An extension of the earthquake flow

Jean-Marc Schlenker
Institut de Mathématiques de Toulouse Université Toulouse III
http://www.math.univ-toulouse.fr/~schlenker
Conference "'Series60", Warwick, July 25, 2011

Content

- Recall measured laminations, earthquakes,

Extension to "landslides"
Underlying AdS geometry.

Content

- Recall measured laminations, earthquakes,
- Extension to "landslides",

Underlying AdS geometry. Joint work with Francesco Bonsante and Gabriele Mondello.

Content

- Recall measured laminations, earthquakes,
- Extension to "landslides",
- Underlying AdS geometry.

Content

- Recall measured laminations, earthquakes,
- Extension to "landslides",
- Underlying AdS geometry.

Joint work with Francesco Bonsante and Gabriele Mondello.

Content

- Recall measured laminations, earthquakes,
- Extension to "landslides",
- Underlying AdS geometry.

Joint work with Francesco Bonsante and Gabriele Mondello.
S is a closed surface of genus $\geq 2, \mathcal{T}=$ Teichmüller space of S.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the l_{i} define a transverse measure :

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the I_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the l_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.
This gives a topology to $\mathcal{W M}$.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the I_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.
This gives a topology to $\mathcal{W M}$.
 The completion of $\mathcal{W M}$ is the space of measured laminations $\mathcal{M} \mathcal{L}$.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the I_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.
This gives a topology to $\mathcal{W M}$.
 The completion of $\mathcal{W M}$ is the space of measured laminations $\mathcal{M} \mathcal{L}$.
Measured laminations can be pretty complicated.

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the l_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.
This gives a topology to $\mathcal{W M}$.
 The completion of $\mathcal{W M}$ is the space of measured laminations $\mathcal{M} \mathcal{L}$.
Measured laminations can be pretty complicated.

- $\mathcal{M} \mathcal{L} \simeq \mathbb{R}^{6 g-6}$.
(Thurston)

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the I_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.
This gives a topology to $\mathcal{W M}$.

The completion of $\mathcal{W M}$ is the space of measured laminations $\mathcal{M} \mathcal{L}$.
Measured laminations can be pretty complicated.

- $\mathcal{M} \mathcal{L} \simeq \mathbb{R}^{6 g-6}$.
- $\partial \mathcal{T} \simeq \mathcal{M} \mathcal{L} / \mathbb{R}_{>0}$ (Thurston).

Measured laminations

$\mathcal{W} \mathcal{M}=\{$ weighted multicurves on S$\}$: set of disjoint simple closed curves, each with a positive weight.
$\mathcal{W M}$ is infinite : simple closed curves on S can wrap around a lot. Let $\left(c_{i}, l_{i}\right)_{i=1, \cdots, n} \in \mathcal{W} \mathcal{M}$, the c_{i} form a lamination and the I_{i} define a transverse measure : gives a total weight to γ, transverse to the c_{i}.
This gives a topology to $\mathcal{W M}$.

The completion of $\mathcal{W M}$ is the space of measured laminations $\mathcal{M} \mathcal{L}$.
Measured laminations can be pretty complicated.

- $\mathcal{M} \mathcal{L} \simeq \mathbb{R}^{6 g-6}$.
- $\partial \mathcal{T} \simeq \mathcal{M} \mathcal{L} / \mathbb{R}_{>0}$ (Thurston).
- $\mathcal{T} \times \mathcal{M} \mathcal{L} \simeq T^{*} \mathcal{T}$.

Earthquakes

Start with a hyperbolic surface.

Earthquakes

Start with a hyperbolic surface.
If $w \in \mathcal{M} \mathcal{L}$ is a weighted curve and $h \in$
$\mathcal{T}, E_{w}(h)$ is obtained by realizing w as a geodesic in h,

Earthquakes

Start with a hyperbolic surface.
If $w \in \mathcal{M} \mathcal{L}$ is a weighted curve and $h \in$ $\mathcal{T}, E_{w}(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w,

Earthquakes

Start with a hyperbolic surface.
If $w \in \mathcal{M} \mathcal{L}$ is a weighted curve and $h \in$ $\mathcal{T}, E_{w}(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight,

Earthquakes

Start with a hyperbolic surface.
If $w \in \mathcal{M} \mathcal{L}$ is a weighted curve and $h \in$ $\mathcal{T}, E_{w}(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.

Earthquakes

Start with a hyperbolic surface.
If $w \in \mathcal{M L}$ is a weighted curve and $h \in$ $\mathcal{T}, E_{w}(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.
Defines a homeomorphism

$$
E_{w}: \mathcal{T} \rightarrow \mathcal{T} .
$$

[^0] (Thurston)

Earthquakes

Start with a hyperbolic surface.
If $w \in \mathcal{M} \mathcal{L}$ is a weighted curve and $h \in$ $\mathcal{T}, E_{w}(h)$ is obtained by realizing w as a geodesic in h, cutting S open along w, turning the left-hand side by the weight, and gluing back.
Defines a homeomorphism

$$
E_{w}: \mathcal{T} \rightarrow \mathcal{T} .
$$

Extends by continuity to $E: \mathcal{T} \times \mathcal{M} \mathcal{L} \rightarrow \mathcal{T}$ (Thurston).

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) : $\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M} \mathcal{L}, E_{\lambda}(h)=h^{\prime}$.

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) : $\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M L}, E_{\lambda}(h)=h^{\prime}$.
(3) Complex earthquakes (McMullen) : for $(h, \lambda) \in \mathcal{T} \times \mathcal{M} \mathcal{L}$, the map $t \mapsto E_{t \lambda}(h)$ extends to a holomorphic map $\mathbb{H} \rightarrow \mathcal{T}$.

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) :
$\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M L}, E_{\lambda}(h)=h^{\prime}$.
(3) Complex earthquakes (McMullen) : for $(h, \lambda) \in \mathcal{T} \times \mathcal{M} \mathcal{L}$, the map $t \mapsto E_{t \lambda}(h)$ extends to a holomorphic map $\mathbb{H} \rightarrow \mathcal{T}$.
(1) $E_{(t+i s) \lambda}=g r_{s \lambda} \circ E_{t \lambda}$, where $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is the grafting map.

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) :

$$
\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M} \mathcal{L}, E_{\lambda}(h)=h^{\prime}
$$

(3) Complex earthquakes (McMullen) : for $(h, \lambda) \in \mathcal{T} \times \mathcal{M} \mathcal{L}$, the map $t \mapsto E_{t \lambda}(h)$ extends to a holomorphic map $\mathbb{H} \rightarrow \mathcal{T}$.
(1) $E_{(t+i s) \lambda}=g r_{s \lambda} \circ E_{t \lambda}$, where $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is the grafting map.

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) :

$$
\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M} \mathcal{L}, E_{\lambda}(h)=h^{\prime}
$$

(3) Complex earthquakes (McMullen) : for $(h, \lambda) \in \mathcal{T} \times \mathcal{M} \mathcal{L}$, the map $t \mapsto E_{t \lambda}(h)$ extends to a holomorphic map $\mathbb{H} \rightarrow \mathcal{T}$.
(1) $E_{(t+i s) \lambda}=g r_{s \lambda} \circ E_{t \lambda}$, where $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is the grafting map.

$g r=\pi \circ G r: \mathcal{M L} \times \mathcal{T} \xrightarrow{G r} \mathcal{C P} \xrightarrow{\pi} \mathcal{T}$, and $t+i s \mapsto G r_{s \lambda} \circ E_{t \lambda}$ is holomorphic from \mathbb{H} to $\mathcal{C P}$.

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) :

$$
\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M} \mathcal{L}, E_{\lambda}(h)=h^{\prime}
$$

(3) Complex earthquakes (McMullen) : for $(h, \lambda) \in \mathcal{T} \times \mathcal{M} \mathcal{L}$, the map $t \mapsto E_{t \lambda}(h)$ extends to a holomorphic map $\mathbb{H} \rightarrow \mathcal{T}$.
(1) $E_{(t+i s) \lambda}=g r_{s \lambda} \circ E_{t \lambda}$, where $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is the grafting map.

$g r=\pi \circ G r: \mathcal{M} \mathcal{L} \times \mathcal{T} \xrightarrow{G r} \mathcal{C P} \xrightarrow{\pi} \mathcal{T}$, and $t+i s \mapsto G r_{s \lambda} \circ E_{t \lambda}$ is holomorphic from \mathbb{H} to $\mathcal{C P}$.
(6) $\operatorname{Gr}: \mathcal{M L} \times \mathcal{T} \rightarrow \mathcal{C P}$ is a homeo (Thurston).

Some key properties

(1) Earthquakes define a flow on $\mathcal{T} \times \mathcal{M L}: E_{s \lambda} \circ E_{t \lambda}=E_{(s+t) \lambda}$.
(2) Earthquake Thm (Thurston, Kerckhoff) :

$$
\forall h, h^{\prime} \in \mathcal{T}, \exists!\lambda \in \mathcal{M} \mathcal{L}, E_{\lambda}(h)=h^{\prime}
$$

(3) Complex earthquakes (McMullen) : for $(h, \lambda) \in \mathcal{T} \times \mathcal{M}$, the map $t \mapsto E_{t \lambda}(h)$ extends to a holomorphic map $\mathbb{H} \rightarrow \mathcal{T}$.
(1) $E_{(t+i s) \lambda}=g r_{s \lambda} \circ E_{t \lambda}$, where $g r_{\lambda}: \mathcal{T} \rightarrow \mathcal{T}$ is the grafting map.

$g r=\pi \circ G r: \mathcal{M} \mathcal{L} \times \mathcal{T} \xrightarrow{G r} \mathcal{C P} \xrightarrow{\pi} \mathcal{T}$, and $t+i s \mapsto G r_{s \lambda} \circ E_{t \lambda}$ is holomorphic from \mathbb{H} to $\mathcal{C P}$.
(6) $\mathrm{Gr}: \mathcal{M} \mathcal{L} \times \mathcal{T} \rightarrow \mathcal{C P}$ is a homeo (Thurston).

Simple proof of Earthquake Thm by Mess (1990) based on AdS geometry.

The landslide flow

Recall that

$$
\begin{aligned}
E: \mathcal{T} \times \mathcal{M} \mathcal{L} \times \mathbb{R} & \rightarrow \mathcal{T} \times \mathcal{M} \mathcal{L} \\
(h, \lambda, t) & \mapsto\left(E_{t \lambda}(h), \lambda\right)
\end{aligned}
$$

is a flow (\mathbb{R}-action).

The landslide flow

Recall that

$$
\begin{aligned}
E: \mathcal{T} \times \mathcal{M} \mathcal{L} \times \mathbb{R} & \rightarrow \mathcal{T} \times \mathcal{M} \mathcal{L} \\
(h, \lambda, t) & \mapsto\left(E_{t \lambda}(h), \lambda\right)
\end{aligned}
$$

is a flow (\mathbb{R}-action).
We'll define "landslides"

$$
\begin{aligned}
& L: \mathcal{T} \times \mathcal{T} \times S^{1} \rightarrow \mathcal{T} \times \mathcal{T} \\
&\left(h, h^{*}, e^{i \theta}\right) \\
& \mapsto L_{e^{i \theta}}\left(h, h^{*}\right)
\end{aligned}
$$

Def either analytic (minimal Lagrangian diffeos) or geometric (3d AdS
geometry).
Key properties of earthquakes extend

The landslide flow

Recall that

$$
\begin{aligned}
E: \mathcal{T} \times \mathcal{M} \mathcal{L} \times \mathbb{R} & \rightarrow \mathcal{T} \times \mathcal{M} \mathcal{L} \\
(h, \lambda, t) & \mapsto\left(E_{t \lambda}(h), \lambda\right)
\end{aligned}
$$

is a flow (\mathbb{R}-action).
We'll define "landslides"

$$
\begin{aligned}
L: & \mathcal{T} \times \mathcal{T} \times S^{1} \\
& \rightarrow \mathcal{T} \times \mathcal{T} \\
\left(h, h^{*}, e^{i \theta}\right) & \mapsto L_{e^{i \theta}}\left(h, h^{*}\right)
\end{aligned}
$$

Def either analytic (minimal Lagrangian diffeos) or geometric (3d AdS geometry).

The landslide flow

Recall that

$$
\begin{aligned}
E: \mathcal{T} \times \mathcal{M} \mathcal{L} \times \mathbb{R} & \rightarrow \mathcal{T} \times \mathcal{M} \mathcal{L} \\
(h, \lambda, t) & \mapsto\left(E_{t \lambda}(h), \lambda\right)
\end{aligned}
$$

is a flow (\mathbb{R}-action).
We'll define "landslides"

$$
\begin{aligned}
L: & \mathcal{T} \times \mathcal{T} \times S^{1} \\
& \rightarrow \mathcal{T} \times \mathcal{T} \\
\left(h, h^{*}, e^{i \theta}\right) & \mapsto L_{e^{i \theta}}\left(h, h^{*}\right)
\end{aligned}
$$

Def either analytic (minimal Lagrangian diffeos) or geometric (3d AdS geometry).
Key properties of earthquakes extend.

Properties of landslides

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.

Properties of landslides

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
(1) L is a flow (S^{1}-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{\left.e^{i\left(\theta+\theta^{\prime}\right.}\right)}$.

Properties of landslides

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
(1) L is a flow (S^{1}-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{e^{i\left(\theta+\theta^{\prime}\right)}}$.
(2) "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Properties of landslides

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
(1) L is a flow (S^{1}-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{e^{i\left(\theta+\theta^{\prime}\right)}}$.
(2) "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.
(3) Complex extension : $L^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.

Properties of landslides

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
(1) L is a flow (S^{1}-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{e^{i\left(\theta+\theta^{\prime}\right)}}$.
(2) "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.
(3) Complex extension : $L^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
(9) "Smooth grafting" : for $r \in(0,1), L_{r}^{1}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ is a smooth version of grafting, $\operatorname{sgr}_{r} . \operatorname{sgr}_{r}=\pi \circ S G r_{r}$, where $S G r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$, and $s+i t \rightarrow S G r_{e^{-s}} \circ L_{e^{i t}}\left(h, h^{*}\right)$ is holomorphic on \mathbb{H}.

Properties of landslides

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
(1) L is a flow (S^{1}-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{e^{i\left(\theta+\theta^{\prime}\right)}}$.
(2) "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.
(3) Complex extension : $L^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
(9) "Smooth grafting" : for $r \in(0,1), L_{r}^{1}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ is a smooth version of grafting, sgr $_{r} . \operatorname{sgr}_{r}=\pi \circ S G r_{r}$, where $S G r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$, and $s+i t \rightarrow S G r_{e^{-s}} \circ L_{e^{i t}}\left(h, h^{*}\right)$ is holomorphic on \mathbb{H}.
(3) $S r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$ is a homeomorphism.

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.
Def : a diffeomorphism u between two hyperbolic surfaces (S, h) and $\left(S, h^{*}\right)$ is minimal Lagrangian if it is area-preserving and its graph is minimal.

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.
Def : a diffeomorphism u between two hyperbolic surfaces (S, h) and $\left(S, h^{*}\right)$ is minimal Lagrangian if it is area-preserving and its graph is minimal.
Then $u: w \circ v^{-1}$, where $v:(S, c) \rightarrow(S, h)$ and $w:(S, c) \rightarrow\left(S, h^{*}\right)$ are harmonic maps with opposite Hopf differentialq, $-q$.

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.
Def : a diffeomorphism u between two hyperbolic surfaces (S, h) and $\left(S, h^{*}\right)$ is minimal Lagrangian if it is area-preserving and its graph is minimal.
Then $u: w \circ v^{-1}$, where $v:(S, c) \rightarrow(S, h)$ and $w:(S, c) \rightarrow\left(S, h^{*}\right)$ are harmonic maps with opposite Hopf differentialq, $-q$.
Example : if S is a constant curvature surface in a constant curvature 3-manifold, then Id : $(S, I) \rightarrow(S, I I I)$ is minimal Lagrangian.

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.
Def : a diffeomorphism u between two hyperbolic surfaces (S, h) and $\left(S, h^{*}\right)$ is minimal Lagrangian if it is area-preserving and its graph is minimal.
Then $u: w \circ v^{-1}$, where $v:(S, c) \rightarrow(S, h)$ and $w:(S, c) \rightarrow\left(S, h^{*}\right)$ are harmonic maps with opposite Hopf differential $q,-q$.
Example : if S is a constant curvature surface in a constant curvature 3-manifold, then Id : $(S, I) \rightarrow(S, I I I)$ is minimal Lagrangian.
Thm (Schoen, Labourie 1992) : there is a unique minimal Lagrangian diffeo isotopic to the identity between two hyperbolic metrics on S.

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.
Def : a diffeomorphism u between two hyperbolic surfaces (S, h) and $\left(S, h^{*}\right)$ is minimal Lagrangian if it is area-preserving and its graph is minimal.
Then $u: w \circ v^{-1}$, where $v:(S, c) \rightarrow(S, h)$ and $w:(S, c) \rightarrow\left(S, h^{*}\right)$ are harmonic maps with opposite Hopf differential $q,-q$.
Example : if S is a constant curvature surface in a constant curvature 3-manifold, then Id : $(S, I) \rightarrow(S, I I I)$ is minimal Lagrangian.
Thm (Schoen, Labourie 1992) : there is a unique minimal Lagrangian diffeo isotopic to the identity between two hyperbolic metrics on S.
Def: $L_{e^{i \theta}}\left(h, h^{*}\right)=\left(h_{\theta}, h_{\theta}^{*}\right)$, where the harmonic map
$v_{\theta}:(S, c) \rightarrow\left(S, h_{\theta}\right)$ has Hopf differential $e^{i \theta} q$ (and similarly for w_{θ}).

Minimal Lagrangian maps

First possible definition : by minimal Lagrangian maps.
Def : a diffeomorphism u between two hyperbolic surfaces (S, h) and $\left(S, h^{*}\right)$ is minimal Lagrangian if it is area-preserving and its graph is minimal.
Then $u: w \circ v^{-1}$, where $v:(S, c) \rightarrow(S, h)$ and $w:(S, c) \rightarrow\left(S, h^{*}\right)$ are harmonic maps with opposite Hopf differential $q,-q$.
Example : if S is a constant curvature surface in a constant curvature 3-manifold, then Id : $(S, I) \rightarrow(S, I I I)$ is minimal Lagrangian.
Thm (Schoen, Labourie 1992) : there is a unique minimal Lagrangian diffeo isotopic to the identity between two hyperbolic metrics on S.
Def: $L_{e^{i \theta}}\left(h, h^{*}\right)=\left(h_{\theta}, h_{\theta}^{*}\right)$, where the harmonic map
$v_{\theta}:(S, c) \rightarrow\left(S, h_{\theta}\right)$ has Hopf differential $e^{i \theta} q$ (and similarly for w_{θ}). However this definition is difficult to work with.

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

- Conformal model, in a cylinder.

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^{2}$.

- Boundary at ∞ with

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^{2}$.
- $\operatorname{Isom}\left(\operatorname{AdS}_{3}\right)=O(2,2)$.
- Boundary at ∞ with

$A d S_{3}$ as a Lorentz analog of H^{3}

$$
A d S_{3}=\left\{x \in \mathbb{R}^{2,2} \mid\langle x, x\rangle=-1\right\} .
$$

Constant curvature $-1, \pi_{1}\left(A d S_{3}\right)=\mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^{2}$.
- $\operatorname{Isom}\left(A d S_{3}\right)=O(2,2)$.
- Boundary at ∞ with Lorentz-conformal structure.

$A d S_{3}$ as a Lorentz analog of S^{3}

$$
\text { Recall : } S^{3}=S U(2) \simeq S O(3), \text { and } \operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)
$$

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=\operatorname{PSL}(2, \mathbb{R})$ with its Killing metric.

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=P S L(2, \mathbb{R})$ with its Killing metric. Left and right actions of $\operatorname{PSL}(2, \mathbb{R})$, identifies $\operatorname{Isom}_{0}\left(A d S_{3}\right)=\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$ (up to index 2).

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=\operatorname{PSL}(2, \mathbb{R})$ with its Killing metric. Left and right actions of $\operatorname{PSL}(2, \mathbb{R})$, identifies $\operatorname{Isom}_{0}\left(A d S_{3}\right)=\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$ (up to index 2).

Geometrically :

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=\operatorname{PSL}(2, \mathbb{R})$ with its Killing metric. Left and right actions of $\operatorname{PSL}(2, \mathbb{R})$, identifies $\operatorname{Isom}_{0}\left(A d S_{3}\right)=\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$ (up to index 2).

Geometrically :

- $\partial_{\infty} A d S_{3}$ is foliated by 2 families of lines.

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=\operatorname{PSL}(2, \mathbb{R})$ with its Killing metric. Left and right actions of $\operatorname{PSL}(2, \mathbb{R})$, identifies $\operatorname{Isom}_{0}\left(A d S_{3}\right)=\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$ (up to index 2).

Geometrically :

- $\partial_{\infty} A d S_{3}$ is foliated by 2 families of lines.
- Thus $\partial_{\infty} A d S_{3} \simeq \mathbb{R} P^{1} \times \mathbb{R} P^{1}$,

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=\operatorname{PSL}(2, \mathbb{R})$ with its Killing metric. Left and right actions of $\operatorname{PSL}(2, \mathbb{R})$, identifies $\operatorname{Isom}_{0}\left(A d S_{3}\right)=\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$ (up to index 2).

Geometrically :

- $\partial_{\infty} A d S_{3}$ is foliated by 2 families of lines.
- Thus $\partial_{\infty} A d S_{3} \simeq \mathbb{R} P^{1} \times \mathbb{R} P^{1}$,
- Isometries act projectively on each family,

$A d S_{3}$ as a Lorentz analog of S^{3}

Recall : $S^{3}=S U(2) \simeq S O(3)$, and $\operatorname{Isom}\left(S^{3}\right)=O(4) \simeq O(3) \times O(3)$. $A d S_{3}=\operatorname{PSL}(2, \mathbb{R})$ with its Killing metric. Left and right actions of $\operatorname{PSL}(2, \mathbb{R})$, identifies $\operatorname{Isom}_{0}\left(A d S_{3}\right)=\operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$ (up to index 2).

Geometrically :

- $\partial_{\infty} A d S_{3}$ is foliated by 2 families of lines.
- Thus $\partial_{\infty} A d S_{3} \simeq \mathbb{R} P^{1} \times \mathbb{R} P^{1}$,
- Isometries act projectively on each family,
- Space-like curves in $\partial_{\infty} A d S_{3}$ are graphs of functions $\mathbb{R} P^{1} \rightarrow \mathbb{R} P^{1}$.

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

- it contains a closed, space-like surface S,

2 any inextendible time-like curve intersects S exactly once

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M=\Omega / \rho\left(\pi_{1} S\right)$, where $\Omega \subset A d S_{3}$.

Globally hyperbolic AdS manifolds

Def. an AdS mfld M is maximal globally hyperbolic if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M=\Omega / \rho\left(\pi_{1} S\right)$, where $\Omega \subset A d S_{3}$.
GH AdS mflds are strongly reminiscent of quasifuchsian hyperbolic mflds, but in a way more relevant to Teichmüller theory (Mess).

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \rightarrow S O(2,2) \simeq \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$.

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \rightarrow S O(2,2) \simeq \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$. So, $\left(\rho_{L}, \rho_{R}\right): \Gamma \rightarrow \operatorname{PSL}(2, \mathbb{R})$.

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \rightarrow S O(2,2) \simeq \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$. So, $\left(\rho_{L}, \rho_{R}\right): \Gamma \rightarrow \operatorname{PSL}(2, \mathbb{R})$.
Thm (Mess).

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \rightarrow S O(2,2) \simeq \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$. So, $\left(\rho_{L}, \rho_{R}\right): \Gamma \rightarrow \operatorname{PSL}(2, \mathbb{R})$.
Thm (Mess).

- ρ_{L}, ρ_{R} have maximal Euler number.

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \rightarrow S O(2,2) \simeq \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$. So, $\left(\rho_{L}, \rho_{R}\right): \Gamma \rightarrow \operatorname{PSL}(2, \mathbb{R})$.
Thm (Mess).

- ρ_{L}, ρ_{R} have maximal Euler number.
- The map $G H \rightarrow \mathcal{T} \times \mathcal{T}$ is a homeomorphism.

The hyperbolic metrics c_{L}, c_{R} corresponding to ρ_{L}, ρ_{R} are analogs of the conformal metrics at infinity of quasifuchsian manifolds.

A Bers-type parametrization

Given a GHMC AdS mfld $M, \rho: \Gamma \rightarrow S O(2,2) \simeq \operatorname{PSL}(2, \mathbb{R}) \times \operatorname{PSL}(2, \mathbb{R})$. So, $\left(\rho_{L}, \rho_{R}\right): \Gamma \rightarrow \operatorname{PSL}(2, \mathbb{R})$.
Thm (Mess).

- ρ_{L}, ρ_{R} have maximal Euler number.
- The map $G H \rightarrow \mathcal{T} \times \mathcal{T}$ is a homeomorphism.

The hyperbolic metrics c_{L}, c_{R} corresponding to ρ_{L}, ρ_{R} are analogs of the conformal metrics at infinity of quasifuchsian manifolds.

Landslides and 3d geometry

Def : let $h, h^{*} \in \mathcal{T}$ and let $e^{i \theta} \in S^{1}$. There is a unique equivariant embedding of S in $A d S_{3}$ with $I=1 / \cos ^{2}(\theta / 2) h, I I I=1 / \sin ^{2}(\theta / 2) h^{*}$. S is contained in a unique GH AdS 3-manifold. $L_{e^{i \theta}}\left(h, h^{*}\right)=\left(h_{\theta}, h_{\theta}^{*}\right)$ where h_{θ} is the left representation of M, and $h_{\theta}^{*}=h_{\theta+\pi}$.

Landslides and 3d geometry

Def : let $h, h^{*} \in \mathcal{T}$ and let $e^{i \theta} \in S^{1}$. There is a unique equivariant embedding of S in $A d S_{3}$ with $I=1 / \cos ^{2}(\theta / 2) h, I I I=1 / \sin ^{2}(\theta / 2) h^{*}$. S is contained in a unique GH AdS 3-manifold. $L_{e^{i \theta}}\left(h, h^{*}\right)=\left(h_{\theta}, h_{\theta}^{*}\right)$ where h_{θ} is the left representation of M, and $h_{\theta}^{*}=h_{\theta+\pi}$.
Smooth grafting $s g r_{e^{-t}}$ is defined similarly, with a surface in H^{3}, $I=1 / \cosh ^{2}(t / 2) h, I I I=1 / \sinh ^{2}(t / 2) h^{*}$.

A word on the proofs

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.

A word on the proofs

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.

Technical issues but main idea is convergence of K-surfaces to the boundary of the convex core of a GH AdS manifold when $K \rightarrow-1$.

A word on the proofs

(0) Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.

Technical issues but main idea is convergence of K-surfaces to the boundary of the convex core of a GH AdS manifold when $K \rightarrow-1$. A statement of independent interest is hidden.

A word on the proofs

0 Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
Technical issues but main idea is convergence of K-surfaces to the boundary of the convex core of a GH AdS manifold when $K \rightarrow-1$. A statement of independent interest is hidden.
Thm : Suppose $t_{n} h_{n}^{*} \rightarrow \lambda$ (length spectrum), and suppose that the identity between (S, h) and $\left(S, h_{n}^{*}\right)$ is minimal Lagrangian. Then for any segment $\gamma \subset S$, with endpoints $\notin \operatorname{supp}(\lambda), L_{t_{n} h_{n}^{*}}(\gamma) \rightarrow i(\gamma, \lambda)$.

Long computation, but no geometric explanation (yet)

A word on the proofs

0 Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
Technical issues but main idea is convergence of K-surfaces to the boundary of the convex core of a GH AdS manifold when $K \rightarrow-1$. A statement of independent interest is hidden.
Thm : Suppose $t_{n} h_{n}^{*} \rightarrow \lambda$ (length spectrum), and suppose that the identity between (S, h) and $\left(S, h_{n}^{*}\right)$ is minimal Lagrangian. Then for any segment $\gamma \subset S$, with endpoints $\notin \operatorname{supp}(\lambda), L_{t_{n} h_{n}^{*}}(\gamma) \rightarrow i(\gamma, \lambda)$.
(1) L is a flow $\left(S^{1}\right.$-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{\left.e^{i\left(\theta+\theta^{\prime}\right.}\right)}$.

Long computation, but no geometric explanation (yet).

A word on the proofs

0 Limit to earthquakes: if $t_{n} h_{n}^{*} \rightarrow \lambda$, then $L^{1}\left(h, h_{n}^{*}, e^{i \theta_{n}}\right) \rightarrow E_{\lambda}(h)$.
Technical issues but main idea is convergence of K-surfaces to the boundary of the convex core of a GH AdS manifold when $K \rightarrow-1$. A statement of independent interest is hidden.
Thm : Suppose $t_{n} h_{n}^{*} \rightarrow \lambda$ (length spectrum), and suppose that the identity between (S, h) and $\left(S, h_{n}^{*}\right)$ is minimal Lagrangian. Then for any segment $\gamma \subset S$, with endpoints $\notin \operatorname{supp}(\lambda), L_{t_{n} h_{n}^{*}}(\gamma) \rightarrow i(\gamma, \lambda)$.
(1) L is a flow $\left(S^{1}\right.$-action) : $L_{e^{i \theta}} \circ L_{e^{i \theta^{\prime}}}=L_{\left.e^{i\left(\theta+\theta^{\prime}\right.}\right)}$.

Long computation, but no geometric explanation (yet).

A word on the proofs (2)

(2) "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.

Long computation/argument, however a nice geometric argument seems

 possible based on surfaces in $\operatorname{PSL}(2, \mathbb{C})$.
A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.
(3) Complex extension : $L_{.}^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.

A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.
(3) Complex extension : $L_{.}^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
Long computation/argument, however a nice geometric argument seems possible based on surfaces in $\operatorname{PSL}(2, \mathbb{C})$.

A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.
(3) Complex extension : $L_{.}^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
Long computation/argument, however a nice geometric argument seems possible based on surfaces in $\operatorname{PSL}(2, \mathbb{C})$.
(4) "Smooth grafting" : for $r \in(0,1), L_{r}^{1}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ is a smooth version of grafting, $\operatorname{sgr}_{r} . \operatorname{sgr}_{r}=\pi \circ S G r_{r}$, where $S G r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$, and $s+i t \rightarrow S G r_{e^{-s}} \circ L_{e^{i t}}\left(h, h^{*}\right)$ is holomorphic on \mathbb{H}.

[^1](5) $S G r_{r}$
$\mathcal{C P}$ is a homeomorphism.

A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.
(3) Complex extension : $L_{.}^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
Long computation/argument, however a nice geometric argument seems possible based on surfaces in $\operatorname{PSL}(2, \mathbb{C})$.
(4) "Smooth grafting" : for $r \in(0,1), L_{r}^{1}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ is a smooth version of grafting, sgr $_{r} . \operatorname{sgr}_{r}=\pi \circ S G r_{r}$, where $S G r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$, and $s+i t \rightarrow S G r_{e^{-s}} \circ L_{e^{i t}}\left(h, h^{*}\right)$ is holomorphic on \mathbb{H}.
Based on hyperbolic geometry.

A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.
(3) Complex extension : $L_{.}^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
Long computation/argument, however a nice geometric argument seems possible based on surfaces in $\operatorname{PSL}(2, \mathbb{C})$.
(9) "Smooth grafting" : for $r \in(0,1), L_{r}^{1}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ is a smooth version of grafting, sgr $_{r} . \operatorname{sgr}_{r}=\pi \circ S G r_{r}$, where $S G r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$, and $s+i t \rightarrow S G r_{e^{-s}} \circ L_{e^{i t}}\left(h, h^{*}\right)$ is holomorphic on \mathbb{H}.
Based on hyperbolic geometry.
(5) $\mathrm{SGr}_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C} \mathcal{P}$ is a homeomorphism.

A word on the proofs (2)

(2. "Landslide thm" : $\forall h, h^{\prime} \in \mathcal{T}, \forall e^{i \theta} \neq 1, \exists!h^{*} \in \mathcal{T}, L_{e^{i \theta}}\left(h, h^{*}\right)=h^{\prime}$.

Proof uses a recent result by Barbot, Béguin, Zeghib, on existence and uniqueness of foliation by K-surfaces of GH AdS manifolds.
(3) Complex extension : $L_{.}^{1}\left(h, h^{*}\right): S^{1} \rightarrow \mathcal{T}$ extends to a holomorphic map $D \rightarrow \mathcal{T}$.
Long computation/argument, however a nice geometric argument seems possible based on surfaces in $\operatorname{PSL}(2, \mathbb{C})$.
(9) "Smooth grafting" : for $r \in(0,1), L_{r}^{1}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ is a smooth version of grafting, $\operatorname{sgr}_{r} . \operatorname{sgr}_{r}=\pi \circ S G r_{r}$, where $S G r_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C P}$, and $s+i t \rightarrow S G r_{e^{-s}} \circ L_{e^{i t}}\left(h, h^{*}\right)$ is holomorphic on \mathbb{H}.
Based on hyperbolic geometry.
(5) $\mathrm{SGr}_{r}: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{C} \mathcal{P}$ is a homeomorphism.

Follows from older result of Labourie on constant curvature surfaces in hyperbolic ends.

Questions

There is a number of natural questions :

> Is the landslide flow a Hamiltonian flow?
> Extension of result of Scannell-Wolf on grafting being
> homeomorphism?

Questions

There is a number of natural questions :

- Is the landslide flow a Hamiltonian flow?

Extension of result of Scannell-Wolf on grafting being
homeomorphism?

Questions

There is a number of natural questions :

- Is the landslide flow a Hamiltonian flow?
- Extension of result of Scannell-Wolf on grafting being homeomorphism?

Thanks for your attention!

Questions

There is a number of natural questions :

- Is the landslide flow a Hamiltonian flow?
- Extension of result of Scannell-Wolf on grafting being homeomorphism?
Some of those questions have simple translations in terms of 3d geometry.

Thanks for your attention!

Questions

There is a number of natural questions :

- Is the landslide flow a Hamiltonian flow?
- Extension of result of Scannell-Wolf on grafting being homeomorphism?
Some of those questions have simple translations in terms of 3d geometry.

Thanks for your attention!

[^0]: Extends by continuity to E

[^1]: Based on hyperbolic geometry

