Deformation spaces of 3-dimensional affine space forms

William M. Goldman

Department of Mathematics University of Maryland

Hyperbolicity in Geometry, Topology and Dynamics A workshop and celebration of Caroline Series' 60th birthday University of Warwick 26 July, 2011

- A complete affine manifold Mⁿ is a quotient M = ℝⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - F is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - F is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = ℝⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = Rⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- A complete affine manifold Mⁿ is a quotient M = ℝⁿ/Γ where Γ is a discrete group of affine transformations acting properly and freely.
- Which kind of groups Γ can occur?
- Two types when n = 3:
 - Γ is solvable: M³ is finitely covered by an iterated fibration of circles and cells.
 - Γ is free: M³ is (conjecturally) an open solid handlbody with complete flat Lorentzian structure.

- First examples discovered by Margulis in early 1980's
- Closely related to hyperbolic geometry on surfaces

- If M compact, then Γ finite extension of a subgroup of translations Γ ∩ ℝⁿ = Λ ≅ ℤⁿ (Bieberbach 1912);
- *M* finitely covered by flat torus \mathbb{R}^n / Λ (where $\Lambda \subset \mathbb{R}^n$ lattice).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 If M compact, then Γ finite extension of a subgroup of translations Γ ∩ ℝⁿ = Λ ≅ ℤⁿ (Bieberbach 1912);

■ *M* finitely covered by flat torus \mathbb{R}^n / Λ (where $\Lambda \subset \mathbb{R}^n$ lattice).

 If M compact, then Γ finite extension of a subgroup of translations Γ ∩ ℝⁿ = Λ ≅ ℤⁿ (Bieberbach 1912);

■ *M* finitely covered by flat torus \mathbb{R}^n / Λ (where $\Lambda \subset \mathbb{R}^n$ lattice).

- If M compact, then Γ finite extension of a subgroup of translations Γ ∩ ℝⁿ = Λ ≅ ℤⁿ (Bieberbach 1912);
- *M* finitely covered by flat torus \mathbb{R}^n / Λ (where $\Lambda \subset \mathbb{R}^n$ lattice).

Only finitely many topological types in each dimension.

- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- $\chi(M) = 0.$

Only finitely many topological types in each dimension.

- Only one commensurability class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.

Only finitely many topological types in each dimension.

- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- $\chi(M) = 0.$

Only finitely many topological types in each dimension.

- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- $\quad \quad \ \ \, \chi(M)=0.$

Only finitely many topological types in each dimension.

- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- $\quad \quad = \chi(M) = 0.$

Only finitely many topological types in each dimension.

- Only one *commensurability* class.
- $\pi_1(M)$ is finitely generated.
- $\pi_1(M)$ is finitely presented.
- $\chi(M) = 0.$

- Mapping torus M³ of automorphism of ℝ²/ℤ² induced by hyperbolic A ∈ SL(2,ℤ) inherits a complete affine structure.
 Flat Lorentz metric (A-invariant quadratic form).
- Extend Z² to R² and A to one-parameter subgroup exp (t log(A)) to get solvable Lie group G ≅ R² ⋊ R acting simply transitively on E.

■ Mapping torus M³ of automorphism of ℝ²/ℤ² induced by hyperbolic A ∈ SL(2,ℤ) inherits a complete affine structure.

Flat Lorentz metric (*A*-invariant quadratic form).

■ Extend Z² to R² and A to one-parameter subgroup exp (t log(A)) to get solvable Lie group G ≅ R² ⋊ R acting simply transitively on E.

- Mapping torus M³ of automorphism of ℝ²/ℤ² induced by hyperbolic A ∈ SL(2,ℤ) inherits a complete affine structure.
 - Flat Lorentz metric (A-invariant quadratic form).
- Extend Z² to R² and A to one-parameter subgroup exp (t log(A)) to get solvable Lie group G ≅ R² ⋊ R acting simply transitively on E.

■ Mapping torus M³ of automorphism of ℝ²/ℤ² induced by hyperbolic A ∈ SL(2,ℤ) inherits a complete affine structure.

Flat Lorentz metric (*A*-invariant quadratic form).

Extend Z² to R² and A to one-parameter subgroup exp (t log(A)) to get solvable Lie group G ≃ R² ⋊ R acting simply transitively on E.

■ Mapping torus M³ of automorphism of ℝ²/ℤ² induced by hyperbolic A ∈ SL(2,ℤ) inherits a complete affine structure.

Flat Lorentz metric (*A*-invariant quadratic form).

Extend Z² to R² and A to one-parameter subgroup exp (t log(A)) to get solvable Lie group G ≃ R² ⋊ R acting simply transitively on E.

Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

- For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
 - Freely: (No fixed points);
 - Property: (Go to co in $G \Longrightarrow$ go to co in every orbit Gx).

Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

■ For *M* to be a (Hausdorff) smooth manifold, *G* must act:
 ■ Discretely: (*G* ⊂ Homeo(ℝⁿ) discrete);
 ■ Freely: (No fixed points);
 ■ Properly: (Go to ∞ in *G* ⇒ go to ∞ in every orbit *Gx*).

$G \times X \longrightarrow X \times X$

is a proper map (preimages of compacta are compact).

• Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$

Freely: (No fixed points);

Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

is a proper map (preimages of compacta are compact).

• Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$

Freely: (No fixed points);

Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

is a proper map (preimages of compacta are compact).

• Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

- Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
- Freely: (No fixed points);

Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

is a proper map (preimages of compacta are compact).

Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

- Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
- Freely: (No fixed points);
- Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$
$$(g, x) \longmapsto (gx, x)$$

is a proper map (preimages of compacta are compact).

Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

- Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
- Freely: (No fixed points);
- Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g, x) \longmapsto (gx, x)$

is a proper map (preimages of compacta are compact).

Suppose $M = \mathbb{R}^n/G$ is a complete affine manifold:

For *M* to be a (Hausdorff) smooth manifold, *G* must act:

- Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete});$
- Freely: (No fixed points);
- Properly: (Go to ∞ in $G \Longrightarrow$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$

 $(g, x) \longmapsto (gx, x)$

is a proper map (preimages of compacta are compact).

- Most interesting examples: Margulis (~ 1980):
 G is a free group acting isometrically on E²⁺¹
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

■ Most interesting examples: Margulis (~ 1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(G) \subset O(2,1)$ is isomorphic to G.
 - M³ noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

■ Most interesting examples: Margulis (~ 1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(G) \subset O(2,1)$ is isomorphic to G.
 - *M*³ noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

■ Most interesting examples: Margulis (~ 1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(G) \subset O(2,1)$ is isomorphic to G.
 - M³ noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².
Margulis Spacetimes

- Most interesting examples: Margulis (~ 1980):
 - G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

Margulis Spacetimes

- Most interesting examples: Margulis (~ 1980):
 - G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

Margulis Spacetimes

- Most interesting examples: Margulis (~ 1980):
 - G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $L(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M³ is a noncompact complete hyperbolic surface Σ².
- Closely related to the geometry of M³ is a *deformation* of the hyperbolic structure on Σ².

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

 Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?" If NO, M^o finitely covered by iterated S¹ fibration Dimension 3: M⁰ compact may M⁰ finitely covered by 7^o bundle over S¹ (Fired G 1983).

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, *Mⁿ* finitely covered by iterated *S*¹-fibration
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by
 - T^2 -bundle over S^1 (Fried-G 1983)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

- Equivalently (Tits 1971): "Are there discrete groups other than virtually polycycic groups which act properly, affinely?"
 - If NO, M^n finitely covered by iterated S^1 -fibration
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2 -bundle over S^1 (Fried-G 1983),

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action ⇐⇒ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action ⇔ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Connected Lie group G admits a proper affine action ⇔ G is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

 Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³

Milnor suggests:

Start with a free discrete subgroup of O(2, 1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・

■ Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of ℝ³

These actions are not affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of E³
 These actions are *not* affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

■ Clearly a geometric problem: free groups act properly by isometries on H³ hence by diffeomorphisms of ℝ³

• These actions are *not* affine.

Milnor suggests:

Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.

\square $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is dx² + dy² dz²
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2, 1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}$$

\square $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}$$

\square $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}$$

 $\blacksquare \ \mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 \ := \ \{ v \in \mathbb{R}^{2,1} \ | \ v \cdot v = -1, z > 0 \}$$

 $\blacksquare \ \mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2$$

- The Lorentz metric tensor is $dx^2 + dy^2 dz^2$.
- Isom(E^{2,1}) is the semidirect product of ℝ^{2,1} (the vector group of translations) with the orthogonal group O(2,1).
- The stabilizer of the origin is the group O(2,1) which preserves the hyperbolic plane

$$\mathsf{H}^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.$$

Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

 \blacksquare g_1, g_2 freely generate discrete group.

Action proper with fundamental domain $H^2 \setminus \bigcup A_{\pm}^{\pm}$.

Generators g₁, g₂ pair half-spaces A_i⁻ → H² \ A_i⁺.
 g₁, g₂ freely generate discrete group.
 Action proper with fundamental domain H² \ UA[±].

• Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

\square g_1, g_2 freely generate discrete group.

Action proper with fundamental domain $H^2 \setminus \bigcup A^{\pm}$.

- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.
- **g**₁, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup_{i=1}^{\infty} A_{i=1}^{\pm}$

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let F → GL(3, ℝ) be the *linear part*. L(F) (conjugate to) a *discrete* subgroup of O(2, 1). Linjective
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

Mess (1990): 2 not compact ...

- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let Γ → GL(3, ℝ) be the *linear part*.
 L(Γ) (conjugate to) a *discrete* subgroup of O(2, 1);
 L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{L} GL(3, \mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 L injective.
- Homotopy equivalence

$$M^3:=\mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ \Sigma:=\mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset \mathsf{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 L injective.

Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact.

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is not solvable.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 L injective.

Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact.

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $L(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3:=\mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ \Sigma:=\mathsf{H}^2/\mathsf{L}(\Gamma)$$

where $\boldsymbol{\Sigma}$ complete hyperbolic surface.

■ Mess (1990): ∑ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - $L(\Gamma)$ (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3:=\mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ \Sigma:=\mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3:=\mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ \Sigma:=\mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact .
- Γ free;
- Milnor's suggestion is the only way to construct examples in dimension three.

Suppose that $\Gamma \subset Aff(\mathbb{R}^3)$ acts properly and is *not solvable*.

- (Fried-G 1983): Let $\Gamma \xrightarrow{\mathsf{L}} \mathsf{GL}(3,\mathbb{R})$ be the *linear part*.
 - L(Γ) (conjugate to) a *discrete* subgroup of O(2,1);
 - L injective.
- Homotopy equivalence

$$M^3 := \mathsf{E}^{2,1}/\Gamma \ \longrightarrow \ \Sigma := \mathsf{H}^2/\mathsf{L}(\Gamma)$$

where Σ complete hyperbolic surface.

Mess (1990): Σ not compact .

Γ free;

Milnor's suggestion is the only way to construct examples in dimension three.

Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.

A boost identifying two parallel planes, ..., ...

Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.

A boost identifying two parallel planes,

Cyclic groups

■ Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.

A boost identifying two parallel planes

Closed geodesics and holonomy

Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.
Closed geodesics and holonomy

Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.

Closed geodesics and holonomy

Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
 α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.

Closed geodesics and holonomy

Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Like hyperbolic surfaces, most loops are freely homotopic to (unique) closed geodesics.

$$\gamma = egin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} egin{bmatrix} 0 \ lpha(\gamma) \ 0 \end{bmatrix}$$

ℓ(γ) ∈ ℝ⁺: geodesic length of γ in Σ²
α(γ) ∈ ℝ: (signed) Lorentzian length of γ in M³.

- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.
 - γ translates along C_{γ} by $\alpha(\gamma)$.
- Closed geodesics on $\Sigma \longleftrightarrow$ closed *spacelike* geodesics on M^3 .
- Orbit equivalence: Recurrent orbits of geodesic flow on $U\Sigma$ \leftrightarrow Recurrent *spacelike* geodesics on M^3 . (G-Labourie 2011)

The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along C_{γ} by $\alpha(\gamma)$.

Closed geodesics on $\Sigma \longleftrightarrow$ closed *spacelike* geodesics on M^3 .

• Orbit equivalence: Recurrent orbits of geodesic flow on $U\Sigma$ \longleftrightarrow Recurrent *spacelike* geodesics on M^3 . (G-Labourie 2011)

The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.

• γ translates along C_{γ} by $\alpha(\gamma)$.

Closed geodesics on $\Sigma \longleftrightarrow$ closed *spacelike* geodesics on M^3 .

• Orbit equivalence: Recurrent orbits of geodesic flow on $U\Sigma$ \longleftrightarrow Recurrent *spacelike* geodesics on M^3 . (G-Labourie 2011)

- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.
 - γ translates along C_{γ} by $\alpha(\gamma)$.
- Closed geodesics on $\Sigma \longleftrightarrow$ closed *spacelike* geodesics on M^3 .
- Orbit equivalence: Recurrent orbits of geodesic flow on UΣ ←→ Recurrent spacelike geodesics on M³. (G-Labourie 2011)

- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric.
 - γ translates along C_{γ} by $\alpha(\gamma)$.
- Closed geodesics on $\Sigma \longleftrightarrow$ closed *spacelike* geodesics on M^3 .
- Orbit equivalence: Recurrent orbits of geodesic flow on $U\Sigma$ \leftrightarrow Recurrent *spacelike* geodesics on M^3 . (G-Labourie 2011)

- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

In H², the half-spaces A_i^{\pm} are disjoint;

- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

白人(個人(日)(日))日

- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Drumm's Schottky groups

The classical construction of Schottky groups fails using affine half-spaces and slabs. Drumm's geometric construction uses *crooked planes*, PL hypersurfaces adapted to the Lorentz geometry which bound fundamental polyhedra for Schottky groups.

- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in E^{2,1};
- Extend outside light cone in $E^{2,1}$;
- Action proper except at the origin and two null half-planes.

Start with a hyperbolic slab in H^2 .

- Extend into light cone in E^{2,1};
- Extend outside light cone in E^{2,1};
- Action proper except at the origin and two null half-planes.

- Start with a hyperbolic slab in H^2 .
- Extend into light cone in E^{2,1};
- Extend outside light cone in $E^{2,1}$;
- Action proper except at the origin and two null half-planes.

- Start with a *hyperbolic slab* in H².
- Extend into light cone in E^{2,1};
- Extend outside light cone in $E^{2,1}$;

Action proper except at the origin and two null half-planes.

- Start with a *hyperbolic slab* in H^2 .
- Extend into light cone in E^{2,1};
- Extend outside light cone in E^{2,1};
- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group

・ロト ・聞ト ・ヨト ・ヨト

3

The resulting tessellation for a linear boost.

Images of crooked planes under a linear cyclic group

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

The resulting tessellation for a linear boost.

Images of crooked planes under an affine deformation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Adding translations frees up the action
 — which is now proper on *all* of E^{2,1}.

Images of crooked planes under an affine deformation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Adding translations frees up the action

• — which is now proper on *all* of $E^{2,1}$.

Images of crooked planes under an affine deformation

・ロ・・ 日・・ エ・・ 日・ ・ つくつ

Adding translations frees up the action
 — which is now proper on *all* of E^{2,1}.

A foliation by crooked planes

Linear action of Schottky group

Crooked polyhedra tile H² for subgroup of O(2, 1).

Linear action of Schottky group

Crooked polyhedra tile H² for subgroup of O(2, 1).

Affine action of Schottky group

Carefully chosen affine deformation acts properly on $E^{2,1}$.

Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

Proper affine deformations exist even for lattices (Drumm).

Minkowski space compactifies into the space of Lagrangian 2-planes in a 4-dimensional symplectic R-vector space (V,ω).

- Choose two transverse Lagrangian 2-planes L_0 and L_∞ .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .
 - Graphs of symmetric maps $L_0 \xrightarrow{i} L_{\infty}$
 - Lorentzian inner product defined by $f \mapsto \text{Det}(f)$
- $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$

Minkowski space compactifies into the space of Lagrangian
 2-planes in a 4-dimensional symplectic R-vector space (V, ω).

- Choose two transverse Lagrangian 2-planes L_0 and L_∞ .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .
 - Graphs of symmetric maps $L_0 \xrightarrow{i} L_{\infty}$
 - Lorentzian inner product defined by $f \mapsto \text{Det}(f)$
- $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$

- Choose two transverse Lagrangian 2-planes L_0 and L_{∞} .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .
 - Graphs of symmetric maps $L_0 \rightarrow L_\infty$.
 - Lorentzian inner product defined by $f \mapsto \text{Det}(f)$
- $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$

- Choose two transverse Lagrangian 2-planes L_0 and L_{∞} .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .

Graphs of symmetric maps $L_0 \xrightarrow{f} L_{\infty}$.

• Lorentzian inner product defined by $f \mapsto \text{Det}(f)$

 $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$

- Choose two transverse Lagrangian 2-planes L_0 and L_{∞} .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .
 - Graphs of symmetric maps $L_0 \xrightarrow{f} L_{\infty}$.
 - Lorentzian inner product defined by $f \mapsto \text{Det}(f)$
- $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$

- Choose two transverse Lagrangian 2-planes L_0 and L_{∞} .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .
 - Graphs of symmetric maps $L_0 \xrightarrow{f} L_\infty$.
 - Lorentzian inner product defined by $f \mapsto \text{Det}(f)$

 $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$
An arithmetic example

- Choose two transverse Lagrangian 2-planes L_0 and L_{∞} .
- Minkowski 2 + 1-space $E^{2,1}$ is the space of Lagrangian 2-planes $L \subset V$ transverse to L_{∞} .
 - Graphs of symmetric maps $L_0 \xrightarrow{f} L_\infty$.
 - Lorentzian inner product defined by $f \mapsto \text{Det}(f)$
- $\blacksquare \mathbb{R}^{2,1} \longleftrightarrow \{ 2 \times 2 \text{ symmetric matrices } \}.$

L₀ and L_∞ dual under symplectic form L₀ × L_∞ → ℝ
 g ∈ GL(L_∞) induces *linear symplectomorphism* of V = L_∞ ⊕ L₀, represented as block upper-triangular matrices:

$$g\oplus (g^\dagger)^{-1} \;=\; egin{bmatrix} g & 0 \ 0 & (g^\dagger)^{-1} \end{bmatrix}$$

Translations of Minkowski space correspond to *shears:* (fixing L_{∞} and L/L_{∞}):

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $L_0 \xrightarrow{f} L_\infty$ is a symmetric linear map.

• L_0 and L_∞ dual under symplectic form $L_0 \times L_\infty \xrightarrow{\omega} \mathbb{R}$

• $g \in GL(L_{\infty})$ induces *linear symplectomorphism* of $V = L_{\infty} \oplus L_0$, represented as block upper-triangular matrices:

$$g\oplus (g^\dagger)^{-1} \;=\; egin{bmatrix} g & 0 \ 0 & (g^\dagger)^{-1} \end{bmatrix}$$

Translations of Minkowski space correspond to *shears:* (fixing L_{∞} and L/L_{∞}):

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $L_0 \xrightarrow{f} L_\infty$ is a symmetric linear map.

- L_0 and L_∞ dual under symplectic form $L_0 \times L_\infty \xrightarrow{\omega} \mathbb{R}$
- $g \in GL(L_{\infty})$ induces *linear symplectomorphism* of $V = L_{\infty} \oplus L_0$, represented as block upper-triangular matrices:

$$g\oplus (g^\dagger)^{-1} \;=\; egin{bmatrix} g & 0 \ 0 & (g^\dagger)^{-1} \end{bmatrix}$$

Translations of Minkowski space correspond to *shears:* (fixing L_{∞} and L/L_{∞}):

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- L_0 and L_∞ dual under symplectic form $L_0 \times L_\infty \xrightarrow{\omega} \mathbb{R}$
- $g \in GL(L_{\infty})$ induces *linear symplectomorphism* of $V = L_{\infty} \oplus L_0$, represented as block upper-triangular matrices:

$$g\oplus (g^\dagger)^{-1} \;=\; egin{bmatrix} g & 0 \ 0 & (g^\dagger)^{-1} \end{bmatrix}$$

Translations of Minkowski space correspond to *shears:* (fixing L_{∞} and L/L_{∞}):

$$\begin{bmatrix} I_2 & f \\ 0 & I_2 \end{bmatrix}$$

where $L_0 \xrightarrow{f} L_\infty$ is a symmetric linear map.

■ For i = 1, 2, 3 choose three positive integers μ₁, μ₂, μ₃. Then the subgroup Γ of Sp(4, Z) generated by

$$\begin{bmatrix} -1 & -2 & \mu_1 + \mu_2 - \mu_3 & 0 \\ 0 & -1 & 2\mu_1 & -\mu_1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & -\mu_2 & -2\mu_2 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

is a proper affine deformation of a rank two free group.

- M^3 genus two handlebody and Σ^2 triply-punctured sphere.
- Depicted example is $\mu_1 = \mu_2 = \mu_3 = 1$

For i = 1, 2, 3 choose three positive integers μ₁, μ₂, μ₃. Then the subgroup Γ of Sp(4, ℤ) generated by

$$\begin{bmatrix} -1 & -2 & \mu_1 + \mu_2 - \mu_3 & 0 \\ 0 & -1 & 2\mu_1 & -\mu_1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & -\mu_2 & -2\mu_2 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

is a proper affine deformation of a rank two free group.

M³ genus two handlebody and Σ² triply-punctured sphere.
 Depicted example is μ₁ = μ₂ = μ₃ = 1.

For i = 1, 2, 3 choose three positive integers μ₁, μ₂, μ₃. Then the subgroup Γ of Sp(4, ℤ) generated by

$$\begin{bmatrix} -1 & -2 & \mu_1 + \mu_2 - \mu_3 & 0 \\ 0 & -1 & 2\mu_1 & -\mu_1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & -\mu_2 & -2\mu_2 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

is a proper affine deformation of a rank two free group.

M³ genus two handlebody and Σ² triply-punctured sphere.
 Depicted example is μ₁ = μ₂ = μ₃ = 1.

For i = 1, 2, 3 choose three positive integers μ₁, μ₂, μ₃. Then the subgroup Γ of Sp(4, ℤ) generated by

$$\begin{bmatrix} -1 & -2 & \mu_1 + \mu_2 - \mu_3 & 0 \\ 0 & -1 & 2\mu_1 & -\mu_1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & -\mu_2 & -2\mu_2 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

is a proper affine deformation of a rank two free group.

- M^3 genus two handlebody and Σ^2 triply-punctured sphere.
- Depicted example is $\mu_1 = \mu_2 = \mu_3 = 1$.

Affine action of level 2 congruence subgroup of $GL(2,\mathbb{Z})$

Symmetrical example: $\mu_1 = \mu_2 = \mu_3 = 1$.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with π₁(Σ) finitely generated) admits a proper affine deformation.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with π₁(Σ) finitely generated) admits a proper affine deformation.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with π₁(Σ) finitely generated) admits a proper affine deformation.

- Mess's theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Every noncompact complete hyperbolic surface Σ (with π₁(Σ) finitely generated) admits a proper affine deformation.

- For every affine deformation $\Gamma \xrightarrow{\rho = (L,u)}$ Isom $(E^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $L(\gamma)$ is hyperbolic.
- α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- The Margulis invariant Γ → ℝ determines Γ up to conjugacy (Charette-Drumm 2004).

- For every affine deformation $\Gamma \xrightarrow{\rho = (L,u)} \text{Isom}(\mathsf{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $L(\gamma)$ is hyperbolic.
- α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- The Margulis invariant Γ → ℝ determines Γ up to conjugacy (Charette-Drumm 2004).

- For every affine deformation $\Gamma \xrightarrow{\rho = (L,u)} \text{Isom}(\mathsf{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathsf{L}(\gamma)$ is hyperbolic.
- α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- The Margulis invariant Γ → ℝ determines Γ up to conjugacy (Charette-Drumm 2004).

- For every affine deformation $\Gamma \xrightarrow{\rho = (L,u)} \text{Isom}(\mathsf{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $L(\gamma)$ is hyperbolic.
- α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- The Margulis invariant Γ → ℝ determines Γ up to conjugacy (Charette-Drumm 2004).

- For every affine deformation $\Gamma \xrightarrow{\rho = (L,u)} \text{Isom}(\mathsf{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ -invariant geodesic C_{γ} , when $\mathsf{L}(\gamma)$ is hyperbolic.
- α_u is a class function on Γ ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ ;
- The Margulis invariant Γ → ℝ determines Γ up to conjugacy (Charette-Drumm 2004).

Opposite Sign Lemma

(Margulis 1983) Let ρ be a *proper* affine deformation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

•
$$\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$$
, or

•
$$\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1.$$

Start with a Fuchsian group Γ₀ ⊂ O(2,1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

Start with a Fuchsian group Γ₀ ⊂ O(2, 1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

$$|\text{som}(\mathbb{R}^{2,1})|$$

$$\downarrow^{\rho} \checkmark^{\pi} \downarrow^{L}$$

$$\downarrow^{\sigma} O(2,1)$$

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

Start with a Fuchsian group Γ₀ ⊂ O(2, 1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

$$|\text{som}(\mathbb{R}^{2,1})) \xrightarrow{\rho} \sqrt{\frac{1}{2}} \downarrow^{L} \downarrow^{L} \downarrow^{-0} \xrightarrow{\sim} O(2,1)$$

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

Start with a Fuchsian group Γ₀ ⊂ O(2, 1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

$$|\text{som}(\mathbb{R}^{2,1})|$$

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

Deformations of hyperbolic structures

- Infinitesimal deformations of the hyperbolic structure on Σ comprise H¹(Σ, sl(2, ℝ)) ≅ H¹(Γ₀, ℝ^{2,1}).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Deformations of hyperbolic structures

 $\label{eq:result} \begin{array}{l} \bullet \end{tabular} \mbox{ Translational conjugacy classes of affine deformations of } \Gamma_0 \\ \longleftrightarrow \end{tabular} \mbox{ infinitesimal deformations of the hyperbolic surface } \Sigma. \end{array}$

Infinitesimal deformations of the hyperbolic structure on Σ comprise H¹(Σ, sl(2, ℝ)) ≅ H¹(Γ₀, ℝ^{2,1}).

Deformations of hyperbolic structures

- $\label{eq:result} \begin{array}{l} \mbox{ Translational conjugacy classes of affine deformations of } \Gamma_0 \\ \longleftrightarrow \mbox{ infinitesimal deformations of the hyperbolic surface } \Sigma. \end{array}$
- Infinitesimal deformations of the hyperbolic structure on Σ comprise H¹(Σ, sl(2, ℝ)) ≃ H¹(Γ₀, ℝ^{2,1}).

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

- Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed ℝP².

Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .

The marked length spectrum l_t of Σ_t varies smoothly with t.
 Margulis's invariant α_u(γ) represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_t(\gamma)$$

- Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed ℝP².

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 Margulis's invariant α_µ(γ) represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_t(\gamma)$$

- Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed ℝP².

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_t(\gamma)$$

- Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed ℝP².

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_t(\gamma)$$

- Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed ℝP².

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ .
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_t(\gamma)$$

- Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- Converse: When Σ is homeomorphic to a three-holed sphere or two-holed ℝP².

Extensions of the Margulis invariant

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

Extensions of the Margulis invariant

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

Extensions of the Margulis invariant

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.
- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of UΣ.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of UΣ.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of UΣ.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

- α_u extends to parabolic L(γ) given *decorations* of the cusps (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore α_u(γ)/ℓ(γ) is *constant* on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of UΣ.
 - Margulis invariant extends to continuous functional Ψ_u(μ) on the space C(Σ) of Φ-invariant probability measures μ on UΣ. (G-Labourie-Margulis 2010)
- When L(Γ) is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ .
- $C(\Sigma)$ connected \Longrightarrow Either $\Psi_u(\mu)$ are all *positive* or all *negative*.

- Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
- Fiber is subspace of H¹(Σ, ℝ^{2,1}) (all affine deformations) consisting of proper affine deformations Σ.
 - Nonempty (Drumm 1989).
- (G-Labourie-Margulis 2010) Convex domain in H¹(Σ, ℝ^{2,1}) defined by generalized Margulis functionals of measured geodesic laminations on Σ.

- Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
- Fiber is subspace of H¹(Σ, ℝ^{2,1}) (all affine deformations) consisting of proper affine deformations Σ.
 Nonempty (Drumm 1989).
- (G-Labourie-Margulis 2010) Convex domain in H¹(Σ, ℝ^{2,1}) defined by generalized Margulis functionals of measured geodesic laminations on Σ.

- Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
- Fiber is subspace of H¹(Σ, ℝ^{2,1}) (all affine deformations) consisting of proper affine deformations Σ.

Nonempty (Drumm 1989).

 (G-Labourie-Margulis 2010) Convex domain in H¹(Σ, ℝ^{2,1}) defined by generalized Margulis functionals of measured geodesic laminations on Σ.

- Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
- Fiber is subspace of H¹(Σ, ℝ^{2,1}) (all affine deformations) consisting of proper affine deformations Σ.
 - Nonempty (Drumm 1989).
- (G-Labourie-Margulis 2010) Convex domain in H¹(Σ, R^{2,1}) defined by generalized Margulis functionals of measured geodesic laminations on Σ.

- Deformation space of marked Margulis space-times corresponding to surface S fibers over space of marked hyperbolic structures $S \longrightarrow \Sigma$ on S.
- Fiber is subspace of H¹(Σ, ℝ^{2,1}) (all affine deformations) consisting of proper affine deformations Σ.

Nonempty (Drumm 1989).

 (G-Labourie-Margulis 2010) Convex domain in H¹(Σ, ℝ^{2,1}) defined by generalized Margulis functionals of measured geodesic laminations on Σ.

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when $\chi(\Sigma) = -1$ (that is, $rank(\pi_1(\Sigma)) = 2$). (Charette-Drumm-G 2010)
- Four possible topologies for Σ :
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 - Corollary: (Tameness) $M^3 \approx$ open solid handlebody.
- Proved when $\chi(\Sigma) = -1$ (that is, $rank(\pi_1(\Sigma)) = 2$). (Charette-Drumm-G 2010)
- Four possible topologies for Σ :
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- If $\partial \Sigma$ has b components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when $\chi(\Sigma) = -1$ (that is, $rank(\pi_1(\Sigma)) = 2$). (Charette-Drumm-G 2010)
- Four possible topologies for Σ :
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;

- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.

If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)

Four possible topologies for Σ:

- Three-holed sphere;
- Two-holed cross-surface (projective plane);
- One-holed Klein bottle;
- One-holed torus.

If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)

Four possible topologies for Σ:

Three-holed sphere;

- Two-holed cross-surface (projective plane)
- One-holed Klein bottle;

One-holed torus.

If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.

If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.

If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \; pprox \; [0,\infty)^b imes (0,\infty)^{3-b}$$

- Conjecture: Every Margulis spacetime M³ admits a fundamental polyhedron bounded by disjoint crooked planes.
 Corollary: (Tameness) M³ ≈ open solid handlebody.
- Proved when χ(Σ) = -1 (that is, rank(π₁(Σ)) = 2). (Charette-Drumm-G 2010)
- Four possible topologies for Σ:
 - Three-holed sphere;
 - Two-holed cross-surface (projective plane);
 - One-holed Klein bottle;
 - One-holed torus.
- If $\partial \Sigma$ has *b* components, then the Fricke space

$$\mathfrak{F}(\Sigma) \approx [0,\infty)^b \times (0,\infty)^{3-b}$$

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ three-holed sphere

Charette-Drumm-Margulis functionals of $\partial \Sigma$ completely describe deformation space as $(0, \infty)^3$.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ three-holed sphere

Charette-Drumm-Margulis functionals of $\partial \Sigma$ completely describe deformation space as $(0,\infty)^3$.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ two-holed $\mathbb{R}P^2$.

Deformation space is quadrilateral bounded by the four lines defined by CDM-functionals of $\partial \Sigma$ and the two orientation-reversing interior simple loops.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed torus

Properness region bounded by infinitely many intervals, each corresponding to simple loop.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Structure of the boundary

- ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
- Birman-Series argument ⇒ For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

Structure of the boundary

- ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
- Birman-Series argument => For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

Structure of the boundary

- ∂-points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
- Birman-Series argument ⇒ For 1-holed torus, these points of strict convexity have Hausdorff dimension zero.

- Properness region tiled by triangles.
- Triangles \longleftrightarrow ideal triangulations of Σ .
- Flip of ideal triangulation ←→ moving to adjacent triangle.

Properness region tiled by triangles.

- Triangles \longleftrightarrow ideal triangulations of Σ .
- Flip of ideal triangulation ↔ moving to adjacent triangle.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Properness region tiled by triangles.
- Triangles \longleftrightarrow ideal triangulations of Σ .
- Flip of ideal triangulation ←→ moving to adjacent triangle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

- Properness region tiled by triangles.
- Triangles \longleftrightarrow ideal triangulations of Σ .
- \blacksquare Flip of ideal triangulation \longleftrightarrow moving to adjacent triangle.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each defined by CDM-invariants of simple orientation-reversing loops, arranged cyclically, and the one orientation-preserving interior simple loop.

Functionals $\alpha(\gamma)$ when $\Sigma \approx$ one-holed Klein bottle

Properness region bounded by infinitely many intervals, each defined by CDM-invariants of simple orientation-reversing loops, arranged cyclically, and the one orientation-preserving interior simple loop.

Happy Birthday, Caroline!!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙