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Deformation spaces of 3-dimensional affine space forms

Complete affine 3-manifolds

A complete affine manifold Mn is a quotient M = R
n/Γ

where Γ is a discrete group of affine transformations acting
properly and freely.

Which kind of groups Γ can occur?

Two types when n = 3:

Γ is solvable: M3 is finitely covered by an iterated fibration of
circles and cells.
Γ is free: M3 is (conjecturally) an open solid handlbody with
complete flat Lorentzian structure.

First examples discovered by Margulis in early 1980’s

Closely related to hyperbolic geometry on surfaces
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Euclidean manifolds

If M compact, then Γ finite extension of a subgroup of
translations Γ ∩ R

n = Λ ∼= Z
n (Bieberbach 1912);

M finitely covered by flat torus R
n/Λ (where Λ ⊂ R

n lattice).
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Consequences of Bieberbach theorems

Only finitely many topological types in each dimension.

Only one commensurability class.

π1(M) is finitely generated.

π1(M) is finitely presented.

χ(M) = 0.
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Example: Hyperbolic torus bundles

Mapping torus M3 of automorphism of R
2/Z

2 induced by
hyperbolic A ∈ SL(2, Z) inherits a complete affine structure.

Flat Lorentz metric (A-invariant quadratic form).

Extend Z
2 to R

2 and A to one-parameter subgroup
exp

(

t log(A)
)

to get solvable Lie group G ∼= R
2

⋊ R acting
simply transitively on E.

M3 ∼= Γ\H is a complete affine solvmanifold.
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Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Proper affine actions

Suppose M = R
n/G is a complete affine manifold:

For M to be a (Hausdorff) smooth manifold, G must act:

Discretely: (G ⊂ Homeo(Rn) discrete);
Freely: (No fixed points);
Properly: (Go to ∞ in G =⇒ go to ∞ in every orbit Gx).

More precisely, the map

G × X −→ X × X

(g , x) 7−→ (gx , x)

is a proper map (preimages of compacta are compact).

Discreteness does not imply properness.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Margulis Spacetimes

Most interesting examples: Margulis (∼ 1980):
G is a free group acting isometrically on E

2+1

L(G) ⊂ O(2, 1) is isomorphic to G .
M3 noncompact complete flat Lorentz 3-manifold.

Associated to every Margulis spacetime M3 is a noncompact
complete hyperbolic surface Σ2.

Closely related to the geometry of M3 is a deformation of the
hyperbolic structure on Σ2.



university-logo

Deformation spaces of 3-dimensional affine space forms

Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R

n?

Equivalently (Tits 1971): “Are there discrete groups other
than virtually polycycic groups which act properly, affinely?”

If NO, Mn finitely covered by iterated S1-fibration
Dimension 3: M3 compact =⇒ M3 finitely covered by
T 2-bundle over S1 (Fried-G 1983),



university-logo

Deformation spaces of 3-dimensional affine space forms

Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R

n?

Equivalently (Tits 1971): “Are there discrete groups other
than virtually polycycic groups which act properly, affinely?”

If NO, Mn finitely covered by iterated S1-fibration
Dimension 3: M3 compact =⇒ M3 finitely covered by
T 2-bundle over S1 (Fried-G 1983),



university-logo

Deformation spaces of 3-dimensional affine space forms

Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R

n?

Equivalently (Tits 1971): “Are there discrete groups other
than virtually polycycic groups which act properly, affinely?”

If NO, Mn finitely covered by iterated S1-fibration
Dimension 3: M3 compact =⇒ M3 finitely covered by
T 2-bundle over S1 (Fried-G 1983),



university-logo

Deformation spaces of 3-dimensional affine space forms

Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R

n?

Equivalently (Tits 1971): “Are there discrete groups other
than virtually polycycic groups which act properly, affinely?”

If NO, Mn finitely covered by iterated S1-fibration
Dimension 3: M3 compact =⇒ M3 finitely covered by
T 2-bundle over S1 (Fried-G 1983),



university-logo

Deformation spaces of 3-dimensional affine space forms

Evidence?

Milnor offers the following results as possible “evidence” for a
negative answer to this question.

Connected Lie group G admits a proper affine action
⇐⇒ G is amenable (compact-by-solvable).

Every virtually polycyclic group admits a proper affine action.
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An idea for a counterexample...

Clearly a geometric problem: free groups act properly by
isometries on H3 hence by diffeomorphisms of E

3

These actions are not affine.

Milnor suggests:

Start with a free discrete subgroup of O(2, 1) and
add translation components to obtain a group of
affine transformations which acts freely.
However it seems difficult to decide whether the

resulting group action is properly discontinuous.
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Lorentzian and Hyperbolic Geometry

R
2,1 is the 3-dimensional real vector space with inner product:





x1

y1

z1



 ·





x2

y2

z2



 := x1x2 + y1y2 − z1z2

and Minkowski space E2,1 is the corresponding affine space, a
simply connected geodesically complete Lorentzian manifold.

The Lorentz metric tensor is dx2 + dy2 − dz2.

Isom(E2,1) is the semidirect product of R
2,1 (the vector group

of translations) with the orthogonal group O(2, 1).

The stabilizer of the origin is the group O(2, 1) which
preserves the hyperbolic plane

H2 := {v ∈ R
2,1 | v · v = −1, z > 0}.
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A Schottky group

g
1

g
2

A
1
−

A
2
+

A 2
+

A2
−

Generators g1, g2 pair half-spaces A−
i
−→ H2 \ A+

i
.

g1, g2 freely generate discrete group.

Action proper with fundamental domain H2 \
⋃

A±
i
.
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Flat Lorentz manifolds

Suppose that Γ ⊂ Aff(R3) acts properly and is not solvable.

(Fried-G 1983): Let Γ
L
−→ GL(3, R) be the linear part.

L(Γ) (conjugate to) a discrete subgroup of O(2, 1);
L injective.

Homotopy equivalence

M3 := E2,1/Γ −→ Σ := H2/L(Γ)

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact .

Γ free;

Milnor’s suggestion is the only way to construct examples
in dimension three.
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Cyclic groups

Most elements γ ∈ Γ are boosts, affine deformations of
hyperbolic elements of O(2, 1). A fundamental domain is the
slab bounded by two parallel planes.

A boost identifying two parallel planes
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Closed geodesics and holonomy

Each such element leaves invariant a unique (spacelike) line,
whose image in E2,1/Γ is a closed geodesic. Like hyperbolic
surfaces, most loops are freely homotopic to (unique) closed
geodesics.

γ =





eℓ(γ) 0 0
0 1 0

0 0 e−ℓ(γ)









0
α(γ)

0





ℓ(γ) ∈ R
+: geodesic length of γ in Σ2

α(γ) ∈ R: (signed) Lorentzian length of γ in M3.
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Geodesics on Σ

The unique γ-invariant geodesic Cγ inherits a natural
orientation and metric.

γ translates along Cγ by α(γ).

Closed geodesics on Σ ←→ closed spacelike geodesics on M3.

Orbit equivalence: Recurrent orbits of geodesic flow on UΣ
←→ Recurrent spacelike geodesics on M3. (G-Labourie 2011)
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Deformation spaces of 3-dimensional affine space forms

Slabs don’t work!

In H2, the half-spaces A±
i

are disjoint;

Their complement is a fundamental domain.

In affine space, half-spaces disjoint ⇒ parallel!

Complements of slabs always intersect,

Unsuitable for building Schottky groups!
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Drumm’s Schottky groups

The classical construction of Schottky groups fails using affine
half-spaces and slabs. Drumm’s geometric construction uses
crooked planes, PL hypersurfaces adapted to the Lorentz geometry
which bound fundamental polyhedra for Schottky groups.
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Crooked polyhedron for a boost

Start with a hyperbolic slab in H2.

Extend into light cone in E2,1;

Extend outside light cone in E2,1;

Action proper except at the origin and two null half-planes.
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Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.
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Images of crooked planes under an affine deformation

Adding translations frees up the action

— which is now proper on all of E2,1.



university-logo

Deformation spaces of 3-dimensional affine space forms

Images of crooked planes under an affine deformation

Adding translations frees up the action

— which is now proper on all of E2,1.



university-logo

Deformation spaces of 3-dimensional affine space forms

Images of crooked planes under an affine deformation

Adding translations frees up the action

— which is now proper on all of E2,1.



university-logo

Deformation spaces of 3-dimensional affine space forms

A foliation by crooked planes
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Linear action of Schottky group

Crooked polyhedra tile H2 for subgroup of O(2, 1).
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Affine action of Schottky group

Carefully chosen affine deformation acts properly on E2,1.
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Affine action of level 2 congruence subgroup of GL(2, Z)

Proper affine deformations exist even for lattices (Drumm).
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An arithmetic example

Minkowski space compactifies into the space of Lagrangian
2-planes in a 4-dimensional symplectic R-vector space (V , ω).

Choose two transverse Lagrangian 2-planes L0 and L∞.

Minkowski 2 + 1-space E2,1 is the space of Lagrangian
2-planes L ⊂ V transverse to L∞.

Graphs of symmetric maps L0
f
−→ L∞.

Lorentzian inner product defined by f 7→ Det(f )

R
2,1 ←→

{

2× 2 symmetric matrices
}

.
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Minkowski space inside Sp(4, R)

L0 and L∞ dual under symplectic form L0 × L∞
ω
−→ R

g ∈ GL(L∞) induces linear symplectomorphism of
V = L∞ ⊕ L0, represented as block upper-triangular matrices:

g ⊕ (g †)−1 =

[

g 0
0 (g †)−1

]

Translations of Minkowski space correspond to shears: (fixing
L∞ and L/L∞):

[

I2 f
0 I2

]

where L0
f
−→ L∞ is a symmetric linear map.
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Affine deformation of SL(2, Z)

For i = 1, 2, 3 choose three positive integers µ1, µ2, µ3. Then
the subgroup Γ of Sp(4, Z) generated by









−1 −2 µ1 + µ2 − µ3 0
0 −1 2µ1 −µ1

0 0 −1 0
0 0 2 −1









,









−1 0 −µ2 −2µ2

2 −1 0 0
0 0 −1 −2
0 0 0 −1









is a proper affine deformation of a rank two free group.

M3 genus two handlebody and Σ2 triply–punctured sphere.
Depicted example is µ1 = µ2 = µ3 = 1.
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Affine action of level 2 congruence subgroup of GL(2, Z)

Symmetrical example: µ1 = µ2 = µ3 = 1.
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The linear part

Mess’s theorem (Σ noncompact) is the only obstruction for
the existence of a proper affine deformation:

(Drumm 1990) Every noncompact complete hyperbolic
surface Σ (with π1(Σ) finitely generated) admits a proper
affine deformation.

M3 homeomorphic to solid handlebody.
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Marked Signed Lorentzian Length Spectrum

For every affine deformation Γ
ρ=(L,u)
−−−−−→ Isom(E2,1)0, define

αu(γ) ∈ R as the (signed) displacement of γ along the unique
γ-invariant geodesic Cγ , when L(γ) is hyperbolic.

αu is a class function on Γ;

When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

The Margulis invariant Γ
α
−→ R determines Γ up to conjugacy

(Charette-Drumm 2004).
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Opposite Sign Lemma

(Margulis 1983) Let ρ be a proper affine deformation.

αu(γ) > 0 ∀γ 6= 1, or

αu(γ) < 0 ∀γ 6= 1.
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Deformation spaces of 3-dimensional affine space forms

Affine deformations

Start with a Fuchsian group Γ0 ⊂ O(2, 1). An affine
deformation is a representation ρ = ρu with image Γ = Γu

Isom(R2,1)

L
��

Γ0

ρ
::

u

u

u

u

u
�

�

// O(2, 1)

determined by its translational part

u ∈ Z 1(Γ0, R
2,1).

Conjugating ρ by a translation⇐⇒ adding a coboundary to u.

Translational conjugacy classes of affine deformations of Γ0

form the vector space H1(Γ0, R
2,1).
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Deformation spaces of 3-dimensional affine space forms

Deformations of hyperbolic structures

Translational conjugacy classes of affine deformations of Γ0

←→ infinitesimal deformations of the hyperbolic surface Σ.

Infinitesimal deformations of the hyperbolic structure on Σ
comprise H1(Σ, sl(2, R)) ∼= H1(Γ0, R

2,1).
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Deformation spaces of 3-dimensional affine space forms

Deformation-theoretic interpretation of Margulis invariant

Suppose u ∈ Z 1(Γ0, R
2,1) defines an infinitesimal deformation

tangent to a smooth deformation Σt of Σ.

The marked length spectrum ℓt of Σt varies smoothly with t.
Margulis’s invariant αu(γ) represents the derivative

d

dt

∣

∣

∣

∣

t=0

ℓt(γ)

(G-Margulis 2000).

Γu is proper =⇒ all closed geodesics lengthen (or shorten)
under the deformation Σt .

Converse: When Σ is homeomorphic to a three-holed sphere
or two-holed RP2.
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Deformation spaces of 3-dimensional affine space forms

Extensions of the Margulis invariant

αu extends to parabolic L(γ) given decorations of the cusps
(Charette-Drumm 2005).

(Margulis 1983) αu(γ
n) = |n|αu(γ).

Therefore αu(γ)/ℓ(γ) is constant on cyclic (hyperbolic)
subgroups of Γ.
Such cyclic subgroups correspond to periodic orbits of the
geodesic flow Φ of UΣ.
Margulis invariant extends to continuous functional Ψu(µ) on
the space C(Σ) of Φ-invariant probability measures µ on UΣ.
(G-Labourie-Margulis 2010)

When L(Γ) is convex cocompact, Γu acts properly ⇐⇒
Ψu(µ) 6= 0 for all invariant probability measures µ.

C(Σ) connected =⇒ Either Ψu(µ) are all positive or all
negative.
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Deformation spaces of 3-dimensional affine space forms

The Deformation Space

Deformation space of marked Margulis space-times
corresponding to surface S fibers over space of marked
hyperbolic structures S −→ Σ on S .

Fiber is subspace of H1(Σ, R2,1) (all affine deformations)
consisting of proper affine deformations Σ.

Nonempty (Drumm 1989).

(G-Labourie-Margulis 2010) Convex domain in H1(Σ, R2,1)
defined by generalized Margulis functionals of measured
geodesic laminations on Σ.
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Deformation spaces of 3-dimensional affine space forms

The Crooked Plane Conjecture

Conjecture: Every Margulis spacetime M3 admits a
fundamental polyhedron bounded by disjoint crooked planes.

Corollary: (Tameness) M3 ≈ open solid handlebody.

Proved when χ(Σ) = −1 (that is, rank(π1(Σ)) = 2).
(Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;
Two-holed cross-surface (projective plane);
One-holed Klein bottle;
One-holed torus.

If ∂Σ has b components, then the Fricke space

F(Σ) ≈ [0,∞)b × (0,∞)3−b.
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Deformation spaces of 3-dimensional affine space forms

Functionals α(γ) when Σ ≈ three-holed sphere

Charette-Drumm-Margulis functionals of ∂Σ completely describe
deformation space as (0,∞)3.
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Deformation spaces of 3-dimensional affine space forms

Functionals α(γ) when Σ ≈ two-holed RP
2.

Deformation space is quadrilateral bounded by the four lines
defined by CDM-functionals of ∂Σ and the two
orientation-reversing interior simple loops.
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Deformation spaces of 3-dimensional affine space forms

Functionals α(γ) when Σ ≈ one-holed torus

Properness region bounded by infinitely many intervals, each
corresponding to simple loop.
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Deformation spaces of 3-dimensional affine space forms

Structure of the boundary

∂-points lie on intervals or are points of strict convexity
(irrational laminations) (G-Margulis-Minsky).

Birman-Series argument =⇒ For 1-holed torus, these points
of strict convexity have Hausdorff dimension zero.
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Deformation spaces of 3-dimensional affine space forms

Realizing an ideal triangulation by crooked planes

Properness region tiled by triangles.

Triangles ←→ ideal triangulations of Σ.

Flip of ideal triangulation ←→ moving to adjacent triangle.
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Deformation spaces of 3-dimensional affine space forms

Functionals α(γ) when Σ ≈ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each
defined by CDM-invariants of simple orientation-reversing loops,
arranged cyclically, and the one orientation-preserving interior
simple loop.
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Deformation spaces of 3-dimensional affine space forms

Happy Birthday,
Caroline!!!


