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1. Introduction.

In [M], Greg McShane described an identity concerning the lengths of simple closed
geodesics on a once-punctured torus carrying a complete finite-area hyperbolic structure.
The identity states that

∑
(1 + el(γ))−1 = 1/2, where γ ranges over all homotopy classes

of simple closed curves, and l(γ) is the hyperbolic length of the unique closed geodesic in
the homotopy class. The result is true, independently of the hyperbolic structure on the
punctured torus. An alternative proof of the identity is given in [B1].

In this paper, we describe a variation of McShane’s identity which applies to hyperbolic
once-punctured torus bundles.

Suppose M is an orientable complete finite-volume hyperbolic 3-manifold which fibres
over the circle with fibre a once-punctured torus. Let S be the set of closed geodesics in
M which correspond to simple closed curves in the fibre. To each σ ∈ S, we may associate
its complex length, l(σ) ∈ C/2πiZ. Thus <l(σ) is the (real) hyperbolic length of σ, and
=l(σ) is the rotational component, i.e. the angle through which a normal vector turns
when parallelly transported once around the curve. Given an orientation on M , this is
well-defined up to a multiple of 2πi. (In fact, in the case of surface bundles, it can be
unambiguously defined in C, though we shall not need to worry about that here.) Note,
in particular, that el(σ) is well-defined.

To begin with, we claim

Theorem A : ∑
σ∈S

1

1 + el(σ)
= 0.

Moreover, the above sum converges absolutely.
Now the curves in S fall naturally into two classes. One way to explain this is as

follows.
Let C be the set of homotopy classes of non-peripheral simple closed curves on the

punctured torus, T. Now, C can be thought of as the set of rational points in projective
lamination space, P, which in this case is a circle [CaB].

The mapping class group of T acts on P preserving the set C. The monodromy of
M generates an infinite cyclic subgroup of the mapping class group. This subgroup has
two fixed points in P, namely the stable and unstable laminations, µs and µu, of the
monodromy. These two points separate P into two open intervals. Since µs and µu are
irrational points, this gives a natural partition of C into two subsets, CL and CR, which in
turn partitions S into two subsets SL and SR. If we restrict the sum appearing in Theorem
A to one or other of SL or SR, we will get the same answer up to changing sign. This
number turns out essentially to be the modulus of the cusp of M .
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To explain what we mean, note that M has a single parabolic cusp. In particular,
M is (homeomorphic to) the interior of a compact manifold, M ∪ ∂M , with one toroidal
boundary component, ∂M . Now, ∂M carries a natural euclidean structure, well-defined up
to similarity, which arises from identifying ∂M with a horocycle. To define the modulus
of the cusp, we need to identify a meridian and a longitude for ∂M . A meridian can
be defined as the boundary of a fibre in M ∪ ∂M . Its orientation is determined by the
orientation on the fibre.

In order to describe the “longitude”, we must first distinguish between what we shall
call “positive” and “negative” monodromy. Note that the mapping class group of T may
be identified with the group SL(2,Z). This admits a fixed point free involution sending a
matrix A to −A. The quotient by this “hyperelliptic” involution is PSL(2,Z). Thus, once-
punctured torus bundles occur naturally in pairs, whose monodromies project to the same
element of PSL(2,Z). The two manifolds of such a pair are referred to as sisters. One
sister will have positive monodromy , i.e. both its eigenvalues are positive, whereas the other
will have negative monodromy , i.e. both its eigenvalues are negative. These eigenvalues
give rise to the stable and unstable foliations on the unpunctured torus, invariant under
this monodromy. In the positive case, the orientations on the fibres are preserved, whereas
in the negative case they are reversed. Note that sister manifolds are commensurable in
that they have a common double cover.

We shall want the “modulus of the cusp” of sister hyperbolic manifolds to be equal, so
it will suffice to define a longitude in case where M has positive monodromy. One way to
describe this is to imagine M as the closed torus bundle, M ′, (with the same monodromy)
from which we have removed some circle C, transverse to the fibres. Defining a longitude
on ∂M is equivalent to defining a framing of C. Note that the stable and unstable foliations
of the monodromy give rise to a transverse pair of codimension-1 foliations of M ′. The
curve C can be taken to be a component of the intersection of a pair of leaves, one from
each of these foliations. Since the monodromy is positive, these leaves define a framing on
C. The orientation in the longitude is determined by the orientation on the base circle.
(In the case of negative monodromy, we have to go twice around C to get our “framing” to
close up. This gives us a curve wrapping twice around ∂M with respect to the meridian.
In this case, it might be natural to imagine the longitude as an element of real homology
given by a half of this curve.)

If M has positive monodromy, we may represent ∂M as the quotient of C (with the
euclidean metric) by the lattice Z ⊕ λZ, generated by the translations [ζ 7→ ζ + 1] and
[ζ 7→ ζ + λ] corresponding to the meridian and longitude respectively. We call λ = λ(∂M)
the modulus of the cusp. We can suppose that =λ(∂M) > 0. IfM has negative monodromy,
we define λ(∂M) as the modulus of the cusp of its sister.

Theorem B : ∑
σ∈SL

1

1 + el(σ)
= ±λ(∂M).

The sign depends on our conventions of orientation. Given an orientation on the base
circle, we can decide which is the stable and which is the unstable lamination. Given an
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orientation on the fibre, we get an orientation on P, so it makes sense to say, for example,
that the curves in CL lie to the right of µu and to the left of µs. Together, these orientations
define an orientation on M and hence on ∂M . Now the orientation on M must also be
consistent with the orientation on hyperbolic 3-space, and hence determines the way in
which a horocycle should be regarded as a quotient of C. Our precise conventions in these
matters determine the sign in Theorem B.

The proofs of Theorems A and B will be along similar lines to those applied to Mc-
Shane’s identity in [B1], and elaborated on in [B2]. We shall omit details from some
arguments which would reproduce those given in these papers.

2. A reformulation of the theorems.

Let T denote the (topological) once-punctured torus, and let C be the set of homotopy
classes of non-peripheral simple closed curves on T. The Teichmüller space of T may be
identified with the hyperbolic plane, H2, and projective lamination space, P, with the
ideal circle of H2. Consider the regular tessellation of H2 by ideal triangles, whose ideal
vertices form the set of rational points of P. Dual to this triangulation, we have a “binary
tree” Σ properly embedded in H2. Let Ω be the set of complementary regions of Σ, i.e.
closures of connected components of H2 \ Σ. There is a natural bijection between Ω and
the set of rational points of P, which we may identify with C. This bijection has a number
of alternative descriptions [B1,B2].

We define a directed edge, ~e, of Σ as an ordered pair of adjacent vertices of Σ, respec-
tively the head and tail of ~e. We shall (always) write e for the underlying undirected edge.
Associated to each ~e are four regions, X,Y, Z,W ∈ Ω such that e = X ∩ Y , and such that
e∩Z and e∩W are the head and tail of ~e, respectively. We shall speak of Z as the region
at the head of ~e. Moreover, given an orientation on H2, it makes sense to say that X lies
“on the left” of ~e, and that Y lies “on the right”, where we imagine ~e as pointing upwards.

Now Γ = π1(T) is a free group on two generators. If ~e,X, Y, Z,W are as above, then
we can choose a free basis, a, b for Γ so that X,Y, Z,W are represented respectively by the
elements a, b, ab, ab−1. There is a sign convention involved here. For Z to be represented
by ab (rather that ab−1), we choose a, b so that the algebraic intersection number of the
corresponding ordered pair of simple closed curves on T is equal to +1. Note that the
commutator, [a, b] = aba−1b−1, is peripheral.

The mapping class group of T may be identified as SL(2,Z) which acts naturally on
H2, Σ, Ω, P and C. In each case, the kernel is given by the hyperelliptic involution, so the
induced action of PSL(2,Z) is faithful. An element H ∈ SL(2,Z) is hyperbolic if it has
two fixed points µu and µs in P, namely the stable and unstable laminations. The points
are joined by a bi-infinite arc β ⊆ Σ, which is translated by H in the direction of µs. The
path β can be described combinatorially in terms of the “left-right” decomposition of the
matrix H. Note that some conjugate of H in PSL(2,Z) can be written as a product of

the matrices L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
. This decomposition is well-defined up to

cyclic reordering, and the sequence of L’s and R’s is the same as the periodic sequence of
left and right turns of β in Σ. For more details, see for example [BMR].
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Note that β partitions Ω into two subsets, ΩL and ΩR which lie on the left and right,
respectively, of β, where we imagine β as being translated upwards by H. These correspond
to the subsets CL and CR of C described in Section 1.

Now, if we take a homeomorphism, θ, of T representing the mapping class H, we
may form the mapping torus, MH , which is given by (T × [0, 1])/∼, where ∼ identifies
(x, 1) with (θ(x), 0) for all x ∈ T. The manifold MH has a natural compactification
by adjoining a toroidal boundary, ∂MH . The compactified manifold, MH ∪ ∂MH , has a
natural ideal triangulation arising from the left-right decomposition of H. This is described
in [FH]. This can be briefly summarised as follows. Associated to each vertex Σ is an ideal
triangulation of T (the edges of which are dual to the simple closed curves corresponding
to the three complementary regions incident to the vertex). Moving along an edge in the
tree corresponds to performing a (dual) Whitehead move. If we traverse a period of the
path β, we get a sequence of Whitehead moves which take us from a given triangulation to
its image under θ. Each Whitehead move gives rise to an ideal simplex in T× [0, 1], and so,
after identifying T×{0} with T×{1} via the relation ∼, we obtain an ideal triangulation
of MH .

This ideal triangulation gives us, in particular, a triangulation of the boundary, ∂MH .
As in [FH], we may describe the combinatorial structure of this triangulation lifted to the
universal cover, R2, of ∂MH . First, we describe the case of positive monodromy. To do
this, consider the bi-infinite sequence of vertices of Σ lying along the arc β ⊆ Σ. This
sequence is dual to a sequence of ideal triangles in our tessellation of H2. The union of
these triangles gives a bi-infinite strip invariant under the transformation H. We transfer
this strip homeomorphically to the vertical strip [0, 1]×R in R2, so that the transformation
H is conjugated to the map [(x, y) 7→ (x, y + 1)]. We extend this to a triangulation of R2

by a process of repeated reflection in the pair of vertical lines which form the boundary
of this strip (Figure 1). The triangulation of ∂MH is given by the quotient by the group
generated by [(x, y) 7→ (x, y + 1)] and [(x, y) 7→ (x+ 4, y)]. It’s not hard to see that these
transformations describe, respectively, the longitude and meridian of ∂MH . Note that the
triangulation is in fact invariant under map [(x, y) 7→ (x + 2, y)]. Up to this symmetry,
there are two “vertical” lines in the triangulation. The bi-infinite sequence of vertices
along one of these lines corresponds to sequence of regions of Ω which meet β and all lie
either in ΩL, or in ΩR. Two vertices are joined by an edge in this triangulation if and
only if the corresponding regions are adjacent. Thus the “vertical” edges correspond to
regions meeting on the same side of β, whereas all the other edges correspond to vertices
meeting on opposite sides of β. The picture where the monodromy is negative is similar,
except that in this case, ∂MH is given as a quotient of R2 by the group generated by
[(x, y) 7→ (x+ 2, y + 1)] and [(x, y) 7→ (x+ 4, y)]. The “longitude” might be thought of as
a “half of” the curve given by [(x, y) 7→ (x, y + 2)].

Now, it follows from the work of Thurston [T], that M = MH admits a complete
finite-volume hyperbolic structure. See also [O] for an alternative proof and exposition.
This structure is unique by Mostow rigidity. Note that ∂MH carries a euclidean structure,
well defined up to similarity, obtained for example by identifying it with a horocycle in
MH .

In this hyperbolic structure, we may realise each tetrahedron in our ideal triangulation
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of M as a hyperbolic ideal tetrahedron. In this way we get a “hyperbolic ideal triangula-
tion” of M . This gives rise to a euclidean realisation of the combinatorial triangulation of
∂MH .

Unfortunately, it is not entirely clear that all the hyperbolic tetrahedra arising in this
way have to be positively oriented, so that we get a genuine ideal triangulation in the
usual sense. I suspect that this should be the case. In fact, one might conjecture that
the triangulation we get coincides with the Delaunay triangulation, i.e. that which arises
from the construction of [EP]. However I know of no proof of this written down. For our
purposes, this will not formally matter to us. Everything we say will make good sense for
negatively oriented simplices, though it is intuitively simpler to imagine our triangulation
as embedded.

We should however make one observation which is relevant to the sign convention
in Theorem B. Note that there is a natural map from ∂M to itself which sends each
combinatorial simplex to the corresponding geometric one. By construction, this map is
certainly homotopic to plus or minus the identity, even if we are not sure whether it is,
itself, a homeomorphism. Now if we have chosen our conventions of orientation correctly,
this map must, in fact, have degree +1, i.e. it is indeed homotopic to the identity. This
justifies the assertion made after Theorem B, namely that if we insist that =λ(∂M) > 0,
then the sign occurring in Theorem B depends only on our conventions of orientation.

Regarding T as a fibre of M , we get an identification of Γ = π1(T) as a normal
subgroup of π1(M). In fact, π1(M) is an HNN extension of Γ with stable letter t so
that tgt−1 = H∗(g) for all g ∈ Γ, where H∗ is the automorphism of Γ induced by the
monodromy H.

We also get an identification of S with the quotient, Ω/〈H〉, of Ω under the cyclic
group, 〈H〉, generated by H. Clearly, H respects the partition of Ω as ΩL t ΩR, and we
may identify SL with ΩL/〈H〉 and SR with ΩR/〈H〉.

The hyperbolic structure on M may be described by a representation, ρ̂ : π1(M) −→
PSL(2,C). It follows from [Cu] that ρ̂ lifts to a representation ρ : π1(M) −→ SL(2,C).
(In fact, this is clear if we allow ourselves to replace M by a finite cyclic cover. This is
good enough for proving Theorems A and B, since both the left and right-hand sides of
the equations just get multiplied by the order of the cover.) Restricting our attention to
the fibre subgroup Γ / π1(M), we define a map φ : Ω −→ C by φ(X) = tr ρ(g), where
g ∈ Γ represents the simple closed curve on T corresponding to the region X ∈ Ω. It
follows, using trace identities in SL(2,C), that φ is a Markoff map, as defined in [B1].
This means that φ satisfies “vertex” and “edge relations” for each vertex and edge in Σ.
Thus, if a vertex of Σ meets the three complementary regions X, Y and Z, then we have
x2 + y2 + z2 = xyz, where x = φ(X), y = φ(Y ) and z = φ(Z). Also, if e is an edge of E,
meeting the four regions X, Y , Z and W , such that e = X ∩ Y (so that e ∩ Z and e ∩W
are the two endpoints of e), then we have xy = z + w where w = φ(W ).

Clearly φ is invariant under the 〈H〉-action, and so gives rise to a well defined map
Ω/〈H〉 −→ C which we also denote by φ. We write [X] for the orbit of X under 〈H〉.

If σ ∈ S corresponds to [X] ∈ Ω/〈H〉, then the complex length, l(σ), of σ is determined
by the formula φ([X]) = 2 cosh(l(σ)/2). Thus h(φ([X])) = 1/(1 + el(σ)) where h : C \
[−2, 2] −→ C is defined by h(ζ) = 1

2 (1 −
√

1− 4/ζ2). Here we take the square root with
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positive real part, corresponding to the fact that <l(σ) > 0. Note that h(ζ) = O(|ζ|−2) as
|ζ| → ∞.

In these terms we may express Theorems A and B, respectively, by the identities∑
[X]∈Ω/〈H〉

h(φ([X])) = 0

and ∑
[X]∈ΩL/〈H〉

h(φ([X])) = λ(∂M).

3. Proofs.

Before we set about proving these statements, let’s recall some notation used in [B2].
Suppose that ~e is a directed edge of Σ with underlying edge e. We write Ω0(e) = {X,Y } ⊆
Ω, where e = X∩Y . If we remove the interior of e from Σ we split Σ into two components.
We write Σ− for the component containing the tail of ~e. We write Ω−(~e) = {X ∈ Ω |
∂X ⊆ Σ−}, and Ω0−(~e) = Ω0(e) ∪ Ω−(~e). We write −~e for the directed edge obtained by
swapping the head and tail of ~e.

Recall that β is the 〈H〉-invariant bi-infinite path in Σ. Thus β/〈H〉 is a cycle con-
sisting of n edges (where n is the number of components in the left-right decomposition of
H). Let α ⊆ β be a subarc which is the union of n − 1 consecutive edges of β. Let C be
the set of directed edges, ~e, with the property that e ∩ α consists of a single vertex of Σ
which is the head of ~e. We may write C as a disjoint union C = C0 t CL t CR, where C0

consists of the two edges of C which lie in β, and CL (respectively CR) consists of those
edges of C which lie to the left (right) of β. In other words, CL = {~e ∈ C | Ω0(e) ⊆ ΩL}.
(Figure 2.)

Note that ΩL can be expressed as a union of sets of the form Ω0−(g~e), as ~e varies in
CL and g varies in 〈H〉. To be more specific, suppose X ∈ ΩL. If X ∩ β = ∅, then X
occurs in precisely one set of the form Ω−(g~e). If X ∩ β 6= ∅, then it occurs in two sets of
the form Ω0(ge). Similarly for ΩR.

We now return to considering our Markoff map φ : Ω −→ C. Given a directed edge
~e of Σ, we write ψ(~e) = φ(Z)/φ(X)φ(Y ), where Ω0(e) = {X,Y } and Z ∈ Ω is the region
at the head of ~e. Now the edge relation of φ may be expressed as ψ(~e) + ψ(−~e) = 1. The
vertex relation reduces to the statement that if ~e1, ~e2 and ~e3 are the three directed edges
whose heads are at a particular vertex, then ψ(~e1) + ψ(~e2) + ψ(~e3) = 1. Applying these
relations, we find that

∑
~e∈C ψ(~e) = 1, where C is the finite set of directed edges defined

above. This follows as in [B1] since C is a “circular set” of edges. (A set, C, of directed
edges is “circular” if there is a finite subtree, T , of Σ such that ~e ∈ C if and only if e
intersects T in the head of ~e. In this case, the subtree in question is the arc α.) Now, the
two edges ~e1, ~e2 ∈ C0 are images of each other under H except that they are directed in
opposite senses, i.e. we can suppose that H(~e1) = −~e2. Since φ is 〈H〉-invariant, it follows
that ψ(~e1) + ψ(~e2) = 1. Thus:
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Lemma 1 : ∑
~e∈CL∪CR

ψ(~e) = 0.

♦

Lemma 2 : Suppose that ~e is a directed edge such that {X ∈ Ω−(~e) | |φ(X)| ≤ 2} is
finite. Then

∑
X∈Ω−(~e) |φ(X)|−t converges for all t > 0.

Proof : In [B2], it was shown that if φ : Ω −→ C is a Markoff map, and ~e is a directed
edge of Σ such that {X ∈ Ω0−(~e) | |φ(X)| ≤ 2} is finite and {X ∈ Ω0−(~e) | φ(X) ∈ [−2, 2]}
is empty, then

∑
X∈Ω−(~e) |φ(X)|−t converges for all t > 0. Here, the first condition is given

as a hypothesis, and the second condition holds since ρ(Γ) has no elliptics or accidental
parabolics. ♦

Since h(ζ) = O(|ζ|−2), it follows that
∑
X∈Ω−(~e) h(φ(X)) converges absolutely. Given

the convergence of these sums, the arguments of [B1] can be applied to show the following:

Lemma 3 : With the hypotheses of Lemma 2, we have∑
X∈Ω0(e)

h(φ(X)) + 2
∑

X∈Ω−(~e)

h(φ(X)) = ψ(~e).

Proof : (Sketch) For each n ∈ N, let Cn be the set of directed edges pointing towards
~e, and at a distance n from the tail of ~e and n + 1 from the head of ~e. (In other words,
~f ∈ Cn if and only if ~e and ~f are at opposite ends of some arc of length n+ 2 in Σ which
has endponts at the head of ~e and the tail of ~f .) Thus, Cn ∪ {−~e} is a circular set, and so

ψ(−~e) +
∑

~f∈Cn
ψ(~f) = 1. (See the discussion before Lemma 1.) Since ψ(~e) + ψ(−~e) = 1,

we obtain ψ(~e) =
∑

~f∈Cn
ψ(~f).

Now suppose that n is large, and ~f ∈ Cn. Let f = X∩Y , and x = φ(X) and y = φ(Y ).

We see (from Lemma 2) that either |x| or |y| (or both) will be large. Now, ψ(~f) = z/xy

where x2 + y2 + z2 = xyz. Solving for z we obtain ψ(~f) = 1
2 (1 −

√
1− 4(x−2 + y−2)),

which is approximately equal to h(x) + h(y). In other words, ψ(~f) approximately equals
h(φ(X)) + h(φ(Y )).

We see that, up to some error term, if X ∈ Ω−(~e) is at a distance n from ~e, then
h(φ(X)) contributes twice to the sum equal to ψ(~e), whereas if X is one of the two regions
of Ω0(~e), then h(φ(X)) contributes once to the sum. We need to verify that the error term
tends to 0 as n tends to ∞. This follows exactly as in [B1].

(A more detailed proof of this particular result can be found in [B2].) ♦
We claim that the directed edges of CL ∪ CR satisfy the hypotheses of Lemma 2:

Lemma 4 : If ~e ∈ CL ∪ CR, then {X ∈ Ω−(~e) | |φ(X)| ≤ 2} is finite.
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Proof : Since M has finite volume, it has a discrete length spectrum. In particular,
{σ ∈ S | |l(σ)| ≤ k} is finite for all k ≥ 0. It follows easily that {[X] ∈ Ω/〈H〉 | |φ(X)| ≤ 2}
is finite. Now, if ~e ∈ CL ∪ CR, then Ω−(~e) is disjoint from all its images under 〈H〉, and
so the result follows. ♦

Lemma 5 : ∑
[X]∈Ω/〈H〉

h(φ([X])) = 0.

Proof : Lemma 4 allows us to take the formula from Lemma 3, and sum over all edges
~e ∈ CL ∪ CR. Lemma 1 then tells us that the right-hand side of this sum is zero. The
discussion preceding Lemma 1 shows that in the sum on the left-hand side, there are
exactly two representatives in Ω of each [X] ∈ Ω/〈H〉. ♦

This proves Theorem A.

In order to prove Theorem B, we need to compute the sum featuring in Lemma 5,
restricted to the set ΩL/〈H〉. We shall assume that the monodromy is positive.

Let’s fix an orientation on the meridian of ∂M consistent with the orientation of the
fibre. We shall use the upper half-space model of H3, so that its ideal boundary is identified
with the Riemann sphere, C ∪ {∞} which has PSL(2,C) acting in the usual way. We
can normalise our representation, ρ : π1(M) −→ SL(2,C), so that ∞ is a parabolic fixed
point. Write stab(∞) for the stabliser of∞ in ρ(π1(M)). Thus, the euclidean structure on
∂M is given by C/stab(∞). We can further insist that the meridian in ∂M is given by the
transformation [ζ 7→ ζ + 2]. This determines the representation, ρ, up to automorphism of
π1(M) and conjugacy by a translation of C. From the symmetry of such representations,
it turns out that the projection of ρ(π1(M)) to PSL(2,C) is normalised by the translation
[ζ 7→ ζ + 1] (cf. [J,B2]).

Suppose a, b are free generators of the fibre group Γ such that the ordered pair of
simple closed curves on T that they represent have algebraic intersection number +1.
Now the commutator, [a, b] = aba−1b−1, is peripheral in T, and so represents a meridian
of ∂M . After simultaneous conjugacy by an element of Γ, we can suppose that ρ([a, b])
describes the translation [ζ 7→ ζ + 2]. Since tr ρ([a, b]) = −2 it must, in fact, be given by

the matrix

(
−1 −2
0 −1

)
.

For future reference (see Figure 3), we observe:

Lemma 6 : ρ(a)(∞)−ρ(b)−1(∞) = z/xy where x = tr ρ(a), y = tr ρ(b) and z = tr ρ(ab).

Proof : The matrices ρ(a) and ρ(b) are determined up to simultaneous conjugacy in

SL(2,C) by the traces x, y, z. Given further that ρ([a, b]) =

(
−1 −2
0 −1

)
, they are de-

termined up to conjugacy by a translation of C. Thus, for the purposes of computing
ρ(a)(∞) − ρ(b)−1(∞), we can suppose that they are given by Jørgensen’s normalisation
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[J]:

ρ(a) =
1

z

(
xz − y x/z
xz y

)
ρ(b) =

1

z

(
yz − x −y/z
−yz x

)
,

since we may verify that these matrices satisfy the above criteria. Now, ρ(a)(∞) = xz−y
xz =

1− y
xz and ρ(b)−1(∞) = x

yz . The result follows by applying the trace identity x2+y2+z2 =
xyz. ♦

Now, to each region X ∈ Ω, we shall associate a parabolic fixed point p(X) ∈ C, which
is well-defined up to the action of [ζ 7→ ζ + 1]. This is done as follows. We know that X
corresponds to some simple closed curve γ(X) on T. Let δ(X) be an arc on T with both
endpoints at the puncture such that γ(X)∩δ(X) = ∅. The homotopy class of δ(X) relative
to its endpoints is well defined. We are identifying T with a fibre of M , so T is naturally
homotopy equivalent to the infinite cyclic cover H3/ρ(Γ). Under this equivalence, δ(X),
has a unique realisation as a bi-infinite geodesic ∆(X) in H3/ρ(Γ). Choose a lift of ∆(X)
to H3 which has ∞ as an endpoint, and let p(X) be the other endpoint. Any other choice
of lift would give us an image of p(X) under the cyclic action generated by [ζ 7→ ζ + 1].

In Section 2, we described the triangulation of the euclidean plane, identified with
C, arising as the lift of a triangulation of ∂M . In the combinatorial picture, which we
described in R2, each vertical line corresponds to the bi-infinite sequence, (Xi)i∈Z, of
regions either of ΩL or of ΩR which meet β. Without loss of generality, let’s assume that
the Xi all belong to ΩL. It’s not hard to see that in the geometric triangulation of C,
the vertex corresponding to Xi is given by one of the images of p(Xi) under the action
generated by [ζ 7→ ζ + 1], so we may as well assume that it actually equals pi = p(Xi).
(Note that the choice of pi naturally determines that of pi−1 and pi+1, and so, inductively,
pj for all j ∈ Z.) Now the sequence (pi) is periodic under the translation corresponding to
the longitude of ∂M . This translation is given by [ζ 7→ ζ + 2λ], where λ = λ(∂M) is the
modulus of the cusp. This corresponds to the action of 〈H〉 on Ω which has the effect of
shifting the sequence (Xi). Let m be the number of steps through which this sequence is
shifted. Thus, 2λ = pm − p0 =

∑m
i=1(pi − pi−1). We thus want to compute the numbers

pi − pi−1.

Let ~ei be the directed edge given by Xi ∩ Xi−1, whose head lies in β. Now we can
assume that the set CL (as in Lemma 1) consists precisely of the edges ~e1, . . . , ~em.

Fix some i ∈ {1, . . . ,m}. Let X = Xi−1, Y = Xi, and let Z be the region at the
head of ~ei. As described earlier, we can find free generators a, b for Γ which correspond,
respectively, to the regions X and Y . Moreover, we can suppose that a and b satisfy the
hypotheses of Lemma 6 (as described immediately before the statement of the lemma).
Also, we have that Z is represented by ab. (Note that we need to be careful about sign
conventions and orientation. We have arranged that X and Y are on the left and right,
respectively, of ~ei, and that the ordered pair a, b has positive algebraic intersection number
on T.) Now one can figure out (see Figure 3) that, up to a simultaneous translation of
the form [ζ 7→ ζ + k] with k ∈ Z, the points pi−1, pi are given by pi−1 = ρ(b)−1(∞) and
pi = ρ(a)(∞). Thus by Lemma 6, we have pi − pi−1 = z/xy, where x = tr ρ(a) = φ(X),
y = tr ρ(b) = φ(Y ) and z = tr ρ(ab) = φ(Z). Thus pi − pi−1 = ψ(~ei).
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A variation of McShane’s identity

Using Lemma 3, as in the proof of Lemma 5, it follows that

λ =
pm − p0

2
=

1

2

m∑
i=1

(pi − pi−1) =
1

2

∑
~e∈CL

ψ(~e) =
∑

[X]∈ΩL/〈H〉

h(φ[X]) =
∑
σ∈SL

1

1 + el(σ)
.

This proves Theorem B.
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