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1. Introduction.

In this paper, we give an example of a 4-dimensional Kleinian group, i.e. a discrete
group of isometries of hyperbolic 4-space, which is finitely generated but not finitely pre-
sented, and which is a subgroup of a cocompact Kleinian group.

Traditionally the term “Kleinian group” has been used to describe a discrete group,
Γ, acting on hyperbolic 3-space, H3. In this dimension, there is a rich analytic theory,
arising from the fact that the ideal boundary of H3 may be naturally identified with
the Riemann sphere. An important class of results about such groups may be termed
“finiteness theorems”. Thus, under some mild hypothesis, typically that Γ be finitely
generated, one deduces various other finiteness properties, which may be group theoretic,
analytic, topological or geometric. We shall describe some basic finiteness theorems in a
moment, but let’s begin with some general observations. (More details can be found in
[Bea].)

We shall write Hn for hyperbolic n-space, and Isom Hn for the group of all isometries
of Hn. A group Γ ⊆ Isom Hn is discrete, as a subgroup, if and only if it acts properly dis-
continuously on Hn. In such a case, the quotient Hn/Γ is a hyperbolic orbifold. Moreover,
a discrete group, Γ, is torsion-free if and only if it acts freely on Hn. In this case, Hn/Γ is a
hyperbolic manifold. The Selberg Lemma [Se] tells us that any finitely generated subgroup
of Isom Hn contains a torsion-free subgroup of finite index.

Hyperbolic space, Hn, may be compactified by adjoining the ideal sphere, Hn
I . This

is natural, in the sense that the action of Isom Hn on Hn extends to the compactification
Hn ∪Hn

I . Moreover the action on Hn
I is conformal. If Γ ⊆ Isom Hn is discrete, we may

define the limit set , Λ, of Γ to be the set of accumulation points of some (any) Γ-orbit in
Hn. Thus Λ ⊆ Hn

I is closed, and we define the discontinuity domain, Ω = Hn
I \Λ, so called

because Γ acts properly discontinuously on Ω.
Returning to dimension 3, suppose Γ ⊆ Isom H3 is finitely generated and discrete.

Let Γ′ ⊆ Γ be a finite-index torsion-free subgroup. Thus H3/Γ′ is a hyperbolic 3-manifold,
with π1(H3/Γ′) ∼= Γ′ finitely generated. Now, Scott’s theorem [Sc1] tells us that Γ′ must be
finitely presented. We conclude that Γ is finitely presented. This is one finiteness theorem.
Another is Ahlfors’s Finiteness Theorem [Ah]. This states that Ω/Γ (and hence Ω/Γ′) is
a (possibly disconnected) Riemann surface of finite type (i.e. a finitely-punctured compact
surface). In particular, it is topologically finite. A theorem of Feighn and Mess [FMe]
states that Γ has finitely many conjugacy classes of finite subgroups. Also, Sullivan’s Cusp
Finiteness Theorem [Su1] tells us that Γ has finitely many conjugacy classes of maximal
parabolic subgroups. (A topological proof of this by Feighn and McCullough [FMc] also
recovers the topological part of the conclusion of the Ahlfors Finiteness Theorem, except

1



A 4-dimensional Kleinian group

that it does not exclude the possibility of components of the quotient of the domain of dis-
continuity which are open discs. For further discussion of the Ahlfors Finiteness Theorem,
see [KulS].) Finally, it is conjectured that the 3-manifold H3/Γ′ is “geometrically tame”,
as defined by Thurston [T]. This would imply, in particular, that H3/Γ′ is topologically
finite (i.e. homeomorphic to the interior of a compact manifold). Bonahon [Bo] has proven
the geometric tameness conjecture for a large class of groups, for example if Γ does not
split as a free product.

For some time it was an open question as to what extent these results extend to higher
dimensions. However, in a series of papers [KaP,Ka2,P1,P2], Kapovich and Potyagailo
described counterexamples in dimension 4 to all the results stated above. In particular, in
[KaP], they give an example of a finitely generated discrete torsion-free group Γ ⊆ Isom H4

which does not admit a finite presentation, and for which the Ahlfors Finiteness Theorem
fails in the strong sense that the fundamental groups of the components of Ω/Γ are not
finitely generated.

In this paper we construct another such group which turns out to be a subgroup of a
discrete cocompact group acting on H4. In particular it contains no parabolic elements—
unlike Kapovich and Potyagailo’s original example. Our example was inspired by theirs.
(Note that Potyagailo [P2] has also described an example without parabolic elements.)

For other exotic 4-dimensional Kleinian groups of various sorts, see for example
[ApT,BesC,Ka1,GLT,Kui]. (We are informed by the referee that [BesC] contained a gap
which has been filled by [M].)

Note that some other consequences of the Ahlfors Finiteness Theorem remain unre-
solved for finitely generated groups in dimensions greater than or equal to 4; for example,
if Ω0 is a component of the discontinuity domain, does the limit set of the stabliser of Ω0

necessarily coincide with ∂Ω0. It also seems to be unknown whether a finitely generated
group with parabolics always admits a system of disjoint strictly invariant horoballs.

The material for this paper was worked out while both authors were visiting I.H.E.S.
During this period the first author was supported by a Royal Society European Exchange
Fellowship.

2. Sketch.

As an example of the failure of Scott’s Theorem in dimension 4, consider the following
situation. Suppose M3 is a 3-manifold with finitely generated fundamental group. Suppose
that S ⊆M3 is a connected, incompressible, 2-sided, properly embedded surface of infinite
topological type. By incompressible we mean that π1(S) injects into π1(M3). Such pairs
(M3, S) certainly exist, as we shall see. (It does not concern us whether or not S separates
M3.)

Now, take two copies of M3, and identify along the surface S, so as to obtain a complex
D. More formally we may write D = (M × {0, 1})/∼ where (x, 0) ∼ (x, 1) for all x ∈ S.
Note that the fundamental group of D is an amalgamated free product:

π1(D) ∼= π1(M3) ∗π1(S) π1(M3).
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We now want to embed D in a 4-manifold, M4
1 . Write I for the closed interval [−1, 1].

Since S is 2-sided, we can find a regular neighbourhood S × I embedded in M3 so that S
is identified with S × {0}. We now embed M as M × {0} in the 4-manifold M × I. Thus
S × I × I is codimension-0 submanifold of M × I. We now take two copies of M × I, and
identify along S × I × I, after a rotation of the square, I × I, through an angle of π/2.
This gives a 4-manifold M4

1 , in which D is properly embedded as a deformation retract
(Figure 1). Thus π1(M4

1 ) ∼= π1(D). Clearly π1(M4
1 ) is finitely generated. The fact that it

is not finitely presented follows from the following lemma, attributed to Neumann:

Lemma 2.1 : Suppose A, B and C are groups with monomorphisms φ : C −→ A and
ψ : C −→ B. If A and B are finitely generated, and the amalgamated free product A ∗C B
is finitely presented, then C is finitely generated.

Proof : Choose finite generating sets A0 and B0 for A and B respectively. If we identify
A and B as subgroups of A ∗C B, then A0 ∪ B0 is a finite generating set for A ∗C B. Let
{r1 . . . rp} be a complete set of relators corresponding to this generating set. Each relation
ri = 1 is a consequence of a finite number of relations in A and B, together with a finite
number of relations of the form φ(c) = ψ(c) for c ∈ C. Let C0 ⊆ C be set of all c ∈ C
such that the relation φ(c) = ψ(c) occurs in some relation ri = 1. Let C ′ be the subgroup
of C generated by C0. Then, the natural epimorphism from A ∗C′ B to A ∗C B is an
isomorphism. It follows that C ′ = C, and so C is finitely generated. ♦

(In fact, in the case in which we are interested, H1(C,Z) has infinite rank, and so the
Mayer-Vietoris sequence for A ∗C B tells us that H2(A ∗C B,Z) also has infinite rank.)

We next give a sketch of how we intend to realise this example geometrically. A more
rigorous treatment will be given in the context of an explicit example in Section 4.

Suppose that M3 = H3/Γ3 is a hyperbolic 3-manifold with finitely generated fun-
damental group π1(M3) ∼= Γ3. Suppose that S ⊆ M3 is a properly embedded totally
geodesic 2-sided surface of infinite topological type. Suppose, moreover, that S has a
uniform regular neighbourhood in M3, i.e. that for some sufficiently large r > 0, the
metric r-neighbourhood, Nr(S) of S is topologically a product S × I. (It turns out that
r = cosh−1

√
2 will do.)

Given h > 0, we may realise M3×I as a hyperbolic 4-manifold with convex boundary
as follows. We identify H3 as a totally geodesic subspace σ of H4, and we extend the action
of Γ3 to H4. Thus the uniform neighbourhood, Nh(σ) is Γ3-invariant, and so we may form
the quotient Nh(σ)/Γ3 ≡ M3 × I. Now, if r > h, we may take two copies of M3 × I
and superimpose them so that the two copies if M3 ≡ M3 × {0} sitting inside overlap
orthogonally along S. Identifying the superimposed pieces of M3 × I we arrive, as before
with a 4-manifold with boundary, M4

1 . The boundary of M4
1 will not be convex. However,

if r is sufficiently large, and h < r is chosen appropriately, we can smooth out the boundary
locally so that it becomes convex. It suffices to verify this in a 2-dimensional cross-section
(Figure 2). In fact, this is an example of a more general construction due to Thurston,
of which we shall give a more careful account in Section 5. Another general construction
(Lemma 5.2) allows us to embed the 4-manifold thus obtained, as a deformation retract,
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inside a compete hyperbolic 4-manifold without boundary, M4. The group of covering
transformations of M4 is thus a finitely generated non-finitely presented Kleinian group.

It’s not hard to see that this group also gives a counterexample to the topological
part of the Ahlfors Finiteness Theorem in dimension 4. Note that the quotient of the
discontinuity domain is homeomorphic to the boundary of M4

1 . This boundary has ei-
ther four or one components, depending on whether or not S separates M3. If S does
not separate, then the single boundary component has infinitely generated fundamental
group. If S does separate, then two of the boundary components have infinitely generated
fundamental group.

Consider the case where S separates M3 into two pieces, N3
1 and N3

2 , each with
boundary S. Now two of the boundary components of M4

1 are homeomorphic to M3, while
the other two are homeomorphic respectively to DN3

1 and DN3
2 , where DN3

i is obtained
by doubling N3

i in its boundary. To see that DN3
i has infinitely generated fundamental

group, set A = π1(N3
i ) and C = π1(S); so we may regard C as a subgroup of A, and

π1(DN3
i ) = A ∗C A. There is a natural epimorphism from A ∗C A to A, and so if A ∗C A

is finitely generated, then so is A. By Lemma 2.1, A ∗C A is not finitely presented. But
A ∗C A is a 3-manifold group, and so this contradicts Scott’s theorem. A similar argument
deals with the case where S does not separate M3.

We now describe how to find a suitable pair (M3, S). Choose a compact hyperbolic 3-
manifold, M3

1 , which fibres over the circle, and which contains an immersed closed totally
geodesic surface, S1 −→ M3. We choose an immersion which does not factor through
a covering S1 −→ S2. An example of such will be described below. We may now find
a finite covering, M3

0 , of M3
1 , which contains a totally geodesic surface S0. Moreover,

we may assume that S0 has an arbitrarily wide uniform regular neighbourhood in M3
0 .

These statements follow from a result of Long [L], which imply that the image, H, of
π1(S1) in π1(M3

0 ) is separable. (In fact, Long states that there is a subgroup, H ′, of G
which is separable in G, and which contains H as a subgroup of finite index; this index is
one because we chose the immersion S1 −→ M3 so as not to factor through a covering.)
However, in the example we shall describe, these constructions can be made explicit (see
Lemma 3.5). After passing to finite covers if necessary, we can assume that both M3

0 and
S0 are orientable, so S0 is 2-sided in M3

0 .

Now, let M3 be the infinite cyclic covering of M3
0 corresponding to the fibre subgroup

of π1(M3
0 ). Let S be a component of the inverse image of S0 under the covering projection.

Thus S is a covering space of S0. This covering must be either infinite cyclic or trivial.
However, the latter case is clearly impossible, since it would mean that the fibre subgroup
would be fuchsian, whereas its quotient, M3, is geometrically infinite. We conclude that
S has infinite topological type. The uniform regular neighbourhood about S0 in M3

0 lifts
to one about S in M3.

As an explicit example, we use the following construction of Thurston [Su2]. First
note that we may represent the dodecahedron combinatorially as a cube with six edges
added in the pattern shown in Figure 3. If we identify opposite faces of the cube so as to
form a 3-torus, then these additional edges become three disjoint embedded circles. We
define a 3-orbifold by assigning to each of these circles a transverse cone angle equal to π.
Note that this orbifold fibres over the circle (given by the long diagonal of the cube).
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Now, this orbifold has a hyperbolic structure formed by realising the dodecahedron
as a right regular dodecahedron in H3. By “right” we mean that all the dihedral angles
are equal to π/2. Let M3

2 = H3/Γ2 be the hyperbolic orbifold thus obtained. Note that
Γ2 is commensurable with the group, G3, generated by the reflections in the faces of a
right regular dodecahedron. In fact Γ2 and G3 are both finite-index subgroups of the
(tetrahedral) group of symmetries of a right regular dodecahedral tessellation of H3.

Now, by the Selberg Lemma, we know that Γ2 contains a torsion free subgroup of
finite index, Γ1, which we can suppose is a subgroup also of G3. Thus, M3

1 = H3/Γ1 is a
compact hyperbolic 3-manifold fibring over the circle, and tiled by dodecahedra. It clearly
contains an immersed totally geodesic surface, S1, formed as a union of pentagonal faces.
We now lift to obtain the pair (M3, S) as described above.

We may now obtain a complete hyperbolic 4-manifold, M4, using two copies of M3, in
the manner described earlier. SinceM3 is tiled by dodecahedra, we see thatM4 will be tiled
by right regular 120-cells. (Recall that a 120-cell is the regular 4-dimensional polyhedron
with 120 dodecahedral faces. It may be realised as a compact hyperbolic polyhedron with
all dihedral angles equal to π/2 which is made up of 14400 fundamental domains for the
Coxeter group ◦ 5 ◦ ◦ ◦ 4 ◦.) Let Γ ⊆ Isom H4 be the group of covering transformation
of M4, so that M4 = H4/Γ. We see that G is a subgroup of the group G4 ⊆ Isom H4,
generated by reflections in the faces of a right regular 120-cell. In summary, we have that
Γ is a finitely generated non-finitely presented subgroup of the discrete cocompact group
G4.

(Note that Davis [D] describes a compact hyperbolic 4-manifold built out of 120-cells,
though in that case, the link of each two dimensional face is a pentagon, rather than a
square.)

We have described all the essential ingredients of our example, though we made appeal
to some general principles which were not clearly elucidated. To give a more rigorous
treatment, we make some observations about certain tessellations of hyperbolic space.

3. Right tessellations.

In this section, we describe tessellations obtained by continually reflecting a right-
polyhedron in its codimension-1 faces. Note that it follows from the work of Vinberg and
Nikulin that such right-angled polyhedra can exist in Hn only for n ≤ 4. (See for example
[N]). In fact any convex 5-dimensional polyhedron must contain a 2-dimensional face with
at most four edges.

Definition : A right polyhedron P in Hn is a compact convex polyhedron with non-empty
interior, such that all the dihedral angles are equal to π/2.

By a face of P we mean the intersection of P with a supporting hyperplane. Note
that each face of P is itself a right polyhedron of lower dimension. We write F(P ) for the
set of all codimension-1 faces of P . Thus, ∂P =

⋃
F(P ). We say that F1, F2 ∈ F(P ) are

adjacent if F1 ∩ F2 6= ∅. In such a case, F1 ∩ F2 will be a codimension-2 face of P . This
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follows from the fact that the link of every vertex of P is an (n − 1)-simplex. (Note that
such a link is a convex polyhedron in the (n − 1)-sphere, all of whose dihedral angles are
equal to π/2, and so the vertices of the dual form an orthonormal basis for Rn.)

Lemma 3.1 : Suppose P is a right polyhedron in Hn, and F1, F2 ∈ F(P ). Let σ1 and σ2
be the codimension-1 subspaces of Hn containing F1 and F2 respectively. If F1 ∩ F2 = ∅,
then σ1 ∩ σ2 = ∅.

Proof : Let α be the shortest geodesic from F1 to F2. Since P is convex, α ⊆ P . Since P
is a right polyhedron, we see that α meets σ1 and σ2 orthogonally. Thus α is the shortest
geodesic from σ1 and σ2. ♦

By a 4-chain in F(P ), we mean a cyclically ordered set of four distinct elements,
{F1, F2, F3, F4}, of F(P ), such that Fi∩Fi+1 6= ∅ and Fi∩Fi+2 = ∅ for i = 1, 2, 3, 4, where
subscripts are taken mod 4.

Lemma 3.2 : If P is a right polyhedron, then F(P ) contains no 4-chain.

Proof : Suppose F1, F2, F3, F4 is a 4-chain. Let σi be the codimension-1 subspace spanned
by Fi. We know that σi meets σi+1 orthogonally, and by Lemma 3.1, that σi ∩ σi+2 = ∅.
It’s easy to see that this is impossible. ♦

We say that a set of codimension-1 faces, F0 ⊆ F(P ) are mutually adjacent if F1∩F2 6=
∅ for all F1, F2 ∈ F0.

Lemma 3.3 : If F0 ⊆ F(P ) is a set of mutually adjacent faces, then
⋂
F0 6= ∅. In fact,⋂

F0 is a codimension-r face of P , where r = |F0| (so that |F0| ≤ n).

Proof : Choose any F0 ∈ F0, so that F0 is an (n− 1)-dimensional right polyhedron. Let
F ′0 = {F ∩ F0 | F ∈ F0 \{F0}}. Thus, F ′0 is a set of r − 1 codimension-1 faces of F0.
Applying Lemma 3.1 to F0, we find that these faces are mutually adjacent. By induction
on dimension, we conclude that r ≤ n, and that

⋂
F0 =

⋂
F ′0 is an (n − r)-dimensional

face of F0, and hence of P . ♦

Lemma 3.4 : Suppose F0 ⊆ F(P ) is a set of mutually adjacent faces. Let F1 be the set
of faces of F(P )\F0 which are adjacent to some element of F0. If F1, F2 ∈ F1 are adjacent,
then there is some F0 ∈ F0 adjacent to both.

Proof : Suppose, for contradiction, that there is no such F0. By hypothesis, there are
elements F3, F4 ∈ F0 with F3 adjacent to F2, and with F4 adjacent to F1. We must have
F1 ∩ F3 = ∅ and F2 ∩ F4 = ∅. Thus F3 6= F4, and so F3 and F4 are adjacent. It follows
that F1, F2, F3, F4 is a 4-chain, contradicting Lemma 3.2. ♦
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Definition : A right tessellation of Hn is a collection, P, of n-dimensional right polyhedra
which tessellate Hn (i.e. the interiors are disjoint, and

⋃
P = Hn), and such that if any

two elements of P intersect, then they do so in a common face.

Another way of describing right tessellations is as follows. Suppose S is a locally finite
collection of codimension-1 subspaces of Hn, with the property that any two elements
of S intersect orthogonally or not at all. Suppose that each component of Hn \

⋃
S is

relatively compact. Then the set, P, of closures of these components is a right tessellation
of Hn. Moreover, every right tessellation arises in this way. We write S = S(P). Note
that

⋃
S(P) =

⋃
P∈P F(P ). In fact, if P ∈ P, then F(P ) = {S ∩ P | S ∈ S}. Also, by

Lemma 3.1, we see that if S1, S2 ∈ S and P ∈ P meet pairwise (i.e. P ∩ S1, P ∩ S2 and
S1 ∩ S2 are all non-empty), then P ∩ S1 ∩ S2 6= ∅.

Definition : We say that a subset S0 ⊆ S is sparse if whenever S1, S2 ∈ S and P ∈ P
satisfy P ∩ S1 6= ∅ and P ∩ S2 6= ∅, then S1 ∩ S2 6= ∅ (and so P ∩ S1 ∩ S2 6= ∅). In other
words, no polyhedron of P can meet two disjoint elements of S0.

Lemma 3.5 : Suppose P is a right tessellation, and that S0 ⊆ S(P) is sparse. Suppose
that

⋃
S0 is connected. Let P0 = {P ∈ P | P ∩ S 6= ∅ for some S ∈ S0}. Then

⋃
P0 is

convex.

Proof : Let Σ =
⋃
S0 and Π =

⋃
P0. Given P ∈ P0, we write F(P ) as a disjoint union

F(P ) = F0(P ) t F1(P ) t F2(P ), where F0(P ) = {F ∈ F(P ) | F ⊆ Σ}, F1(P ) = {F ∈
F(P ) | F ∩ Σ 6= ∅, F 6⊆ Σ} and F2(P ) = {F ∈ F(P ) | F ∩ Σ = ∅}. Note that, since
Σ0 is sparse, the faces F0(P ) are mutually adjacent, and so F0(P ) and F1(P ) satisfy the
hypotheses of Lemma 3.4. Thus, any two adjacent faces in F1(P ) have a common adjacent
face in F0(P ).

Let F0 =
⋃
P∈P0

F0(P ) and F1 =
⋃
P∈P0

F1(P ). It is easy to see that if F is any
element of F0∪F1, then the two polyhedra of P which have F as a face both lie in P0. We
see that ΠI = Π\

⋃
P∈P0

F2(P ) is an open neighbourhood of Σ in Hn. Let ΠC be the metric
completion of ΠI in the induced path-metric. Thus, ΠC is a manifold with boundary, and
there is a finite-to-one map p : ΠC −→ Π. We claim that ΠC has convex boundary. It
then follows that p is injective. Since Σ is connected, we then see that Π ≡ ΠC is convex.

We may construct, abstractly, the manifold ΠC by gluing together the polyhedra of P0

along the faces F0∪F1. The boundary, ∂ΠC , is tiled by the elements of F2 =
⊔
P∈P0

F2(P ),
considered as a disjoint union. (It is conceivable, for the moment, that there may be distinct
elements P, P ′ ∈ P0 for which F2(P ) ∩ F2(P ′) 6= ∅.)

Suppose that F, F ′ ∈ F2 meet along an (n− 2)-dimensional face K ⊆ ∂ΠC . A priori,
the interior angle at which F and F ′ meet may be π/2, π, 3π/2 or 2π, according to
whether 1, 2, 3 or 4 polyhedra in P0 have K as a face (Figure 4). To see that ΠC has
convex boundary, we want to rule out the latter two cases.

However, in the latter two cases, we see that there is some polyhedron P ∈ P0, and
faces F1, F2 ∈ F(P ) distinct from F and F ′, with F1 ∩ F2 = K. Since K ∩ Σ = ∅, we
must have F1, F2 ∈ F1(P ). Thus, there is some F0 ∈ F0(P ) with F0, F1 and F2 mutually
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adjacent. By Lemma 3.3, we have F0 ∩ F1 ∩ F2 6= ∅. But F0 ⊆ Σ, and so K ∩ Σ 6= ∅.
This contradiction shows that only the first two cases can occur, and so ΠC has convex
boundary. ♦

This is probably not the most elegant proof one could give of this lemma. However, it
is in a form that admits a modification to the situation which really interests us, namely
when we are given the complex Σ abstractly, together with a tiling of Σ by right regular
polyhedra (dodecahedra). We may then use the combinatorial structure to construct ΠC

out of regular polyhedra one dimension higher (120-cells). The argument shows that ΠC

has convex boundary, and thus embeds as a convex subset of hyperbolic space (H4). We
describe this more carefully in Section 4.

Suppose, now that P ⊆ Hn is a right polyhedron. Let G be the group generated
by reflections in the faces F(P ). Then G ⊆ Isom Hn is discrete and cocompact, and
P = GP = {γP | γ ∈ G} is a G-invariant right tessellation of Hn. Right tessellations
arising in this way are characterised by the fact that P is invariant under reflection in S
for all S ∈ S(P).

The Selberg Lemma tells us that G contains a torsion free subgroup of finite index.
However, in this situation, there is an elementary geometric construction of such a subgroup
as follows. We choose an m-colouring of the codimension-1 faces of P , i.e. a map c :
F(P ) −→ {1, . . . ,m} such that no two adjacent faces are given the same colour. Let F =⋃
P∈P F(P ) = {gF | g ∈ G,F ∈ F(P )}. We may extend c to a map c : F −→ {1, . . . ,m}

by setting c(gF ) = c(F ) for g ∈ G. It is not hard to see that this map is well defined.
Given i ∈ {1, . . . ,m}, let Σ(i) =

⋃
{F ∈ F | c(F ) = i}. We see that Σ(i) has the form⋃

S(i), where S(i) ⊆ S is a G-invariant collection of disjoint codimension-1 subspaces.

Now, we may write any g ∈ G as a product r(F1)r(F2) . . . r(Fk) where r(F ) is reflection
in the face F ∈ F(P ). Let ρ(g) = (ε1, ε2, . . . , εm), where εi ∈ Z2 is the number of times,
mod 2, that a face of colour i occurs in this product. We see that ρ(g) is well defined, and
that the map ρ gives a homomorphism from G onto Zm2 = Z2×Z2×· · ·×Z2. (For another
description of ρ(g), choose an interior point, x, of P , and join x to gx by a general position
path β. The ith entry of ρ(g) is then the number of times, mod 2, that β intersects Σ(i).)
Let G′ = ker ρ. We see that G′ preserves orientation, and has index 2m in G. Moreover, if
g ∈ G′ and P ′ ∈ P, then P ′ ∩ gP ′ = ∅. We conclude easily that G′ is torsion free. Thus,
Hn/G′ is a compact orientable manifold, tiled by embedded polyhedra projected from P.
Also, for any i ∈ {1, . . . ,m}, we see that S(i) = Σ(i) is an embedded totally geodesic
codimension-1 submanifold.

We remark that we may compose ρ with the homomorphism q : Zm2 −→ Zm−12 given
by quotienting out the diagonal. In this way we get a homomorphism q ◦ ρ : G −→ Zm−12 .
The kernel of this homomorphism is again torsion-free, and of index 2m−1. Note that if
the dimension n is 3, then the Four Colour Theorem gives us a torsion free subgroup of
index 8 in G, which is clearly the best possible. This argument can be found in [V]. It was
shown to us by Tadeusz Januszkiewicz.

Suppose now, that there is precisely one face in F(P ) of any given colour i. Then, the
totally geodesic submanifold S(i) ⊆ Hn/G′ is connected. Moreover, the subset S(i) ⊆ S
is sparse, i.e. no polyhedron of P meets two distinct elements of S(i). In this case we say

8



A 4-dimensional Kleinian group

that S(i) is collared . More formally:

Definition : Suppose G0 ⊆ G is torsion free, so that Hn/G0 is a manifold tiled by
polyhedra. (We can suppose, if we like, that these polyhedra are embedded, though this
is not essential.) By a collared codimension-1 submanifold, S0 ⊆ Hn/G0, we mean an
embedded 2-sided totally geodesic submanifold, composed of codimension-1 faces of the
tiling of Hn/G0, and such that S0 =

⋃
S0, where S0 ⊆ S is sparse.

Lemma 3.6 : Suppose that G ⊆ Isom Hn is generated by reflections in the codimension-
1 faces of a right polyhedron P . Let P = GP be the resulting right tessellation. If
G1 ⊆ G is a finite index subgroup, then there is a finite index torsion-free orientation
preserving subgroup Γ0 ⊆ G1, so that the quotient manifold Hn/Γ0 contains a collared
totally geodesic codimension-1 submanifold, S0 ⊆ Hn/Γ0.

Proof : Colour the faces F(P ) so that no two have the same colour. Let G′ ⊆ G be the
resulting subgroup as described above, and let Σ(1) be as described. Let Γ0 = G1 ∩ G′,
and let S0 be a connected component of Σ(1)/Γ0. ♦

We remark that there is an abundance of finite index subgroups G, which can be
constructed geometrically, following the ideas in [Sc2]. For example residual finiteness of
G follows from the fact that any two polyhedra of P are contained in a convex set which is
a finite union of polyhedra of P. Also all geometrically finite subgroups of G are separable.

4. An explicit example.

Let G3 ⊆ Isom H3 be the discrete group of isometries generated by reflections in the
faces of a right regular dodecahedron. In Section 2, we described a commensurable group
Γ2 ⊆ Isom H3 so that H3/Γ2 is a compact orbifold fibring over the circle. Applying Lemma
3.6, we obtain a subgroup Γ0 ⊆ Γ2 ∩ G3 so that M3

0 = H3/Γ0 is a compact orientable
manifold containing a connected orientable collared totally geodesic surface S0 ⊆ M3

0

which is a union of pentagonal faces. Now M3
0 also fibres over the circle, so we may form

the infinite cyclic cover M3 of M3
0 . Thus, M3 is tiled by dodecahedra, and contains a

connected collared surface S ⊆ M3 tiled by pentagons, and of infinite topological type.
We form a complex D by joining together two copies of M3 along S.

Now, let G4 ⊆ Isom H4 be the discrete subgroup generated by reflections in the faces
of a right regular 120-cell, P . Let P = G4P be the resulting tessellation of H4, and let
S = S(P). Note that we may identify the setwise stabliser of any S ∈ S with G3.

Let Σ be the universal cover of the complex D. Thus, Σ consists of a locally finite
countable union of hyperbolic 3-spaces glued together along disjoint planes. If we imagine
these 3-spaces as meeting orthogonally, then there is a natural way of developing Σ into
the 3-skeleton,

⋃
S, of the tessellation P. We claim that the developing map is injective.

To see this, we apply the argument of Lemma 3.5. Using the combinatorial structure of
the tiling of Σ, we construct abstractly the simply connected manifold ΠC out of 120-cells.
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As in Lemma 3.5, we see that ΠC embeds as a convex subset of H4. In fact it has the form
ΠC =

⋃
P0 for some subset P0 ⊆ P. From the naturality of the construction, the action

of π1(D) on Σ extends to ΠC , and hence to H4 as a subgroup of G4. This subgroup is
finitely generated but does not admit a finite presentation.

5. Appendix.

The purpose of this section is to give an account of the construction of Thurston
mentioned in Section 2. This construction is a generalisation of “bending”. It was used
by Thurston to construct examples of distinct geometrically finite representations of the
same group into Isom H3 which are not quasiconformally conjugate; see [T, page 9.52].

Suppose V is a hyperbolic n-manifold (not necessarily connected) with totally geodesic
boundary consisting of finitely many components F1, . . . , Fk, which we take to be cyclically
ordered. Suppose that F1, . . . , Fk are all isometric. We may form a metric complex, D,
by identifying all these components by isometry to give an (n − 1)-manifold F ⊆ D.
(Thus D\F may be identified with the interior of V .) At each point x ∈ F , there are
well defined tangent vectors ξ1(x), . . . , ξk(x) to D, perpendicular to F , in natural bijective
correspondence to the boundary components of V .

The aim of the construction is to give an embedding ι : D ↪→ W of D in a complete
hyperbolic (n+ 1)-manifold W , without boundary, such that

(1) The metric on D agrees with the path metric induced from W .

(2) Each component of ι(D\F ) is totally geodesic in W .

(3) W retracts onto D.

We also want to be able to specify the angles, θi, at which the components of ι(D\F ) meet
along F . In other words, given numbers θi ∈ (0, 2π) for i = 1, . . . , k summing to 2π, we
want to arrange that for some (and hence every) x ∈ F , the vectors ι∗ξi(x) and ι∗ξi+1(x)
meet at an angle of θi, taking account of orientation and cyclic ordering (Figure 5). We
show that we can always find such an embedding provided that there are large enough
collars around each the boundary components Fi.

Proposition 5.1 : There is a map r : (0, π) −→ (0,∞) such that the following holds.
Suppose V, F1, . . . , Fk, D, F are as described above. Suppose that θ1, . . . , θk ∈ (0, 2π) are

such that
∑k
i=1 θi = 2π. Let θ = min{θi | 1 ≤ i ≤ k} and r = r(θ). Suppose that,

for each i ∈ {1, . . . , k}, the uniform neighbourhood Nr(Fi) is an embedded collar (i.e. it
retacts onto Fi). Then, there is an embedding ι : D ↪→ W of D in a complete hyperbolic
(n+ 1)-manifold, W , (without boundary), satisfying (1), (2) and (3) above, and for which
the quantities θ1, . . . , θk measure the angles at which the collars ι(Nr(Fi)) meet along F
(in the sense described above). Moreover, the pair (W,D) is unique up to isometry.

In fact, we may take r(θ) = cosh−1 cosec(θ/2). Note that r(θ) → ∞ as θ → 0, and
r(θ)→ 0 as θ → π.

We have already seen one example of this construction, namely gluing together two
copies of a hyperbolic 3-manifold M3 along a totally geodesic surface S ⊆M3. In this case,
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we regard M3\S as a path-metric space—distances are given by the infinum of length of
paths, and if S separates, the components of M\S have infinite distance from each other.
We take V is the metric completion of two copies of M3\S.

Another example, mentioned above, is the bending of an n-manifold, M , along a
totally geodesic codimension-1 submanifold, S. Let V be the metric completion of M \S
in the induced path-metric. Thus V has boundary components F1 and F2 isometric to S.
Given φ ∈ (0, π), let θ1 = π − φ and θ2 = π + φ. In this case, the construction describes
bending through an angle of φ. If S admits a 2-sided collar (for example if S is compact),
then we can always bend through some positive angle (since r(θ) → 0 as θ → π). If S
admits a very large 2-sided collar (for example if M is a 2-manifold, and S is a short simple
closed curve), then we can bend through an angle very close to π.

The uniqueness of the manifold W is fairly clear. Note that the universal cover D̃ of
D is an embedded complex in Hn+1. This embedding is determined, up to isometry in
Hn, by the metric structure of D̃ and the angles θi. Thus, the action of π1(D) on Hn is
determined, and the quotient, W , is unique.

We need to show the existence of W . Note that it suffices to find an (n+ 1)-manifold,
W ′, with convex boundary satisfying the same properties. This is because:

Lemma 5.2 : Every complete hyperbolic n-manifold M ′ with convex boundary embeds
in a complete hyperbolic n–manifold M without boundary. The pair (M,M ′) is unique
up to isometry.

Proof : We may develop the universal cover of M ′ into Hn. Since this is connected and
has convex boundary this must be an embedding. Extend the action of π1(M ′) to Hn and
take the quotient. ♦

We shall need the following construction. Suppose that σ ⊆ Hq+r is a subspace
of dimension q. There is a natural map f : Hq+r −→ Hr such that σ gets mapped
to a single point x0 ∈ Hr, such that each r-dimensional subspace orthogonal to σ gets
mapped isometrically to Hr, and such that for any subspace µ of Hr containing x0, f−1µ
is a subspace of Hq+r. If K ⊆ Hr and X ⊆ σ, then we have a well defined subset
Y = Y (X,K) ⊆ Hq+r and such that if τ is an r-dimensional subspace of Hq+r orthogonal
to σ then either Y ∩ τ = ∅ and X ∩ τ = ∅, or f(Y ∩ τ) = K and X ∩ τ 6= ∅. There is a
natural projection p̃ : Y −→ X.

Now suppose that M = Hq/Γ is a hyperbolic q-manifold with convex boundary, and
that K ⊆ Hr. We identify Hq with σ so that the universal cover M̃ becomes a convex
subset of σ. The action of Γ extends to Hq+r, so we may define W (M,K) = Y (M̃,K)/Γ.
Let p : W (M,K) −→ M be the projection induced by p̃ : Y (M̃,K) −→ M̃ . Note that if
J ⊆ K, then there is a natural embedding W (M,J) ⊆W (M,K).

Proof of Proposition 5.1 : We are given V, F1, . . . , Fk, D, F, θ1, . . . , θk. We want
to construct W . The idea is to construct W ′ by gluing together two (n + 1)-manifolds
with boundary. One, W0, is homeomorphic to F times a disc, and the other, W1, is
homeomorphic to V times an interval.
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Fix x0 ∈ H2. Let β1, . . . , βk be geodesic rays in H2, based at x0, so that the angle
between βi and βi+1 is θi. Choose some h > 0, and let A = Nh(

⋃k
i=1 βi). Let H be

the convex hull of A. We see that H has k ends going off to infinity, each corresponding
to a ray βi. Suppose r > 0. Let yi be the point on the ray βi such that d(x0, yi) = r
and let Ji be the geodesic segment of length 2h centred on yi and orthogonal to βi. If
r is sufficiently large, depending on h and θ, then each such segment Ji will separate
the end of H corresponding to βi. In this case we may cut off all the ends of H along⋃k
i=1 Ji to leave a compact set K ⊆ H, with

⋃k
i=1 Ji ⊆ ∂K (Figure 6). Note that the pair

(K,
⋃k
i=1 Ji) retracts onto (

⋃k
i=1 βi ∩Nr(x0), {y1, . . . , yk}). For any fixed θ, the best value

of r is obtained by letting h → ∞. Simple hyperbolic trigonometry shows that this gives
r(θ) = cosh−1 cosec(θ/2).

Now, let W0 = W (F,K). For each i ∈ {1, . . . , k}, let Ti = W (F, Ji) ⊆ ∂W0.

Now choose x′0 ∈ H1, and let I be the closed interval of length 2h centred on x′0.
This gives us an (n + 1)-manifold W (V, I), and a projection p : W (V, I) −→ V . Let

W1 = p−1(V \
⋃k
i=1 intNr(Fi)), and let T ′i = p−1(∂Nr(Fi)) ⊆ ∂W1. We see that there is

a natural isometry from Ti to T ′i . We form our manifold W ′ by taking a disjoint union
W0 tW1 and identifying each Ti with T ′i .

The embedding of D in W ′ is given by D ∩W0 = W (F,
⋃k
i=1 βi ∩Nr(x0)) ⊆ W0 and

D ∩W1 = W1 ∩W (V, {x′0}) ⊆W1.

Finally, the manifold W is obtained from W ′ using Lemma 5.2. ♦
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