
§6. Regular neighbourhoods and fibre bundles

Theorem 6.1. (Regular neighbourhoods of submanifolds) Let L be a submanifold

of pl manifold M . Then N (L) is the total space of a fibre bundle over L, with

fibre a disc Dn, and with the inclusion L → N (L) being a section.

In this course, we will only consider very simple bundles. We therefore only

give the briefest outline of their theory. Normally bundles are dealt with in the

smooth category, but there is of course a pl version. This is less satisfactory in

high dimensions, but in dimension three, it works well.

Definition. A map p: B → M is a fibre bundle over M with total space B and

fibre F (or an F -bundle) if M has an open cover {Uα} such that

• the closure Uα of each Uα is simplicial, and

• each p−1(Uα) is (pl) homeomorphic to F ×Uα so that the following diagram

commutes:

p−1(Uα)
∼=−→ F × Uα





y

p





y

projection onto 2nd factor

Uα = Uα

If Uα and Uβ intersect, then there are two maps

p−1(Uα ∩ Uβ) → F × (Uα ∩ Uβ),

one given via Uα, one via Uβ . Hence, we obtain a map gβα: F × (Uα ∩ Uβ) →

F × (Uα ∩ Uβ), such gβα|F×{x} is a homeomorphism onto F × {x} for each x ∈

Uα ∩ Uβ . These maps gβα are known as the transition maps, and satisfy the

following conditions:

1. gαα = id,

2. gβα = g−1
αβ ,

3. gγβ ◦ gβα = gγα.

Usually, one insists that, for each α and β and each x ∈ Uα∩Uβ , gαβ|F×{x} should

lie in some specified subgroup of Homeo(F, F ), known as the structure group of

the bundle. In this case, all we insist is that these homeomorphisms be pl.
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Note that a fibre bundle over M with fibre F can be specified by an open cover

{Uα} of M (with each Uα simplicial), together with transition maps satisfying the

above three conditions.
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Figure 21.

Definition. A section of a fibre bundle p: B → M is a map s: M → B such that

p ◦ s = idM .

Sketch proof of Theorem 6.1. Pick a triangulation of M in which L is simplicial.

This induces handle structures on L and M . Each i-handle of L is contained in

an i-handle of M . The union of these handles of M containing L forms N (L).

Careful choice of product structures on the handles (starting with the highest

index handles and working downwards) can be used to define the bundle map

p:N (L) → L. Each Uα is (a small extension) of a handle of L.

Definition. Two bundles p1: B1 → M and p2: B2 → M are equivalent if there is

a homeomorphism h: B1 → B2 so that the following commutes:

B1
h

−→ B2




y

p1





y

p2

M = M

Definition. If p: B → M is a fibre bundle and f : M ′ → M is any map, then there

is a bundle over M ′, known as the pull-back bundle. It is constructed by taking

the open cover {Uα} via which M is defined, and letting {f−1(Uα)} be the open
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cover for M ′. If gαβ: F × (Uα ∩ Uβ) → F × (Uα ∩ Uβ) is a transition map then

the transition map at a point x of f−1(Uα) ∩ f−1(Uβ) is given by gαβ|F×{f(x)}.
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Figure 22.

Examples. Let B be any bundle over M . If i: M ′ → M is an inclusion map,

then the pull-back bundle is the restriction of the bundle to M ′. The pull-back of

B with respect to idM is the same bundle as B. The pull-back with respect to a

constant map M ′ → M is a product bundle.

The following important result is not very difficult. Its proof can be found in

Husemoller’s book ‘Fibre Bundles’.

Theorem 6.2. Let M be compact, and let p: B → M × [0, 1] be a fibre-bundle.

Then the associated bundles over M × {0} and M × {1} are equivalent.

Corollary 6.3. A bundle over a contractible space M is a product bundle.

Proof. Since M is contractible, there is a homotopy M × [0, 1] → M between idM

and a constant map. Pull back the bundle over M to a bundle over M × [0, 1].

The bundle over M × {0} is the original bundle. The bundle over M × {1} is the

product bundle. They are equivalent by Theorem 6.2. .

Lemma 6.4. For each n ∈ N, there are precisely two Dn-bundles over S1 up to

bundle equivalence.

Proof. The two Dn-bundles over S1 are constructed as follows. Start with the

product bundle Dn × [0, 1] over [0, 1], and glue Dn × {0} to Dn × {1} via some

homeomorphism. The result is a Dn-bundle over S1. It is easy to see that isotopic
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gluing homeomorphisms give equivalent bundles. By Proposition 4.6, there are two

isotopy classes of such homeomorphisms. To see that the bundles are inequivalent,

note that their underlying spaces are not homeomorphic: one is orientable and

one is not.

Now we must show that every Dn-bundle over S1 is equivalent to one of

these. Pick a point x ∈ S1. Then, restricting to the bundle over S1 − int(N (x)) is

a bundle over the interval, which by Corollary 6.3 is a product. Hence, our bundle

is constructed as above.

We now give a characterisation of whether a manifold is orientable.

Proposition 6.5. An n-manifold M is orientable if and only if it contains no

embedded copy of the total space of the non-orientable Dn−1-bundle over S1.

Proof. If such a bundle embeds in M , then some triangulation of M is non-

orientable, and hence M is non-orientable.

Conversely, suppose that M contains no such bundle. Pick an orientation

on some n-simplex of M . This specifies unique compatible orientations on its

neighbouring n-simplices. Repeat with these simplices. In this way, we orient M ,

unless at some stage we return to an n-simplex and assign it an orientation the

opposite from its original orientation. This specifies a loop, running between the

n-simplices through the (n− 1)-dimensional faces. We may take this loop ℓ to be

embedded. Then N (ℓ) is the required non-orientable Dn−1-bundle over S1.

The total space of the non-orientable Dn−1-bundle over S1 is the Möbius

band for n = 2 and the solid Klein bottle for n = 3.

Proposition 6.6. Let S be a surface properly embedded in a compact orientable

3-manifold M . Then S is orientable if and only if N (S) is homeomorphic to S×I .

Proof. It suffices to consider the case where S is connected. Let p:N (S) → S

be the I-bundle over S from Theorem 6.1. Suppose first that S has non-empty

boundary. Then there is a collection A of disjoint properly embedded arcs in S,

such that cutting S along A gives a disc D. Then, by Corollary 6.3, the restriction

of p to p−1(D) is a product I-bundle. Now identify arcs in ∂D in pairs to give S.

These arcs inherit an orientation from some orientation on ∂D.
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If two arcs α1 and α2 are glued so that their orientations agree, then S

contains an embedded Möbius band and so is non-orientable. When α1 × I is

glued to α2 × I , the orientations of the I factors must be reversed (otherwise

M would contain a solid Klein bottle and hence be non-orientable). Hence, the

∂I-bundle over S is connected, and therefore N (S) is not homeomorphic to S× I .

Suppose therefore that each pair of arcs α1 and α2 in ∂D are identified in a

way that reverses orientation. Then S is orientable. Also, the gluing map between

α1 × I and α2 × I preserves the orientation of the I-factor, otherwise M would

contain a solid Klein bottle. Hence, after an isotopy of the gluing maps, we may

assume that it is the identity in the I-factors. Hence, N (S) is a product I-bundle.

Now consider the case where S is closed. Remove the interior of a small disc

D to give a surface S′. Then S is orientable if and only if S′ is. If N (S) is

product I-bundle, then its restriction to S′ is. Conversely, if its restriction to S′

is a product I-bundle, then we may extend the product structure over p−1(D) to

give a product structure on N (S).

A codimension one submanifold X of a manifold is known as two-sided if

N (X) is a product I-bundle. The existence of a product neighbourhood for a

properly embedded orientable surface S in an orientable 3-manifold M is very

important. For example, it is vital in the proof of Theorem 3.3, which asserts

that S is incompressible if and only if it is π1-injective. This can in fact fail

for non-orientable surfaces. For example, there is a non-orientable incompressible

embedded surface in some lens space which is not π1-injective.

§7. Homology of 3-manifolds

Definition. For i ∈ Z≥0, the ith Betti number βi(M) of a space M is the

dimension of Hi(M ; Q) viewed as a vector space over Q.

Definition. The Euler characteristic χ(M) of a compact triangulable space M is

∑

i

(−1)iβi(M).

Theorem 7.1. Pick any triangulation of a compact space M , and let σi be the

number of i-simplices in this triangulation. Then χ(M) =
∑

i(−1)iσi.
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Remark. If Hi(M) ∼= Za ⊕ T , where each element of T has finite order, then

βi(M) = a.

The following result, which we quote without proof, is one of the cornerstones

of manifold theory.

Theorem 7.2. (Poincaré duality) Let M be a compact connected orientable

n-manifold. Then for each i, Hi(M, ∂M ; Q) ∼= Hn−i(M ; Q).

Remark. The corresponding statements for coefficients in Z is not true.

Corollary 7.3. Let M be a closed orientable m-manifold, with m odd. Then

χ(M) = 0.

Corollary 7.4. For a compact orientable m-manifold M , with m odd, χ(M) =

(1/2)χ(∂M).

Proof. Let DM be two copies of M glued along ∂M , via the ‘identity’ map.

Then a triangulation of M induces one for DM . Counting i-simplices gives 0 =

χ(DM) = 2χ(M) − χ(∂M).

Theorem 7.5. Let M be a compact orientable 3-manifold, with at least one

component of ∂M not a 2-sphere. Then there is an element of H1(∂M) which has

infinite order in H1(M).

Proof. Let M̂ be the 3-manifold obtained by attaching a 3-ball to each 2-sphere

component of ∂M . Then H1(M̂) ∼= H1(M). Since M̂ is not closed, H3(M̂) = 0

and so β3(M̂) = 0. Since M is orientable, so is M̂ and ∂M̂ . Since ∂M̂ contains

no 2-spheres, χ(∂M̂) ≤ 0. Corollary 7.4 implies that χ(M̂) ≤ 0. But χ(M̂) =

β0(M̂)−β1(M̂)+β2(M̂)−β3(M̂) = 1−β1(M̂)+β2(M̂) ≤ 0. So, β1(M̂) > β2(M̂).

Therefore, in the long exact sequence of the pair (M̂, ∂M̂), the map H1(M̂ ; Q) →

H1(M̂, ∂M̂ ; Q) has non-trivial kernel. Hence, there is an element of H1(M̂ ; Q) in

the image of H1(∂M̂ ; Q). Clearing denominators from the coefficients gives an

infinite order element of H1(M̂) in the image of H1(∂M̂). The following diagram

commutes, where each map is induced by inclusion.
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H1(∂M̂) −→ H1(M̂)




y

∼=

x





∼=

H1(∂M) → H1(M)

This proves the theorem.

We introduce some standard terminology.

Definition. A 3-manifold M is irreducible if any embedded 2-sphere bounds a

3-ball in M .

By Proposition 3.5, a 3-manifold is irreducible if and only if it is prime and

not S2 × S1.

Theorem 7.6. Let M be a compact irreducible 3-manifold with H1(M) infinite.

Then M contains a connected 2-sided non-separating properly embedded incom-

pressible surface S, which is not a 2-sphere. Furthermore, if there is an infinite

order element of H1(M) in the image of H1(∂M), then we may guarantee that ∂S

has non-zero signed intersection number with some loop in ∂M .

Lemma 7.7. Let M be a compact connected 3-manifold and let X be a space

with π2(X) = 0. Then, for any basepoints m ∈ M and x ∈ X , any homomorphism

π1(M, m) → π1(X, x) is induced by a map M → X .

Proof. Pick a triangulation of M with m a 0-simplex. The 0-simplices and 1-

simplices form a graph in M . Pick a maximal tree T in this graph and map

it to x. For each remaining 1-simplex σ1 of M , there is a unique path in T

joining the endpoints of σ1. The union of this path with σ1 forms a loop which

(when oriented) represents an element of π1(M, m). The given homomorphism

π1(M, m) → π1(X, x) determines a loop in X (up to homotopy). Send σ1 to this

loop.

Let σ2 be any 2-simplex of M . Its three boundary 1-simplices ∂σ2 have been

mapped into X . Since ∂σ2 is homotopically trivial in M and group homomor-

phisms send the identity element to the identity element, the image of ∂σ2 is

homotopically trivial in X . Using this homotopy, we may extend our map over

σ2.

Now, let σ3 be any 3-simplex of M . We have mapped ∂σ3 to a 2-sphere in
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X . Since π2(X) = 0, this extends to a map of the 3-ball into X . Hence, we may

extend over each 3-simplex.

Lemma 7.8. Let M be a compact irreducible 3-manifold, and let X be a pl k-

manifold containing a properly embedded 2-sided (k−1)-submanifold Y . Suppose

that ker(π1(Y ) → π1(X)) = 1 and π2(Y ) = π2(X − Y ) = π3(X) = 0. Then any

map f : M → X is homotopic to a map g such that

(i) each component of g−1(Y ) is a properly embedded 2-sided incompressible

surface in M ,

(ii) no component of g−1(Y ) is a 2-sphere, and

(iii) for properly chosen product neighbourhoods N (Y ) and N (g−1(Y )), the map

g|N (g−1(Y )) sends fibres homeomorphically onto fibres.

Proof. Since Y is a pl submanifold of X , there is a triangulation of X in which

Y is a union of simplices. By assumption, N (Y ) is a product I-bundle. Hence,

we may alter the triangulation of X , by replacing each simplex σ of Y with the

standard triangulation of the product σ× [−1, 1]. Then Y = Y ×{0} embeds in X

transversely to the triangulation. Using the Simplicial Approximation Theorem,

we may subdivide a given triangulation of M and perform a homotopy to f so

that afterwards it is simplicial.

Y x [-1,1]

Y x {0}

f   (Y)-1

Figure 23.

Then each component of f−1(Y ) is a properly embedded 2-sided surface,
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satisfying condition (iii) relative to Y × [−1/2, 1/2] and f−1(Y × [−1/2, 1/2]). If

f−1(Y ) is incompressible, and no component is a 2-sphere, we are done.

Suppose now that D is a compressing disc for f−1(Y ). Choose a regular

neighbourhood N (D) in M such that A = N (D)∩f−1(Y ) is an annulus properly

embedded in N (D). Let D1 and D2 be disjoint discs properly embedded in N (D)

such that ∂D1 ∪ ∂D2 = ∂A. Define f1: M → X as follows. Put f1|M−int(N (D)) =

f |M−int(N (D)). The map f |Di
is a trivialising homotopy for the curve f |∂Di

. Since

ker(π1(Y ) → π1(X)) = 1, we may extend f1|∂Di
to a map f1|Di

into Y . Extend

f1 over a small neighbourhood N (Di) of Di using the product structure of N (Y ).

Then N (D)−(int(N (D1∪D2)) is three 3-balls. On their boundaries, f1 is already

defined, mapping into Y −X . Since π2(Y −X) = 0, we may extend f1 over all of

N (D), avoiding Y . Then f−1
1 (Y ) = f−1(Y ) ∪ D1 ∪ D2 − int(A). Thus, f−1

1 (Y )

is obtained from f−1(Y ) via a compression. It therefore reduces the complexity

of the surface, defined in §3. Note that f and f1 differ only within a 3-ball, and

therefore they are homotopic, since π3(X) = 0.

S

D

D

D

S

N(D)

1

2

Figure 24.

If some component of f−1(Y ) is a 2-sphere, then it bounds a 3-ball B in

M . We define a map f1: M → X as follows. Let f |M−int(B) = f1|M−int(B).

Using that π2(Y ) = 0, we may extend f |B to a map f1|B: B → Y . Then use the

product structure on N (Y ) to define a small homotopy so that f1(B) ∩ Y = ∅,

removing the 2-sphere component of f−1(Y ). This leaves the complexity of the

surface unchanged, but it reduces the number of components. Hence, we eventually

obtained the map g as required.
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Proof of Theorem 7.6. Since H1(M) is infinite but finitely generated, it has Z as

a summand. Hence, there is a surjective homomorphism H1(M) → Z. If there is

an infinite order element of H1(M) in the image of H1(∂M), we may assume that

the composition H1(∂M) → H1(M) → Z is surjective.

Now, there is a surjective homomorphism π1(M) → H1(M) which sends a

based oriented loop in M to a sum of oriented 1-simplices representing that loop.

Hence, there is a surjection π1(M) → Z. In the case where there is an infinite order

element of H1(M) in the image of H1(∂M), we may take π1(∂M) → π1(M) → Z

to be surjective. The map π1(M) → Z is induced by a map M → S1, by Lemma

7.7. Apply Lemma 7.8 to a point Y in S1. Then some component of g−1(Y ) is

a 2-sided non-separating incompressible surface S in M that is not a 2-sphere. If

π1(∂M) → π1(M) → Z is surjective, a loop in ∂M mapping to 1 ∈ Z must have

odd signed intersection number with ∂S.
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