols 
arbitrarily, and label each side of F by one of the two symbols, so that the labels alternate 
at each corner and do not alternate at each cusp; this is possible because Fis even. This is 
called a corner alternating labelling of F. Sometimes the two labels will be II and 1-, other 
times they will be s and u. Choosing the labels to be "11" and "1-", pick a line field along 
8F which is tangent to each II edge and transverse to each 1- edge. Local models for the line 
field at each corner and cusp are shown in figure 4.3. The line field on 8F defines a section 
of L along 8F. The obstruction to extending this section over all of F lives in H 2 (F, 8F; Z), 
which is canonically isomorphic to Z, because Fis a compact, connected, oriented surface. 
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Figure 4.3: A line field along the boundary of a surface with corners. 

The obstruction is therefore an integer index( F), and it is well-defined independent of the 
choice of corner alternating labelling. The following formula for index( F) is a variation on 
the Euler-Poincare index formula: 

. 1 
mdex( F) = 2x( F) - 2 # (corners) - # (cusps) 

When F has no boundary we get index(F) = 2x(F), which is consistent with the fact that 
the tangent line bundle is doubly covered by the unit tangent bundle of F (it might be 
more consistent to divide index(F) by 2, obtaining a half-integer, but we do not wish to do 
so). 

Remark. We could also define an index for an arbitrary surface-with-corners, replacing the 
tangent line bundle L----+ F by the bundle of unordered pairs of distinct tangent lines, which 
up to bundle homotopy is quadruply covered by the unit tangent bundle of F; we would 
therefore obtain an index whose value would equal 4x( F) - #(corners) - 2#( cusps). Again 
it might be more consistent to divide this number by 4, obtaining a quarter integer. 

Note that the only even surfaces-with-corners that have positive index are: the sphere 
(index= 4); the disc (index= 2); the cusped monogon, a disc with one cusp and no corners 
(index = 1); and the uncusped bigon, a disc with no cusps and two corners (index = 1). 
The only examples with index O are: the torus; the annulus; the rectangle, a disc with four 
corners; the one-cusped triangle, a disc with one cusp and two corners; and the cusped 
bigon, a disc with two cusps. In general, when referring to a surface with corners, if no 
cusps or corners are specified we assume they do not exist. For example, unless otherwise 
specified an "annulus" has no cusps or corners. 

If F is an even surface-with-corners, and if e is an edge of F with two endpoints at 
corners, we define a new surface with corners F / e by pinching e: a neighborhood of e is 
replaced by a new neighborhood which has one cusp and no corners, as shown in figure 4.4. 
For example, pinching an edge of a rectangle produces a one-cusped triangle, and pinching 
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Figure 4.4: Pinching an edge of a surface-with-corners. 

two opposite edges of a rectangle produces a cusped bigon. We need the following obvious 
fact: 

Lemma 4.3.1. If F' is obtained from F by pinching some pairwise disjoint collection of 
edges, then index( F) = index( F'). <) 

If F1 and F2 are even surfaces-with-corners, and if ei is an edge of Fi homeomorphic 
to the interval, gluing e1 to e2 produces an even surface-with-corners F, and it is easily 
checked that index(F) = index(F 1 ) + index(F 2 ). This fact may be generalized as follows: 

Proposition 4.3.2 (Additivity of index). Let F be an even surface with corners. Choose 
an alternating labelling of 8 F with the symbols 11, 1-. Let pl I, p1_ be two train tracks on F 
in general position, such that pll is tangent to each II edge and transverse to each 1- edge, 
and p1_ is tangent to each l_ edge and transverse to each II edge. Let F1 , ... , Fn be the 
components of <t( F - (pl I U p1_)). Then 

index(F) = index(F 1 ) + · · · + index(Fn) 

Proof. Choose a line field ..\.a along 8F which is tangent to II edges and transverse to 1-
edges. Extend ..\.a to a line field ..\.P defined over pll U p1_, tangent to pll and transverse 
to p1_. The obstruction to extending ..\.a over F equals the obstruction to extending ..\.P 
over F, which equals the sum of the obstructions to extending ..\.P to the components of 
<t(F - (pll u p1_ )). <) 

4.4 Dynamic 3-manifolds with simple dynamics 

Now we define some new types of dynamic 3-manifolds, "cylinders" and "drums". The 
reader may want to review the general definition of dynamic 3-manifolds in §2.3, focussing 
on the behavior of p and m labels. 

Start with an even surface-with-corners S having no cusps. Choose a labelling of each 
component c of 8 S, as follows. If c has at least two corners, choose an alternating labelling 
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Figure 4.5: Some cylinders. The base of ( a) is a hexagon. The base of (b) is a disc whose 
boundary has no corners, and with a dynamic orientation equal to the boundary orientation. 

of c using the two symbols s and u. If c has no corners, then choose one of the following: 
label c with the symbol b; or label c with one of the two orientations on c and call it the 
"dynamic orientation". Now take the topological manifold S x [O, 1], and make it into a 
dynamic manifold as follows. The face S x O is labelled m, and S x 1 is labelled p. For 
each edge a C 8 S labelled u, the face a x [ 0, 1] is labelled u; similarly for the label s. If 
a component c is labelled b then the face c x [O, 1] is labelled b. If a component c has a 
dynamic orientation then the face c x [O, ½l is labelled s, the face c x [½, 1] is labelled u, 
and the us-circle c x ½ is given a dynamic orientation so that the projection c x ½ ----+ c 
is orientation preserving; note that S x [O, 1] is given a manifold-with-corners structure so 
that c x ½ is a corner edge, and hence the smooth structure on S x [O, 1] is not the product 
structure, as long as some c is given a dynamic orientation. It is easy to define a smooth 
vector field V which makes S x [O, 1] into a dynamic 3-manifold. For instance, if c has a 
dynamic orientation, we can choose V in a neighborhood of c x ½ so that c x ½ is a hyperbolic 
orbit with the adjacent s-face as a stable manifold and the adjacent u-face as an unstable 
manifold; then extend V over the rest of the manifold so that each forward trajectory either 
spirals into some hyperbolic corner circle or ends on the p-face, and similarly for backward 
trajectories. We have defined a dynamic manifold C called a cylinder over S (see figure 
4.5). The surface Sis also called the base of the cylinder, and we say that C is a cylinder 
over S. 

Let C be a cylinder over S. We showed above how to pinch an edge of a surface-with-
corners; now we show how to pinch certain corner edges of C. Given a ps-edge a of C 
which connects two psu-corners, a can be pinched to create a uu-cusp edge connecting a 
puu-gable to an suu-gable, as shown in figure 4.6. To do this explicitly, let N(a) be a 
regular neighborhood of a in C with rectangular frontier R, foliate R by arcs parallel to a, 
then remove int(N(a)) from C and collapse each arc of R to a point. An mu-edge of C 
can be similarly pinched, creating an ss-cusp edge connecting an mss-gable to a uss-gable. 
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Figure 4.6: Pinching a ps-edge. 

Suppose that S is an even surface-with-corners without cusps. We wish to define a 
drum with base S or a drum over S. Start with a cylinder C over S. 

If index(S) # 0, a drum over Sis defined by pinching all ps and mu-edges of C. See 
figure 4. 7 for an example of a drum over a hexagon. Note that figure 4.5(b) is a drum, since 
there are no ps or mu edges to pinch. 

If index( S) = 0 then S is either an annulus or a rectangle, and we consider these cases 
separately. 

When S is an annulus then no pinching is done and C is itself a drum. Different 
labellings of S give different types of drums, which we name as follows (see figure 4.8). 
Suppose first that both boundary circles of S are assigned dynamic orientations. If the 
boundary circles of S are oriented isotopic in S, then C is called a coherent annulus drum, 
whereas if the boundary circles of S are anti-isotopic in S, then C is called an incoherent 
annulus drum-these two drums have the same manifold-with-corners structure, but they 
have different dynamics: in a coherent annulus drum the us-circles are oriented isotopic, 
but in an incoherent annulus drum the us-circles are anti-isotopic. Suppose next that one 
boundary circle of Sis labelled b, and the other is assigned a dynamic orientation; in this 
situation no pinching is done and C itself is a drum, called a half-annulus drum, which has 
one us-circle and one b-face. The remaining case, where both boundary circles of S are 
labelled b, is given no special name (this drum is the same as an (annulus) x I sutured 
manifold-however, if such a sutured manifold ever occurs in a sutured manifold hierarchy, 
the hierarchy can always be simplified in a trivial manner). 

Finally, if S is a rectangle, a drum over S is specified by making some choices ( see figure 
4.9). One may pinch the two ps-edges of C; or one pinch the entire p-face of C, foliating 
that face by arcs parallel to the ps-edges and collapsing each arc, creating a uu-cusp edge 
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Figure 4. 7: Three views of a drum over a hexagon. The top face is labelled p, the bottom 
face m, the three faces adjacent to the top are labelled u, and the three faces adjacent to 
the bottom are labelled s. In the "bird's eye" view, the p and u faces face upward toward 
the viewpoint, and the m and s faces face downward; the us edges form the visual contour. 

Figure 4.8: The base of a coherent annulus drum has oriented isotopic boundary circles. The 
base of an incoherent annulus drum has anti-isotopic boundary circles. The base of a half 
annulus drum has one oriented boundary circle and one b-boundary circle. To understand 
the different dynamics, one should visualize trajectories in the s, u, and b-faces. 
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Figure 4.9: Bird's eye views of four types of drums over a rectangle. They are classified by 
which of them and p-faces are totally pinched: (a) no total pinching; (b) m-pinched; (c) 
p-pinched; ( d) pm-pinched, i.e. a pinched tetrahedron. 

connecting two uus-gables. Similarly one may pinch the two mu-edges of C; or one may 
pinch the entire m-face of C thereby creating an ss-cusp edge connecting two ssu-gables. 
There are, therefore, four different types of drums over a rectangle, distinguished by two 
choices for pinching the p-face and two choices for pinching the m-face. If both the p and 
m-face are entirely pinched, the resulting dynamic manifold is a pinched tetrahedron. 

This completes the definition of a drum. In general, if S is a surface-with-corners of 
genus g with k boundary components c1 , ... , Ck, with an edge labelling of S chosen as above, 
the type of Sis a sequence of the form (g; w 1, ... , wk), where the symbol Wi describes Ci in 
one of the following manners: 

• Wi is a positive integer and 2wi is the number of corners in ci; or 

• Wi is the symbol b for "bare"; or 

• Wi is the symbol o+, which means Ci has no corners and has dynamic orientation 
matching the induced boundary orientation; or 

• Wi is the symbol o-, which means Ci has no corners and dynamic orientation opposite 
to the induced boundary orientation. 

The symbols o+ and o- are simply a convenient way to encode the choice of dynamic 
orientation. If the genus g is understood, it may be omitted from the notation. Thus a 
coherent annulus drum has an annulus base of type (o+, o-), and an incoherent annulus 
drum has an annulus base of type (o+,o+) or (o-,o-). 

Here is another way to view a drum D with base S ( assuming, when S is a rectangle, 
that S has no totally pinched p or m-faces ). Define a standard decomposition of D into 
level surfaces as follows ( with some imagination this can be visualized in figure 4. 7). There 
is an embedding D ----+ Rx [O, 1] so that each vector in the dynamic vector field on D maps 
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to a vector with positive component in the [O, 1] direction, and the projection onto [O, 1] 
is a submersion with level surfaces Et = D n (R 2 x t). For t E [O, 1/4), the structure of 
Et does not change, although the s-sides of Et get longer as t increases, to accomodate 
the fact that the dynamic vector field points inward along the ss-cusp edges of D. The 
surface E 1; 4 contains the uss-gables of D, and as t passes the value 1/4 each ss-cusp of 
Et is "unpinched" to become a u-edge. For t E (1/4, 1/2), Et is an isomorphic copy of 
S, such that each dynamically oriented circle of Sis labelled s in Et. The surface E 1; 2 
contains the us-circles of Q, and as t passes the value 1/2 the s-circles of Et become u-
circles. Fort E (1/2, 3/4), Et is again an isomorphic copy of S, but now each dynamically 
oriented circle in S is labelled u in Et. As t increases from 1 / 4 to 3 / 4, the noncircular 
u-edges get longer and the noncircular s-edges get shorter. The surface E 3 ; 4 contains the 
suu-gables of Q, as as t passes the value 3/4 each s-edge of Et is pinched to a uu-cusp. 
For t E ( 3 / 4, 1] the structure of the surfaces Et does not change, although the u-edges get 
shorter to accomodate the fact that the dynamic vector field points outward along uu-cusp 
edges of D. 

The following obvious lemma gives a useful way to recognize drums. 

Lemma 4.4.1 (Recognizing drums). Suppose that Q is a dynamic manifold, and Q is 
not a drum over a rectangle. Then Q is a drum if and only if, for each us-circle c of Q, 
there exists a properly embedded annulus Ac C Q, and a component De of <t( Q - Ac), such 
that: 

• Labelling Ac with the symbol b, we have that De is a half-annulus drum with us-circle 
C. 

• If c # c', then Ac n Ac, = 0, and so Den De, = 0. 
• The dynamic manifold <t( Q - Uc De) has interval dynamics, where the union is taken 

over all us-circles c. 

• Q has no pm, ps, or mu-edges. 

• Each uu-edge of Q connects an suu-gable to a puu-gable. 

• Each ss-edge of Q connects a uss-gable to an mss-gable. 

4.5 The definition of a dynamic pair in a sutured manifold 

Define a dynamic pair of branched surfaces in a sutured 3-manifold P to be a pair B 8
, Bu 

of branched surfaces in general position, together with a C0 vector field V on P, such that 
the following conditions hold: 
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• ( P, V) is a dynamic sutured manifold. 

• Bu and Es are unstable and stable branched surfaces on P with respect to V. It 
follows that Q = (t ( P - ( Es U Bu)) is a dynamic manifold, with dynamic vector field 
obtained by pulling back V via the overlay map Q -----+ P. 

• The vector field V is smooth on P except along l' Es where it has locally unique 
backward trajectories, and along l' Bu where it has locally unique forward trajectories. 

• Q has simple dynamics. Each component of Q is one of the following: an essential 
dynamic torus piece with a circular vector field; a drum whose base has index s; 0 
(which includes a pinched tetrahedron); or a maw piece µ with the following two 
properties: 

µ is attached to some dynamic torus piece, which means: ifµ is an suu-maw 
piece, then the s-face ofµ is identified with an s-face of some dynamic torus 
piece; similarly ifµ is a uss-maw piece. 

µ is boundary parallel which means: ifµ is an suu-maw piece then there is a 
smoothly embedded annulus A C Bu with one boundary component on the maw 
circle ofµ and the other boundary component in R+P, and AnBs = 0; similarly 
ifµ is a uss-maw piece. Note that A is a maw-boundary annulus. 

• Transience of forward trajectories. For each component K of <t(Bu - Es), either there 
is a u-face F of some torus piece such that F C K and F is a sink of K, or each 
forward trajectory in K is finite and ends at some point on R+P. 

• Transience of backward trajectories. For each component K of <t( Es - Bu), either 
there is an s-face F of some torus piece such that F C K and F is a source of K, or 
each backward trajectory in K is finite and ends at some point on R_P. 

• Separation of torus pieces. The union of torus piece components of Q has no face 
gluings. 

• Bu, Es have no boundary Reeb annuli. 

• No component of Q is a coherent annulus drum. 

The final axiom plays a special role, which will be elucidated in §4.12. If Es, Bu satisfies all 
of the above properties except that coherent annulus drums are allowed, we will say that 
Es, Bu is a dynamic pair with coherent annulus drums. The main result of §4.12 will describe 
how to deal with coherent annulus drums, either converting them into torus pieces and 
producing a true dynamic pair, or using them to produce a non peripheral incompressible 
torus. 
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Remark. If RP = 0 this definition clearly reduces to the definition for torally bounded 
manifolds. 

Remark. As in the torally bounded case, in the presence of the other properties the property 
Separation of torus pieces is equivalent to the nonexistence of corner gluings among torus 
piece components. 

Remark. A Reeb annulus R on a surface F has the following unpleasant property: if, is a 
simple closed curve in F which intersects 8R essentially, then it is impossible to isotope 1 
so that it has essential intersection with the train track in R; "essential intersection" means 
that no segment of I is path homotopic to a smooth train path. This pathology is the main 
reason for prohibiting boundary Reeb annuli in dynamic pairs: in the gluing step, we will 
need to be able to acheive essential intersection. 

There are, nonetheless, some situations in which it is useful to allow Reeb annuli, albeit 
under very strict controls. For example, they are used in the Franks-Williams construction 
of intransitive Anosov flows [FW80]. We will touch on this issue later(§??), showing how 
our methods can be used to reproduce the Franks- Williams construction. 

Remark. Coherent annulus drums are avoided because in the induction step they can give 
rise to boundary Reeb annuli. Regarding the train track in a Reeb annulus as an unstable 
train track, we see that Reeb annuli and coherent annuli are closely related, since in both 
cases the two boundary circles are oriented isotopic; the only difference is that Reeb annuli 
have interior branches and coherent annuli have no interior branches. 

In truth, coherent annulus drums are not all that bad, for they can always be eliminated, 
although accomplishing this task is somewhat delicate; see §4.12. 

Remark. Note the very specific usage of the predicate "is attached to", in the context of 
the phrase "the maw piece µ is attached to the torus piece T". This means that if F is the 
unique face ofµ not adjacent to the cusp edge ofµ, then for some face F' of T, the annuli 
F, F' map homeomorphically onto the same annulus in M. Figure 4.14 gives an example 
where a maw piece is not "attached to" any solid torus piece. 

Given a dynamic pair B 8
, Bu in a sutured manifold II, the boundary train tracks are 

/38 = {)BS = B 8 n R,_II and ;3u ={)BU= Bun R+II. 
A train track p in an oriented surface F is essential if each component of ct( F - p) has 

nonpositive index; for purposes of computing index, ct( F - p) is a surface-with-corners, and 
it is even, since there are no corners. The property of essentiality specifically rules out a 
component of ct(F - p) which is a disc with smooth boundary or with one boundary cusp. 

Lemma 4.5.1. /38 is essential in R,_II, and similarly ;3u is essential in R+II. 

Proof. Each component of ct(R_II - /38
) is the m-face of some drum component of ct(II -

(B 8 U Bu)). The base of the drum has nonpositive index, and the m-face has the same 
index as the base. <) 
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Further properties of ;3s and ;3u will emerge in the next sections. Ideally we would like 
to say that ;3s is a stable train track and ;3u is unstable, but this may not be true in general. 
In proposition 4. 7 .1 we will see that it is true after mild alteration of the dynamic pair. 

4.6 Dynamic train tracks and properties of dynamic pairs 

In this section we generalize the results of §2.5 to the context of sutured manifolds. The 
proofs follow the same ideas as in §2.5, and when possible we will refer to the proofs in that 
section, with emphasis on the differences. 

The main result will describe the branched surfaces of a dynamic pair Bs, Bu in a sutured 
manifold P. Recall that when P is a torallyl bounded manifold, that is when RP = 0, 
all the components of r.t(P - Bs) and r.t(P - Bu) are cusped torus pieces. However, when 
RP# 0 there is a new class of components, which we now describe. 

A dynamic 3-manifold H is called a u-cusped product if there is a compact, connected, 
oriented surface F and a homeomorphism H F x [O, 1] such that: 

• F x O is an m-face of H. 

• Each component of 8F x [O, 1] is ab-face of H. 

• The surface F x 1 is subdivided into p-faces and u-faces, with the u-faces contained 
in int( F) x 1. 

• Every forward trajectory I in H has one of three fates: , ends at a point on a p-face; 
, ends at a point on a uu-cusp; or , is infinite, accumulating on a u-face. 

• The index of the surface F and of each p-face of H is nonpositive. 

• Each u-face of H is an annulus on which the vector field is circular. 

• Incoherence of cusp circles. Each uu-cusp circle of H is incoherent. 

Remark. Recall from §4.2 that each u-face of H must be an annulus or torus; the definition 
of a u-cusped product has the effect of ruling out a torus and restricting the dynamic vector 
field to be circular on an annulus. 

Remark. As proposition 4.6.1 will show, given a dynamic pair Bs, Bu in a sutured manifold 
P, each component of r.t(P - Bu) adjacent to R_P is au-cusped product. 

Remark. There is a close relation between coherent cusp circles and Reeb annuli. In propo-
sition 4.6.1, given a dynamic pair Bs, Bu C P, the fact that 8Bs has no Reeb annuli in 
OmP will be used to prove coherence of cusp circles for u-cusped products in r.t( P - Bu), 
and this argument will be reversed in proposition 4.11.1. Note that in a cusped torus piece 
with a circular vector field, every cusp circle is coherent. 
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Remark. As a consequence of the definition, all backward trajectories that are not contained 
in a u-face are finite, and hence end on the m-face of H. For if there were an infinite 
backward trajectory not on au-face, and if x were an accumulation point of that backward 
trajectory, then the forward trajectory of x would be infinite and would not accumulate on 
a u-face. Thus it is appropriate to say that a u-cusped product has simple dynamics. 

These ideas may be used to recognize au-cusped product. Suppose that Q is a dynamic 
manifold with smooth vector field, having only m, b, p, and u-faces, such that there is 
a single m-face, each b-face is an annulus with one mb-circle and one pb-circle on the 
boundary, and each backward trajectory not contained in a u-face terminates on the m-
face. It follows easily that Q satisfies the first four properties of a u-cusped product: the 
product structure on Q can be constructed from the trajectories of the flow. However, 
circularity of the vector field on annulus u-faces, and Incoherence of cusp circles must be 
checked separately. 

Given a sutured manifold P and an unstable dynamic branched surface B C P, we 
say that B is very full in P if each component of ct(P - B) is a u-cusped torus piece or 
a u-cusped product. Any component which is disjoint from RP is a u-cusped torus piece, 
and any component intersecting RP is a u-cusped product. 

An s-cusped product, and a very full stable dynamic branched surface, are similarly 
defined. 

The following proposition generalizes proposition 2.5.1 to the setting of sutured mani-
folds: 

Proposition 4.6.1. Let Es, Bu be a dynamic pair in a sutured manifold P, let Q = ct( P -
(Bs U Bu)), ps = ct(P - Bs), pu = ct(P - Bu). Then: 

• Bu is very full in P. 

• Inclusion induces a type preserving, 1-1 correspondence between the set of cusped 
torus piece components of pu and the set of dynamic torus piece components of Q. 
If D C pu and C C Q are corresponding components, then each component µ of 
ct( K - C) is an suu-maw piece attached to C by identifying the s-face ofµ with an 
s-face of C. Either µ is itself a component of Q, or µ is cut into pinched tetrahedra 
by Es (see figure 2.8). 

• The dynamic vector field on each cusped torus piece of pu is circular. 

• Bu does not carry a closed surface. 

• If (T is a sector of Bu containing a periodic trajectory of the dynamic vector field, then 
(T is an annulus or Mobius band, and on at least one side of (T the adjacent component 
of pu is a u-cusped product. 
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Similar statements hold for Bs. 

Remark. This proposition describes how Bs cuts u-cusped torus pieces into dynamic torus 
pieces and suu-maw pieces. In §4. 7 we shall describe how u-cusped products are cut into 
drums ( and other pieces), after some minor alterations are performed on the dynamic pair. 

As with the previous version, the proof again depends on the idea of a dynamic train 
track. 

Let P be a sutured manifold and let ( B, V) be an unstable dynamic branched surface 
in P. The definition of a dynamic train track Tin B is very similar to the torally bounded 
case: Tis embedded in B disjoint from 8B; there is a dynamic vector field V' on B tangent 
to T; the set of converging switches of Tis T n l' B; V' is smooth on B except at diverging 
switches of T. Also, an analogue of Transience of forward trajectories is satisfied, as follows: 
for each component K of ct(B - T), one of two things happens: 

• There exists a smooth surface AC K such that 8A C 8K and A is a sink of K; or 

• Each forward trajectory in K - Tis finite and ends at a point of Kn 8B. 

Each sink is a surface of Euler characteristic zero. We say that T fills up B if each sink is 
a ring. As we shall see in proposition 4.6.4, each component K of the first type is a ring 
with tongues. A component K of the second type is boundary adjacent, and the structure 
of these components will be described in section 4. 7. The definitions obviously adapt to 
stable branched surfaces. 

As a consequence of the definitions we have: 

Proposition 4.6.2. If Bs, Bu is a dynamic pair in a sutured manifold P and T = Bs n Bu, 
then T is a dynamic train track filling up both Bs and Bu. <) 

Recall the previous definition of a cusped, unstable branched surface B. We generalize 
this definition to the sutured manifold setting by allowing the vector field V to point 
outward on certain components of 8B and to be tangent with cusps on other components 
of 8B. The following is the sutured manifold analogue of lemmas 2.5.3-2.5.5: 

Lemma 4.6.3. If P is a sutured manifold, B C P is an unstable dynamic branched surface, 
and T C B is a dynamic train track, then: 

• ct( B - T) is a cusped, unstable branched surface. 

• 8 ct( B - T) - R+ P is an unstable train track. 

• The remains of T in ct(P - B) is a stable train track. 
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The following is an analogue of proposition 2.5. 7: 

Proposition 4.6.4. Let B C P be an unstable, dynamic branched surface, and let T C B 
be a dynamic train track. Then T fills up B if and only if, for each component K of ct( B -T), 
either K is a ring with tongues, or Kn 8B -::/ 0. 

Proof. The "if" direction is clear. For the "only if" direction, if T fills up B, and if K is 
a component of ct(B - T) such that Kn 8B = 0, then the arguments of proposition 2.5.7 
apply to show that K is a ring with tongues. <) 

Proof of proposition 4.6.1. Consider a component K of ct( P - Bu). We must show that 
K is either a u-cusped torus piece with circular vector field, or a u-cusped product. 

If K is disjoint from RP, follow the proof of 2.5.1. First show that K contains a torus 
piece C. Then show that each component µ of ct( K - C) is a uss-maw piece: ifµ is itself a 
component of Q, then µ cannot be a torus piece because it shares a u-face with the torus 
piece C, so the only possibility remaining is that µ is a uss-maw piece; whereas ifµ is not 
a component of Q then the proof of 2.5.1 shows that µ is a uss-maw piece cut into pinched 
tetrahedra by µ n Bu. It follows that K is a u-cusped torus piece; circularity of the vector 
field on K is obvious. 

If K is not disjoint from RP, it follows from the definition of a dynamic pair that 
all backward trajectories disjoint from u-faces terminate in R_P. To show that K is a 
u-cusped product, the only nonobvious facts remaining are that each annulus u-face has a 
circular vector field, and that cusp circles of K are incoherent. Let TK be the remains of 
TuinK. 

Consider an annulus u-face A of K. Note that TA = TK n A has only diverging switches, 
and that the points of OTA all point outward along 8A. It follows as in lemma 2.5.6 that 
each immersed circle of TA is an embedded circular source, and these circles are pairwise 
disjoint. If TA has a unique circular source then the vector field on A is clearly circular. 
Suppose that 10 , ... ,tn are the circular sources in TA, n 1, and let Ri be the subannulus 
of A with boundary ,i-l U ,i; we assume the notation chosen so that the Ri have disjoint 
interiors. From proposition 4.6.4 it follows that each Ri is the sink of a ring with tongues 
component of ct( Bu - T), and so the vector field on the annulus Ri is circular. It follows 
that the vector field on R 1 U · · · U Rn is circular, as is the vector field on A. 

Consider a uu-cusp circle c of K, with adjacent u-faces A, A'. We prove that c is 
incoherent. Let , C A, 1 1 C A' be the circular sources of TA and TA' closest to c, and let 
H be the annulus in A U A' bounded by I U ,' and containing c. It suffices to prove that 
, and ,' are not oriented isotopic through H. From lemma 4.6.3, it suffices to prove that 
the spiralling orientations on , and ,' are not oriented isotopic through H. Regarding H 
as a smooth annulus by smoothing the cusp c, consider the train track TK n H. Each of 
1 , 1 1 is a circular source of TK n H. Note that TK n c -::/ 0, because no maw circle of Bu is 
disjoint from B 8

, except for the cusp circles of suu-maw pieces, all of which are contained 
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in u-cusped torus pieces. It now follows that TK n int( H) -::/ 0. Since , , ,' are closest to 
c, each backward trajectory of TK starting in H n A eventually hits , , and each backward 
trajectory starting in H n A' eventually hits ,'. Therefore, it suffices to prove that H is 
not a Reeb annulus. 

Move H slightly off of 8uK, keeping the boundary in Bs, and flow backward to R,_P, 
eventually reaching an annulus H' C R_P. Some convergence of backward trajectories may 
occur, nevertheless it is clear that 8H' C ;3s, int(H') n ;3s -::/ 0, and int(H') n ;3s contains 
no cycles. From the definition of a dynamic pair we have that H' is not a Reeb annulus, 
and therefore H is not a Reeb annulus, completing the proof of Incoherence of cusp circles 
for C. 

This completes the proof of the first three statements of the proposition. 
As in the proof of proposition 2.5.1, the remaining two statements of proposition 4.6.1 

follow from an analysis of circular sinks and sources in T. Unlike the case of a manifold 
with torus boundaries, circular sinks and sources are not prohibited, but they are strictly 
regulated: 

Lemma 4.6.5 (Circular sinks and sources). If I is a circular sink of T, then there 
exists an annulus or Mobius band sector (T of Bs such that I C (T and (T satisfies the 
conclusion of lemma 4-6.1, namely: on at least one side of (T the adjacent component of ps 
is an s-cusped product. A similar conclusion holds for a circular source of T. 

Accepting this lemma for the moment, we prove the remaining statements of proposition 
4.6.1. 

Suppose that Bu carries a closed surface S. Following the proof of statement 4 of 
proposition 2.5.1, it follows that S contains a circular sink , of T. Note that all forward 
trajectories starting in S are infinite and stay in S for all future time. However, let R C Bu 
be a smoothly embedded annulus or Mobius band with core curve , . At least one of the 
components of ct( R - 1 ) lies in an s-cusped product component K of ps, according to 
lemma 4.6.5. All forward trajectories in an s-cusped product which are disjoint from the 
u-faces must end on R+ P, but some of these trajectories in K lie in S, contradicting that 
forward trajectories starting in S are infinite. 

Next suppose that Bu has a sector (T containing a periodic trajectory I of V. If, C T 

then , is a circular source of T and the desired conclusion for (T follows directly from lemma 
4.6.5. If, </.-T then, as in the proof of statement 5 of proposition 2.5.1,, n T = 0. Let K be 
the component of ct( Bu - T) containing 1 . Since K contains an infinite forward trajectory 
disjoint from K - T, it follows from proposition 4.6.4 that K is an annulus with tongues. 
There are, moreover, no tongues, because the attaching curve of the first tongue would 
intersect , , contradicting that , n l' Bu = 0. Therefore, K is a common u-face of some 
torus piece component T and some boundary parallel uss-maw piece component µ of Q. 
The component of pu on the side of K facingµ is clearly a u-cusped product, completing 
the proof of proposition 4.6.1. <) 
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Proof of lemma 4.6.5. Let I be a circular sink of T. Since T has no diverging switches 
in , it follows that , n l' Bs = 0 and so , C (T for some sector (T of Bs. By proposition 
1.5.1 the sector (T is either an annulus, Mobius band, or disc, but the latter is ruled out 
because the existence of a periodic trajectory in a disc implies the existence of a zero of the 
dynamic vector field by the Euler-Poincare index formula, a contradiction. 

Let R be a smoothly embedded annulus or Mobius band in Bu having core 1 . The 
surface r.t( R - 1 ) has one or two components, depending on whether or not R is a Mobius 
band. Given a component C of ct( R - 1 ), let Kc be the component of r.t( Bu - T) containing 
C. Applying proposition 4.6.4 to K, there are two cases. 

Case 1: There exists a component C of r.t(R - ,) such that Kc is a ring with tongues. 
By definition of a dynamic pair, the sink of Kc is a u-face A of some torus piece T, and 
clearly , is a component of 8A, so I is a corner circle of T. Let A' be the s-face of T 
adjacent to , , and let µ be the suu-maw piece attached to T along A'. The component of 
r.t(Bs - T) containing A' is a ring with tongues, but in fact there are no tongues: if there 
were tongues, then the boundary of the first tongue attached to A' would contain a branch 
of T intersecting , in a diverging switch, contradicting that , is a circular sink. It follows 
that µ is a component of Q, and so µ is boundary parallel. Thus, , ( and therefore (T) lies 
on the boundary of an s-cusped product component of ps. 

Case 2: For each component C of r.t(R - ,), Kc is not a ring with tongues. It follows 
that all forward trajectories in Kc - T are finite and end on Kc n 8 Bu, and this implies 
that the component of ps containing Kc is ans-cusped product. <) 

4. 7 Boundary train tracks of a good dynamic pair 

In this section we study the "peripheral" structure of a dynamic pair Bs, Bu in a sutured 
manifold P. That is, letting T = Bs n Bu, we study the structure of the unstable cusped 
branched surface iJu = r.t(Bu-T) and the boundary train track ;3u = a Bu; also the structure 
of iJs = r.t(Bs - T) and ;3s = 8Bs. Let Tu be the remains of Tin iJu; by lemma 4.6.3 we 
have that Tu is an unstable train track. There is a disjoint union 

Similarly, 
0 iJs = Ts II ;3s 

where Ts, the remains of T in iJs, is a stable train track. Let B8 be the union of components 
of iJu which have nonempty intersection with 8Bu, and let Ta = Tun B"/;, so we have 
aB"/; = Ta Il 8Bu. 

We would like to say, roughly speaking, that iJ8 has the topological structure of Tu 
crossed with an interval. In particular we would like to say that ;3u is an unstable train track 
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isomorphic to +u. Unfortunately these statements fail in the presence of boundary parallel 
maw pieces. Associated to a boundary parallel suu-maw piece µ are two periodic cycles 
of +u ( the corner circles of µ) but only one circle in ;3u ( contained in the maw-boundary 
annulus associated to µ). What goes wrong is that trajectories on the two u-faces ofµ 
converge at the uu-cusp circle. If this were the only thing that could go wrong that would 
still be "good", and it would follow that ;3u is an unstable train track. Unfortunately, there 
might be other convergences of trajectories occurring along l' iJu to mess things up, but 
this can be cured with a little dynamic splitting, as proposition 4.7.1 will show. 

To state the proposition, we need a new type of dynamic manifold. If µ is a boundary 
parallel suu-maw piece of some dynamic pair, and if A is the maw-boundary annulus of 
µ, splitting along µ results in a dynamic manifold H which is a solid torus with four faces 
labelled u, s, u, p, such that the core of each face is isotopic to the core of H, and the two 
us-circles are oriented isotopic; we call H a split suu-maw piece. Similarly, splitting along 
the maw-boundary annulus of a uss-maw piece produces a dynamic manifold called a split 
uss-maw piece. 

Consider a dynamic pair Bs, Bu in a sutured manifold P. We say that Bs, Bu is a good 
dynamic pair if, after splitting along all maw-boundary annuli, converting all boundary 
parallel maw pieces into split maw pieces, the resulting pair B's, B'u has the following 
property: setting T = B's n B'u, all components of iJts = r.t(B's - T) incident to R,_P 
are topological products, and all components of iJtu = r.t(B'u - T) incident to R+P are 
topological products. Let B'a be the union of components of iJtu intersecting R+P, and 
let B'a be the union of components of iJts intersecting R,_P. Let fU = 8B'a - R+P, 
and let fS = 8B'a - R,_P. Goodness is equivalent to the existence of a homeomorphism 
B'a fU x [O, 1] fU fU x 0, and similarly for B'a· 
Proposition 4. 7.1 (Splitting for goodness sake). Any dynamic pair Bs, Bu in a su-
tured manifold P may be altered by dynamic splitting, along splitting surfaces disjoint from 
T = Bs n Bu, so that after the splitting the pair Bs, Bu becomes good. If Bs, Bu is good, 
then ;3u is naturally an unstable train track, and ;3s is naturally a stable train track. 

For future reference, we point out some features of a good dynamic pair Bs, Bu. If µ 
is a boundary parallel suu-maw piece of Bs, Bu, and if A is the maw-boundary annulus 
associated to µ, then A U µ is called a cusped boundary parallelism of Bu. We also define 
an uncusped boundary parallelism of Bu to be the image p of a smooth immersion f: 5 1 X 
[O, 1]-----+ Bu such that: 

• For some smooth circle c C +u, p factors as 

5 1 X [O, 1 l C X [O, 1 l C fu X [O, 1 l B'a f----+ iJu f----+ Bu' 

where fU x [O, 1] B'a is the homeomorphism given in the definition of a good 
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dynamic pair, iJ18 -----+ iJu is the inverse collapsing map of maw-boundary annulus 
splitting, and iJu f----+ Bu is the overlay map. 

• p is disjoint from any cusped boundary parallelism. 

The image of c in T is a periodic orbic , , and either , is an embedded, untwisted orbit in T 

or , is a double cover of an embedded twisted orbit. We say that p is attached to 1 . From 
the definitions it follows that if Es, Bu is good then inclusion induces a 1-1 correspondence 
between circular sinks of the unstable train track ;3u and boundary parallelisms of Bu 
( cusped or uncusped). Similar statements apply to Es. 

Proof of proposition 4. 7 .1. We begin by proving that if Es, Bu is good then ;3u is nat-
urally an unstable train track. Let /3'u = B'u n R+P. Use the product structure on B'a to 
transfer the singular orientation on +u to a singular orientation on f3'u, with makes f3'u an 
unstable train track. Note that f3'u is obtained from ;3u by splitting along boundary circles 
of maw-boundary annuli of Bu. Moreover if A is the annulus component of r.t(R+P - f3'u) 
resulting from one of these these maw-boundary annulus splittings, then A is incoherent, 
when regarded as a p-face of r.t(P - B'u). In particular, the two boundary circles of A, 
regarded as circles in the train track f3'u, are oriented isotopic. When all such annuli A 
are collapsed, therefore, the singular orientation on f3'u induces a well-defined singular ori-
entation on ;3u, with respect to which ;3u is unstable. The fact that ;3s is stable follows 
similarly. 

We now describe how to split Bu so that B'a fU x [0, 1]. 
Let K be the union of s-cusped product components of r.t(P - Es). Let Ube a closed 

regular neighborhood in K of OmK U OsK, chosen so that L = Fr( U) is a smooth surface 
transverse to the dynamic vector field and to l' iJu. We may assume that the product 
structure on K restricts to a product structure U L X [0, 1] so that OmK U a5 K L X 0 
and L L X 1, and so that iJu n U +u X [0,1]. Let¢: OmK U OsK-----+ L be the 
homeomorphism induced by the product structure on U. The map <p can be chosen to 
smooth out ss-cusp curves and to be smooth everywhere else. Let To = L n iJu, and note 
that </>(fu) = To. 

Note that each forward trajectory in cl(K - U) is finite and ends on R+P; in particular 
this is true for each trajectory starting from L. The trajectories starting from x, y E L are 
said to converge if x·s = y·t for some s, t > 0, from which it follows that x·(s+h) = y·(t+h) 
if h 0. The first point where these trajectories converge lies on l' iJu. 

For each suu-maw pieceµ, the setµ n Lis an annulus, and there is a homeomorphism 
between the two components c, c' of 8(µ n L) so that if x E c, x' E c' correspond under the 
homeomorphism then the trajectories starting at x, x' converge at the cusp circle ofµ. 

Choose pairwise disjoint regular neighborhoods W( s) C L of the switches s E To, with 
the following property: if a, a' are the two components of (W(s) n To) - s on the two-
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Figure 4.10: Splitting along De where c is a bad maw arc with one endpoint at z and the 
other endpoint in ;3u. 

sheeted side of s, then there is a homeomorphism between a and a' so that if x E a, x' E a' 
correspond under the homeomorphism then the forward trajectories of x and x' converge. 

Divide l' iJu into good and bad maw points, where y E l' iJu is good if y E U or 
if y is the convergence point of two trajectories starting at x, x' E To, where x, x' are 
corresponding points in opposite boundary circles of L n µ for some suu-maw piece µ, or 
x, x' are corresponding points on opposite sheets of the two-sheeted side of sin W(s) for 
some switch s E To. If y is not good then it is bad. By choosing the neighborhoods W( s) 
sufficiently small we may guarantee that each switch of ;3u is bad. 

The collection of bad maw points forms a union of maw arcs and circles called bad maw 
curves, two of which intersect only at crossing points of iJu. Associated to each bad maw 
curve c we construct a dynamic splitting surface De as follows (see figure 4.10). The union 
of forward trajectories starting at c is denoted D~. If c has no endpoints in ;3u then clearly 
D~ c x [O, 1], where c c x 0, D~ n 8pK c x 1, and the trajectory starting at x E c 
corresponds to x X [ 0, 1]. If c does have an endpoint z E ;3u then the same description 
holds for D~ except that z x [ 0, 1] is collapsed to a single point corresponding to z. Now 
augment D~ to product a splitting surface De as follows. For each endpoint z of c that does 
not lie in ;3u, let CYz C l' Bu be a very short arc of good maw points with one endpoint at 
z. Let z' be the endpoint of CYz opposite z. Choose a smooth function Pz: CYz -----+ [O, oo) so 
that Pz(z') = 0, x · Pz(x) is defined for all x E az, and x · Pz(x) E /3u if and only if x = z. 
Construct D~ by adding to De all trajectories of the form x · [0,pz(x)] for all x E az, and 
for each z. 

Now split iJu along the splitting surfaces De, for all bad maw curves c. Once this is 
done it is clear that the only way two trajectories starting in L can converge in iJu is if they 
start very close to some switch s or if they start on opposite sides of a boundary parallel 
suu-maw piece. After splitting along all maw-boundary annuli to obtain B'u, the only way 
two trajectories starting in L can converge is if they start very close to some switch; it 
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follows that B'a is homeomorphic to f-U x [0, 1]. Doing similar splittings on BS, we obtain 
a good dynamic pair. ¢ 

4.8 Simple examples of dynamic pairs in sutured manifolds 

When we introduced dynamic pairs in manifolds with torus boundaries, it was difficult to 
give any immediate examples. We finally constructed examples in section 2. 7 using the 
bombast of proposition 2.6.2. 

By contrast, in the sutured manifold setting there are many simple examples which we 
can view directly. 

Example (Product sutured manifold). Every product sutured manifold P over a surface 
F of nonpositive Euler characteristic has a dynamic pair which is empty, because P itself 
is a drum over F where each component of aF is labelled b. 
Example (The round handle). Let H be a solid torus whose sutures consist of four longi-
tudinal circles. As an isolating block, this object was dubbed the round handle by Asimov 
[Asi75]. Setting l = J = [-1, 1] we have H = l x J x 5 1 with (TH = al x aJ x 51, 
R,_H = l x aJ x 5 1 , and R+H = al x J x 5 1 . There is a dynamic pair Bs, Bu with 
BS = 0 X al X 5 1 and Bu = al X 0 X 5 1 . The train track T = BS u Bu = 0 X 0 X 5 1 is a 
circle, and has two possible choices for the dynamic orientation. There are four components 
of Q: two half-annulus drums of type ( o+, b); and two half-annulus drums of type ( o-, b). 
There are four uncusped boundary parallelisms, two each in Bs and Bu, and all four are 
untwisted. Another view of the round handle is given in figure 4.11, which shows the result 
of a sutured manifold decomposition H f:+ H' where D is a meridian rectangle of H. The 
remains B's, B'u C H' of Bs, Bu are also shown. In figure 4.12, one of the four components 
of H' - (B's U B'u) is glued up to form one of the four components of H - (Bs U Bu). 

Example (Twisted round handle). This is a variation on the round handle, obtained 
from figure 4.11 by gluing the top and bottom using an affine homeomorphism which 
rotates the x and y directions through 180°. Note that Bs and Bu are now Mobius bands 
(instead of annuli). Also there are just two uncusped boundary parallelisms, one in Bs 
and one in Bu, and both are twisted. And there are only two components of Q, each a 
half-annulus drum, one of type (o+, b) and the other of type (o-, b ). 
Example (Untwisted, polygonal round handle). Let H be a solid torus sutured mani-
fold whose sutures consist of 2n longitudinal circles, n 2. There is a meridinal 2n-gon D 
giving a sutured manifold decomposition H f:+ H' where H' is a product sutured manifold 
over a disc. There is a dynamic pair Bs, Bu in H, which intersects D in the pattern shown 
in figure 4.13. The entire dynamic pair is obtained from D x [0, 1] by gluing (x, 0) to (x, 1) 
for each x E D; in other words, take figure 4.13 and cross with 5 1 . There are 2n cusped 
boundary parallelisms, n in Bs and n in Bu. The completed complementary components 
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Figure 4.11: A sutured manifold H' obtained by decomposing the round handle H along a 
meridian rectangle D. H' is a product over a disc, embedded in 3-space as a "skewed cube". 
It is viewed from a point just off the positive z-axis, looking down the z-axis towards the 
origin. The scars n+ and n- are the top and bottom faces of H', parallel to the x, y-plane. 
To obtain H, glue n+ to n- by an affine map that shrinks the x-direction and stretches 
the y-direction. One pair of vertical faces is parallel to the x-axis and tilted to face upward; 
these glue up to give R + H. The other pair of vertical faces is parallel to the y-axis and 
tilted to face downward; these glue up to give n- H. The suture (TH' is the visual contour 
of the figure, an octagon, where d/ dz is tangent to 8H' (it is best to think of the cusp 
model for H'). The remains of Bs in H' is B's, the intersection of H' with the x, z-plane, 
and similarly for B'u. The arc T 1 = B's n B'u, which is the remains of T, is the intersection 
of H' with the z-axis. Choose the dynamic vector field on H so that when pulled back to 
H' it coincides with d/ dz, and hence T 1 points "upward". 
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) 

Figure 4.12: The lower right component of H' - (B's U B'u) is a dynamic manifold with 
interval dynamics ( see ( a,b)), shown in the "bird's eye" convention: the p and u faces form 
the top of the object viewed; the m and s faces form the bottom; each b face is tangent 
to the line of sight, and ( converting to the cusp model) may be collapsed to a pm-edge. 
The intersection of n+ with the p face forms a rectangle, as does the intersection of n-
with the m face. These rectangles are glued to yield a component of H - ( Bs U Bu) shown 
in ( c), which is a half-annulus drum of type ( o-, b). Note that the upper left component 
of H' - (B's U B'u) also yields a half-annulus drum of type (o-, b ), and the other two 
components yield half-annulus drums over annuli of type (o+, b ). 

of the dynamic pair are: 2n half-annulus drums, n of type (o+, b) and n of type (o-, b ); a 
dynamic solid torus of type ( n, 0); and 2n boundary parallel maw pieces, half of type uss 
and half of type suu. When n = 2 then H is an untwisted round handle, and we have 
constructed a dynamic pair different from the one described earlier-in the present con-
struction, the dynamic pair has a dynamic solid torus piece, as well as four maw pieces, two 
of type uss and two of type suu; such pieces were not present in the previous construction. 
When n = 1 the construction can also be carried out, but the resulting solid torus piece is 
not essential, violating the definition of a dynamic pair; on the other hand, if n = 1 then 
H is a product sutured manifold over an annulus and so has an empty dynamic pair. 

Example (Twisted, polygonal round handle). This is a variation on the untwisted 
polygonal round handle, obtained from a polygon D as in figure 4.13 by taking D x [O, 1] 
and gluing ( x, 1) to (f ( x), 0), where f: D ----+ D is a rotation through angle 21r k / m with 
0 k < m. The complementary components of the dynamic pair consist of: a dynamic 
solid torus of type ( m, k); a collection of half-annulus drums numbering 2 gcf( m, k), half 
of type (o+, b) and half of type (o-, b ); and a collection of boundary parallel maw pieces 
numbering 2 gcf( m, k), half of type uss and half of type suu. There are 2 · gcf( m, k) cusped 
boundary parallelisms, half in Bu and half in Bs. 

Example (Torus shell). This is another variation on the untwisted, polygonal round han-
dle, obtained by removing a regular neighborhood of the core curve of the dynamic solid 
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Figure 4.13: A meridian hexagon of an untwisted hexagonal round handle, in the cusp 
model. The intersection of the hexagon with a dynamic pair is shown. The sutured manifold 
and its dynamic pair are obtained from this picture by taking the cartesian product with 
51_ 

torus and labelling the resulting boundary torus with b. The dynamic torus piece of type 
( n, 0) is changed to a dynamic torus shell of type n, and any n 1 is allowed. 

Example ( A non-e~ample in an untwisted, octagonal round handle). Let H be an 
untwisted, octagonal round handle in the cusp model, and D a meridian octagon. Figure 
4.14 shows the intersection with D of stable and unstable branched surfaces B 8

, Bu in H. 
These branched surfaces do not form a dynamic pair: in two of the maw pieces, the relevant 
face is not identified with any face of a dynamic torus piece-in other words, these maw 
pieces are not attached to any dynamic torus piece, using the very specific meaning of the 
phrase "attached to" required in the definition of a dynamic pair. Also, the two dynamic 
torus pieces intersect along a common corner circle, violating the prohibition on corner 
gluing. As remarked in figure 4.14, this example can be easily fixed up by removing a 
certain sector from each branched surface. 

4.9 More examples of dynamic pairs 

All of the examples in the previous section have rather boring dynamics: the dynamic train 
track consists of a disjoint union of circles. We give an example with more interesting 
dynamics, and then we describe a general scheme for producing examples. 

In this example the sutured manifold P is a handlebody of genus 2, and it has a 
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Figure 4.14: The sutured manifold H and the branched surface pair Bs, Bu are constructed 
by taking the cartesian product of this figure with S 1 . The shaded maw pieces are not 
attached to any dynamic torus piece, and so Bs, Bu is not a dynamic pair. Also, annulus 
sectors labelled XY and ZW intersect at an orbit which is a corner of both dynamic solid 
tori. Note that removal of the sectors XY, ZW produces a dynamic pair in H. 



a

b
c

d e

f

g

h

a

b g

h c

d e

f

D+

D<

E+

E<

4.9. MORE EXAMPLES OF DYNAMIC PAIRS 175 

I I 

Figure 4.15: The sutured manifold II, a product over a disc. The scars are glued, with 
vertex matchings as labelled, to form P. 

decomposition P II where S is a disjoint union of two rectangles D and E, and II is 
a product over a disc. Figure 4.15 shows II with the scars of D and E, following the 
convention of figure 4.11, so we regard II as a subset of E3 and the figure shows a bird's 
eye view, looking down along the z-axis. 

Figure 4.16 shows branched surfaces Brr, Brr in II. Note that Brr intersects each scar 
in a single arc connecting the two m-sides of the scar, therefore Brr glues up to give a 
branched surface Bs C P. Similarly Brr glues up to give Bu C P. It is also easy to see that 
Bs is a stable branched surface and Bu is unstable. 

Note that II, Brr, and Brr may also be constructed by gluing the p-face of a converging 
piece to them-face of a diverging piece (see figures 3.3 and 3.4). 

The dynamic manifold <t(II - (Brr U Bii)) has eight components, shown in figure 4.17. 
The components are labelled according to segments of a-II with endpoints at two of the 
letters a-g. When II is cut along Brr U Brr, each of the scars n+, n-, E+, E- is cut 
into four quarters. Each component of <t(II - (Brr U Bii)) contains a "+" quarter scar 
and a "-" quarter scar. Each "+" quarter scar glues to some "-" quarter scar, to form 
<t(P - (Bs U Bu)). The aa and ee components each glue to themselves, forming two half-
annulus drums of type (o-, b ), as in figure 4.12. The remaining six components glue up to 
form a drum over an annulus of type (2, b ), as shown in figure 4.18. 

There are two uncusped boundary parallelisms in Bu and two in Bs, namely the u-faces 
and s-faces of the two half-annulus drums of type (o-, b ). 

Many interesting examples in handlebodies can be constructed by generalizing this ex-
ample. Start with any finite collection consisting of n converging pieces and n diverging 
pieces. Choose a bijection from the set of p-gluing rectangles to the set of m-gluing rect-
angles, and identify each pair by a gluing homeomorphism which stretches one direction 
and compresses the other. If the result of gluing is connected then it is a sutured manifold 
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Figure 4.16: Branched surfaces Brr ( a) and Brr (b) in II. Some scar sides are suppressed 
for simplification, but the scar corners are shown in ( c). The intersection train track 
TfI = Brr n Brr is shown in ( c). 
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Figure 4.17: The eight components of <t(II - (Brr U Bii)). Each component is a dynamic 
manifold with interval dynamics, shown in the bird's eye view as described in figure 4.12. 
To understand the lettering on quarter-scar corners, superimpose figure 4.15 with figure 
4.16( c). 

Q 
~@ 

> 

Figure 4.18: The six components gf, fh, he, cb, bd, dg glue up to form a drum over an 
annulus of type (2, b ). 
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P whose underlying topological manifold is a handlebody of genus 1 + n. The branched 
surfaces in figure 3.4 glue up to form a dynamic pair in P. 

4.10 Flows on sutured manifolds 

In this section we generalize pA flows and their stable and unstable laminations to the 
setting of sutured manifolds; we shall not attempt to generalize pseudo-Anosov flows. The 
main result which will be used outside of this section is: 

Theorem 4.10.1. Suppose that the sutured manifold P has a dynamic pair. Then P is 
irreducible, each face of P is incompressible, and any two distinct components of ,rP are 
nonisotopic. 

This is a consequence of the following generalizations of the results of §3: 

• Every dynamic pair of branched surfaces on a sutured manifold P carries a pA flow 
(theorem 4.10.4). 

• The stable and unstable laminations are essential laminations in the category of su-
tured manifolds (theorem 4.10.3). 

The main work of this section is formulating the definitions carefully; once that is accom-
plished, the theorems are easy generalizations of theorems in §3. 

Let P be a sutured manifold. Let <I> be a semiflow on P with no stationary points, 
generated by a C 00 vector field V, such that V points inward along R,_ P, outward along 
R+P, and tangentially along 1 P. Let C<I> be the chain recurrent set of <I>. Let 'D<1> be the 
maximal invariant set of <I>, the set of all x E P such that xi = <I> ( x, t) is defined for all 
t E R. Note that C<I> C 'D<1> and both are closed subsets of P. 

We wish to define what it means for <I> to be a pA flow in P. In crafting the definition, 
we keep in mind the requirement that <I> have stable and unstable laminations As, Au with 
boundaries satisfying 8A 8 = A.8 C R,_P and aAU = ..\_U C R+P. In order for A 8 ,Au to 
be essential laminations in P, we need for the boundary laminations ..\. s, ..\. u to be essential 
laminations in the surfaces R_P, R+P respectively. 

To begin the definition of pA flows on a sutured manifold, we first repeat almost ver-
batim all of the conditions in the original definition except for item 6 concerning boundary 
periodic orbits: 

1. There exist finitely many pA invariant sets for <I>, all pairwise disjoint. 

2. <I> is smooth off of the pseudohyperbolic orbits contained in pA solid tori. 

3. Each component of ,rP is a face of a pA torus shell of <I>. 
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4. Each attracting or repelling orbit of <I> is contained in some pA invariant set. 

5. Let A<1> be the union of attracting orbits, R<1> the union of repelling orbits, and P<1> 
the union of pseudo-hyperbolic orbits and ,rP. Let 'I<1> be the union of the remaining 
chain components of C<1>, the index 1 hyperbolic components. Define J<1> = J(I<1>)-
Then the invariant set J<1> is a 1-dimensional hyperbolic invariant set. 

6. There does not exist a transverse bigon for .J<I>-

The original definition of a pA flow contained a restriction on the behavior of boundary 
periodic orbits, item 6. In the present setting there is a more complicated set of restrictions 
on local boundary laminations. To formulate them, apply proposition 3.3.3 we obtain an 
isolating block N for J<1>, and local stable and unstable laminations W1~e' W1~e of J<1> with 
respect to N. Consider the local boundary laminations 

..\foe = W1~e n R_ N 

..\k>e = W1~e n R+ N 

Define a decomposition of ..\foe as follows: 

..\~ = { x E ..\foe I x · t is defined for all t E ( - oo, 0]} 
..\f = ..\foe - ..\~ 

( 4.1) 
( 4.2) 

( 4.3) 
( 4.4) 

Note that..\~ and ..\f are open and closed sublaminations of ..\foe· Openness of ..\f is obvious. 
Since backward orbits of points in..\~ must accumulate on the compact repeller J(R<1>UP<1> ), 
openness of..\~ follows. We similarly define a decomposition of ..\k>e into open and closed 
sublaminations X~ U ..\ 'J. 

The next requirement in defining a pA flow <I> is: 

7. Each closed leaf of ..\~ or ..\~ is contained in a side of a pA invariant set of <I>. 

Before formulating the final requirements for defining a pA flow, we must pause to study 
the "stable and unstable laminations" of <I>: 

As= cl(W 1~e · (-oo, Ol) 
Au= cl(W1~e · [O,oo)) 

( 4.5) 
( 4.6) 

We need to generalize part of theorem 3.3.1 by saying that A 8
, Au are in fact laminations: 

Lemma 4.10.2. As,Au are laminations in P, they are transverse to each other, their 
intersection is J<1>, and their boundaries ..\8 = 8A8, ..\u = 8Au are laminations of R,_P, 
R+P respectively. 
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Proof. Obviously W1~c' W1~c are laminations, they are transverse, and their intersection is 
.Ji/?. It is also obvious that As n Au = W1~c n W1~c· We must prove that Au is a lamination 
near any point of cl ( ..\.k>c · [ 0, oo)); the proof for As is similar. 

Au is obviously a lamination near points obtained by flowing ..\.'j forwards to R+P. More 
precisely, there is a continuous function tx E R+ defined for x E ..\. 'j such that x · t is defined 
fort E [O, tx] and x ·tis not defined fort > tx. Since W1~c is a lamination near ..\.'j, it follows 
easily that Au is a lamination near points of { x · t I x E ..\.'j, t E [O, tx]}. Note in particular 
that ..\.u = {x · tx I x E ..\.'j} is a 1-dimensional lamination in R+P. 

To prove that Au is a lamination near points of cl(..\.~ · [O, oo)) we adapt the arguments 
of lemma 3.3.5 and theorem 3.3.1. The lamination..\.~ decomposes into open and closed 
sublaminations of the form..\.~, one for each attracting orbit, of <I>, where..\.~ is the subset 
of..\.~ contained in the attracting basin of,. 

For each, we check that Au is a lamination near points of cl(..\.~· [O, oo )) . Let F be the 
u-face of the pA invariant set of <I> containing , . Let 11 , 12 be the components of..\.~ n F. 
As in step 1 of lemma 3.3.5, the only compact leaves of ..\.~ are 11 , 12 ; however it is now 
possible for one or both of 11 , 12 to be isolated leaves. Nonetheless, steps 2-5 of lemma 
3.3.5 go through as stated. We now break into two cases, depending on whether there exists 
a noncom pact leaf of ..\.~. 

Case 1: There exists a noncompact leaf. Any such leaf spirals into 11 on one end and 
12 on the other end. Just as in lemma 3.3.5 it follows that ..\.~ is a Reeb lamination. Now 
construct lamination charts exactly as in theorem 3.3.1. 

Case 2: There does not exist a noncompact leaf. In this case ..\.~ = 11 U 12 and we have 
cl((..\.~· [O, oo)) = F which is obviously a lamination. <) 

To formulate the final requirements for a pA flow we describe some types of components 
of the dynamic manifold r.t(P-(A 8 UA u)). If Q is a drum over a labelled, even surface-with-
corners S (as in section 4.4), by removing the uu and ss-cusps of Q we obtain a dynamic 
manifold called a pared drum over S. A pared drum over S is a coherent annulus drum 
if S is an annulus with oriented isotopic boundary components (in which case there were 
no cusps to remove). A dynamic manifold µ is called a split maw piece if µ is a product 
R x S1 where R is a rectangle with sides labelled either usup or susm, such that the two 
us-circles are oriented isotopic. 

To complete the definition of a pA flow <I>, we require: 

8. Each component of r.t(P- (A 8 U Au)) having nonempty intersection with R,_P U R+P 
is one of the following: 

• A pared drum whose base has non-positive index, but not a coherent annulus 
drum. 

• A split maw piece, one of whose faces is also a face of a pA invariant set of <I>. 
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9. The boundary laminations ..\.8 , ..\.u have no Reeb annuli. 

We could go on from here to generalize very full laminations to the sutured manifold 
setting, but that would take us too far afield. We shall be content to say that pA stable 
and unstable laminations are essential: 

Theorem 4.10.3. If if! is a pA flow on a sutured manifold P, and if A8, Au are the stable 
and unstable laminations of if!, then As, Au are essential in the following sense: 

• As,Au have no sphere leaves, no Reeb components, and no half-Reeb components. 

• The manifolds-with-corners r.t(P - A8) and r.t(P - Au) are irreducible, and each of 
their faces are incompressible and end incompressible. 

To define a half-Reeb component, let H = {(x,y) E R 2 I ll(x,y)II s; 1,y 2:: O}, 8oH = 
{(x,y) EH I y = O}, 8+H = cl(aH - 8aH). A half-Reeb component of AC Pis the image 
of an embedding H x 5 1 '-------+ P such that 80 H x 5 1 is the intersection with 8P, 8+H x 5 1 

is a leaf of A, and the intersection of A with 80 H x 5 1 is a Reeb lamination of an annulus, 
each of whose leaves extends to a leaf of A accumulating on 8+H x 5 1 . 

We also have a generalization of theorem 3.3.2. Given a pA flow if! and a good dynamic 
pair B 8, Bu on a sutured manifold P, we say that the pair B 8, Bu carries the flow if! if the 
following hold: 

• N ( T) is an isolating block for .J'('Iil?), with if! flowing inward along {)_ N ( T), outward 
along 8+N(T), and externally tangent along <rN(T). 

• if! is transverse to the rectangle fibers of N ( T), crossing each fiber in the positive 
direction. 

• N(B 8) contains A8, with if! flowing outward along 8N(B 8) nint(P) and inward along 
8N(B 8) n R_P. 

• N (Bu) contains Au, with if! flowing inward along 8 N (Bu) n int( P) and outward along 
8N(Bu) n R+P. 

• Inclusion induces a type preserving 1-1 correspondence between components of cl( P-
( N ( B8) U N(Bu))) which are not pinched tetrahedra and components of r.t(P - (A 8 U 
Au)) which are not pared drums over rectangles. 

Remark. A "pared drum over a rectangle" can have one of several structures, depending 
on whether the drum is unpinched, p-pinched, m-pinched, or pm-pinched; in the latter 
case we obtain a pared pinched tetrahedron, which is the same thing topologically as a 
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(rectangle)xR, as we saw already in our study of torally bounded manifolds. The cor-
respondence in the last item matches solid torus pieces to dynamic solid tori, torus shell 
pieces to dynamic torus shells, drums to pared drums ( over surfaces which are not rectan-
gles), and boundary parallel maw pieces to split maw pieces. The relationship between the 
remaining components of <t(P - (N(Bs) U N(Bu))) (rectangle drums), and the remaining 
components of <t( P - (As U Au)) (pared rectangle drums) is just like for manifolds with 
torus boundaries: all but finitely many pared rectangle drums are entirely contained in 
N(Bs) U N(Bu), and the remaining ones are in 1-1 correspondence with the rectangle 
drums of <t(P - (N(Bs) U N(Bu))). 

Theorem 4.10.4. Given a sutured manifold P, each good dynamic pair of branched sur-
faces in P carries a pA flow, and each pA flow is carried by a good dynamic pair. 

Before proving theorems 4.10.4 and 4.10.3 we use them to prove theorem 4.10.1: 

Proof of theorem 4.10.1. Let P be a sutured manifold with a dynamic pair Bs, Bu. By 
proposition 4.7.1 we may assume that BS, Bu is good. By theorem 4.10.4 the pair BS, Bu 
carries a pA flow <I>, and by theorem 4.10.3 the stable and unstable laminations A8,Au of 
<I> are essential. 

The proof now follows the lines of [G089] very closely. 
Here is a sketch of the proof that faces of P are incompressible. Let Ns = <t(P - As). 

Suppose that D is a compressing disc for P. Perturb D so that it is transverse to As, and 
consider the laminationµ = D n As. Since each face of Ns is incompressible, and since 
there are no Reeb components, we can isotope D so that no component of <t(D - µ) is 
a disc whose boundary is a circle leaf of µ. If µ had a circle leaf bounding a disc E, it 
would follow by an Euler characteristic argument that some component of <t( E - µ) is a 
disc bounded by a circle leaf ofµ, or an end compression of Ns which is vertical near the 
ends, neither of which exist. Therefore, µ has no circle leaves. Ifµ had a noncompact leaf 
it would follow by recurrence that µ has a circle leaf, therefore every leaf ofµ is a compact, 
properly embedded arc. If µ # 0 then it follows by an Euler characteristic argument that 
some component of <t( D - µ) is a bigon. Since N s is boundary irreducible and there are 
no half Reeb components, we can isotop D to get rid ofµ completely. But now D is a 
compressing disc for a face of N s, a contradiction. 

Here is a sketch of the proof that distinct components T0 , T1 of ,rP must be nonisotopic. 
Note that RP = 0. If T0 , T1 were isotopic it would follow that P (torus) x [ 0, 1]. Now Ti 
is contained in a pared torus shell component of Ns, and the cusps are isotopic to curves 
on Ti called the "degeneracy locus". Let c0 C T0 be an essential simple closed curve which 
is not isotopic to a component of the degeneracy locus. Let A C P be a properly embedded 
annulus with one boundary component on c0 and the other on c1 C T1 . By mimicking 
the above operations we may isotop A so that it is transverse to As and the lamination 
µ = A n As is essential in A; in particular, the index of each component of <t( A - µ) 
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is nonpositive. From this it follows that each index is 0, because the sum of the indices 
must equal 2x(A) = 0. In particular, the component of <t(A - µ) containing c0 must be a 
compact annulus A 0 . Since As separates T0 from T1 it follows thatµ-::/ 0, and so 8A 0 - c0 
is a smooth curve in As. Therefore c0 is isotopic to a component of the degeneracy locus, 
a contradiction. <) 

Proof of theorem 4.10.4. We adapt the proof of theorem 3.3.2. Let Es, Bu be a dynamic 
pair in P. Let T = Es n Bu. Choose I-fibered neighborhoods N(Bs), N(Bu) intersecting 
in N = N ( T), so that EN = N n Es, B'!v = N n Bu is a template pair in N ( T). Let 
Ts = aBN, Tu = aBN. 

Define the flow <I> I N(T) exactly as in theorem 3.3.2. Consider a component K of 
<t(Bu - T), and extend <I> over the corresponding component N(K) of <t(N(Bu) - N(T)) in 
two cases, as follows. 

Consider first the case where K contains a u-face F of a solid torus piece of <t(P -
(N(Bs) U N(Bu))). It follows that K is either an annulus with tongues or just an annulus. 
In either case N(K) is a solid torus and <I> I N(K) is defined just as in theorem 3.3.2, 
pointing inward along 8N(K) and with every orbit accumulating on an attracting periodic 
orbit , at the core of N ( K), such that , is oriented isotopic to the boundary circles of the 
sink of K. 

In the second case it follows that, after splitting K along unstable maw-boundary an-
nuli, we obtain TK X [O, 1] where TK XO~ Kn Tu is a component of Tu, and TK X 1 C R+P. 
The branched surface K may be reconstructed from TK by collapsing certain annulus com-
ponents of <t(R+P - (TX-x 1)). Consider FK = N(K) n R+N, as-face of R+N which may 
be regarded as an I-bundle neighborhood of the train track TK x 0. There is an embedding 
FK x [O, 1] '-------+ P which is an I-bundle neighborhood of TK x [O, 1] so that FK x O FK and 
FK x 1 (FK x [O, 1]) n R+P. Moreover, N(K) may be reconstructed from FK x [O, 1] by 
adding a regular neighborhood of each collapsing annulus. Construct a flow on FK x [O, 1] 
which enters along FK x 0, exits along FK x 1, is tangent to the gluing annuli, and enters 
along the remaining portion of 8FK x [O, 1]; then extend the flow over the neighborhoods 
of collapsing annuli in the obvious way. 

This defines the extension of <I> over N (Bu), and the extension over N (Es) is defined 
similarly. The flow <I> is extended over torus piece components of <t(P - (N(Bs) U N(Bu))) 
exactly as in theorem 3.3.2. The remaining components of <t(P - (N(Bs) U N(Bu))) are 
all pinched tetrahedra, maw pieces, and drums, and in each case <I> is extended to have 
interval dynamics. 

The proof that <I> is a pA flow is left to the reader. 
The converse direction, constructing a dynamic pair from a pA flow, is also left to the 

reader. <) 

Proof of theorem 4.10.3. This proof follows closely the lines of theorem 1 of [G089]. 
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Let <I> be a pA flow. Let Es, Bu be a dynamic pair carrying <I>. Then Es, Bu carry the 
laminations As,Au respectively. The main idea is to use proposition 4.6.1 to show that 
Es, Bu are essential in the appropriate sense, generalizing the definition of an essential 
branched surface in [GO89] definition 1.2. Now mimic section 2 of [GO89]. <) 

Remark. An alternative approach to the above proof is to describe the components of 
<t(P -As) and <t(P-A u) explicitly. Each component C of <t(P-As), say, can be described 
as follows. 

Suppose first that C </.-N(Bs), and so there is some component of <t(P - N(Bs)) 
contained in C, corresponding to a component H of <t(P - Es). Unlike in the case of a 
manifold with torus boundaries, we cannot simply pare the ss-cusps of H to obtain C; that 
would not allow for the possibility of ideal bigon components of <t(R_P - ..\.s), and there 
are usually infinitely many of these. Instead we partially pare the ss-cusps, and blow up 
the remainder to form ideal bigon m-faces. That is, there exists a certain compact subset 
A contained in the union of ss-cusps of H, including the endpoints of all ss-edges, such 
that C is obtained from H by the following process: remove A from H; for each component 
a of 055 H - A, blow up the open segment a to form an m-face of the form R X [0, 1], 
whose boundary consists of two ms-lines. These m-faces are ideal bigon components of 
<t(R_P - ..\.s). From this description it is obvious that each face of C is incompressible and 
end incompressible. 

If C C N(Bs), then C is an I-bundle over a surface, and so each face of C is incom-
pressible and end incompressible. 

4.11 Markov branched surfaces yield dynamic pairs 

In this section we generalize the results of §2.6. We extend the definition of Markov branched 
surfaces to the category of sutured manifolds. In proposition 4.11.1 we generalize proposi-
tion 2.6.2: starting from a Markov branched surface Bin a sutured manifold P, we produce 
a dynamic pair with coherent annulus drums in P. Simple examples show that this result 
cannot be improved, but in the following section we will study the general problem of 
eliminating coherent annulus drums, with somewhat surprising results. 

Let P be a sutured manifold and ( B, V) an unstable dynamic branched surface in P, 
with V generating a semiflow <p on P. A Markov section for <p is a finite collection I of 
smooth, embedded arcs in B such that: 

• Each I E I is transverse to V. 

• For each IE I, one of the following is true: 

I C 8 B and int (I) n i B = 0. 
IC TB and int(I) n 8B = 0. 
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- int(I) n ('IE U 8B) = 0. 

• For each I# I' EI, we have In I' C f)J n f)J'. 

• 8 B C LJ I. Let Ia = { I E I I I C 8 B} and let I 0 = I - Ia. 

• I is a cross section. For each x E B - 8B there exists t > 0 such that </>( x, t) C LJ I. 
The first return time tx > 0 is therefore defined for each x E B - 8B; by convention, 
we extend tx to a function on x E LJ I 0 by defining tx = 0 if x E LJ I 0 n 8 B, but 
we do not define tx for other points in 8 B. The first return map </>( x, tx) is therefore 
defined for x E LJ I 0

• 

• The Markov property. For any point x E LJ I 0 lying on the boundary of some element 
of I, the first return point </>( x, tx) is also a boundary point of some element of I. 

If <p has a Markov section I then (B, V,I) is called a Markov branched surface. The train 
track 8B C R+P is not necessarily an unstable train track, although as the proof of 
proposition 4.11.1 will show we can alter B naturally so that 8B is unstable. 

Proposition 4.11.1. Let (B, V,I) be a Markov unstable branched surface in a compact, 
oriented sutured manifold P. Suppose that: 

• B is very full in P. 

• 8B is an essential train track in R+P. 

• 8B has no Reeb annuli in R+P. 

• V is circular in each u-cusped torus piece of r.t(P - B). 

• B does not carry a closed surface. 

• If (T is an annulus or Mobius band sector of B, and if (T contains a periodic trajectory 
of V, then on at least one side of (T the adjacent component of r.t(P - B) is au-pared 
product. 

Then we may construct a dynamic pair with coherent annulus drums Es, Bu C P so that 
Bu is obtained from B by dynamic splitting. 

We also need a "vertical" version. Let /3 be a transversely oriented R branched surface 
in P, carrying a taut transversely oriented foliation :F. Verticality of V with respect to 
/3 is defined just as in a torally bounded manifold. Verticality of B (resp. of a dynamic 
pair Es, Bu), is defined to mean that the dynamic vector field is vertical, and no annulus 
A carried by /3 is peripheral in r.t(P - B) (resp. r.t(P - Es) or r.t(P - Bu)), that is, if A is 
properly embedded in K then A is not isotopic rel boundary into a face. 
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Proposition 4.11.2. In the above proposition, if (B, V) is vertical with respect to /3, and 
if I is tangent to /3, then we may perform the construction so that Es, Bu is vertical with 
respect to /3. 
Remark. In the setting of proposition 4.11.1, the boundary train track 8B C R+P does 
not automatically have an unstable singular orientation. This can happen even if there is a 
dynamic pair Es, Bu = B, as long as the dynamic pair is not good. Thus, given an annulus 
component A of R+P-8B whose boundary components are smooth circles of 8B, it makes 
no sense to ask whether A is incoherent, and so it is difficult to give an a priori condition 
on B which tells when coherent annulus drums may arise in Es, Bu. Nevertheless, in the 
course of the proof we will see how to predict when coherent annulus drums will arise. 

For example, suppose H 1 , H 2 are two round handles and Bf, Bf C Hi is the dynamic 
pair depicted in figure 4.11. Choose an annulus b-face bi of Hi. Contruct a sutured manifold 
P from H 1 U H 2 by gluing b1 and b2 so that the m and p-labels on boundary circles of b1 , b2 
are compatible. Note that P is a hexagonal round handle. Let Es = Bf U B~, Bu = Bf U B~. 
Note that Bu is an unstable dynamic branched surface in P satisfying the hypotheses of 
proposition 4.11.1, and r.t(P - Bu) has an annulus p-face A whose boundary circles are 
pu-corners-the face A has nontrivial intersection with the gluing locus. There is a choice 
in gluing b1 to b2 , and if the gluing is done so that the positive orientations of the dynamic 
solid tori in H 1 and H 2 are compatible in P, then A is coherent. Note also that the pair 
Es, Bu is a dynamic pair having one coherent annulus drum, whose p-face is A. As we 
know from figure 4.13, the sutured manifold P does have a true dynamic pair B's, B'u, but 
the relationship between this pair and Es, Bu is not entirely clear at this stage. We will 
take up this issue in §4.12. 

Proof of proposition 4.11.1. We follow the same outline as in proposition 2.6.2, borrow-
ing from the proof of that proposition when we can, emphasizing the differences otherwise. 

Step 1: From Markov section to dual dynamic train track. As before, start with an 
enumeration I= {I 1 , ... ,h, ... IM}- Choose the enumeration so that I 0 = {I 1 , ... ,IL} 
and Ia = { IL+l, ... , IM}. For each Ii E I construct Ti-, T/ as before, the only caveat being 
that if Ii E Ia then T/ = 0. Now let 7* = LJ;(Ti-UT/), an oriented train track in B, which 
points forward along l' B. 

The train track 7* is not yet the dual dynamic train track of I-note that {)7* = 7* n 8 B 
consists of an outward pointing endpoint in each Ii E Ia. We correct this as follows. 

A point x E 7* is called immortal if there exists an infinite, forward directed path in 
7* starting at x; otherwise x is mortal. There are several equivalent formulations of this 
concept: x is immortal if and only if there is a forward directed path from x that ends in 
a nontrivial strong component of 7*; x is mortal if and only if there is an upper bound 
to the length of every forward directed path starting at x; x is mortal if and only if every 
maximal, forward directed path starting at x ends in {)7*. 
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Let 7 be the set of immortal points in 7*. Note first that 7 is a train track, in fact 7 is 
a union of closed branches of 7*. Moreover, 7 n 8 B = 0, because each point of 7* n 8 B is 
mortal. We must show that 7 is a dynamic train track in B. 

Each converging switch of 7 is obviously a converging switch of 7*, and the latter all 
lie in l' B. Conversely, consider a point p E 7 n l' B, so p E 7* n l' B. Following the proof 
of proposition 2.6.2 it follow that pis a converging switch of 7*. Since p E 7 it follows that 
p is an immortal point of 7*. Observe that every immortal converging switch in 7* has a 
neighborhood in 7* consisting of immortal points. It follows that pis a converging switch 
of 7, as required. 

The homotopy from V to V' is easily constructed. The only difficult thing to check is 
Transience of forward trajectories; once that is done, since B carries no closed surfaces it 
will follow that 7* fills up B. 

The statement Transience of forward trajectories for 7 is concerned with components 
of r.t(B - 7). First we consider an arbitrary component K of r.t(B - 7*), a branched surface 
with cusps ( corresponding to diverging switches of 7*) and corners ( corresponding to points 
of 7* n 8B). We carry out the process of removing tongues, and see what happens. For each 
cusp c of K, if,' is an arc transverse to V forming the boundary of a regular neighborhood 
of c, then the connectivity argument of proposition 2.5. 7 can be carried out in the current 
setting to show that the forward trajectory through any x E ,' eventually hits l' KU(KnaB) 
at some point y(x), and,= {y(x) I x E ,'} is the attaching curve for some tongue T(c). 
Now remove T(c) - 1 from K, and also remove interior points of the 1-manifold, n 8B; 
the result, denoted K', is a branched surface with cusps and corners. Notice that either 
1 C 8B in which case T(c) is a component of Kand K' = K -T(c), or K'nf)B # 0; in the 
latter case, the removed tongue may join components of K'. In particular, K' may have a 
different number of components than K. Repeating this process, eventually we reduce to 
a branched surface R with no cusps. There are, moreover, no corners, because if there is a 
corner then 8R n 7* has an endpoint and so must have a cusp, contradiction. In addition 
Rn 8B = 0, because each component of Kn 8B is a union of half-arcs of I, and if any of 
this lives in R then there must be corners, a contradiction. It follows that 8R is a union of 
smooth circles in 7* - 8 B. 

There are now two cases, depending on whether R = 0. 
If R = 0 then clearly each forward trajectory in K ends on K n 8 B. 
If R # 0 then one can mimic the proof of proposition 2.6.2 to show that l' R = 0 and 

so each component of R is an annulus or Mobius band; tori and Klein bottles are ruled out 
by hypothesis on B. Since Rn 8B = 0 it also follows that as tongues are attached, the 
attaching locus cannot intersect 8B, and so the tongue cannot join distinct components. 
Since K is connected it follows that R is connected. Also, Kn 8B = 0. Thus, K is a ring 
with tongues. 

Note that r.t(B - 7) is obtained from r.t(B - 7*) by cutting open along (the remains 
of) mortal branches in 7*_ Equivalently, r.t(B - 7*) is obtained from r.t(B - 7) by gluing 
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together along (the remains of) mortal branches. Under such gluings, components whose 
forward trajectories end on 8B are glued to other such components. It follows that ring-
with-tongues components of r.t(B - T*) are never involved in gluing, and so each component 
of r.t(B - T) is a ring with tongues, or its forward trajectories end on 8B. 

This completes the proof of Transience of forward trajectories for T, and so T is a 
dynamic train track in B. As remarked above, T fills up B. As in the proof of proposition 
2.6.2, the alterations on V needed for the construction of T preserve circularity in each 
pared solid torus component of r.t(P - B). 

Step 2a: Each ring without tongues component K of r.t(B - T) is boundary 
parallel. In other words, if K is a ring with tongues component of r.t(B - T), and if K 
has no tongues, then there exists au-pared product component C of r.t(P - B) such that 
K lies in a u-face of C. To prove this, following the proof of step 2a in proposition 2.6.2 
we see, letting (T be the sector of B containing K, that (T contains a periodic trajectory of 
V. It follows that (T, and therefore also K, lies in au-face of au-pared product component 
of r.t(P - B). 

Step 2b: Eliminating extraneous circular sinks of T. Let I be a circular sink of T. 

We say that , is extraneous if the following is true: if R is a smoothly embedded annulus 
or Mobius band in B with core 1 , then each component of r.t( R - 1 ) is contained in a ring 
with tongues component of r.t(B - T). 

We remark that if T is the intersection train track of a dynamic pair in P then T has 
no extraneous circular sinks, by propositions 4.6.5 and 4.6.1. 

If T has an extraneous circular sink, remove it by following the method of step 2b in 
proposition 2.6.2. The result is still a dynamic train track filling up B, and by repeating this 
operation we eventually obtain a dynamic train track filling up B which has no extraneous 
circular sinks. 

Step 2c: Splitting rings having tongues on both sides. This step is an exact 
repetition of step 2c of proposition 2.6.2: for any component K of r.t(B - T) which is 
obtained from a ring R by attaching tongues, if each side of R has tongues attached to it, 
then B should be split along a slight enlargement of R. 

Step 2d: Splitting lonely face orbits. As in step 2c of proposition 2.6.2, let T be a 
component of r.t(M - B), let A be a face of T, and let TA = T n A; also let TA = T* n A. As 
before, the train track TA consists of one or two embedded, periodic trajectories, and every 
other trajectory goes from a periodic trajectory to a component of 8A. Clearly the periodic 
trajectories in TA consist entirely of immortal points of 7*, and so these trajectories are 
contained in TA· 
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If TA contains only one periodic trajectory 1 , then T should be split along a regular 
neighborhood K(,) C 1, as in proposition 2.6.2 (see figure 2.11). 

After completing this operation, inclusion of sinks induces a 1-1 correspondence between 
ring-with-tongues components of <t(B -T) and faces of torus piece components of <t(P- B). 

Now we must go beyond the proof of 2.6.2, and do some further alterations of B for 
"goodness sake" ( compare proposition 4. 7 .1). 

Step 2e: Splitting to make B good. Let c be a maw circle in some pared torus piece 
T of <t(P - B), and suppose that c n T = 0, in other words each point of c n 7* is mortal. 
It follows that the forward trajectory from each point on c ends on 8 B, and so there is a 
smoothly immersed annulus in B with one boundary circle going to c and the other mapped 
into 8B; this is the maw-boundary annulus associated to c. Also, each u-face of T incident 
to c contains an annulus with one boundary component on c, the other on T, with interior 
disjoint from T. Let Ye be the union of the these annuli with the maw-boundary annulus 
associated to c; we call this the boundary parallelism associated to c. Strictly speaking we 
think of Ye as an immersion in B whose domain is Y X 5 1 , where Y denotes a triad, a union 
of three segments meeting at a common boundary point. 

We say that B is good if the following holds: 

• For each maw circle c in a pared torus piece which is disjoint from T, the associated 
boundary parallelism Ye is embedded. 

• For each component K of ct( P - B) intersecting 8 B, let TK be the remains of T in 
K. If K is split along all maw-boundary annuli, then the result is a cusped unstable 
branched surface which is homeomorphic to TK x [O, 1]. 

If B were the unstable branched surface of a good dynamic pair, then B would be good. 
We shall, therefore, describe dynamic splittings of B supported in B - T which are designed 
to make B good. These splittings are very similar to the ones used in proposition 4. 7 .1, 
whose proof we will rely on. 

First consider the immersion Y X 51 ----+ B defining Ye, for some c. Let 11 , 12 be the two 
boundary components of Y x 5 1 mapping to T. Note that the image of 11 U 12 is disjoint 
from the image of (Y x 5 1) - ( 11 U 12 ), and so there are regular neighborhoods of 11 , 12 in 
Y which are mapped disjoint from (Y x 5 1) - ( 11 U 12 ); let ,~, ,~ be the boundary circles 
of these two regular neighborhoods. There is a homeomorphism,~ ,~ such that if x 1 , x 2 

correspond then the forward trajectories from x 1 and x 2 converge at c. If Y x 5 1 ----+ B is 
not an embedding, then there must exist two points x, y E ,~ U ,~ which do not correspond 
under the homeomorphism,~ ,~ whose forward trajectories nonetheless converge in l' B. 
It follows that Ye contains a maw component c' of B distinct from c and disjoint from T. 

Flowing forward from c' to 8B one obtains a dynamic splitting surface of B. Now split B 
along each such splitting surface; after these splittings it follow that Ye is embedded. 
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We note that for if c, c' are distinct boundary parallel maw circles in pared torus pieces 
T, T' of ct( P - B), then the cycles of T n Ye are distinct from the cycles in T n Ye,. For if 
there were a cycle I in common, then , would be a periodic trajectory in a sector (T of B, 
but one side of (T would lie in T and the other side in T', contradicting the hypothesis on 
B. 

Now let K be a component of ct(P - B) intersecting 8B. We now know that the maw-
boundary annuli in K are embedded, and it makes sense to split K along them; let K' be 
the result. If K' is not a topological product, then we may define splittings of B just as in 
proposition 4. 7.1. After these splittings, K' is a product, and B is good. 

The following lemma, an immediate consequence of goodness of B, will be useful below. 

Lemma 4.11.3. If K is a u-pared product component of ct(P - B), if F is an annulus 
u-face of ct(P- B), and if c is a component of 8F, then either c n T # 0 or c is a pu-corner 
circle of K. <) 

Remark. This lemma need not be true for u-faces of a torus piece component T of ct( P - B), 
because T may have a uu-cusp circle that is disjoint from T. 

Step 3: Constructing the stable branched surface. Inspired by goodness, we define 
Es. For any component K of ct(P - B), let TK be the remains of Tin K. We construct 
Bk, the remains of Es in K. 

If K is a cusped torus piece, the construction of Bk follows exactly the proof of propo-
sition 2.6.2; the only contrast is that if c is a cusp circle of K disjoint from T then the 
ring-with-tongues component of Bk corresponding to c will have no tongues. 

Let K be au-pared product component of ct(P - B). First we construct Bk without 
regard to the dynamic vector field. Choose a product structure K F x [O, 1] where 
0mK = F X O and 0bK = 8F X [O, 1]. We therefore have TK C F X 1. Identifying 
F x 1 F we regard TK as a subset of F, and we have a cusped stable branched surface 
B''k = TK x [O, 1] CK. Next consider an annulus A in au-face of K such that 8A C TK. 

By step 2 it follows that int(A) n TK = 0. There is a component of ct(K - B'k) of the form 
AX [O, 1] where AX 1 A, 8A X [O, 1] C B''k, and AX O C 0mK. Now collapse the annulus 
A x O as described in §4.2, creating a boundary parallel uss-maw piece whose u-face is A. 
Doing this collapsing for each A, we obtain the branched surface Bk. 

Now we repair the construction of Bk to account for the dynamic vector field V. First, 
since Vis continuous, we may perturb V slightly near the u-faces of K so that Vis tangent 
to Bk near those faces. Since V points backward along each switch of TK then V points 
backward along the branch locus of Bk in a neighborhood of the u-faces of K. We may 
assume that this is all true in F x [1 - E, 1], and also that Bk intersects F x (1 - E) in a 
train track T 1 _E, and V points upward on Tl-E· Note that all backward trajectories of V 
starting on F X (1 - E) end on 0mK. Now redefine Bk in F X [O, 1- E] by letting T 1 _E flow 
backward along V, and then smoothing along F x ( 1 - E). This is still not right, because V 
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will not point backward along the branch locus in F x [O, 1 - El, but will instead be tangent 
to the branch locus. To fix this, perturb V slightly near the branch locus in F x [O, 1 - E] 
so that it points backward along the branch locus. Finally, when an annulus A is collapsed 
as in the last paragraph, we may alter V by homotopy so that it behaves correctly. 

Now set Bs to be the union of the overlay images of Bk, as K varies over all components 
of r.t(P - B). Set Bu = B. We verify that Bs, Bu satisfies all axioms of a dynamic pair, 
except for the prohibition on coherent annulus drums. 

Transience of forward trajectories follows from lemma 4.6.4, and Transience of backward 
trajectories follows from construction of Bs. 

By hypothesis there are no Reeb annuli in 8 Bu. For each u-pared product component 
K of r.t(P - Bu), it follows from Coherence of cusp circles for K that the train track TK 

has no Reeb components in the union of u-faces of K (see the proof of proposition 4.6.1), 
and it follows that f)Bs has no Reeb annuli. 

Now we prove that the components of Q = r.t(P - (Bs U Bu)) have the correct types, 
and we prove Separation of torus pieces. 

Consider first those components of Q that are contained in a u-pared torus piece T 
of ct( P - Bu). By construction of Bs each of these is a dynamic torus piece, pinched 
tetrahedron, or suu-maw piece. Furthermore any suu-maw piece is incident to a cusp 
circle in T which is disjoint from TT, and so the maw piece is boundary parallel. The 
nonexistence of face gluings is obvious from construction. 

Consider next a component C of Q such that C is contained in a u-pared product K 
of r.t(P - Bu). We consider two cases, depending on whether C n 8pK is empty. 

Case 1: C n 8pK -::/ 0. We shall verify that C is a drum whose base has nonpositive index, 
by using lemma 4.4.1. Let I be a us-corner circle of C, let Au be the u-face incident to 
1 , and let As be the incident s-face. By lemma 4.11.3, the opposite boundary circle of Au 
is a pu-circle. By construction of Bk, the opposite boundary circle of As is an ms-circle. 
It follows that the annulus As U Au may be perturbed, producing a properly embedded 
annulus A-y C C, such that A-y cuts off a half annulus drum D-y containing , . Moreover, 
each trajectory in C that is not contained in a face incident to some us-circle ends at 8vK 
in forward time and at OmK in backward time. Also, since each uu-cusp curve of K has 
nontrivial intersection with TK, it follows that each uu-cusp curve of C has a puu-gable at 
one endpoint and an suu-gable at the other. By construction of Bk, each ss-cusp curve of 
Chas a mss-gable at one endpoint and a uss-gable at the other. Applying lemma 4.4.1 it 
follows that C is a drum. Noting that 8pC is a component of r.t(R+P - /3u) and that ;3u is 
essential in R+P, it follows that the base of Chas nonpositive index. 

Note moreover that C is a coherent annulus drum if and only if the p-face of C is an 
coherent annulus component of r.t( R+ P - ;3u); in particular, if r.t( R+ P - ;3u) has no coherent 
annuli then there are no coherent annulus drums. 
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Case 2: C n 8pK = 0. Let K F x 1 give the u-pared product structure of K. By 
construction of Bk it follows that 8uC = C n F x 1 is a component of ct((F x 1) - TK ), 

and is disjoint from apK. We analyze such components. 
Let G be an annulus u-face of K, and let Ta be the remains of T in G. Recall that Ta 

has either one or two cycles, and every forward trajectory in Ta that is disjoint from a cycle 
ends in 8G. It follows that each component of ct( G - Ta) has one of three types: 

Type I An annulus with boundary in Ta. 

Type II A one-cusped triangle, each edge adjacent to the cusp being in Ta, and the third 
edge being in 8G. 

Type III An annulus with one boundary circle in Ta and the other boundary circle in 8G. 

Type I is clearly disjoint from apK. Also, by lemma 4.11.3 type III intersects apK. Each 
component of ct( ( F x 1) - TK) disjoint from apK is therefore a union of pieces of types I 
and II. The only way for such a union to be connected is if it consists of a single type I 
piece, or two type II pieces glued along their common third edge to form a uu-cusp. 

By construction of Bk, if 8uC is a single type I piece then C is a boundary parallel 
uss-maw piece, and by step 2 it follows that C is attached to some dynamic torus piece of 
Q. Also, if Ou C is a union of two type II pieces glued along their common third edge then 
C is a p-pinched drum over a rectangle (figure 4.9-c). 

We have checked the axioms for Bs, Bu to be a dynamic pair with coherent annulus 
drums. 

Proof of proposition 4.11.2. In the setting of the previous proof, suppose now that /3 
is a transversely oriented R branched surface in P carrying a foliation, ( B, V) is vertical 
with respect to /3, and I is tangent to /3. We show that Bs, Bu may be constructed to be 
vertical with respect to an R-branched surface obtained by splitting /3, by borrowing from 
the proof of proposition 3.5.5 in section 3.7. In steps 1-3 several alterations are performed 
on ( B, V), and we must check that these steps may be done so as to preserve verticality. 

In steps 1 and 2, verticality is preserved just as it is in proposition 3.5.5. 
Step 3 contains the construction of Bs, and V is altered to be tangent to Bs. Consider 

a component K of ct(P - B). 
If K is a u-cusped torus piece, construct Bk exactly as in proposition 3.5.5. Recall 

that in that construction, the branched surface /3 was altered by isotopy to establish the 
property that for any annulus A carried by /3 I K, if A cuts off a cusp circle c of K, then 
A is close to c. 

Similarly, if K is a u-cusped product, /3 should be isotoped so that if A is an annulus 
carried by /3 I K, and if A cuts off a cusp circle c of K, then A is close to c, so close that if 
, is a circle carried by TK, then , does not lie between A and c. The proof that this may 
be done is similar to the case where K is a u-cusped torus piece. 
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Now construct B'k exactly as in the proof of proposition 4.11.1. First construct B'k 
near TK, and perturb V slightly to be tangent to that portion of B' K near TK. Then 
construct the rest of B''k by flowing backward along V. Then perturb V slightly to point 
backward along the branch locus of B''k· Since these alterations on V are all perturbations, 
it follows that Vis still vertical with respect to /3. 

For the final step, consider an annulus A in a u-face of K such that 8A C TK and 
int(A) n TK = 0. Corresponding to A there is a component H of r.t(K - B'k) of the 
form H Ax [O, 1] where A = 8uH Ax 1 A, H n B'k = a5 H 8A x [O, 1], and 
H n OmK = OmH AX 0. We must collapse of OmH to convert H into a boundary parallel 
uss-maw piece, and we must check that this can be done preserving verticality of V. To 
do this, split /3 so that /3 I H is I-parallel near OmH, and then we may easily collapse OmH 
preserving verticality of V. Do this simultaneously for each A, completing the construction 
of Bk. 

This completes the definition of the dynamic pair Bs, Bu. By construction, the dynamic 
vector field V is vertical with respect to /3, and no annulus carried by /3 is peripheral in 
r.t(P - Bu). As in the proof of proposition 3.5.5, one can prove that no annulus carried by 
/3 is peripheral in r.t( P - Bs), making use of the fact that each annulus carried by /3 and 
cutting off a cusp circle of r.t( P - Bu) is close to that cusp circle. 

4.12 Eliminating coherent annulus drums 

Proposition 4.11.1 shows how to take a Markov branched surface in a sutured manifold P 
and produce a dynamic pair with coherent annulus drums on P. In this section we attempt 
to eliminate the coherent annulus drums, in the hope of producing a true dynamic pair. 
But a surprise is in store: there is an obstruction to eliminating coherent annulus drums. 
When the obstruction is nontrivial, something nice happens in exchange: one can construct 
a family of nonperipheral, incompressible tori, such that each complementary component 
has either a dynamic pair or a Seifert fibration. 

An example To motivate the construction, recall that in the remark following proposition 
4.11.1 we exhibited a dynamic pair with a coherent annulus drum in a hexagonal round 
handle H, and we compared this pair to a true dynamic pair in H. 

Mimicking this example, consider a coherent annulus drum D in some dynamic pair 
Bs, Bu. Here is a recipe for converting D into a solid torus piece of type ( 3, 0). 

Step 1: Inserting sectors Add an annulus sector CTs to Bs, and add an annulus 
sector CTu to Bu, as shown in figure 4.19a-b. More precisely, let Ff, pm, F?, Ff, FP, Ff 
be the faces of D in circular order, with superscripts denoting labels. Let Ci = F;5 n Fiu, 
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Figure 4.19: To eliminate a coherent annulus drum, insert the s-annulus sector <rs and the 
u-annulus sector <Tu ( a-b), and then collapse the two split maw pieces (b-c), resulting in a 
dynamic solid torus of type (3, 0) and two boundary parallel maw pieces. 

i = 1, 2, be the us-circles of D. Let A! be a smoothly embedded annulus in Bs such that 
A! n D = c1 and A! is contained in an arbitrarily small neighborhood of c1 . Let Af, A;, A~ 
be similarly defined. 

To define <Ts, take the annulus A! U Ff U FP U Ff U A; and perturb it so that its 
intersection with D is a properly embedded annulus with one boundary circle on each of 
Ff, Ff, and so that <Ts intersects Bs tangentially along the two circles 8 A! - c1 , 8 A; - c2 . 

Define <Tu similarly by perturbing the annulus Af U Ff U pm U F? U A~. 
We must assign an orientation to each of the four circles cf = <rs n Ft, cy = <Tu n Ft, 

i = 1, 2. Since D is a coherent annulus drum, the circles c1 , c2 have isotopic orientations, 
and so we may assign orientations so that the six circles Ci, di, cf, i = 1, 2, have isotopic 
orientations. 

From the construction it follows that <rs, <Tu cut D into a dynamic solid torus of type 
(3, 0), a split uss-maw piece, and a split suu-maw piece. 

Step 2: Collapsing maw pieces As described in §4.2, collapse the split maw pieces, 
to form boundary parallel uss and suu-maw pieces (figure 4.19b-c). 

The result Let Bf, Bf be the new pair of branched surfaces, and T the dynamic solid 
torus, resulting from performing steps 1 and 2 on the drum D. Note that when <Tu is added 
to Bu, there is an suu-maw piece µ with corner circles c1 , cf, and with cusp circle 8 Af - c1 . 

If l' Bs n Ff # 0 then µ is divided into pinched tetrahedra, otherwise µ is undivided. Similar 
comments apply to the uss-maw piece with corner circles c1 , c!, and to the two maw pieces 
having c2 as a corner circle. 
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Let us suppose now that D was the only coherent annulus drum in Bs, Bu, and so the 
pair Bf, Bf has no coherent annulus drums. Is Bf, Bf a dynamic pair? 

Here is a potentially fatal problem. The definition of a dynamic pair rules out corner 
gluings among dynamic torus pieces, but it does not rule out corner gluings between a 
dynamic torus piece and a coherent annulus drum. In the pair Bs, Bu, either of the corner 
circles c1 , c2 of D could be glued to a corner circle of some dynamic torus piece. After steps 
1 and 2 are carried out, either c1 or c2 could be the locus of a corner gluing among the 
dynamic torus pieces of Bf, Bf, and so Bf, Bf would not be a dynamic pair. 

Another example Figure 4.20 shows an example where this phenomenon occurs: an 
octagonal round handle P, obtained by gluing an ordinary round handle h and a hexagonal 
round handle h' along a suture. There is a dynamic pair with one coherent annulus drum in 
P. Carrying out steps 1 and 2 produces the pair shown in figure 4.14, but the two dynamic 
solid tori in this pair share a corner circle, violating the ban on corner gluing. As remarked 
in figure 4.14, by removing certain annulus sectors the problem is corrected, producing a 
true dynamic pair in P. 

Yet another example Still more complicated problems can arise. For another example, 
let the ordinary round handle h and the hexagonal round handle h' be glued along two 
sutures, as shown in 4.21a, to form a sutured manifold P homeomorphic to (annulus) x S 1 . 

One component of 8P has two m and two p-faces, the other component has one m and 
one p-face. These faces are all annuli whose cores are homotopic to the S 1 factor of P. 
The dynamic pairs in h, h' combine to form a dynamic pair in P with two coherent annulus 
drums; again we assume that the gluing is done so that the positive generators of H1 (h) 
and H1(h') are identified in H1(P). Elimination of these drums using steps 1,2 above will 
produce a pair with a chain of three dynamic solid tori T1 , T2 , T3 such that for each i E Z/3 
the tori Ti and Ti+l share a corner circle. No removal of annulus sectors will produce a 
dynamic pair, but-pursuing the analogy with figure 4.14 one finds that, after removal 
of certain annulus sectors, there is a nonperipheral, incompressible torus F such that the 
resulting pair is a dynamic pair in the sutured manifold r.t( P - F) ( figure 4.21 b). 

The following proposition describes the general method for eliminating coherent annulus 
drums. If Pis a sutured manifold, a torus T C int(P) is said to be nonperipheral if Tis 
not isotopic to a b-torus face of P. Note that a nonperipheral torus T is allowed to be 
isotopic to a torus component of 8P, as long as that component is not ab-face. 

Proposition 4.12.1. Let Bs, Bu be a dynamic pair with coherent annulus drums in a 
sutured manifold P. There is a construction which produces a family T of non peripheral, 
incompressible tori in P and, for each component P' of r.t(P - T), either a Seifert fibration 
of P' or a dynamic pair B's, B'u in P'. The pair Bs, Bu is obtained from B's, B'u by 
the following operations: dynamic splitting of maw-boundary annuli; removal of annulus 
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Figure 4.20: Glue an ordinary round handle h to a hexagonal round handle h' along a 
suture to form an octagonal round round handle P. The gluing locus in P is shown by 
the dotted line, representing an annulus in P; cutting P along this annulus produces the 
sutured manifolds h and h' in a mixture of the cusp and corner models: each has one 
b-annulus and a collection of pm-cusp circles. The usual dynamic pairs in h and h', taken 
together, form a dynamic pair with a coherent annulus drum in P, as long as the gluing is 
done so that the positive generators in H 1 (h) and H 1 (h') are identified in H 1 (P). When 
the coherent annulus drum is eliminated as described by steps 1,2 above, the result is the 
pair shown in figure 4.14, which violates the prohibition on corner gluings of dynamic torus 
pieces. 
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Figure 4.21: In this example, an ordinary round handle and a hexagonal round handle are 
glued along two sutures ( the dotted lines). If steps 1 and 2 are carried out to eliminate 
the two coherent annulus drums, the resulting pair is seen to have three violations of the 
ban on corner gluings. The offending annulus sectors can be removed so that, after P is 
cut along a nonperipheral, incompressible torus ( the dotted circle), the resulting sutured 
manifold has a dynamic pair. 

sectors; insertion of annulus sectors by perturbing annuli in B's U Bu; collapsing split maw 
pieces. 

If Bs, Bu is vertical with respect to a branched surface hierarchy in P, then then the 
construction may be done so that B's, B'u is vertical. 

The proof of this proposition will involve a series of operations on the pair Bs, Bu 
taking it outside the realm of dynamic pairs. The intermediate objects, called "proto-
dynamic pairs" for lack of better terminology, will be like ordinary dynamic pairs except 
that we allow complementary pieces which are Seifert fiber spaces, and we also allow face 
and corner gluings. The proof will then follow several steps: 

1. Starting from a dynamic pair with coherent annulus drums, produce a proto-dynamic 
pan. 

2. Remove certain annulus sectors to produce a new proto-dynamic pair having no face 
or corner gluings. 

3. Add certain annulus sectors, putting the boundary of each Seifert piece in a standard 
form. 

4. Cut open along peripheral tori of Seifert pieces, so that each component has either a 
dynamic pair or a Seifert fibering. 
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In practice, steps 3 and 4 will be reversed. 
To define proto-dynamic pairs and implement this outline, we must first define the 

"Seifert pieces" of a proto-dynamic pair. A labelled Seifert manifold is an oriented dynamic 
manifold ( N, V) together with a Seifert fibering on N, such that: 

• The corner locus of N is a union of corner circles, each of which is a Seifert fiber. 

• Each face F of N is a union of Seifert fibers. 

• Each u, s, p, and m-face is an annulus. 

• Each b-face is a torus or annulus, and each annulus b-face has one bm-boundary 
circle and one hp-boundary circle. 

• The flow on N generated by V is circular in the following sense: with respect to some 
Riemannian metric on N, the dot product of V with the tangent vector of the Seifert 
fibration is everywhere positive. 

As a consequence of the last condition, if c is a corner circle then the orientations induced 
by V and by the Seifert fibering are identical, and if F is a face then V I F generates a 
circular flow whose direction agrees with the Seifert fibering. 

If N is a labelled Seifert manifold, then the base space of the Seifert fibration may be 
regarded as an oriented 2-orbifold with corners O. The index of O is a rational number 
defined by the formula 

index(O) = 2x(O) - ~·#(corners) - 2 L k(n) · ( 1- ~) 
n>2 

where k( n) is the number of cone points labelled Z / n. 
We need the following easily established fact: 

Proposition 4.12.2. Let S be a Seifert fiber space over a base orbifold O. If O is not a 
disc with s; 1 cone point, then each component of 8S is incompressible. If O is not an 
annulus with zero cone points, then any two distinct components of 8S are non-isotopic. 

<) 

Example. Suppose N is a connected, labelled Seifert manifold with nonempty boundary 
and with base orbifold O. Then index( 0) > 0 if and only if O is a disc satisfying one of 
the following: 0 has no corners and at most one cone point; 0 has one corner and either 
no cone points or one Z/2 cone point; 0 has two or three corners and no cone points. 

Example. Suppose T is a dynamic solid torus of type ( n, k) with circular vector field; as 
noted above, T is a labelled Seifert fiber space. Letting g = gcf ( n, k), the base orbifold is 
a polygon with 2g corners and with one interior cone point labelled by the group Z/(n/g); 
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when k = 0 there is no cone point. The index is 2- g- 2 · (1- ~) = (-1 + 2/n) · g. It follows 
that T is essential as a dynamic solid torus if and only if the base of T has nonpositive 
index, which happens if and only if n 2. 

Example. A dynamic torus shell is a labelled Seifert fiber space whose base has nonpositive 
index. 

Example. A coherent annulus drum is a labelled Seifert fiber space whose base is a hexagon 
with no cone points, and with edges labelled smsupu in circular order; the index equals 
-1. An incoherent annulus drum cannot be given the structure of an essential labelled 
Seifert fiber space, because the two us-circles are anti-isotopic. 

Example. Splitting a boundary parallel suu-maw piece along the maw-boundary annulus 
results in a split suu-maw piece, which is a labelled Seifert fiber space, whose base is a 
rectangle with no cone points and sides labelled usup; the index equals 0. The base of a 
split uss-maw piece is similarly described. 

Example. A half annulus drum (figure 4.8) is a labelled Seifert fiber space, whose base is a 
pentagon with no cone points and sides labelled bmsup; the index equals -1/2. 

A proto-dynamic pair in a sutured manifold P is a pair of branched surfaces Es, Bu in 
P, in general position with respect to each other, and a C0 vector field Von P, such that: 

• ( P, V) is a dynamic manifold. 

• (Es, V) is a stable dynamic branched surface in P, and (Bu, V) is an unstable dynamic 
branched surface. 

• V is smooth, except along l' Es where backward trajectories are locally unique, and 
along l' Bu where forward trajectories are locally unique. 

• Each component of Q = <t( P - ( Es U Bu)) is a labelled Seifert manifold or a drum, 
whose base has nonpositive index. 

• Each us-circle of Q is contained in a Seifert component; in particular, the only drums 
which contain us-circles are half annulus drums and coherent annulus drums. 

• For each component K of <t(Bu - Es), either there exists au-face F of some Seifert 
component of Q such that F C K and F is a sink of the forward semiflow on K, or 
every forward trajectory in K is finite and ends at a point of R+P. A similar propery 
holds for components of <t(Bs - Bu). 

• The boundary train tracks have no Reeb annuli. 

• Es and Bu carry no tori or Klein bottles. 
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Proof of proposition 4.12.1. Let B~, B~ be a dynamic pair with coherent annulus drums 
in P. 

Step 1: A proto-dynamic pair First we cut off the us-circles of drums. For each 
drum component D of r.t(P - (B~ U B~)) whose base is not an annulus, let AD C D be 
a union of properly embedded annuli cutting off pairwise disjoint half annulus drums, one 
for each us-circle of D. For each incoherent annulus drum D, let AD be a single properly 
embedded annulus dividing D into two half annulus drums. If D is a coherent annulus 
drum or half-annulus drum let AD = 0. Let A= LJD AD. Let P' = r.t(P -A) and label the 
scars of A with the symbol b, so P' is a sutured manifold. At the very end of the proof of 
proposition 4.12.1 we will reglue along A. 

Next, split B~ and B~ along all maw-boundary annuli, converting boundary parallel 
maw pieces into split maw pieces, producing a pair B'j_, Bf. 

By the list of examples above, it follows that each component of r.t( P' - ( B'j_ U Bf)) which 
is not a drum is an essential labelled Seifert manifold: a dynamic torus piece, split maw 
piece, coherent annulus drum, or half-annulus drum. It also follows from the construction 
that each us-circle of r.t( P' - ( B'j_ U Bf)) is contained in a Seifert component. The rest of 
the properties of a proto-dynamic pair are easily checked for B'j_, Bf in P'. 

Step 2: Removing offending sectors If the pair B'j_, Bf has any corner or face gluings, 
we will find certain annulus or Mobius band sectors of B'j_ or Bf to take the blame. These 
sectors will consist mostly of the loci of face gluings. After removing finitely many sectors 
we will produce a new proto-dynamic pair having neither corner nor face gluings. 

First we analyze corner gluings, by refining the proof of proposition 2.4.1. Let Q 1 = 
r.t(P' - (B'j_ U Bf)), and let Qf be the union of Seifert components of Q1 . When corner 
circles of Qf are glued in P', the glued circles have the same type: either ms, pu, or us. 
When two ms or two pu-corner circles are glued, they produce a circle component of the 
boundary train track aB'j_ or 8B"t- When two or more us-corner circles are glued, they 
produce a periodic orbit , of T1 = B'j_ n Bf. 

Suppose I is a periodic orbit of T 1 obtained from gluing us-circles of Qf. Recall that 
the overlay map Qf ----+ P' has a factorization Qf ----+ X ----+ P' such that one of the following 
occurs: 

• The map Qf ----+ X identifies two corner circles of Qf to a single circle c in X, and 
the map X ----+ P' restricted to c is a parameterization of , ; or 

• The map Qf ----+ X identifies one corner circle of Qf to a single circle c C X by a 
double covering map, and the map X ----+ P' restricted to c is a parameterization of,. 

The orbit , has a normal bundle, which is a smoothly immersed solid torus h: H ----+ P' 
such that h I Core(H) parameterizes,. We may choose the normal bundle to have two 
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properly embedded rings As, Au C H intersecting transversely along Core(H) so that As C 
h- 1 (Bf) and Au C h- 1 (Bf). Note that I is twisted if and only if As, Au are Mobius bands, 
and , is untwisted if and only if As, Au are annuli. A quadrant of I is a component of 
r.t(H - (As U Au)). Locally at each p E Core(H) there are four "quadrants", but if, is 
twisted then each opposite pair of "quadrants" at p is actually a single quadrant of , . 
With this understanding, even when , is twisted we shall sometimes abuse terminology by 
referring to the "four quadrants of,". 

Consider a quadrant q of I and a corner circle c of Qf. We say that q arises from c if c 
has arbitrarily small neighborhoods N in Qf such that, abusing notation by identifying N 
with its overlay image in P', we have h- 1 (N) n q contains a neighborhood of Core(H) in q. 

Lemma 4.12.3. Exactly one of the following is true, for the corner gluing 1 : 

Type (a) All four quadrants arise from corner circles of Qf. 

Type (b) Exactly two adjacent quadrants arise from corner circles of Qf. The other two 
quadrants arise from corner circles of divided maw pieces µ, µ'. Moreover, µ n µ' = A-y 
is an annulus contained in a sector (T of B'j_ or Bf, 1 is a component of 8 A-y, the other 
component c of 8 A-y is a component of O(T, and A-y is a neighborhood of c in (T. 

If I is twisted, then I must be a type ( a) corner gluing. 

Proof. We prove the lemma when , is untwisted; the twisted case is similar. Since , is 
the image of a corner gluing, then, has at least two quadrants arising from corner gluings. 

Suppose that , has an opposite pair of quadrants q, q" which arise from corner circles. 
Let q' be one of the other two quadrants. Suppose that the notation is chosen so that q, q' 
are separated by As and q', q" are separated by Au. Since Bf does not intersect q-that 
is, (q - Au) n h- 1 (Bf) = 0-it follows that Bf does not intersect q'. Since B'j_ does not 
intersect q", it follows that B'j_ does not intersect q'. Therefore, q' arises from a corner 
circle. 

It follows from this argument that either all four quadrants of, arise from corner circles, 
or only two adjacent ones do. In the latter case, suppose that quadrants q", q"' arise from 
corner circles and q, q' do not. Assume that q, q' are separated by Au; the As case is similar. 
Since Bf does not intersect q" or q"', it follows that Bf does not intersect q or q', and so 
B'j_ must intersect both q and q'. From this it follows, by definition of a proto-dynamic 
pair, that each component of Q 1 intersecting q or q' is a pinched tetrahedron. The union 
of the pinched tetrahedra intersecting q (resp. q') forms a divided maw piece µ (resp. µ'), 
by applying proposition 4.6.1. 

It may seem possible thatµ = µ', and q, q' arise from the two different us-circles of this 
maw piece; but in that case the u-face of the maw piece would close up to form a torus 
carried by B'j_, which is impossible. Thus,µ-::/µ'. 
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Let a C µ, a' C µ' be the u-faces which intersect Au nontrivially. It is easy to see that 
µ n µ' = a n a', and this intersection is an annulus A-y- The remaining statements of the 
lemma follow easily. <) 

We have the following corollary, which is really just a restatement of proposition 2.4.1: 

Corollary 4.12.4. If corner gluings exist, then face gluings exist. 

Now we use face gluings to construct certain annulus or Mobius band sectors. Suppose 
that Fa is the annulus or Mobius band locus of a face gluing of Qf. We assume, say, that 
Fa C Bf, and we construct an annulus or Mobius band sector of Bf. Note that Fa arises 
in one of two ways: two annulus s-faces of Qf are glued homeomorphically to produce the 
annulus Fa; or one annulus s-face is glued to itself, mapping to the Mobius band Fa by a 
double cover. 

Consider a boundary component I of Fa. If, C 8 Bf then , is the boundary of a sector 
of Bf. If , </.-8 Bf then , is the locus of a us-corner gluing. If , is a type (a) corner 
gluing, then Fa meets the locus of another s-face gluing at,. Add this face to Fa, forming 
a larger annulus or Mobius band F1 composed of the loci of two face gluings. Continue in 
this manner, forming an increasing sequence Fa C F1 C F2 C · · · consisting of larger and 
larger annuli or Mobius bands embedded in a sector of Bf, each Fi a union of s-face gluings. 
This sequence must eventually stop, because there are only finitely many components of 
Bf - Bf. Let Fn be the last term of the sequence. 

Note that 8Fn # 0, for otherwise Fn is a torus or Klein bottle carried by B0, a contra-
diction. If, is a component of Fn, it follows that I is either a component of a Bf or a type 
(b) corner gluing. For each , of the latter type, add the annulus A-y to Fn; let F be the 
result. Clearly F is an annulus or Mobius band sector of Bf. 

Now remove int(F) from Bf, to produce a new branched surface B'f. It is mostly 
easy to check that B''j_, Bf is still a proto-dynamic pair. Some divided maw pieces of 
ct( P' - ( Bf U Bf)) have been glued to form larger divided maw pieces of ct( P' - ( B' f U Bf)). 
Some Seifert pieces of ct( P' - ( Bf U Bf)) have been glued along faces to form larger Seifert 
pieces of ct( P' - ( B' f U Bf)). The only slight subtlety is checking that the new Seifert 
pieces are essential. To see why, note that the base orbifolds of the new Seifert pieces are 
obtained by edge gluings of base orbifolds of old Seifert fiber pieces. Since index is additive 
under such gluings, and since indices are nonpositive before gluing, it follows that indices 
are nonpositive after gluings, and so all new Seifert pieces are essential. The remaining 
properties of a proto-dynamic pair are easily checked for B' f, Bf. 

We need a measure of complexity which is reduced by passage from the pair Bf, Bf 
to the pair B''j_, Bf. This complexity is defined to be the number of orbits which are 
either sources, sinks, or components of the dynamic train track, plus the number of circle 
components of 8Bf and 8Bf. Note that the sector F C Bf contains at least one such 
circle: for each component c of 8F, either c is a component of a Bf, or there is a type (b) 
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corner gluing , C F such that 8 A-y = c U , . In addition, F may contain additional circle 
components of T which are type (a) corner gluings. Removing int(F) removes all these 
circles, and does not add new ones; complexity is therefore reduced. 

Now iterate this operation: if B'L Bf has any face or corner gluings, there is an annulus 
or Mobius band sector of B''j_ or Bf which may be removed, further reducing the complexity. 
Since the complexity is a non-negative integer, the operation can be repeated only finitely 
many times, arriving at a proto-dynamic pair B2, B2 which has no corner or face gluings. 

Step 3: Cutting open along tori Let Q2 = r.t(P' -(B 2 UB 2)) and let Qf be the union 
of Seifert pieces of Q2 . Some components of Qf are solid tori, and some are peripheral torus 
shells, i.e. torus shells one of whose boundary components is ab-torus of P'. 

For each component C of Qf which is neither a solid torus nor a peripheral torus shell, 
cut P' open along tori contained in C as follows. If C T 2 x [O, 1] is a torus shell, let 
Tc~ T 2 x ½-If C is not a torus shell, let Tc be obtained by isotoping 8C slightly into the 
interior of C. If C is a solid torus or peripheral torus shell component of Qf let Tc = 0. 
Let T = Uc Tc. Let P" = r.t(P' - T), and note that P" = r.t(P - (AU T)). Each scar of 
Tin P" should be labelled with the symbol b, and so P" is a sutured manifold. 

Associated to each component C of Qf which is neither a solid torus nor a torus shell, 
there is a component PS of P" such that: 

• PS is a deformation retract of C. 

• PS is a Seifert fiber space with boundary components labelled b. 

• PS is disjoint from B2 U B2. 
Let Pf= Uc PS, the Seifert part of P"; each component of 8Pf is a face labelled b. Let 
Pf!; = P" - Pf, the dynamic part of P". 

Notice that: 

• B2, B2 is a proto-dynamic pair in Pf!;. 

• Each labelled Seifert piece of r.t( Pf!; - ( B2 U B2)) is a solid torus or a peripheral torus 
shell. 

• The pair B2, B2 has no face or corner gluings. 

As a consequence of the latter, if, is a us-corner circle of some component C of ct( Pf!; -
( B2 U B2)), then , does not double cover a twisted orbit of T = B2 n B2, and so each of the 
other three quadrants of, besides the C quadrant have nonempty intersection with B2 U B2. 
More precisely, the quadrant of, adjacent to C through B2 has nonempty intersection with 
B2, the quadrant adjacent to C through B2 has nonempty intersection with B2, and the 
remaining quadrant has nonempty intersection with both B2 and B2. 
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Step 4: Inserting new sectors Now we describe how to insert new sectors and collapse 
to form boundary parallel maw pieces, converting B~, B~ into a pair B;, B? which is a true 
dynamic pair in Pf!;. 

Until further notice, fix a solid torus or torus shell component Hof rt(PJ!y - (B~ U B~)). 
Let d be a cross-section of H so that ad intersects the edges of H efficiently, with side 
labellings on d inherited from face labellings of H. Thus, H is the mapping torus of d 
under some rotational monodromy acting on d. Let c be the component of ad which is not 
ab-circle. Each edge of c is a segment labelled b, m, p, u, ors. Each b-edge is incident to 
a p and an m-edge. Each u-edge is incident to a p and an s-edge. Each s-edge is incident 
to an m and au-edge. Let nm be the number of m-edges inc, nu the number of u-edges, 
etc. It follows that 

nm+nu=np+ns 

Let n be this number. Choose k so that the angle of rotation of the monodromy is 21rk/n. 
We now break into cases, depending on the values of n and nm, and on whether H is a 
solid torus. 

In all cases which actually occur, we will insert annulus or Mobius band u ands-faces, 
which intersect transversely along circles. The inserted sectors and their intersection circles 
will be composed of Seifert fibers of H. As in any dynamic pair, orientations must be 
assigned to the intersection circles; the assigned orientation will always agree with the 
orientation of Seifert fibers. 

Case 0: n = 0. In this case every face of H is labelled b, which is impossible. 

Case 1: n = 1. There are two subcases, depending on whether nm = 0 or 1. 

Case la: nm = 0. In this case the labelling of c must be su. If H is a solid torus we 
reach a contradiction, because H is not essential. If H is a torus shell, then H is a dynamic 
torus shell of type 1, and no sectors need be added. 

Case lb: nm = 1. The labelling of c must be mbpb, in cyclic order. This labelling has 
no cyclic symmetries, and so k = 0. 

If H is a solid torus, we reach a contradiction as follows. No sectors could have been 
removed from H, because, for example, an annulus or Mobius band u-sector would have 
its boundary attached to the p-face, cutting off a Seifert piece of positive index; but at no 
time during steps 1-3 do we encounter positive index. Therefore, H is a Seifert component 
of rt(P' - (Bf U Bf)). But each Seifert component of rt(P' - (Bf U Bf)) with ab-annulus 
face is a half annulus drum, and H is not a half annulus drum. 

If H is a torus shell, insert an s and a u-annulus sector as follows ( see figure 4.22). 
Let Fm, Fp be the m and p-faces, and let Fb1 , Fb2 be the two b-annulus faces. Take the 
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Figure 4.22: An mbpb-torus shell. Inserting s and u-annulus sectors and then collapsing 
split maw pieces produces a dynamic torus shell, two boundary parallel maw pieces, and 
two half annulus drums. 

annulus Fb1 U Fp U Fb2 and perturb it to a properly embedded annulus in H with boundary 
in int(Fm), producing an annulus s-sector CTs. Construct CTu similarly by perturbing Fb1 U 
Fm U Fb2 . The perturbations should be chosen so that CTs intersects CTu transversely along 
two circles, one near each b-annulus face. As remarked above, orientations are assigned to 
these circles which agree with the Seifert fiber orientation ( we will not repeat this remark 
again). 

The components of r.t(H - (CTs U CTu)) are: a dynamic torus shell of type 1, two half 
annulus drums, a split uss-maw piece, and a split suu-maw piece. Now collapse the two 
split maw pieces to form true, boundary parallel maw pieces. 

Case 2: n = 2. There are three subcases, depending on whether nm = 0, 1, or 2. 

Case 2a: nm = 0. In this case the labelling is susu, and we can have k = 0 or 1. It 
follows that H is a dynamic solid torus of type ( 2, 0) if k = 0, or type ( 2, 1) if k = 1, or a 
dynamic torus shell of type 2 if k = 0, or type 1 if k = 1. No sectors need be inserted. 

Case 2b: nm = 1. In this case the labelling is bmsup. It follows that k = 0. If H is a 
solid torus, then H is a half annulus drum, and we leave it alone: no sectors are inserted. 

Suppose H is a torus shell, i.e. a "half annulus drum with a hole". We insert an s and a 
u-annulus sector, as follows (see figure 4.23). Given a label x, let Fx be the annulus face of 
H labelled x. Let c be the us-circle of H. Let Au C B~ be a smoothly embedded annulus 
with one boundary circle on c such that Aun H = c, and Au is contained in an arbitrarily 
small neighborhood of c. Let du be the component of 8Au opposite c. Let As C B~ and 
ds C 8 As be similarly defined. 
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Figure 4.23: A "half annulus drum with a hole", labelled bmsup. Inserting annulus sectors 
CTs and CTu, and then collapsing split maw pieces, produces a dynamic torus shell, two 
boundary parallel maw pieces, a half annulus drum, and two divided maw pieces. 

To describe the added s-sector, consider the annulus Fb U Bp U Fu U As, and perturb 
this to obtain an annulus s-sector CTs which has one boundary component in int(Fm), the 
other boundary component meeting B~ tangentially at ds, and intersecting Fu transversely 
along a circle ,u. 

The added annulus u-sector CTu is similarly obtained by perturbing Fb U Em U Fs U Au, 
so that CTu intersects Fs transversely along a circle ts· 

When the sectors CTs, CTu are added, they cut H into a dynamic torus shell of type 2, a 
split suu-maw piece, a split uss-maw piece, and a half annulus drum. Now collapse the 
two split maw pieces, to obtain true maw pieces which are boundary parallel. 

Let A~= cl(CTs - H), the perturbed image of As. Notice that A~ U As form the s-faces 
of a uss-maw pieceµ, whose u-face is the subannulus of Fu bounded by ,u Uc. We claim 
that µ is divided into one or more pinched tetrahedra. This follows from the fact that the 
quadrant of c between As and Fu has nonempty intersectin with B~. Similarly, Au together 
with its perturbed image in CTu are the u-faces of a divided suu-maw piece whose s-face 
has boundary ,s Uc. 

Case 2c: nm = 2. In this case the labelling is mbpbmbpb. The rotational symmetry 
group of this labelling is order 2, so we can have k = 0 or 1. 

Suppose first that H is a solid torus (figure 4.24). If k = 0, insert a u-annulus sector 
connecting the two p-faces, and ans-annulus sector connecting the two m-faces, intersecting 
transversely along an untwisted orbit. These sectors cut H into four half annulus drums. 
If k = 1, proceed similarly, except that the added sectors are Mobius bands intersecting 
along a twisted orbit; only two half annulus drums are created. 

Suppose next that His a torus shell. If k = 0, insert two u-annuli sectors, one for each 
m-face, and two s-annulus sectors, one for each p-face, as done in case lb. These sectors 
cut off a dynamic torus shell of type 2 containing the b-torus, as well as four half annulus 
drums, two split uss-maw pieces, and two split suu-maw pieces. Now collapse to form two 
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Figure 4.24: Inserting annulus sectors, when the boundary labelling is mbpbmbpb. In a 
torus shell, after inserting sectors the split maw pieces should be collapsed to form boundary 
parallel maw pieces. 

uss and two suu boundary parallel maw pieces. If k = 1 proceed similarly, except that one 
inserts only one u-annulus and one s-annulus sector, cutting off a dynamic torus shell of 
type 1 containing the b-torus, two half annulus drums, one split uss-maw piece, and one 
split suu-maw piece. Collapse to form a uss and an suu boundary parallel maw piece. 

Case 3: n 3. We insert one u-annulus sector for each m-face of H, and one s-annulus 
sector for each p-face. The rotation parameter k can be anything from O to n - 1, and all 
constructions must be done equivariantly with respect to the 21r k / n rotational monodromy. 

Consider an m face F of H. Let F1 , F2 be the faces of H adjacent to F. Each of F1 , F2 

is labelled b or s. The description of the added u-sector depends on how many of F1 , F2 
are labelled b (see figure 4.25). 

Case 3a: Two adjacent b-faces. This is like case lb. The next two faces adjacent to 
F1 and F2 are p-faces. Take the annulus F1 U FU F2 and perturb it to obtain a properly 
embedded u-annulus sector with boundary in the interior of the p-faces (figure 4.25a). 

Case 3b: One adjacent b-face. This is like case 2b. Say F1 is a b-face and F2 is an 
s-face. Let c be the us-circle contained in 8F 2 . Let A C B~ be a smoothly embedded 
annulus with one boundary circle on c such that A n H = c, and A is contained in an 
arbitrarily small neighborhood of c. Let d be the component of 8A opposite c. Take the 
annulus F1 U FU F2 U A, and perturb it to obtain a u-annulus sector attached tangentially 
to B~ along d and with opposite boundary circle in the interior of a p-face of H (figure 
4.25b ). 
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Figure 4.25: For each m-face of H, insert au-annulus sector (thickened line), whose de-
scription depends on the number of b-faces incident to the m-face. Similarly, for each 
s-face, insert an s-annulus sector. 

Case 3c: No adjacent b-faces. This is like figure 4.19. Let Ci be the us-circle contained 
in {)Fi. Let Ai C B 2 be a smoothly embedded annulus with Ci C {)Ai as in case 3b, and 
let di be the component of {)Ai opposite Ci. Take the annulus A 1 U F1 U FU F2 U A 2 , and 
perturb it to obtain a u-annulus sector attached tangentially to B 2 along d1 U d2 (figure 
4.25c). 

In a similar manner, for each p-face of H, we attach an annulus s-sector to Br 
Intersections between added sectors are described as follows. If As, Au are s and u-

sectors that have been added, and if they each contain a perturbation of the same b-face 
Ab, then the perturbations should be chosen so that As and Au intersect transversely along 
a circle. No other intersections between added sectors are allowed. 

When these u and s-sectors are attached, they cut H into pieces as follows. If H is a 
solid torus, there is a dynamic solid torus of type ( n, k); if H is a torus shell, there is a 
dynamic torus shell of type n/ gcf(n, k). Each b-face of His contained in a half annulus 
drum. Each m-face is adjacent to a split uss-maw piece, and each p-face is adjacent to a 
split suu-maw piece. 

Now collapse the split maw pieces to obtain ordinary, boundary parallel maw pieces. A 
complete example, with boundary labelling mbpusmsupb, is shown in figure 4.26. 

For each solid torus or torus shell component H of ct( Pf!; - ( B2 U B2)), we have described 
how to add sectors and collapse split maw pieces. Doing this for each H, we obtain a 
pair of branched surfaces B;, B? in Pf!;. We remark that any two split maw pieces are 
disjoint, because there are no face gluings among the Seifert components of <t(PJ!y - (B2 U 
B2)). Therefore, the split maw pieces among all the different H's may all be collapsed 
simultaneously. 
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Figure 4.26: Inserting annulus sectors in H with boundary labelling mbpusmsupb. After 
inserting sectors, all split maw pieces should be collapsed. 

It is almost obvious that B3, B3 is a dynamic pair in PJ!y-without coherent annulus 
drums. We check only that there are no corner and face gluings among dynamic torus 
pieces, and that all maw piece components of rt(PJ!y - (B3 U B3 )) are boundary parallel. 

We consider maw pieces first. For each u-annulus face that is inserted, a split uss-maw 
piece is created, which is then collapsed to form a boundary parallel maw piece; similarly, 
each inserted s-annulus face gives rise to a boundary parallel maw piece. We claim that there 
are no other maw piece components of rt( Pf!;- ( B3 U B3) )-the one possible exception to this 
claim is when a u-annulus sector is attached tangentially to B2, creating an suu-maw piece, 
but this maw piece is divided into pinched tetrahedron components of rt(PJ!y - (B3 U B3 )). 
Thus, all maw piece components of rt(PJ!y - (B3 U B3)) are boundary parallel. 

Now we consider face gluings among the dynamic torus pieces of rt( Pf!; - ( B3 U B3)). 
If face gluings exist then corner gluings exist; it is therefore sufficient to rule out corner 
gluings. Let c be a us-circle of some dynamic torus piece H of B3, B3. If c is a us-circle 
of some component of rt(PJ!y - (B~ U B2)), then c is not involved in any corner gluings. If 
c is not a us-circle of a component of rt( P" - ( B3 U B3)), then c lies in the interior of at 
least one newly added sector, say an annulus s-sector As. If c C As n Au where Au is also 
a newly added sector, then by construction the four quadrants of c are: the dynamic torus 
piece H, two boundary parallel maw pieces, and a half annulus drum. It follows that c is 
not involved in a corner gluing of dynamic torus pieces. If c C As n B2, then three of the 
quadrants of c are: the dynamic torus piece H, an suu-boundary parallel maw piece, and 
a uss-maw piece divided into pinched tetrahedra by sectors of B2. The fourth quadrant of 
c lies between the two maw pieces quadrants, and has nonempty intersection with B2, and 
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therefore c is not involved in any corner gluings. 
This shows that B3, B3 is a dynamic pair in Pf!;. Now we take P" = Pf!; U Pf and reglue 

along A, to obtain r.t(P - T) = PD U Ps, where Ps = Pf and PD is obtained from Pf!; by 
gluing along A. Note that each component of Ps is an essential Seifert fiber space, and 
B3,B 3 CPD. 

Now we show that B3, B3 is a dynamic pair in PD. The only nontrivial thing to check 
is that when drum components of r.t( Pf!; - ( B3 U B3)) are glued along A, none of the 
resulting components of r.t(PD - (B 3 U B3)) are coherent annulus drums. The only way 
that an annulus drum can be formed is when two half annulus drum components C 1 , C 2 of 
r.t(PJ!y - (B 3 U B3)) are glued along b-annulus faces Ai C Ci, where A1, A2 are the scars 
of some component of A. By construction of B3, B3, we know that Ai is a b-annulus face 
of a solid torus or torus shell component CI of r.t(PJ!y - (B~ U B~)). By construction of 
B~, B~, we know that Ai is a b-annulus face of a half annulus drum component er of 
r.t(PJ!y - (Bf U Bf)). Now the Seifert fiberings in Cf, CI, Ci all agree along Ai, and the 
orientation of the us-circles of er, Ci agree with the direction of the Seifert fiberings. By 
step 1, we know that C~' and Cf are glued by identifying A 1 and A 2 to form an annulus 
drum component of r.t( P - ( Bf U B~)), and this annulus drum is incoherent, so the directions 
of the Seifert fiberings of A 1 and A 2 do not agree under gluing. Therefore, the annulus 
drum obtained from C 1 and C 2 by identifying A 1 and A 2 is incoherent. 

To finish the proof of proposition 4.12.1, we check that if the original pair Bs, Bu is 
vertical with respect to an R-branched surface /3 in P, then after splitting of /3 the pair 
B3, B3 is also vertical. It is straightforward to check, in steps 1-3, that the alterations 
performed on the dynamic vector field V preserve verticality. In step 4, when sectors are 
inserted and split maw pieces are collapsed, the alterations on V and /3 are very similar 
to the alterations done in the proof of proposition 3.5.5 when inserting annuli of Bs. The 
dynamic vector field for Bs, Bu is therefore vertical, and peripheral annuli are easily ruled 
out. <) 
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almost transverse, 115, 118 
annulus complex, 118 
Anosov flow, 77 
apex, 46 
atoroidal, 4 
attached to, 52, 56, 63, 64, 159, 160, 162, 

166,168,173,174 
attractor, 86 

strange, 87 
axiom A, 83 

b, bare, 42, 47-50 
backward 

semiflow, 36 
vector field, 36 

base 
of cylinder, 154 
of drum, 155 

branch 
locus, 26 

generic, 26 
of train track, 26 

branched surface, 26 
cusped, 59 
dynamic, 36, 37, 148 
hierarchy, 32, 33, 14 7 
neighborhood, 27 

corner model, 28 
cusp model, 28 
smooth model, 28 

R, 147 
stable dynamic, 37 
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unstable dynamic, 36 

carrying 
of branched surface by branched sur-

face, 29 
of foliation by branched surface hier-

archy, 34 
of lamination by branched surface, 29 
of pA flow by dynamic pair, 94, 181 

circle dynamics, 49 
circular, 51, 149 

flow, 73, 76 
flow on Seifert manifold, 198 
vector field, 50, 53, 56, 63, 121, 140, 

144,161,162,185 
cloven, 112, 113 
coherent 

annulus, 150 
annulus drum, 155, 159, 160, 184, 186, 

193,199 
cusp circle, 149 

collapsing decomposition, 112, 114, 129, 
135,137,139 

collapsing map, 27 
completion, 23 
ct, 23 
converging, 58 
corner, 46 

blowup, 126 
edge, 46 

corner blowup, 132 
corner gluing, 55, 160 
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corner model 
branched surface neighborhood, 28 
sutured manifold, 31 

crossing point, 26 
culvert edge, 28, 110 
cusp, 46 

disc, 122 
edge, 46 

cusp function, 28, 46 
cusp model 

branched surface neighborhood, 28 
sutured manifold, 31 

cutting open, 23 
cycle of rational train track, 60 
cylinder, 154 

DA operation, 83 
decomposing surface, 31, 33 
diverging, 58 
drum, 155, 180 
dynamic 

branched surface, 15, 36, 148 
very full, 56 

manifold, 4 7, 153 
orientation, 49 
pair, 50, 52, 65, 158 

good, 167 
proto-, 199 

solid torus, 51, 198 
splitting, 38, 150 
sutured manifold, 50 
torus piece, 52 
torus shell, 52,199 
train track, 54, 58, 67, 163 
vector field, 37, 58 

dynamic blowup, 115, 117 
of corner circle, 126, 132 
type of, 116 

end incompressible, 25 

INDEX 

essential 
lamination, see lamination, essential 
train track, 160 

Euler-Poincare index formula, 152 
even 

surface with corners, 151 
expansive, 37, 74 

face gluing, 53, 159 
fills up, 58, 163 
finite depth 

1-dimensional lamination, 98 
foliation, 30 

foliation, 29 
I-parallel, 121 
finite depth, 30, 33 
taut, 29 

forward 
semiflow, 36 
vector field, 36 

gable, 46 
generating 

of semiflow by vector field, 36 
gluing 

corner, 55, 160 
face, 53, 159 

good dynamic pair, 167, 186 
groomed, 31-33 

half-annulus drum, 155, 170 
hierarchy, 34, 14 7 

sliding, 34 
holonomy, 142 
hyperbolic invariant set, 86 

incoherent 
annulus, 150,168,186 
annulus drum, 155, 199 
cusp circle, 149, 161 

index, 151, 160, 161, 198 
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interval dynamics, 49 
isolating block, 50, 86 
isolating neighborhood, 86 

knot holders, 7, 15 

lamination 
boundary, 181 
essential, 24, 181 
local boundary, 98 
stable, 6, 86, 95, 115, 179 
unstable, 6, 86, 95, 115, 179 
vertical, 119 
very full, 6, 25, 95 

leaf, 24 
boundary, 6, 24 
proper, 29 

level surfaces, 157 

m, minus, 47 
Markov 

branched surface, 65, 185 
partition, 80 
section, 38, 39, 65, 75, 184 

maw, 27 
curves, 27 
piece 

cloven, 113 
maw piece, 52 

attached to dynamic torus piece, 159 
boundary parallel, 159 

maw-boundary annulus, 150 

norm-minimizing, 30 

one sheeted 
quadrant, 26, 36 
side, 26, 36 

one-cusped triangle, 44, 52 
orbit 

boundary periodic, 87 

of hyperbolic invariant set, 87 
of train track, 54 

orientation 
dynamic, 49 
singular, 59 

outlet, 110 
overlay map, 23 
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of sutured manifold decomposition, 32 

p, plus, 47 
pA flow, 77, 89, 178 
pared 

solid torus, 7 
torus piece, 7 
torus shell, 7 

peripheral, 4 
pinched 

tetrahedron, 44, 51 
pinching, 152, 154 
positive generator, 149 
product 

cusped, 161 
sutured manifold, 31 

product sutured manifold, 1 70 
pseudo-Anosov flow, 77, 79, 80 
pseudohyperbolic 

fixed point, 78 
orbit, 78 

quadrant, 26 

rational train track, 60 
Reeb 

annulus, 148,159,165,181,185 
annulus xI, 121 
component, 24 
lamination on a surface, 100 
train track, 100, 148 

Reebless, 29 
remains, 23 
repeller, 86 
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ring with tongues, 60, 61, 71, 164 
round handle, 170 

s, stable, 42, 47-50 
scar, 23, 32 
sector, 26, 37 

bigon, 37 
semiflow, 35 

backward, 36 
forward, 36 
generated by vector field, 36 

side of branch locus, 26 
simple dynamics, 49, 51, 53, 151, 159 
sink, 36, 53, 58, 60, 62, 63, 70, 159, 163 

circular, 60, 64, 71, 81, 165 
orientation, 59 

sliding, 34 
smooth model 

branched surface neighborhood, 28 
solid torus 

cusped, 43, 49 
dynamic, 44, 51, 198 
pA, 88 
pared, 7 

source, 36, 53, 58,159 
circular, 60, 64, 73, 81, 165 
orientation, 59 

splitting, 29 
dynamic, 38, 150 
surface, 29, 150 

stable 
bundle, 77 
dynamic branched surface, 37, 148 
lamination, 6 
train track, 59, 163 

surface with corners, 46, 151 
suture, 31 
sutured manifold, 30 

corner model, 31 
cusp model, 31 

decomposition, 32 
dynamic, 50 
hierarchy, 33 
product, 31, 33 

switch, 26 
boundary, 148 
converging, 58 
diverging, 58 

taut, 29 
template pair, 91 

construction of, 96 
templates, 7, 15 
three sheeted 

quadrant, 36 
three sheeted quadrant, 26 
3-manifold with corners, 46 
Thurston norm, 12, 30 
tongue, 56, 60 
torally bounded, 4 
torus piece 

cusped, 50 
dynamic, 52 
pA, 89 
pared, 7, 90 

torus shell 
cusped, 50 
dynamic, 44, 52, 199 
pA, 88 
pared, 7 

train track, 26 
dynamic, 54, 58, 163 
essential, 160 
rational, 60 
Reeb, 100 
stable, 59, 163 
unstable, 59, 163 

trajectory, 36, 49 
transience, 53, 58, 159, 163 
twisted orbit 
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of dynamic train track, 54 
of hyperbolic invariant set, 87 

two sheeted 
quadrant, 26 
side, 26, 36 

type 
of dynamic blowup, 116 
of pA torus piece, 88 
of pseudo-hyperbolic orbit, 78, 79, 117 
of torus piece, 25 

u, unstable, 42, 47-50 
unstable 

bundle, 77 
dynamic branched surface, 36, 148 
lamination, 6 
train track, 59, 163 

untwisted orbit 
of dynamic train track, 54 
of hyperbolic invariant set, 87 

vector field 
backward, 36 
circular, 50 
dynamic, 37 
forward, 36 
generating a semiflow, 36 

vertical, 118, 119, 185 
very full 

dynamic branched surface, 56, 66, 121, 
140,162,185 

lamination, 6, 25, 77, 90, 95, 102, 181 
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