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Notation

Let X be a Riemann surface of type (g, n) with 2g − 2 + n > 0.
Let T (X) be the Teichmüller space of X i.e.

T (X) = {(Y, f ) | f : X → Y q.c.}/ ∼

where (Y1, f1) ∼ (Y2, f2) if there is a conformal mapping h : Y1 → Y2 such
that h ◦ f1 is homotopic to f2.

X
f1

f2

X1

h

X2

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

Let S be the set of non-trivial and non-peripheal s.c.c’s on X.
T (X) is topologized with the Teichmüller distance which is defined to be

dT (y1, y2) =
1
2
log sup

α∈S

Exty1 (α)
Exty2 (α)

for y1, y2 ∈ T (X) (known as Kerckhoff’s formula), where Exty(α) is the
extremal length of α on y = (Y, f ):

Exty(α) = 1/ sup
A
{Mod(A) | A ⊂ Y is an annulus with core ∼ f (α)}.

It is known that (T (X), dT ) is complete and uniquely geodesic.
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The space of measured foliationsMF is the closure of the image of the
embedding

R+ ⊗ S ( tα )→ [S ( β )→ t u(β,α)] ∈ RS+ .
The space of projective measured foliations PMF is the quotient

PMF = (MF − {0})/R>0.

It is known thatMF and PMF are homeomorphic to the Euclidean
space and the sphere respectively.
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The space of measured foliationsMF is the closure of the image of the
embedding

R+ ⊗ S ( tα )→ [S ( β )→ t u(β,α)] ∈ RS+ .
The space of projective measured foliations PMF is the quotient

PMF = (MF − {0})/R>0.

It is known thatMF and PMF are homeomorphic to the Euclidean
space and the sphere respectively.

Kerckhoff has shown that the extremal length function Exty(·) on S
extends as a continuous function

Exty(·) :MF → R

with Exty(tF) = t2Exty(F).
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Aim of this talk - Introduction

There are important ‘rays’ or ‘lines’ in the Teichmüller space and many
investigations on behaviors and relations among them, For instance
• (H. Masur) Teichmüller rays of ‘directions’ uniquely ergodic and
rational foliations have the limits in the Thurston compactification.
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Aim of this talk - Introduction

There are important ‘rays’ or ‘lines’ in the Teichmüller space and many
investigations on behaviors and relations among them, For instance
• (H. Masur) Teichmüller rays of ‘directions’ uniquely ergodic and
rational foliations have the limits in the Thurston compactification.

• (A. Lenzhen) There is a Teichmüller geodesic ray which does not
have a limit in the Thurston compactification.
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Aim of this talk - Introduction

There are important ‘rays’ or ‘lines’ in the Teichmüller space and many
investigations on behaviors and relations among them, For instance
• (H. Masur) Teichmüller rays of ‘directions’ uniquely ergodic and
rational foliations have the limits in the Thurston compactification.

• (A. Lenzhen) There is a Teichmüller geodesic ray which does not
have a limit in the Thurston compactification.

• (R. Diaz and C. Series) Line of minima defined by to uniquely
ergodic foliations and rational foliations have the limits in the
Thurston compactification and the limits coincide with those of
Teichmüller geodesic rays.
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Aim of this talk - Introduction

There are important ‘rays’ or ‘lines’ in the Teichmüller space and many
investigations on behaviors and relations among them, For instance
• (H. Masur) Teichmüller rays of ‘directions’ uniquely ergodic and
rational foliations have the limits in the Thurston compactification.

• (A. Lenzhen) There is a Teichmüller geodesic ray which does not
have a limit in the Thurston compactification.

• (R. Diaz and C. Series) Line of minima defined by to uniquely
ergodic foliations and rational foliations have the limits in the
Thurston compactification and the limits coincide with those of
Teichmüller geodesic rays.

• Also, Distance between Teichmüller geodesics and line of minima
(S. Choi, K.Rafi and C. Series), Fellow traveling property of
Teichmüller rays and grafting rays (S. Choi, D. Dumas and K.Rafi).....
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Aim of this talk - Introduction

There are important ‘rays’ or ‘lines’ in the Teichmüller space and many
investigations on behaviors and relations among them, For instance
• (H. Masur) Teichmüller rays of ‘directions’ uniquely ergodic and
rational foliations have the limits in the Thurston compactification.

• (A. Lenzhen) There is a Teichmüller geodesic ray which does not
have a limit in the Thurston compactification.

• (R. Diaz and C. Series) Line of minima defined by to uniquely
ergodic foliations and rational foliations have the limits in the
Thurston compactification and the limits coincide with those of
Teichmüller geodesic rays.

• Also, Distance between Teichmüller geodesics and line of minima
(S. Choi, K.Rafi and C. Series), Fellow traveling property of
Teichmüller rays and grafting rays (S. Choi, D. Dumas and K.Rafi).....

In this talk, I would like to review the recent progress on the behaviors of
‘rays’ or ‘lines’ in the other compactification, called Gardiner-Masur
compactification.
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Gardiner-Masur compactification
We consider a mapping

ΦGM : T (X) ( y )→ [S ( α )→ Exty(α)1/2] ∈ PRS+ .

F. Gardiner and H. Masur showed that this mapping is embedding and
the image is relatively compact.
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Gardiner-Masur compactification
We consider a mapping

ΦGM : T (X) ( y )→ [S ( α )→ Exty(α)1/2] ∈ PRS+ .

F. Gardiner and H. Masur showed that this mapping is embedding and
the image is relatively compact.

The closure of the image is called the Gardiner-Masur compactification of
T (X). We call the complement ∂GMT (X) of the image from the closure
the Gardiner-Masur boundary.

Define a continuous function onMF by

Ey(F) =
(Exty(F)

Ky

)1/2
Ky = exp(2dT (x0, y)).

Notice that the Gardiner-Masur embeding above is equal to

ΦGM : T (X) ( y )→ [S ( α )→ Ey(α)] ∈ PRS+ .
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Properties

• (Gardiner-Masur) PMF ⊂ ∂GMT (X). PMF ! ∂GMT (X) if
dimC T (X) ≥ 2.

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

Properties

• (Gardiner-Masur) PMF ⊂ ∂GMT (X). PMF ! ∂GMT (X) if
dimC T (X) ≥ 2.

• (Kerckhoff) More precisely, any geodesic ray associated to rational
foliation has a limit in the GM-compatification, and the limit is not
contained in PMF .

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

Properties

• (Gardiner-Masur) PMF ⊂ ∂GMT (X). PMF ! ∂GMT (X) if
dimC T (X) ≥ 2.

• (Kerckhoff) More precisely, any geodesic ray associated to rational
foliation has a limit in the GM-compatification, and the limit is not
contained in PMF .

• (M) For any p ∈ ∂GMT (X), there is a continuous function Ep onMF
such that
• S ( α )→ Ep(α) represent p.
• When {yn}n ⊂ T (X) converges to p, there is a subsequence {yn j } j and
t0 > 0 such that Eyn j converges to t0Ep uniformly on any compact set of
MF .
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Properties

• (Gardiner-Masur) PMF ⊂ ∂GMT (X). PMF ! ∂GMT (X) if
dimC T (X) ≥ 2.

• (Kerckhoff) More precisely, any geodesic ray associated to rational
foliation has a limit in the GM-compatification, and the limit is not
contained in PMF .

• (M) For any p ∈ ∂GMT (X), there is a continuous function Ep onMF
such that
• S ( α )→ Ep(α) represent p.
• When {yn}n ⊂ T (X) converges to p, there is a subsequence {yn j } j and
t0 > 0 such that Eyn j converges to t0Ep uniformly on any compact set of
MF .

• (Liu-Su) The Gardiner-Masur compactification canonically coincides
with the horofunction boundary with respect to the Teichmüller
distance.
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Naturality for the Teichmüller distance?

Recently, we also have the following evidence for the “naturality”.

Proposition (M)
Let x0 ∈ T (X) be the base point. Then, the Gromov product

〈y, z〉x0 =
1
2
(dT (x0, y) + dT (x0, z) − dT (y, z))

extends continuously on the GM-compactification (with value in [0,∞])
such that

exp(−2〈y, z〉x0) =
i(G,H)

Extx0(G)1/2 · Extx0(H)1/2

for [G], [H] ∈ PMF ⊂ ∂GMT (X).

Hence, we may play and enjoy the Teichmüller geometry on the
GM-compactification.... I think
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Naturality for the Teichmüller distance?

Recently, we also have the following evidence for the “naturality”.

Proposition (M)
Let x0 ∈ T (X) be the base point. Then, the Gromov product

〈y, z〉x0 =
1
2
(dT (x0, y) + dT (x0, z) − dT (y, z))

extends continuously on the GM-compactification (with value in [0,∞])
such that

exp(−2〈y, z〉x0) =
i(G,H)

Extx0(G)1/2 · Extx0(H)1/2

for [G], [H] ∈ PMF ⊂ ∂GMT (X).

Hence, we may play and enjoy the Teichmüller geometry on the
GM-compactification.... I think and I hope.
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Horofunction boundary

The horofunction closure of a pointed metric space ((M, x0), ρ) is a
closure Mh of the image of embedding

M ( y )→ ρ(y, x0) ∈ C∗(M) = C(M)/R

where C(M) is the space of continuous functions on M equipped with
topology of uniform convergence on any bounded set, and R is the
subspace of constant function. The horofunction boundary is the
complement Mh − M.
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A mapping γ : T → M (T ⊂ [0,∞) is an unbounded set with 0 ∈ T ) is an
almost geodesic ray (with base point x0) if
• γ(0) = x0, and
• for all ε > 0 there is an N > 0 such that for all t, s ∈ T with t ≥ s ≥ N,

|ρ(γ(t), γ(s)) + ρ(γ(s), γ(0)) − t| < ε.

Proposition (Rieffel)
Let (M, ρ) be a locally compact metric space. Then, any almost geodesic
ray has a limit in the horofunction boundary.

Definition (Rieffel)
Let (M, ρ) be a locally compact metric space. A bounary point in the
horofunction boundary is said to be a Busemann point if it is the limit of
an almost geodesic ray.
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We fix a base point x0 = (X, id) ∈ T (X).
From Liu-Su’s result above and a property of horofunction
compactifications (M. Rieffel), we can see the following.

Proposition (Liu-Su)
Any almost geodesic ray in the Teichmüller space has a limit in the
Gardiner-Masur compactification.
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Recently, C.Walsh defines the horofunction boundaries for asymmetric
metric spaces and study the horofunction boundary of Thurston’s
(asymmetric) Lipschitz metric

dL(x, y) = log sup
α∈S

'x(α)
'y(α)

for x, y ∈ T (X), where 'x(α) is the hyperbolic length of the geodesic
representative of α on a marked Riemann surface x:

Theorem (Walsh)
The horofunction boundary of (T (X), dL) is canonically identified with the
Thurston boundary. Moreover, any horofunction boundary point is a
Busemann point. Namely, any boundary point is the limit of an almost
geodesic ray.
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The aim of this talk - Statements

Theorem 1.
For G ∈MF . Let RG : [0,∞)→ T (X) be the Teichmüller geodesic ray
associated with Hubbard-Masur differential with respect to G on x0.
Then, the mapping

PMF ( [G] )→ lim
t→∞
ΦGM ◦ RG(t)

is injective.

Notice
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The aim of this talk - Statements

Theorem 1.
For G ∈MF . Let RG : [0,∞)→ T (X) be the Teichmüller geodesic ray
associated with Hubbard-Masur differential with respect to G on x0.
Then, the mapping

PMF ( [G] )→ lim
t→∞
ΦGM ◦ RG(t)

is injective.

Notice

Proposition (Masur)
When G =

∑m
k=1 wkαk (wk > 0, αk ∈ S), the limit of RG(t) in the Thurston

compactification exists and is equal to the ‘barycenter’ [
∑m
k=1 αk].

Hence, in the case of Thurston compactification, even if we restrict the
“limit map” to the set of measured foliations G with the property that RG
has a limit, the limit map cannot be injective.
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Theorem 2 (Non-visibility via almost geodesic rays).
When dimCT (X) ≥ 2, the horofunction boundary of (T (X), dT) contains a
non-Busemann point. Namely, there is a boundary point where cannot be
a limit of any almost geodesic ray.

It is known that the horofunction boundary of any CAT(0)-space consists
of Busemann points. Hence, we obtain
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Theorem 2 (Non-visibility via almost geodesic rays).
When dimCT (X) ≥ 2, the horofunction boundary of (T (X), dT) contains a
non-Busemann point. Namely, there is a boundary point where cannot be
a limit of any almost geodesic ray.

It is known that the horofunction boundary of any CAT(0)-space consists
of Busemann points. Hence, we obtain

Corollary (Masur)
When dimCT (X) ≥ 2, a metric space (T (X), dT ) is not a CAT(0)-space.
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Proof of Theorem 1

Proposition (Gardiner’s differential formula)
Let y = (Y, f ) ∈ T (X) and F ∈MF . Let µ be a Beltrami differential on Y
and denote by yt be the marked surface obtained by the quasiconformal
deformation with respect to tµ with t ∈ R. Then, we have

Extyt (F) = Exty(F) − 2tRe
∫

Y
µ JF,y + o(t) (1)

as t → 0, where JF,y is the holomorphic quadratic differential on Y whose
vertical foliation is equal to f (F).

In comparing the formula (1) with the original Gardiner’s formula, we
should notice from the definition that −JF,y is the holomorphic quadratic
differential with horizontal foliation F.
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For G ∈MF − {0} let yt = RG(t) for t ≥ 0.
From the Gardiner’s differential formula, we can see the following.

Lemma
For any F ∈MF , a function

[0,∞) ( t )→ Eyt (F) = e−tExtyt (F)1/2

is a positive non-increasing function. Furthermore, this function is strictly
decreasing if and only if F is not projectively equivalent to the horizontal
foliation of JG,x0 .
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Proof of Lemma

Notice that the infinitesimal Beltrami differential along RG,x0 at yt is the
Teichmüller differential

µt =
|JG,yt |
JG,yt
.

By the Gardiner’s differential formula, we have

d
dt
e−2tExtyt (F) = −2e−2t

{
Extyt (F) + Re

∫

Yt
µt JF,yt

}
≤ 0. (2)

From (2), the derivative vanishes at t ≥ 0 if and only if

Re
∫

Yt

(
1 +
|JG,yt |
JG,yt

JF,yt
|JF,yt |

)
|JF,yt | = Extyt (F) + Re

∫

Yt
µt JF,yt = 0.

Hence, JF,yt = −JG,yt almost everywhere. Therefore, F is projectively
equivalent to the horizontal foliation of JG,x0 .
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Proof of Theorem 1.
We first give a simple proof of the existence of the limit of any Teichmüller
ray. From Lemma, for any α ∈ S, the limit

eα = limt→∞
e−tExtRG(t)(α)1/2

exists.
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Proof of Theorem 1.
We first give a simple proof of the existence of the limit of any Teichmüller
ray. From Lemma, for any α ∈ S, the limit

eα = limt→∞
e−tExtRG(t)(α)1/2

exists.
Let α ∈ S with i(G,α) ! 0. By Minsky’s inequality

0 < i(G,α) ≤ ExtRG(t)(G)1/2ExtRG(t)(α)1/2

= Extx0(G)1/2 · e−tExtRG(t)(α)1/2 → Extx0 (G)1/2eα
Hence eα ! 0 when i(G,α) ! 0. Thus,

ΦGM ◦ RG(t) = [S ( α )→ ExtRG(t)(α)1/2]→ pG := [S ( α )→ eα]

as t → ∞ in PRS+ .
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Proof of Theorem 1.
We first give a simple proof of the existence of the limit of any Teichmüller
ray. From Lemma, for any α ∈ S, the limit

eα = limt→∞
e−tExtRG(t)(α)1/2

exists.
Let α ∈ S with i(G,α) ! 0. By Minsky’s inequality

0 < i(G,α) ≤ ExtRG(t)(G)1/2ExtRG(t)(α)1/2

= Extx0(G)1/2 · e−tExtRG(t)(α)1/2 → Extx0 (G)1/2eα
Hence eα ! 0 when i(G,α) ! 0. Thus,

ΦGM ◦ RG(t) = [S ( α )→ ExtRG(t)(α)1/2]→ pG := [S ( α )→ eα]

as t → ∞ in PRS+ .
For F ∈MF , we re-define

EpG (F) = limt→∞

(ExtRG(t)(F)
KRG(t)

)1/2
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Let us prove the injectivity of the limit map.

Let [G1], [G2] ∈ PMF with [G1] ! [G2]. Let p1 = p[G1] and p2 = p[G2].

Let Hi be the horizontal foliation of of JGi ,x0 . We normalize Hi with
Extx0(Hi) = 1 for i = 1, 2. By Hubbard-Masur theorem, H1 is not
projectively equivalent to H2.
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Let us prove the injectivity of the limit map.

Let [G1], [G2] ∈ PMF with [G1] ! [G2]. Let p1 = p[G1] and p2 = p[G2].

Let Hi be the horizontal foliation of of JGi ,x0 . We normalize Hi with
Extx0(Hi) = 1 for i = 1, 2. By Hubbard-Masur theorem, H1 is not
projectively equivalent to H2.

From Lemma,

Epi (Hi) = Extx0 (Hi) = 1
Epi (H3−i) < Extx0 (Hi) = 1.

for i = 1, 2. Hence
Ep1 (H1)
Ep2 (H1)

> 1 >
Ep1 (H2)
Ep2 (H2)

.

This means that p1 ! p2.
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Comments on Theorem 1

We can also see the following “expected” result.

Proposition (M)
Let G ∈MF − {0} be a unquely ergodic measured foliation. Let
p ∈ ∂GMT (X). If Ep(G) = 0, there is a t0 > 0 such that

Ep(F) = t0 i(F,G)

for all F ∈MF . Namely, p = [G] as points in PRS+ .
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Comments on Theorem 1

We can also see the following “expected” result.

Proposition (M)
Let G ∈MF − {0} be a unquely ergodic measured foliation. Let
p ∈ ∂GMT (X). If Ep(G) = 0, there is a t0 > 0 such that

Ep(F) = t0 i(F,G)

for all F ∈MF . Namely, p = [G] as points in PRS+ .

In particular, we have

Corollary
When G is uniquely ergodic,

lim
t→∞
ΦGM ◦ RG(t) = [G] ∈ PMF ⊂ ∂GMT (X)
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Furthermore, combining Masur’s result, we can conclude

Proposition (M)
For a uniquely ergodic measured foliationG ∈MF , the following are
equivalent for a sequence {yn}n in T (X).
• {yn}n converges to [G] in the Thurston compactification.
• {yn}n converges to [G] in the Gardiner-Masur compactification.
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Furthermore, combining Masur’s result, we can conclude

Proposition (M)
For a uniquely ergodic measured foliationG ∈MF , the following are
equivalent for a sequence {yn}n in T (X).
• {yn}n converges to [G] in the Thurston compactification.
• {yn}n converges to [G] in the Gardiner-Masur compactification.

In particular, from R.Diaz and S.Series’ result, when G is as above, for
F ∈MF such that F fills up X with G, the line of minima associated to
(F,G) has the limit (at the “G-direction”) in the Gardiner-Masur
compactification and converges to [G].

Thus, the line of minima for (F,G) has the same limit (at the G-direction)
as the Teichmüller ray associated to G under the Gardiner-Masur
embedding.
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Proof of Theorem 2

We recall

Theorem 2 (Non-visibility via almost geodesic rays).
When dimCT (X) ≥ 2, the horofunction boundary of (T (X), dT) contains a
non-Busemann point. Namely, there is a boundary point where cannot be
arrived by any almost geodesic ray.
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Proof of Theorem 2

We recall

Theorem 2 (Non-visibility via almost geodesic rays).
When dimCT (X) ≥ 2, the horofunction boundary of (T (X), dT) contains a
non-Busemann point. Namely, there is a boundary point where cannot be
arrived by any almost geodesic ray.

To show Theorem 2, we shall show the following

Theorem 3 (Maximal rational foliations are non-visibile).
When dimCT (X) ≥ 2, any maximal rational foliation
[G] ∈ PMF ⊂ ∂GMT (X) cannot be the limit of any almost geodesic ray.
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Key of the proof of Theorem 2 : Non-twisting property

Let [G] be the projective class of a maximal rational foliation. Suppose
that [G] is the limit of an almost geodesic ray

γ : T → T (X)

where T ⊂ [0,∞) with 0 ∈ T and γ(0) = x0.

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

Key of the proof of Theorem 2 : Non-twisting property

Let [G] be the projective class of a maximal rational foliation. Suppose
that [G] is the limit of an almost geodesic ray

γ : T → T (X)

where T ⊂ [0,∞) with 0 ∈ T and γ(0) = x0.

Let G =
∑k
i=1 wiαi (k = dimC T (X) ≥ 2). Let γ(t) = (Yt, ft) and Jt the

Jenkins-Strebel differential of G on γ(t). Let Ai,t the characteristic annulus
of Jt.

Key obserbation
Any simple closed curve is not so “twisted” on any characteristic annulus
Ai,t along an almost geodesic ray γ : T → T (X).
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Idea of the proof of Theorem 2 : Geodesic rays
We first recall Kerckhoff’s calculation for the case where γ is the
Teichmüller geodesic ray associated to the Jenkins-Strebel differential of
G.

The deformation along the Teichmüller geodesic ray is given by
“stretching”.

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

Idea of the proof of Theorem 2 : Geodesic rays

The characteristic annulus of the Hubbard-Masur differential for G on the
initial point x0.
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Idea of the proof of Theorem 2 : Geodesic rays

Let β ∈ S. We shall recall briefly the calculation of the asymptotic
behaviour of the extremal length Extγ(t)(β) along the Teichmüller ray. The
method here is due to S.Kerckhoff.
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Idea of the proof of Theorem 2 : Geodesic rays
Let ni = i(αi, β), where G =

∑k
i=1 wiαi.

• Let A0i,t be the subannulus of Ai,t which is a component of the
“regular neighborhood” of the critical graph.

• Divide each characteristic annulus Ai,t into ni-congruent rectanges.
• Connecting rectangles via “ties” to obtain an annulusA(t) whose
core is homotopic to β.
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Idea of the proof of Theorem 2 : Geodesic rays

Ext(hori. paths in a cong. rectangle) = wi/('i(t)/ni)+O(1) = niMod(Ai,t)+O(1)
Hence,

(Ext. leng. of all congruent rectangles) =
k∑

i=1
n2iMod(Ai,t) + O(1)
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Idea of the proof of Theorem 2 : Geodesic rays
By applying some technical thing (including the length area method), we
get

Ext(A(t)) ≤ (Ext. leng. of all congruent rectangles) + (Ext. leng. of ties)

≤
k∑

i=1
n2iMod(Ai,t) + o(Kt).

as t → ∞, that is, the major part comes from the congruent rectangles
Notice thatMod(Ai,t) 0 Kt := e2dT (x0,γ(t)).
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Idea of the proof of Theorem 2 : Geodesic rays
The “non-twisting property” implies that rectangles in A0i,0 are mapped to
rectangles in A0i,t. Hence, the core ofA(t) is homotopic to β. we can see
that

Extγ(t)(β) ≤ Ext(A(t)) ≤
k∑

i=1
n2iMod(Ai,t)

2 + o(Kt)

as t → ∞.
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Idea of the proof of Theorem 2 : Geodesic rays
By the standard (but technical) argument, we have the upper bound of
modulus of the the characteristic annulus of JS-differential of β, and we
get

Extγ(t)(β) ≥
k∑

i=1
n2iMod(Ai,t)

2 + O(1)

as t → ∞.
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Idea of the proof of Theorem 2 : Geodesic rays
Thus we get

k∑

i=1
n2iMod(Ai,t)

2 + O(1) ≤ Extγ(t)(β) ≤
k∑

i=1
n2iMod(Ai,t)

2 + o(Kt)

as t → ∞.
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“Non”-twisting property from almost geodesic rays
Recall that an almost geodesic ray

γ : T → T (X)

converges to the projective class [G] of a maximal rational foliationG.
We assume that Extx0 (G) = 1 and there is t0 > 0 such that

Eγ(t)( · )→ t0 i( · ,G)

unformly on any compact set ofMF .
Lemma
Under the notation above, we have t0 = 1.

Proof.
Indeed,

1 = max
Extx0 (F)=1

Eγ(t)(F)→ t0 max
Extx0 (F)=1

i(F,G) = t0.

!
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Lemma
Under the asumption as above, we have

Kγ(t) · Extγ(t)(G)→ 1 (t → ∞).

[Proof] Recall that an almost geodesic γ : T → T (X) satisfies that for
any ε > 0 there is an N > 0 such that

|dT (γ(t), γ(s)) + dT (γ(s), x0) − t| < ε

for t ≥ s ≥ N. By Kerckhoff’s formula, this inequality is re-stated as

et−ε ≤ max
Extx0 (F)=1

Extγ(t)(F)1/2

Extγ(s)(F)1/2
· max
Extx0 (F)=1

Extγ(t)(F)1/2

Extx0(F)1/2
≤ et+ε ,

equivalently,

et−ε ≤ max
Extx0 (F)=1

Extγ(t)(F)1/2

Extγ(s)(F)1/2
· K1/2γ(s) ≤ et+ε ,

for t ≥ s ≥ N.
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We have
et−ε ≤ max

Extx0 (F)=1

Extγ(t)(F)1/2

Extγ(s)(F)1/2
· K1/2γ(s) ≤ et+ε , (3)

for t ≥ s ≥ N. In particular, when t = s,

es−ε ≤ K1/2γ(s) ≤ es+ε ,

for s ≥ N.

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

We have
et−ε ≤ max

Extx0 (F)=1

Extγ(t)(F)1/2

Extγ(s)(F)1/2
· K1/2γ(s) ≤ et+ε , (3)

for t ≥ s ≥ N. In particular, when t = s,

es−ε ≤ K1/2γ(s) ≤ es+ε ,

for s ≥ N. Dividing each sides of (3) by K1/2γ(t), we obtain

e−2ε ≤ max
Extx0 (F)=1

Eγ(t)(F)
Extγ(s)(F)1/2

· K1/2γ(s) ≤ e2ε

for t ≥ s ≥ N.
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We have
et−ε ≤ max

Extx0 (F)=1

Extγ(t)(F)1/2

Extγ(s)(F)1/2
· K1/2γ(s) ≤ et+ε , (3)

for t ≥ s ≥ N. In particular, when t = s,

es−ε ≤ K1/2γ(s) ≤ es+ε ,

for s ≥ N. Dividing each sides of (3) by K1/2γ(t), we obtain

e−2ε ≤ max
Extx0 (F)=1

Eγ(t)(F)
Extγ(s)(F)1/2

· K1/2γ(s) ≤ e2ε

for t ≥ s ≥ N. Letting t → ∞, we get

e−2ε ≤ max
Extx0 (F)=1

i(F,G)
Extγ(s)(F)1/2

· K1/2γ(s) ≤ e2ε ,

equivalently,
e−2ε ≤ Extγ(s)(G)1/2 · K1/2γ(s) ≤ e2ε

when s ≥ N. !
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Asymptotic behavior of moduli of annuli

Lemma
Suppose G contains a foliated annulus A. Namely, G = F + wα for some
F ∈MF and α ∈ S. Let At be the characteristic annulus of the
Hubbard-Masur differential Jt for G on γ(t). Then,

Mod(At) 0 Kt (t → ∞).

[Proof] From the geometric definition of the extremal length,

Mod(At) ≤ 1/Extγ(t)(α) ≤ Kt/Extx0 (α).

On the other hand,

1
Mod(At)

=
'Jt (α)
w
= w2 · (Jt-area of A)

≤ w2‖Jt‖ = w2Extγ(t)(G) 0 Kt !
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Twisting number on a flat annulus

Let A be a flat annulus and η a path connecting boundary components of
A.

The twisting number twA(η) is defined to be

twA(η) =
|y1 − y2|

L
.
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“Non”-twisting on flat annuli

Suppose G = F + wα. Let β∗ be the geodesic representative of β with
respect to Jt on γ(t).

Since there are no critical points of Jt in the charactristic annulus At of α,
the intersection β∗ ∩ At consists of (atmost i(α, β)) straight lines
connecting boundary components.

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

“Non”-twisting on flat annuli

Suppose G = F + wα. Let β∗ be the geodesic representative of β with
respect to Jt on γ(t).

Since there are no critical points of Jt in the charactristic annulus At of α,
the intersection β∗ ∩ At consists of (atmost i(α, β)) straight lines
connecting boundary components.

The following implies that any almost geodesic ray behaves like a
geodesic ray in view of markings.

Lemma (“Non”-twisting)
For each component σ of β∗ ∩ At,

twAt (σ) = o(Kt).

as t → ∞.
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[Proof] Let qt = Jt/‖Jt‖. Let σ1, · · · ,σn0 be components of β∗ ∩ At. Let
{η j} j the straight segments in β∗ \ ∪iσi. Then,
‖Jt‖−1i(β,G) = i(β,Vqt ) ≤ 'qt (β∗)

=

n0∑

i=1

√
i(σi,Hqt )2 + i(σi,Vqt )2 +

∑

j

√
i(η j,Hqt )2 + i(η j,Vqt )2

=

n0∑

i=1

√
i(σi,Hqt )2 + ‖Jt‖−1w2 +

∑

j

√
i(η j,Hqt )2 + i(η j,Vqt )2

≤ Extγ(t)(β)1/2

Since
‖Jt‖·Extγ(t)(β)1/2 = (1+o(1))·K−1/2

t ·Extγ(t)(β)1/2 → i(β,G) = n0w+
∑

j
i(η j,VJt ),

n0∑

s=1

(√
i(σs,HJt )2 + w2 − w

)

+
∑

j

(√
i(η j,HJt )2 + i(η j,VJt)2 − i(η j,VJt)

)
→ 0
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Therefore, for any s = 1, · · · , n0,

i(σs,HJt )→ 0.
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Therefore, for any s = 1, · · · , n0,

i(σs,HJt )→ 0.

Notice
Kt 0 Mod(At) = w/'Jt (α).

Fix s. Let Ãt be the universal covering of At and y1, y2 be endpoints of a
lift of σs. Then,

i(σs,HJt ) = |y1 − y2|Jt (Jt-height)

and
twAt (σs) =

|y1 − y2|Jt
'Jt (α)

0 i(σs,HJt )Kt = o(Kt).

as t → ∞.
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Twisting deformation on an annulus
Let A be a round annulus of modulus M. Let σ a path connecting
components of ∂A. τ = twA(σ).

By calculation,
∂Wτ
∂Wτ

=
−i(τ/m)

4π − i(τ/m)
z
z
dz
dz
.

In particular ∥∥∥∥∥∥
∂Wτ
∂Wτ

∥∥∥∥∥∥∞
→ 0

when τ = o(M) as M → ∞.
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Orbit adjustment

By “Non”-twisting and Behavior of moduli, we can do twisting
deformations on characteristic annuli such that the twisting number of β
on each char. annulus is uniformly bounded (say 0 or 1) such that

dT (γ(t), γ′(t))→ 0 (t → 0).

Observation
Since β is really NON-twisted on the adjustment γ′(t), we can apply the
Kerckhoff’s calculation of β on the adjustment γ′(t)!!
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Summarize and Conclusion

We summarize the situation. Let γ be an almost geodesic ray converging
to the projective class G of a maximal rational foliation

G =
k∑

i=1
wiαi

with k ≥ 2. Let β ∈ S.
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Summarize and Conclusion

We summarize the situation. Let γ be an almost geodesic ray converging
to the projective class G of a maximal rational foliation

G =
k∑

i=1
wiαi

with k ≥ 2. Let β ∈ S.
...... After a lot of technical things ......
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Summarize and Conclusion

We summarize the situation. Let γ be an almost geodesic ray converging
to the projective class G of a maximal rational foliation

G =
k∑

i=1
wiαi

with k ≥ 2. Let β ∈ S.
...... After a lot of technical things ......

We can do an “orbit adjustment” to obtain new almost geodesic ray γ′(t)
such that β is not-twisted on the flat annulus of of the Hubbard-Masur
differential Jt of G.

Recall that Ai,t is the characteristic annulus of Jt for αi.
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We can apply Kerckhoff’s calculation of the extremal length of β, and get
(after taking subsequence)

lim
t→∞

(Extγ(t)(β)
Kt

)1/2
=

√√√ k∑

i=1
n2i
Mod(Ai,t)

Kt
=

√√√ k∑

i=1
n2i Mi

for some Mi > 0 where ni = i(α, β).

Notice that Mi does NOT depend on β ∈ S.
On the other hand, from the assumption, the limit above shoud be equal
to i(β,G). Hence

k∑

i=1
Mii(α, β)2 = i(β,G)2 =




k∑

i=1
wii(αi, β)




2

for all β ∈ S. Since the intersection number is continuous, the equality
above holds for all β ∈MF .
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We substitute β = xβ1 + yβ2 (i(β1, β2) = 0) to the equality and get

k∑

i=1
Mii(α, xβ1 + yβ2)2 =




k∑

i=1
wii(αi, xβ1 + yβ2)




2

and



k∑

i=1
Min21,i




2

x2 + 2




k∑

i=1
Min1,in2,i


 xy +




k∑

i=1
Min22,i




2

y2 = (· · · )2

where n j,i = ı(αi, β j). Hence the discriminant satisfies



k∑

i=1
Min1,in2,i




2

=




k∑

i=1
Min21,i




2 
k∑

i=1
Min22,i




2

.
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We substitute β = xβ1 + yβ2 (i(β1, β2) = 0) to the equality and get

k∑

i=1
Mii(α, xβ1 + yβ2)2 =




k∑

i=1
wii(αi, xβ1 + yβ2)




2

and



k∑

i=1
Min21,i




2

x2 + 2




k∑

i=1
Min1,in2,i


 xy +




k∑

i=1
Min22,i




2

y2 = (· · · )2

where n j,i = ı(αi, β j). Hence the discriminant satisfies



k∑

i=1
Min1,in2,i




2

=




k∑

i=1
Min21,i




2 
k∑

i=1
Min22,i




2

.

This means that two vectors

(
√
M1n1,1, · · · ,

√
Mkn1,k), (

√
M1n2,1, · · · ,

√
Mkn2,k)

are always parallel for β1 and β2 with i(β1, β2) = 0. This is a
contradiction. !

Hideki Miyachi Geodesic rays and non-visible points



Introduction Proof of Theorem 1 Proof of Theorem 2 (Part 1) Proof of Theorem 2 (Part 2) (ˆoˆ)

Thank you for your attention.

and please do not forget to go outside for the workshop picture.
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