Deformation spaces of 3-dimensional affine space forms

William M. Goldman

Department of Mathematics University of Maryland

Hyperbolicity in Geometry, Topology and Dynamics A workshop and celebration of Caroline Series' 60th birthday

University of Warwick 26 July, 2011

Complete affine 3-manifolds

■ A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.
■ Which kind of groups 「 can occur?
■ Two types when $n=3$:

- First examples discovered by Margulis in early 1980's

■ Closely related to hyperbolic geometry on surfaces

Complete affine 3-manifolds

- A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups 「 can occur?
- Two types when $n=3$

■ First examples discovered by Margulis in early 1980's

- Closely related to hyperbolic geometry on surfaces

Complete affine 3-manifolds

- A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.
■ Which kind of groups 「 can occur?
- Two types when $n=3$
- First examples discovered by Margulis in early 1980's

■ Closely related to hyperbolic geometry on surfaces

Complete affine 3-manifolds

- A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.
■ Which kind of groups 「 can occur?
■ Two types when $n=3$:
circles and cells.
- 「 is free: M^{3} is (conjecturally) an open solid handlbody with
complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

Complete affine 3－manifolds

－A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely．
－Which kind of groups 「 can occur？
■ Two types when $n=3$ ：
－「 is solvable：M^{3} is finitely covered by an iterated fibration of circles and cells．
－「 is free：M^{3} is（conjecturally）an open solid handlbody with complete flat Lorentzian structure．
－First examples discovered by Margulis in early 1980＇s
－Closely related to hyperbolic geometry on surfaces

Complete affine 3-manifolds

■ A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.

- Which kind of groups 「 can occur?

■ Two types when $n=3$:

- 「 is solvable: M^{3} is finitely covered by an iterated fibration of circles and cells.
■ Γ is free: M^{3} is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
- First examples discovered by Margulis in early 1980's

■ Closely related to hyperbolic geometry on surfaces

Complete affine 3-manifolds

■ A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.

- Which kind of groups 「 can occur?

■ Two types when $n=3$:

- 「 is solvable: M^{3} is finitely covered by an iterated fibration of circles and cells.
■ Γ is free: M^{3} is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
■ First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

Complete affine 3-manifolds

- A complete affine manifold M^{n} is a quotient $M=\mathbb{R}^{n} / \Gamma$ where Γ is a discrete group of affine transformations acting properly and freely.
■ Which kind of groups 「 can occur?
■ Two types when $n=3$:
- 「 is solvable: M^{3} is finitely covered by an iterated fibration of circles and cells.
■ Γ is free: M^{3} is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.
■ First examples discovered by Margulis in early 1980's
■ Closely related to hyperbolic geometry on surfaces

Euclidean manifolds

■ If M compact, then Γ finite extension of a subgroup of translations $\Gamma \cap \mathbb{R}^{n}=\Lambda$

Euclidean manifolds

■ If M compact, then Γ finite extension of a subgroup of translations $\Gamma \cap \mathbb{R}^{n}=\Lambda \cong \mathbb{Z}^{n}$ (Bieberbach 1912);

■ M finitely covered by flat torus \mathbb{R}^{n} / Λ (where $\wedge \subset \mathbb{R}^{n}$ lattice).

Euclidean manifolds

■ If M compact, then Γ finite extension of a subgroup of translations $\Gamma \cap \mathbb{R}^{n}=\Lambda \cong \mathbb{Z}^{n}$ (Bieberbach 1912);

■ M finitely covered by flat torus \mathbb{R}^{n} / Λ (where $\wedge \subset \mathbb{R}^{n}$ lattice).

Euclidean manifolds

■ If M compact, then 「 finite extension of a subgroup of translations $\Gamma \cap \mathbb{R}^{n}=\Lambda \cong \mathbb{Z}^{n}$ (Bieberbach 1912);
■ M finitely covered by flat torus \mathbb{R}^{n} / Λ (where $\Lambda \subset \mathbb{R}^{n}$ lattice).

Consequences of Bieberbach theorems

■ Only finitely many topological types in each dimension.

- Only one commensurability class.
- $\pi_{1}(M)$ is finitely generated
- $\pi_{1}(M)$ is finitely presented.
- $\quad \tau(M)=0$

Consequences of Bieberbach theorems

■ Only finitely many topological types in each dimension.

- Only one commensurability class
- $\pi_{1}(M)$ is finitely generated
- $\pi_{1}(M)$ is finitely presented

Consequences of Bieberbach theorems

■ Only finitely many topological types in each dimension.
■ Only one commensurability class.

- $\pi_{1}(\mathrm{M})$ is finitely generated

Consequences of Bieberbach theorems

■ Only finitely many topological types in each dimension.
■ Only one commensurability class.
■ $\pi_{1}(M)$ is finitely generated.

Consequences of Bieberbach theorems

■ Only finitely many topological types in each dimension.
■ Only one commensurability class.

- $\pi_{1}(M)$ is finitely generated.
- $\pi_{1}(M)$ is finitely presented.

Consequences of Bieberbach theorems

■ Only finitely many topological types in each dimension.
■ Only one commensurability class.

- $\pi_{1}(M)$ is finitely generated.
- $\pi_{1}(M)$ is finitely presented.
- $\chi(M)=0$.

Example: Hyperbolic torus bundles

■ Mapping torus M^{3} of automorphism of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ induced by hyperbolic $A \in S L(2, \mathbb{Z})$ inherits a complete affine structure.

- Extend \mathbb{Z}^{2} to \mathbb{R}^{2} and A to one-parameter subgroup $\exp (t \log (A))$ to get solvable Lie group $G \cong \mathbb{R}^{2} \rtimes \mathbb{R}$ acting simply transitively on E.
- $M^{3} \cong \Gamma \backslash H$ is a complete affine solvmanifold.

Example: Hyperbolic torus bundles

- Mapping torus M^{3} of automorphism of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ induced by hyperbolic $A \in \mathrm{SL}(2, \mathbb{Z})$ inherits a complete affine structure.
- Extend \mathbb{Z}^{2} to \mathbb{R}^{2} and A to one-parameter subgroup $\exp (t \log (A))$ to get solvable Lie group $G \cong \mathbb{R}^{2} \rtimes \mathbb{R}$ acting simply transitively on E.

■ $M^{3} \cong \Gamma \backslash H$ is a complete affine solvmanifold.

Example: Hyperbolic torus bundles

■ Mapping torus M^{3} of automorphism of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ induced by hyperbolic $A \in S L(2, \mathbb{Z})$ inherits a complete affine structure.

■ Flat Lorentz metric (A-invariant quadratic form).

- Extend \mathbb{Z}^{2} to \mathbb{R}^{2} and A to one-parameter subgroup
$\exp (t \log (A))$ to get solvable Lie group $G \cong \mathbb{R}^{2} \rtimes \mathbb{R}$ acting
simply transitively on E
- $M^{3} \cong \Gamma \backslash H$ is a complete affine solvmanifold.

Example: Hyperbolic torus bundles

- Mapping torus M^{3} of automorphism of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ induced by hyperbolic $A \in S L(2, \mathbb{Z})$ inherits a complete affine structure.
- Flat Lorentz metric (A-invariant quadratic form).

■ Extend \mathbb{Z}^{2} to \mathbb{R}^{2} and A to one-parameter subgroup $\exp (t \log (A))$ to get solvable Lie group $G \cong \mathbb{R}^{2} \rtimes \mathbb{R}$ acting simply transitively on E .

Example: Hyperbolic torus bundles

■ Mapping torus M^{3} of automorphism of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ induced by hyperbolic $A \in S L(2, \mathbb{Z})$ inherits a complete affine structure.

■ Flat Lorentz metric (A-invariant quadratic form).
■ Extend \mathbb{Z}^{2} to \mathbb{R}^{2} and A to one-parameter subgroup $\exp (t \log (A))$ to get solvable Lie group $G \cong \mathbb{R}^{2} \rtimes \mathbb{R}$ acting simply transitively on E .
■ $M^{3} \cong \Gamma \backslash H$ is a complete affine solvmanifold.

Proper affine actions

- Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold: - For M to be a (Hausdorff) smooth manifold, G must act:

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:

- For M to be a (Hausdorff) smooth manifold, G must act:

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:
■ For M to be a (Hausdorff) smooth manifold, G must act: - Freely: (No fixed points);

■ Properly: (Go to ∞ in $G=$ go to ∞ in every orbit $G x$)

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:
■ For M to be a (Hausdorff) smooth manifold, G must act:
■ Discretely: $\left(G \subset \operatorname{Homeo}\left(\mathbb{R}^{n}\right)\right.$ discrete);

- Discreteness does not imply properness

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:
■ For M to be a (Hausdorff) smooth manifold, G must act:
■ Discretely: $\left(G \subset \operatorname{Homeo}\left(\mathbb{R}^{n}\right)\right.$ discrete);

- Freely: (No fixed points);
- Discreteness does not imply properness

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:
■ For M to be a (Hausdorff) smooth manifold, G must act:
■ Discretely: $\left(G \subset \operatorname{Homeo}\left(\mathbb{R}^{n}\right)\right.$ discrete);

- Freely: (No fixed points);

■ Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit $G x$).

is a proper map (preimages of compacta are compact)

- Discreteness does not imp'y properness

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:
■ For M to be a (Hausdorff) smooth manifold, G must act:
■ Discretely: $\left(G \subset \operatorname{Homeo}\left(\mathbb{R}^{n}\right)\right.$ discrete);

- Freely: (No fixed points);

■ Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit $G x$).
■ More precisely, the map

$$
\begin{aligned}
G \times X & \longrightarrow X \times X \\
(g, x) & \longmapsto(g x, x)
\end{aligned}
$$

is a proper map (preimages of compacta are compact).

- Discreteness does not imply properness

Proper affine actions

■ Suppose $M=\mathbb{R}^{n} / G$ is a complete affine manifold:
■ For M to be a (Hausdorff) smooth manifold, G must act:
■ Discretely: ($G \subset$ Homeo(\mathbb{R}^{n}) discrete);

- Freely: (No fixed points);

■ Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit $G x$).
■ More precisely, the map

$$
\begin{aligned}
G \times X & \longrightarrow X \times X \\
(g, x) & \longmapsto(g x, x)
\end{aligned}
$$

is a proper map (preimages of compacta are compact).
■ Discreteness does not imply properness.

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):

- Associated to every Margulis spacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}.
- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):
G is a free group acting isometrically on \mathbb{E}^{2+1}

- Associated to every Margulis spacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}
- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):
■ G is a free group acting isometrically on \mathbb{E}^{2+1}

- $L(G) \subset O(2,1)$ is isomorphic to G
- M^{3} noncompact complete flat Lorentz 3-manifold
- Associated to every Margulis snacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}
- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):
■ G is a free group acting isometrically on \mathbb{E}^{2+1}

- $\mathrm{L}(G) \subset \mathrm{O}(2,1)$ is isomorphic to G.
- Associated to every Margulis spacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}
- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):
■ G is a free group acting isometrically on \mathbb{E}^{2+1}
■ $\mathrm{L}(G) \subset \mathrm{O}(2,1)$ is isomorphic to G.

- M^{3} noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}
- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):
■ G is a free group acting isometrically on \mathbb{E}^{2+1}

- $\mathrm{L}(G) \subset \mathrm{O}(2,1)$ is isomorphic to G.
- M^{3} noncompact complete flat Lorentz 3 -manifold.

■ Associated to every Margulis spacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}.

- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}

Margulis Spacetimes

■ Most interesting examples: Margulis (~ 1980):
■ G is a free group acting isometrically on \mathbb{E}^{2+1}

- $\mathrm{L}(G) \subset \mathrm{O}(2,1)$ is isomorphic to G.
- M^{3} noncompact complete flat Lorentz 3 -manifold.

■ Associated to every Margulis spacetime M^{3} is a noncompact complete hyperbolic surface Σ^{2}.

- Closely related to the geometry of M^{3} is a deformation of the hyperbolic structure on Σ^{2}.

Milnor's Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^{n} ?

Milnor's Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^{n} ?

■ Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"

- Dimension 3: M^{3} compact $\Longrightarrow M^{3}$ finitely covered by T^{2}-bundle over S^{1} (Fried-G 1983),

Milnor's Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^{n} ?

■ Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"

- If NO, M^{n} finitely covered by iterated S^{1}-fibration

T^{2}-bundle over S^{1} (Fried-G 1983),

Milnor's Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^{n} ?

■ Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"

- If $N O, M^{n}$ finitely covered by iterated S^{1}-fibration

■ Dimension 3: M^{3} compact $\Longrightarrow M^{3}$ finitely covered by T^{2}-bundle over S^{1} (Fried-G 1983),

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action $\Longleftrightarrow G$ is amenable (compact-by-solvable)
- Every virtually nolycyclic groun admits a proper affine action.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

■ Connected Lie group G admits a proper affine action $\Longleftrightarrow G$ is amenable (compact-by-solvable).

- Every virtually polycyclic group admits a proper affine action.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

■ Connected Lie group G admits a proper affine action $\Longleftrightarrow G$ is amenable (compact-by-solvable).
■ Every virtually polycyclic group admits a proper affine action.

An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^{3} hence by diffeomorphisms of \mathbb{E}^{3}

An idea for a counterexample...

■ Clearly a geometric problem: free groups act properly by isometries on H^{3} hence by diffeomorphisms of \mathbb{E}^{3}

- Milnor suggests:

Start with a free discrete subgroup of $O(2,1)$ and
add translation components to obtain a group of affine transformations which acts freely.

An idea for a counterexample...

■ Clearly a geometric problem: free groups act properly by isometries on H^{3} hence by diffeomorphisms of \mathbb{E}^{3}

■ These actions are not affine.

- Milnor suggests:

Start with a free discrete subgroup of $O(2,1)$ and
add translation components to obtain a group of
affine transformations which acts freely.
However it seems difficult to decide whether the
resulting group action is properly discontinuous

An idea for a counterexample...

■ Clearly a geometric problem: free groups act properly by isometries on H^{3} hence by diffeomorphisms of \mathbb{E}^{3}

■ These actions are not affine.
■ Milnor suggests:
Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.
However it seems difficult to decide whether the resulting group action is properly discontinuous.

Lorentzian and Hyperbolic Geometry

■ $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$
:=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
$$

and Minkowski space $\mathrm{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

Lorentzian and Hyperbolic Geometry

$■ \mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]:=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
$$

and Minkowski space $\mathrm{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

Lorentzian and Hyperbolic Geometry

■ $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]:=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
$$

and Minkowski space $\mathrm{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.
■ The Lorentz metric tensor is $d x^{2}+d y^{2}-d z^{2}$.

- Isom $\left(E^{2,1}\right)$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group
of translations) with the orthogonal group $\mathrm{O}(2,1)$
- The stabilizer of the origin is the group $\mathrm{O}(2,1)$ which preserves the hyperbolic plane

Lorentzian and Hyperbolic Geometry

■ $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]:=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
$$

and Minkowski space $\mathrm{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.
■ The Lorentz metric tensor is $d x^{2}+d y^{2}-d z^{2}$.
■ Isom $\left(\mathrm{E}^{2,1}\right)$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $\mathrm{O}(2,1)$.
preserves the hyperbolic plane

Lorentzian and Hyperbolic Geometry

■ $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]:=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
$$

and Minkowski space $\mathrm{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.
■ The Lorentz metric tensor is $d x^{2}+d y^{2}-d z^{2}$.
■ Isom $\left(\mathrm{E}^{2,1}\right)$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $\mathrm{O}(2,1)$.

- The stabilizer of the origin is the group $\mathrm{O}(2,1)$ which preserves the hyperbolic plane

$$
\mathrm{H}^{2}:=\left\{v \in \mathbb{R}^{2,1} \mid v \cdot v=-1, z>0\right\} .
$$

A Schottky group

■ Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$
■ g_{1}, g_{2} freely generate discrete group.

- Action proper with fundamental domain H^{2}

A Schottky group

■ Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$.

- g_{1}, g_{2} freely generate discrete group.
- Action proper with fundamental domain H^{2}

A Schottky group

■ Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$.

- g_{1}, g_{2} freely generate discrete group.

A Schottky group

■ Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$.

- g_{1}, g_{2} freely generate discrete group.
- Action proper with fundamental domain $\mathrm{H}^{2} \backslash \bigcup A_{i}^{ \pm}$.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.

- Homotopy equivalence

where Σ complete hyperbolic surface.

■「 free;

- Milnor's suggestion is the only way to construct examples

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.
■ (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.

- L($($) (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$ - L injective. - Homotopy equivalence where Σ complete hyperbolic surface.

■「 free;

- Milnor's suggestion is the only way to construct examples in dimension three.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.
■ (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.
■ $\mathrm{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;

- Homotopy equivalence
where Σ complete hyperbolic surface.

■「 free;

- Milnor's suggestion is the only way to construct examples in dimension three.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.
■ (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.
■ $\mathrm{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;

- L injective.
- Homotopy equivalence
where Σ complete hyperbolic surface.

■「 free;

- Milnor's suggestion is the only way to construct examples in dimension three.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.
■ (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.
■ $\mathrm{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;

- L injective.

■ Homotopy equivalence

$$
M^{3}:=\mathrm{E}^{2,1} / \Gamma \longrightarrow \Sigma:=\mathrm{H}^{2} / \mathrm{L}(\Gamma)
$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact

■ 「 free;

- Milnor's suggestion is the only way to construct examples in dimension three.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.
■ (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.
■ $\mathrm{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;

- L injective.

■ Homotopy equivalence

$$
M^{3}:=\mathrm{E}^{2,1} / \Gamma \longrightarrow \Sigma:=\mathrm{H}^{2} / \mathrm{L}(\Gamma)
$$

where Σ complete hyperbolic surface.
■ Mess (1990): Σ not compact .
-「 free;

- Milnor's suggestion is the only way to construct examples in dimension three.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.
■ (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.
■ $\mathrm{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;

- L injective.

■ Homotopy equivalence

$$
M^{3}:=\mathrm{E}^{2,1} / \Gamma \longrightarrow \Sigma:=\mathrm{H}^{2} / \mathrm{L}(\Gamma)
$$

where Σ complete hyperbolic surface.
■ Mess (1990): Σ not compact .
■「 free;

- Milnor's suggestion is the only way to construct examples in dimension three.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not solvable.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathrm{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear part.

■ $\mathrm{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;

- L injective.

■ Homotopy equivalence

$$
M^{3}:=\mathrm{E}^{2,1} / \Gamma \longrightarrow \Sigma:=\mathrm{H}^{2} / \mathrm{L}(\Gamma)
$$

where Σ complete hyperbolic surface.
■ Mess (1990): Σ not compact .
■「 free;
■ Milnor's suggestion is the only way to construct examples in dimension three.

Cyclic groups

- Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1)$. A fundamental domain is the slab bounded by two parallel planes.

Cyclic groups

■ Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1)$. A fundamental domain is the slab bounded by two parallel planes.

Cyclic groups

■ Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1)$. A fundamental domain is the slab bounded by two parallel planes.

A boost identifying two parallel planes

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

■ $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

Closed geodesics and holonomy

■ Each such element leaves invariant a unique (spacelike) line, whose image in $\mathrm{E}^{2,1} / \Gamma$ is a closed geodesic. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$
\gamma=\left[\begin{array}{ccc}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha(\gamma) \\
0
\end{array}\right]
$$

- $\ell(\gamma) \in \mathbb{R}^{+}$: geodesic length of γ in Σ^{2}

■ $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ in M^{3}.

Geodesics on Σ

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

■ Closed geodesics on $\Sigma \longleftrightarrow$ closed spacelike geodesics on M^{3}
■ Orbit equivalence: Recurrent orbits of geodesic flow on U Σ \longleftrightarrow Recurrent spacelike geodesics on M^{3}. (G-Labourie 2011)

Geodesics on Σ

■ The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

- γ translates along C_{γ} by $\alpha(\gamma)$.

■ Closed geodesics on $\Sigma \longleftrightarrow$ closed spacelike geodesics on M^{3}
■ Orbit equivalence: Recurrent orbits of geodesic flow on U Σ \longleftrightarrow Recurrent spacelike geodesics on M^{3}. (G-Labourie 2011)

Geodesics on Σ

■ The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

■ γ translates along C_{γ} by $\alpha(\gamma)$.

- Closed geodesics on $\Sigma \longleftrightarrow$ closed spacelike geodesics on M^{3}

■ Orbit equivalence: Recurrent orbits of geodesic flow on U Σ \longleftrightarrow Recurrent spacelike geodesics on M^{3}. (G-Labourie 2011)

Geodesics on Σ

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

■ γ translates along \boldsymbol{C}_{γ} by $\alpha(\gamma)$.
■ Closed geodesics on $\Sigma \longleftrightarrow$ closed spacelike geodesics on M^{3}.

- Orbit equivalence: Recurrent orbits of geodesic flow on U乏 \longleftrightarrow Recurrent spacelike geodesics on M^{3}. (G-Labourie 2011)

Geodesics on Σ

- The unique γ-invariant geodesic C_{γ} inherits a natural orientation and metric.

■ γ translates along \boldsymbol{C}_{γ} by $\alpha(\gamma)$.
■ Closed geodesics on $\Sigma \longleftrightarrow$ closed spacelike geodesics on M^{3}.
■ Orbit equivalence: Recurrent orbits of geodesic flow on U Σ \longleftrightarrow Recurrent spacelike geodesics on M^{3}. (G-Labourie 2011)

Slabs don't work!

- In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,

■ Unsuitable for building Schottky groups!

Slabs don't work!

■ In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;

- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,

■ Unsuitable for building Schottky groups!

Slabs don't work!

■ In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;

- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,

■ Unsuitable for building Schottky groups!

Slabs don't work!

■ In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;

- Their complement is a fundamental domain.

■ In affine space, half-spaces disjoint \Rightarrow parallel!

- Complements of slabs always intersect,
- Unsuitable for building Schottky groups

Slabs don't work!

■ In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;

- Their complement is a fundamental domain.

■ In affine space, half-spaces disjoint \Rightarrow parallel!
■ Complements of slabs always intersect,

Slabs don't work!

■ In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;

- Their complement is a fundamental domain.

■ In affine space, half-spaces disjoint \Rightarrow parallel!
■ Complements of slabs always intersect,
■ Unsuitable for building Schottky groups!

Drumm's Schottky groups

The classical construction of Schottky groups fails using affine half-spaces and slabs. Drumm's geometric construction uses crooked planes, PL hypersurfaces adapted to the Lorentz geometry which bound fundamental polyhedra for Schottky groups.

Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}
- Extend into light cone in $E^{2,1}$;
- Extend outside light cone in $E^{2,1}$;
- Action proper except at the origin and two null half-planes.

Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathrm{E}^{2,1}$;
- Extend outside light cone in $\mathrm{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $E^{2,1}$;
- Extend outside light cone in $\mathrm{E}^{2,1}$;

Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathrm{E}^{2,1}$;

■ Extend outside light cone in $\mathrm{E}^{2,1}$;

Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathrm{E}^{2,1}$;

■ Extend outside light cone in $\mathrm{E}^{2,1}$;

- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.

Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.

Images of crooked planes under an affine deformation

- Adding translations frees up the action
- which is now proper on all of $E^{2,1}$

Images of crooked planes under an affine deformation

- Adding translations frees up the action
- which is now proper on all of $E^{2,1}$

Images of crooked planes under an affine deformation

■ Adding translations frees up the action
\square - which is now proper on all of $E^{2,1}$.

A foliation by crooked planes

Linear action of Schottky group

Crooked polyhedra tile H^{2} for subgroup of $\mathrm{O}(2,1)$.

Linear action of Schottky group

Crooked polyhedra tile H^{2} for subgroup of $\mathrm{O}(2,1)$.

Affine action of Schottky group

Carefully chosen affine deformation acts properly on $\mathrm{E}^{2,1}$.

Affine action of level 2 congruence subgroup of $\mathrm{GL}(2, \mathbb{Z})$

Proper affine deformations exist even for lattices (Drumm).

An arithmetic example

> - Minkowski space compactifies into the space of Lagrangian 2 -planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).
> - Choose two transverse Lagrangian 2-planes L_{0} and L_{∞}

> ■ Minkowski $2+1$-space $\mathrm{E}^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

$\square \mathbb{R}^{2,1} \longleftrightarrow\{2 \times 2$ symmetric matrices $\}$

An arithmetic example

■ Minkowski space compactifies into the space of Lagrangian 2 -planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).

- Choose two transverse Lagrangian 2-planes L_{0} and L_{∞} ■ Minkowski $2+1$-space $\mathrm{E}^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

An arithmetic example

■ Minkowski space compactifies into the space of Lagrangian 2-planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).
■ Choose two transverse Lagrangian 2-planes L_{0} and L_{∞}.

- Minkowski $2+1$-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

An arithmetic example

■ Minkowski space compactifies into the space of Lagrangian 2-planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).
■ Choose two transverse Lagrangian 2-planes L_{0} and L_{∞}.
■ Minkowski $2+1$-space $\mathrm{E}^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

- Graphs of symmetric maps L_{0} -
- Lorentzian inner product defined by $f \mapsto \operatorname{Det}(f)$

An arithmetic example

■ Minkowski space compactifies into the space of Lagrangian 2-planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).
■ Choose two transverse Lagrangian 2-planes L_{0} and L_{∞}.
■ Minkowski $2+1$-space $\mathrm{E}^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

- Graphs of symmetric maps $L_{0} \xrightarrow{f} L_{\infty}$.
- Lorentzian inner product defined by $f \mapsto \operatorname{Det}(f)$

An arithmetic example

■ Minkowski space compactifies into the space of Lagrangian 2-planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).
■ Choose two transverse Lagrangian 2-planes L_{0} and L_{∞}.
■ Minkowski $2+1$-space $\mathrm{E}^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

- Graphs of symmetric maps $L_{0} \xrightarrow{f} L_{\infty}$.
- Lorentzian inner product defined by $f \mapsto \operatorname{Det}(f)$

An arithmetic example

■ Minkowski space compactifies into the space of Lagrangian 2-planes in a 4-dimensional symplectic \mathbb{R}-vector space (V, ω).
■ Choose two transverse Lagrangian 2-planes L_{0} and L_{∞}.
■ Minkowski $2+1$-space $\mathrm{E}^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞}.

- Graphs of symmetric maps $L_{0} \xrightarrow{f} L_{\infty}$.
- Lorentzian inner product defined by $f \mapsto \operatorname{Det}(f)$
$■ \mathbb{R}^{2,1} \longleftrightarrow\{2 \times 2$ symmetric matrices $\}$.

Minkowski space inside $\operatorname{Sp}(4, \mathbb{R})$

- L_{0} and L_{∞} dual under symplectic form $L_{0} \times L_{\infty} \xrightarrow{\omega} \mathbb{R}$
- $g \in \mathrm{GL}\left(L_{\infty}\right)$ induces linear symplectomorphism of $V=L_{\infty} \oplus L_{0}$, represented as block upper-triangular matrices:

$$
g \oplus\left(g^{\dagger}\right)^{-1}=\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{\dagger}\right)^{-1}
\end{array}\right]
$$

■ Translations of Minkowski space correspond to shears: (fixing L_{∞} and $\left.L / L_{\infty}\right)$:

$$
\left[\begin{array}{ll}
l_{2} & f \\
0 & 1 / 2
\end{array}\right]
$$

where $L_{0} \xrightarrow{f} L_{\infty}$ is a symmetric linear map.

Minkowski space inside $\operatorname{Sp}(4, \mathbb{R})$

■ L_{0} and L_{∞} dual under symplectic form $L_{0} \times L_{\infty} \xrightarrow{\omega} \mathbb{R}$
 $V=L_{\infty} \oplus L_{0}$, represented as block upper-triangular matrices:

- Translations of Minkowski space correspond to shears: (fixing L_{∞} and $\left.L / L_{\infty}\right)$

where $L_{0} \xrightarrow{f} L_{\infty}$ is a symmetric linear map.

Minkowski space inside $\operatorname{Sp}(4, \mathbb{R})$

■ L_{0} and L_{∞} dual under symplectic form $L_{0} \times L_{\infty} \xrightarrow{\omega} \mathbb{R}$
■ $g \in \mathrm{GL}\left(L_{\infty}\right)$ induces linear symplectomorphism of $V=L_{\infty} \oplus L_{0}$, represented as block upper-triangular matrices:

$$
g \oplus\left(g^{\dagger}\right)^{-1}=\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{\dagger}\right)^{-1}
\end{array}\right]
$$

where $L_{0} \xrightarrow{f} L_{\infty}$ is a symmetric linear map.

Minkowski space inside $\operatorname{Sp}(4, \mathbb{R})$

■ L_{0} and L_{∞} dual under symplectic form $L_{0} \times L_{\infty} \xrightarrow{\omega} \mathbb{R}$
$\square g \in \mathrm{GL}\left(L_{\infty}\right)$ induces linear symplectomorphism of $V=L_{\infty} \oplus L_{0}$, represented as block upper-triangular matrices:

$$
g \oplus\left(g^{\dagger}\right)^{-1}=\left[\begin{array}{cc}
g & 0 \\
0 & \left(g^{\dagger}\right)^{-1}
\end{array}\right]
$$

■ Translations of Minkowski space correspond to shears: (fixing L_{∞} and $\left.L / L_{\infty}\right)$:

$$
\left[\begin{array}{ll}
I_{2} & f \\
0 & I_{2}
\end{array}\right]
$$

where $L_{0} \xrightarrow{f} L_{\infty}$ is a symmetric linear map.

Affine deformation of $\operatorname{SL}(2, \mathbb{Z})$

- For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

is a proper affine deformation of a rank two free group.

Affine deformation of $\operatorname{SL}(2, \mathbb{Z})$

■ For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

$$
\left[\begin{array}{cccc}
-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\
0 & -1 & 2 \mu_{1} & -\mu_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 2 & -1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & -\mu_{2} & -2 \mu_{2} \\
2 & -1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is a proper affine deformation of a rank two free group.

- M^{3} genus two handlebody and Σ^{2} triply-punctured sphere.

■ Depicted example is $\mu_{1}=\mu_{2}=\mu_{3}=1$.

Affine deformation of $\operatorname{SL}(2, \mathbb{Z})$

■ For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

$$
\left[\begin{array}{cccc}
-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\
0 & -1 & 2 \mu_{1} & -\mu_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 2 & -1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & -\mu_{2} & -2 \mu_{2} \\
2 & -1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is a proper affine deformation of a rank two free group.
■ M^{3} genus two handlebody and Σ^{2} triply-punctured sphere.

Affine deformation of $\operatorname{SL}(2, \mathbb{Z})$

■ For $i=1,2,3$ choose three positive integers $\mu_{1}, \mu_{2}, \mu_{3}$. Then the subgroup Γ of $\operatorname{Sp}(4, \mathbb{Z})$ generated by

$$
\left[\begin{array}{cccc}
-1 & -2 & \mu_{1}+\mu_{2}-\mu_{3} & 0 \\
0 & -1 & 2 \mu_{1} & -\mu_{1} \\
0 & 0 & -1 & 0 \\
0 & 0 & 2 & -1
\end{array}\right],\left[\begin{array}{cccc}
-1 & 0 & -\mu_{2} & -2 \mu_{2} \\
2 & -1 & 0 & 0 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is a proper affine deformation of a rank two free group.
■ M^{3} genus two handlebody and Σ^{2} triply-punctured sphere.
■ Depicted example is $\mu_{1}=\mu_{2}=\mu_{3}=1$.

Affine action of level 2 congruence subgroup of $\mathrm{GL}(2, \mathbb{Z})$

Symmetrical example: $\mu_{1}=\mu_{2}=\mu_{3}=1$.

The linear part

■ Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:

- (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with $\pi_{1}(\Sigma)$ finitely generated) admits a proper affine deformation.
- M^{3} homeomorphic to solid handlebody.

The linear part

■ Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:

- (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with $\pi_{1}(\Sigma)$ finitely generated) admits a proper affine deformation
- M^{3} homeomorphic to solid handlebody.

The linear part

■ Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
■ (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with $\pi_{1}(\Sigma)$ finitely generated) admits a proper affine deformation.

- M^{3} homeomorphic to solid handlebody.

The linear part

■ Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
■ (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with $\pi_{1}(\Sigma)$ finitely generated) admits a proper affine deformation.
■ M^{3} homeomorphic to solid handlebody.

Marked Signed Lorentzian Length Spectrum

- For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, u)} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)^{0}$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $L(\gamma)$ is hyperbolic.
- α_{u} is a class function on Γ;
- When ρ acts pronerly $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, u)} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)^{0}$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to
- The Margulis invariant 「 $\xrightarrow{\alpha} \mathbb{R}$ determines 「 up to conjugacy (Charette-Drumm 2004)

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, u)} \operatorname{Isom}\left(\mathrm{E}^{2,1}\right)^{0}$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to
■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004)

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, u)} \operatorname{lsom}\left(\mathrm{E}^{2,1}\right)^{0}$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;

■ When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;

- The Margulis invariant 「 $\xrightarrow{\alpha} \mathbb{R}$ determines「up to conjugacy (Charette-Drumm 2004)

Marked Signed Lorentzian Length Spectrum

■ For every affine deformation $\Gamma \xrightarrow{\rho=(\mathrm{L}, u)} \operatorname{lsom}\left(\mathrm{E}^{2,1}\right)^{0}$, define $\alpha_{u}(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_{γ}, when $\mathrm{L}(\gamma)$ is hyperbolic.

- α_{u} is a class function on Γ;

■ When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
■ The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).

Opposite Sign Lemma

(Margulis 1983) Let ρ be a proper affine deformation.

- $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$, or
- $\alpha_{u}(\gamma)<0 \forall \gamma \neq 1$.

Affine deformations

- Start with a Fuchsian group $\Gamma_{0} \subset O(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in z^{1}\left(\Gamma_{0}, \mathbb{D}^{2,1}\right)
$$

■ Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.

- Translational coniugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Affine deformations

- Start with a Fuchsian group $\Gamma_{0} \subset \mathrm{O}(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)
$$

■ Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u

- Translational coniugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$

Affine deformations

■ Start with a Fuchsian group $\Gamma_{0} \subset \mathrm{O}(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)
$$

■ Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.

- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$

Affine deformations

- Start with a Fuchsian group $\Gamma_{0} \subset O(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)
$$

■ Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.

- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Deformations of hyperbolic structures

- Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Deformations of hyperbolic structures

- Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.
- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Deformations of hyperbolic structures

■ Translational conjugacy classes of affine deformations of Γ_{0} \longleftrightarrow infinitesimal deformations of the hyperbolic surface Σ.
■ Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^{1}(\Sigma, \mathfrak{s l}(2, \mathbb{R})) \cong H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Deformation-theoretic interpretation of Margulis invariant

- Suppose $u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.
- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

(G-Margulis 2000).
- Γ_{u} is proner \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$

Deformation-theoretic interpretation of Margulis invariant

■ Suppose $u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t - Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative $\left.\frac{d}{d t}\right|_{t=0} l_{t}(\gamma)$

(G-Margulis 2000)

$\square \Gamma_{u}$ is proner \longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$

Deformation-theoretic interpretation of Margulis invariant

- Suppose $u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

■ The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t. - Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

(G-Margulis 2000)

- Γ_{u} is is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}

■ Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Deformation-theoretic interpretation of Margulis invariant

- Suppose $u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.

■ The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.

- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{t}(\gamma)
$$

(G-Margulis 2000).
■ Γ_{u} is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Deformation-theoretic interpretation of Margulis invariant

- Suppose $u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.
- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{t}(\gamma)
$$

(G-Margulis 2000).
$■ \Gamma_{U}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.

- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$

Deformation-theoretic interpretation of Margulis invariant

- Suppose $u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defines an infinitesimal deformation tangent to a smooth deformation Σ_{t} of Σ.
- The marked length spectrum ℓ_{t} of Σ_{t} varies smoothly with t.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{t}(\gamma)
$$

(G-Margulis 2000).
$■ \Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.
■ Converse: When Σ is homeomorphic to a three-holed sphere or two-holed $\mathbb{R} P^{2}$.

Extensions of the Margulis invariant

- α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.
- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
■ Margulis invariant extends to continuous functional $\psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $I(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.

■ $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).

- (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$
- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
\square When $L(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
- $C(\Sigma)$ connected \Longrightarrow Either $\psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)

■ When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.

- $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
■ Margulis invariant extends to continuous functional $\psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of ϕ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $I(\Gamma)$ is convex cocompact, Γu acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.

■ $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all
negative

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
■ Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $L(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
- $C(\Sigma)$ connected \Longrightarrow Either $\|_{u}(\mu)$ are all positive or all
negative

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $L(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
$■ \mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{\mu}(\mu)$ are all positive or all
negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
■ When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
- $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all negative.

Extensions of the Margulis invariant

■ α_{u} extends to parabolic $\mathrm{L}(\gamma)$ given decorations of the cusps (Charette-Drumm 2005).
■ (Margulis 1983) $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$.

- Therefore $\alpha_{u}(\gamma) / \ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
- Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U \Sigma$.
- Margulis invariant extends to continuous functional $\Psi_{u}(\mu)$ on the space $\mathcal{C}(\Sigma)$ of Φ-invariant probability measures μ on $U \Sigma$. (G-Labourie-Margulis 2010)
- When $\mathrm{L}(\Gamma)$ is convex cocompact, Γ_{u} acts properly \Longleftrightarrow $\Psi_{u}(\mu) \neq 0$ for all invariant probability measures μ.
■ $\mathcal{C}(\Sigma)$ connected \Longrightarrow Either $\Psi_{u}(\mu)$ are all positive or all negative.

The Deformation Space

- Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \sum$ on S
- Fiber is subspace of $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ (all affine deformations) consisting of proper affine deformations Σ.

■ (G-Labourie-Margulis 2010) Convex domain in $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ defined by generalized Margulis functionals of measured geodesic laminations on Σ.

The Deformation Space

■ Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.

- Fiber is subspace of $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ (all affine deformations) consisting of proper affine deformations Σ

■ (G-Labourie-Margulis 2010) Convex domain in $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ defined by generalized Margulis functionals of measured geodesic laminations on Σ

The Deformation Space

■ Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
■ Fiber is subspace of $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ (all affine deformations) consisting of proper affine deformations Σ.

■ (G-Labourie-Margulis 2010) Convex domain in $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ defined by generalized Margulis functionals of measured geodesic laminations on Σ

The Deformation Space

■ Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
■ Fiber is subspace of $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ (all affine deformations) consisting of proper affine deformations Σ.

■ Nonempty (Drumm 1989).

- (G-Labourie-Margulis 2010) Convex domain in $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ defined by generalized Margulis functionals of measured geodesic laminations on Σ

The Deformation Space

■ Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.

- Fiber is subspace of $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ (all affine deformations) consisting of proper affine deformations Σ.
- Nonempty (Drumm 1989).

■ (G-Labourie-Margulis 2010) Convex domain in $H^{1}\left(\Sigma, \mathbb{R}^{2,1}\right)$ defined by generalized Margulis functionals of measured geodesic laminations on Σ.

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

- Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.

■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)

- Four possible topologies for Σ :

■ Three-holed sphere;

- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.

■ If $\partial \Sigma$ has b components, then the Fricke space

$$
\mathfrak{F}(\Sigma) \approx[0, \infty)^{b} \times(0, \infty)^{3-b} .
$$

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$) (Charette-Drumm-G 2010)

- Four possible topologies for Σ

■ Three-holed sphere;

- Two-holed cross-surface (projective plane);
[One-holed Klein bottle;
- One-holed torus.
- If $\partial \Sigma$ has b comonents, then the Fricke space

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.

- Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$) (Charette-Drumm-G 2010)
- Four possible topologies for Σ
- Three-holed sphere;
- Two-holed cross-surface (projective plane);

■ One-holed Klein bottle;

- One-holed torus.
- If $\partial \Sigma$ has b components, then the Fricke space

The Crooked Plane Conjecture

- Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)

- Four possible topologies for Σ

■ Three-holed sphere;

- Two-holed cross-surface (projective plane)
- One-holed Klein bottle;
- One-holed torus.
- If $\partial \Sigma$ has b commonents, then the Fricke space

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :

- Three-holed sphere;
- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.
- If $\partial \Sigma$ has b components, then the Fricke space

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :
■ Three-holed sphere;

- Two-holed cross-surface (projective plane):
- One-holed Klein bottle;
- One-holed torus.
- If $\partial \Sigma$ has b components, then the Fricke space

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :
■ Three-holed sphere;

- Two-holed cross-surface (projective plane);
- One-holed torus
- If $\partial \Sigma$ has b commonents, then the Fricke space

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :
■ Three-holed sphere;

- Two-holed cross-surface (projective plane);

■ One-holed Klein bottle;

■ If $\partial \Sigma$ has b components, then the Fricke space

The Crooked Plane Conjecture

■ Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :
■ Three-holed sphere;

- Two-holed cross-surface (projective plane);

■ One-holed Klein bottle;
■ One-holed torus.

- If $\partial \Sigma$ has b components, then the Fricke space

The Crooked Plane Conjecture

- Conjecture: Every Margulis spacetime M^{3} admits a fundamental polyhedron bounded by disjoint crooked planes.

■ Corollary: (Tameness) $M^{3} \approx$ open solid handlebody.
■ Proved when $\chi(\Sigma)=-1$ (that is, $\operatorname{rank}\left(\pi_{1}(\Sigma)\right)=2$). (Charette-Drumm-G 2010)
■ Four possible topologies for Σ :
■ Three-holed sphere;

- Two-holed cross-surface (projective plane);

■ One-holed Klein bottle;
■ One-holed torus.
■ If $\partial \Sigma$ has b components, then the Fricke space

$$
\mathfrak{F}(\Sigma) \approx[0, \infty)^{b} \times(0, \infty)^{3-b}
$$

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ three-holed sphere

Charette-Drumm-Margulis functionals of $\partial \Sigma$ completely describe
deformation space as $(0, \infty)^{3}$

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ three-holed sphere

Charette-Drumm-Margulis functionals of $\partial \Sigma$ completely describe deformation space as $(0, \infty)^{3}$.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ two-holed $\mathbb{R} P^{2}$.

Deformation space is quadrilateral bounded by the four lines defined by CDM-functionals of $\partial \Sigma$ and the two orientation-reversing interior simple loops.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed torus

Properness region bounded by infinitely many intervals, each corresponding to simple loop.

Structure of the boundary

■ -points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

- Birman-Series argument \Longrightarrow For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

Structure of the boundary

■ ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).

- Birman-Series argument \Longrightarrow For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

Structure of the boundary

■ ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
■ Birman-Series argument \Longrightarrow For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

Realizing an ideal triangulation by crooked planes

- Properness region tiled by triangles
- Triangles \longleftrightarrow ideal triangulations of Σ
- Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle

Realizing an ideal triangulation by crooked planes

■ Properness region tiled by triangles.

- Triangles \longleftrightarrow ideal triangulations of Σ.

■ Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle.

Realizing an ideal triangulation by crooked planes

■ Properness region tiled by triangles.
■ Triangles \longleftrightarrow ideal triangulations of Σ.

Realizing an ideal triangulation by crooked planes

■ Properness region tiled by triangles.
■ Triangles \longleftrightarrow ideal triangulations of Σ.
■ Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each defined by CDM-invariants of simple orientation-reversing loops, arranged cyclically, and the one orientation-preserving interior simple loop

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each defined by CDM-invariants of simple orientation-reversing loops, arranged cyclically, and the one orientation-preserving interior simple loop.

Happy Birthday, Caroline!!!

