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In this paper, we give a short proof of the result that path-metric space satisfying a
subquadratic isoperimetric inequality must, in fact, satisfy a linear isoperimetric inequality,
and is therefore hyperbolic in the sense of Gromov. This result was announced by Gromov
in his original paper [G] on hyperbolic groups. A detailed proof was supplied by Ol’shanskii
[O], in the context of combinatorial group theory. Somewhat shorter arguments have been
given by Papasoglu (see [P1,P2]). This result is important for some applications—see for
example [BeF].

The argument of this paper works for any path-metric space on which has been defined
some notion of area satisfying two modest axioms, (A1) and (A2) described below. Note, in
particular, that there is no need to assume any “quasihomogeneity”, for example that the
space be quasiisometric to the Cayley graph of a group. It is easy to construct complete
riemannian metrics on the plane for which the isoperimetric function is asymptotic to
[x 7→ xt] for any real t ≥ 2. On the other hand, all the most obvious groups satisfying
an isoperimetric inequality which is o(xn+1), for some natural number n, in fact satisfy
one which is O(xn). However Rips and Sapir recently claimed an example of a finitely
presented group for which the isoperimetric function is asymptotic to x2 log x. Since then,
Bridson has produced examples where the isoperimetric function is asymptotic to xr for
certain rational non-integer values of r > 2 [Br]. An interesting question remaining is to
describe the class of functions that can arise in this way.

For convenience, we shall assume that (X, d) is a length-space, i.e. any two points
x, y ∈ X are joined by a geodesic α, so that lengthα = d(x, y). We write [x→ y] for some
choice of geodesic from x to y. We write [x, y] = image[x→ y] ⊆ X. The arguments given
here will work in a general path-metric space, with slight modification.

By a loop in X, we mean a rectifiable map γ : S1 −→ X. We write L(γ) for the length
of γ. Suppose x, y ∈ X, and α1, α2, α3 are three rectifiable paths from x to y. We may
form three loops γ1, γ2, γ3 by γi = αi+1 ∪ −αi+2 (taking subscripts mod 3). Whenever
three loops arise in this way, we say that they form a theta-curve.

As a particular instance, consider a loop γ : S1 −→ X, and two points t, u ∈ S1 which
cut γ into two paths α1 and α2. Setting α3 = [γ(t) → γ(u)], we obtain a theta-curve
(γ1, γ2, γ3), with γ = γ3 and L(γi) ≤ L(γ) for i = 1, 2. We have thus cut γ into two
smaller pieces.

Now, let Ω be a set of loops in X, closed under the above operations of cutting in
two by geodesic segments. Let us suppose we have a map A : Ω −→ [0,∞), satisfying the
following two axioms:

(A1) (Triangle inequality for theta curves): If γ1, γ2, γ3 ∈ Ω form a theta-curve, then
A(γ3) ≤ A(γ1) +A(γ2).

(A2) (Rectangle inequality): Suppose γ ∈ Ω is split into four subpaths, γ = α1∪α2∪α3∪α4.
Then, A(γ) ≥ d1d2, where d1 = d(imageα1, imageα3) and d2 = d(imageα2, imageα4).
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Thus A(γ) is thought of as the minimal area of a disc spanning γ. For example, if
X is a riemannian manifold, we simply take riemannian area. Axiom (A2) then follows
from Almgren’s Coarea Formula (see [S]). For groups, we may interpret area as the number
conjugates of relators needed to reduce a word representing the identity to the trivial word.
(In this case, we may need to normalise by a multiplicative constant so that Axiom (A2)
is satisfied.) Various notions of area for a general path-metric space are discussed in [Bo].

Given x ∈ [0,∞), let

f(x) = sup{A(γ) | γ ∈ Ω, L(γ) ≤ x}.

Thus f : [0,∞) −→ [0,∞) is the “isoperimetric function”. Note that f(x) is non-decreasing
in x. Moreover:

Lemma 1 : For all x ∈ [0,∞), there exist p, q ∈ [0,∞) such that the following hold:

f(x) ≤ f(p) + f(q)

p, q ≤ 3

4
x+ 3

√
f(x)

p+ q ≤ x+ 6
√
f(x).

Proof : Let x ∈ [0,∞). Suppose, for simplicity, that the supremum is attained, so that
there is some γ ∈ Ω, with L(γ) = L ≤ x, and A(γ) = f(x). (The general case, where
the supremum is not attained, only introduces slight technical complication, which can be
dealt with, for example, by considering appropriate sequences tending to the supremum.)

Let ∆ ⊆ S1×S1 be the set of pairs (t, u) such that γ(t) and γ(u) cut γ into two paths
each of length at most 3

4L. Let l = min{d(γ(t), γ(u)) | t, u ∈ ∆}. Choose a = γ(t0) and
b = γ(u0) so that (t0, u0) ∈ ∆ and d(a, b) = l. Thus, a, b cut γ into two paths β0 and β1.
Without loss of generality, L(β1) ≤ L(β0) ≤ 3

4L.
Now, take a′, b′ ∈ [a, b] so as to cut [a→ b] into three equal segments, α1 = [a→ a′],

δ = [a′ → b′] and α2 = [b′ → b], each of length l/3. (See Figure.)

FIGURE

Clearly, d(imageα1, imageα2) = l/3. We claim that d(image δ, imageβ0) ≥ l/3.
To see this, suppose z = γ(v) ∈ imageβ0 and z′ ∈ image δ. Thus, z cuts β0 into

two subpaths β2, β3, so that a ∈ imageβ2 and b ∈ imageβ3. Without loss of generality,
L(β2) ≤ L(β3). Let yi = L(βi) for i = 1, 2, 3. Thus, y1 + y2 + y3 = L, y1 ≤ y2 + y3 and
y2 ≤ y3. It follows that y1 ≤ 1

2L and y2 ≤ 1
2 (L − y1) and so y1 + y2 ≤ 3

4L. Since also
y3 ≤ 3

4L, we see that (u0, v) ∈ ∆. Thus d(z, b) ≥ l = d(a, b), and so d(z, z′) ≥ d(a, z′) ≥
d(a, a′) = l/3. This proves the claim.

Now, the geodesic [a, b] cuts γ into two loops γ1 and γ2 so that γ1 = β0 ∪α1 ∪ δ ∪α2.
Let p = L(γ1) and q = L(γ2), so p, q ≤ x. Axiom (A2) tells us that A(γ1) ≥ (l/3)2, and
Axiom (A1) tells us that f(x) = A(γ) ≤ A(γ1)+A(γ2) ≤ f(p)+f(q). Now, l ≤ 3

√
A(γ1) ≤

3
√
f(p) ≤ 3

√
f(x). Thus, p, q ≤ 3

4L+ l ≤ 3
4x+

√
f(x) and p+ q ≤ L+ 2l ≤ x+ 6

√
f(x).
♦
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Lemma 2 : Suppose f : [0,∞) −→ [0,∞) is an increasing function. Suppose there are
constants K > 0, and 0 < λ < 1, so that for all x ∈ [0,∞) there exist p, q ∈ [0,∞) with

f(x) ≤ f(p) + f(q)

p, q ≤ λx+K
√
f(x)

p+ q ≤ x+K
√
f(x).

If f(x) = o(x2), then f(x) = O(x).

Proof : After multiplying f by a constant, we may as well assume that K = 1. Let
µ = 1+λ

2 . There is some x0 ∈ [0,∞) such that if x > x0, then f(x) ≤ (1 − µ)2x2. Thus,
if x > x0, we have p, q ≤ λx + (1 − µ)x = µx. Also, we can always assume that p, q ≥ 1
(say), by taking x0 ≥ max{2, 1/λ, 1/(1− µ)}.

For x ≥ 1, set g(x) = f(x)
x . Thus, if x > x0, we have

g(x) ≤
( p
x

)
g(p) +

( q
x

)
g(q).

Without loss of generality, g(q) ≤ g(p), and so

g(x) ≤
(
p+ q

x

)
g(p) ≤

(
x+

√
f(x)

x

)
g(p) =

(
1 +

√
g(x)

x

)
g(p).

In other words, if x > x0, there exists p with 1 ≤ p ≤ µx and g(x) ≤
(

1 +
√

g(x)
x

)
g(p).

We want to show that if g(x) = o(x), then g is bounded.

Given ε > 0, we can find x1 ≥ x0 so that g(x) ≤ ε2x for all x > x1. Let B =
max{g(x) | 1 ≤ x ≤ x1}. Thus if x > x1, we have g(x) ≤ (1 + ε)g(p) with 1 ≤ p ≤ µx.

After iterating at most n ≤ 1 + log(x/x1)
log(1/µ) times, we get

g(x) ≤ B(1 + ε)n ≤ B(1 + ε)(x/x1)r,

where r = log(1+ε)
log(1/µ) . We can choose ε small enough so that r < 1.

Let 0 < s < 1
2 (1 − r), so that r < 1 − 2s. We have g(x) = o(x1−2s), and so we can

assume that g(x) ≤ x1−2s for all x > x2 ≥ x1. Thus, if x > x2, we get

g(x) ≤ (1 + x−s)g(p).

After iterating some number k times, we arrive at

g(x) ≤ C(1 + x−s)(1 + µ−sx−s) · · · (1 + µ−ksx−s)
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where C = max{g(y) | 1 ≤ y ≤ x2}, and µkx > x2. Thus,

log g(x) ≤ logC + x−s(1 + µ−s + · · ·+ µ−ks)

= logC +
(µkx)−s − µsx−s

1− µs

≤ logC +
x−s2

1− µs
,

and so g is bounded. ♦
Lemmas 1 and 2 together now give the result. In fact, the argument effectively shows

that a quadratic isoperimetric inequality with sufficiently small multiplicative constant
implies a linear one — as was observed by Gromov.

Note that, provided Ω is sufficiently large, e.g. if it consists of all rectifiable loops,
and if (X, d) has a linear isoperimetic inequality with some notion of area satisfying axiom
(A2), then (X, d) is Gromov hyperbolic (see, for example, [Bo]).
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