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1. Introduction.

By a singular euclidean structure on a compact surface, we mean a metric structure
locally modelled on the euclidean plane, except at a finite number of points, where we
may have “cone singularities” (Figure 1). Such singularities may be thought of as local
concentrations of curvature. The cone angle is allowed to take any positive value. A
non-singular point can be regarded as a cone point of angle 2π.

A typical singular euclidean surface is obtained by gluing together euclidean triangles
along sides of the same length. Of course, different triangulations might give rise to the
same structure.

Such structures exist on a surface S of genus g provided the Euler characteristic
χ(S \ P ) is negative, where P is a finite set of cone points. We shall restrict attention
to the cases when P 6= ∅, i.e. we are disallowing euclidean tori with no cone points. We
write p = |P |. We regard two such metrics as equivalent if one is a scalar multiple of
the other. That is to say we are working with euclidean similarity structures which have
an underlying euclidean metric. We may always normalise so that, for example, the area
of each surface is equal to 1. We denote by Spg the space of marked singular euclidean
structures quotiented out by scaling. Marked means that two structures on S \ P are
regarded as equal if they are related by a similarity which is isotopic to the identity rel P.

The aim of this paper is to give a cellulation of the space Spg by convex euclidean
polyhedra.

If (S, P ) is a singular euclidean surface, then the sum of the cone angles over each
point y of P must be equal to −2πχ, where χ = χ(S \ P ) = 2 − 2g − p. If int∆p−1 is
the simplex of maps {x : P → (0, 1) |

∑
y∈P x(y) = 1}, then we may define a projection

λ : Spg −→ int∆p−1 by

λ(S, P )(y) =
1

(−2πχ)
× cone angle of S at y ∈ P.

Our cellulation has the property that for each x ∈ int∆p−1, λ−1x intersects each polyhedral
cell in an affine subspace.

In [EP], a construction is given to associate, to a non-compact, finite-volume hyper-
bolic manifold, a singular euclidean structure, which, in the case of surfaces, coincides with
our notion. The ideas are geometric, and involve a convex hull construction in Minkowski
space. It is not difficult to see that their construction can be used to establish a homeo-
morphism between Spg and intT pg = T pg × int∆p−1, where T pg is the Teichmüller space of
finite-area complete hyperbolic structures on S \ P .

An analytic approach to this is to define a map h : Spg −→ T pg × int∆p−1, by taking λ
as the second coordinate, and the conformal structure induced from the euclidean metric
as the first. Troyanov [Tr] shows that h is bijective.
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In Section 6, we show that we may obtain, geometrically, a cell decomposition of intT pg
which is identical to that of Spg . This establishes a third homeomorphism between these
two spaces. This homeomorphism identifies the map λ : Spg −→ int∆p−1 with projection
onto the second coordinate of intT pg .

All the above constructions are natural in the sense that they commute with the action
of the mapping class group of S \ P .

The cellulation of Spg can be thought of as a PL subset of the complex of arc-systems
described by Harer [H] and later in [BE]. That is to say, our complex is obtained by remov-
ing pieces from each simplex in Harer’s complex, so as to make a complex of polyhedral
cells.

The ideas of this paper are related to those of [BE]. We shall use similar notation and
terminology. Where arguments are only outlined here, more details can be found in that
paper.

Acknowledgements. Most of the material for this paper was worked out while I was
preparing, with David Epstein, the paper just referred to. I am indebted to David Epstein
for his many suggestions on the present work, and in particular, for greatly simplifying
my original proof of the main theorem. The idea for the main theorem was based on
Thurston’s account of the work of Andreev on hyperbolic polyhedra [Th, Chapter 13].

2. The Spine and Delaunay Triangulation.

Let (S, P ) be a singular euclidean surface.
Given u ∈ S \P , let w(u) be the number of distinct shortest paths to P . Clearly, each

of these shortest paths must be a euclidean line segment whose interior lies in S \ P . Let
Σ = {u ∈ S \ P | w(u) ≥ 2} and V = {u ∈ S \ P | w(u) ≥ 3}.
Lemma. V is a finite set of points. Σ \ V is a finite collection E(Σ) of open euclidean
line segments. Each point of V is the endpoint of at least three directed line segments of
E(Σ). (The two endpoints of an undirected line segment are regarded as the heads of two
distinct directed line segments.) There is a natural deformation retraction of S \ P onto
Σ.

Proof : This is a simple exercise, c.f. [BE, Lemma 2.2.1]. ♦
We call Σ the spine of S. It has the structure of a graph, with edges E(Σ), and

vertices V (Σ) = V . We may extend this graph naturally to a triangulation of S by adding
ribs, i.e. for each vertex v of V (Σ), we add in the shortest line segments joining v to P .

This spinal triangulation is characterised by the following properties.

(i) It is a triangulation of S by euclidean triangles.

(ii) If T is a closed triangle of the triangulation, then T ∩ P consists of a single vertex of
T .

(iii) Each vertex in S \ P has at least six incident edges.

(iv) If e is an edge which does not terminate in P , then the two triangles on opposite sides
of e are congruent via reflection in e.
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(c.f. [BE, Theorem 5.1].)
Associated to each edge e of E(Σ), there is a topological arc joining two points of P ,

and meeting Σ only in e at a single transverse intersection. Its homotopy class in S relP
is well defined, and it has a unique realisation, e∗, as a straight line segment with interior
in S \ P .

The lines {e∗ | e ∈ E(Σ)} constitute the 1-skeleton for a cell decomposition of S, with
0-skeleton equal to P . The cells are in bijective correspondence to the the vertices of Σ.
Each cell is a cyclic polygon, since its corners are all equidistant from the corresponding
vertex of Σ. Generically, when each vertex of Σ has degree 3, the cells are all triangles.
In this case, we get the Delaunay triangulation of S. (The idea originates in [D].) It
has the property that each triangle T is inscribed in a closed euclidean disc D, with
D ∩ P = ∂D ∩ T . (The interior of D is imbedded in the universal cover of S \ P , though
it may just be immersed in S \ P .)

3. Coordinates.

First, we introduce the following notation, to be used throughout the rest of this
paper.

Given any finite set X, and any Y ⊆ R, we denote by Map(X,Y ), the set of maps
from X into Y . Given k ∈ R, we write

Map(X,Y ; k) = {f ∈ Map(X,Y ) |
∑
x∈X

f(x) = k}.

Thus, int∆p−1 = Map
(
P, (0, 1); 1

)
.

Now, to each singular euclidean surface, (S, P ), with spine Σ, we will associate a map

γ ∈ Map
(
E(Σ), (0,∞)

)
as follows.

For each edge e ∈ E(Σ), there are two triangles, T1 and T2, of the spinal triangulation,
abutting along e. The triangles are congruent with respect to reflection in e. Thus, we
may define γ(e) to be the angle opposite e in either one of the triangles Ti.

If Σ is generic, we may define γ in terms of the Delaunay triangulation. Let Q1 and
Q2 be the two triangles meeting along e∗. Let αi be the angle opposite e∗ in Qi. Then
γ = π − (α1 + α2) (Figure 2).

If Σ is not generic, Q1 and Q2 may be cyclic polygons. In this case, αi is the angle
subtended by e∗ at any corner of Qi, other than the two endpoints of e∗. Then, 2αi is the
angle subtended at the circumcentre of Qi. Again γ = π − (α1 + α2).

Note that γ(e) ∈ (0, π) for all e ∈ E.
Now, the spinal triangulation has precisely 2|E| triangles, so their angles together sum

to 2π|E|. Of this sum, 2π|V | is contributed by the angles around the points of V , and
2
∑
e∈E γ(e) is contributed by the angles around points of P . We thus have

2
∑
e∈E

γ(e) + 2π|V | = 2π|E|.
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So, ∑
e∈E

γ(e) = π(|E| − |V |) = −πχ.

Let W ⊆ V be any non-empty proper subset. Let EW ⊆ E be the set of edges with
at least one endpoint in W . By summing all the angles around the vertices of W , we see
that ∑

e∈EW

2
(
π − γ(e)

)
> 2π|W |,

or ∑
e∈EW

γ(e) < π(|EW | − |W |).

Thus, we see that the set of possible values of γ lies inside a certain convex subset of
Map

(
E(Σ), (0,∞),−πχ

)
.

4. The Cell Complex.

Let ST be a fixed topological surface of genus g. Let PT ⊆ ST be a non-empty finite set
of points. A marked singular euclidean structure is a homeomorphism (ST , PT ) −→ (S, P )
defined up to isotopy relPT , where (S, P ) is a singular euclidean surface. Let Spg be the
space of such structures defined up to scale.

We shall describe the cellulation of Spg as a PL subset of the simplicial complex Harer
calls A (see [H]). It was subsequently described in [BE]. Briefly, a vertex of A corresponds
to a non-trivial homotopy class of arcs in S, with endpoints in P . A k-simplex σ of A is
then a disjoint union of such arcs in different homotopy classes.

If σ cuts the surface into discs, then σ is dual to a spine Σ on ST , i.e. ST \ PT
deformation retracts onto Σ. We have a natural correspondence E(Σ) ≡ E(σ) (the set
of arcs of σ) where corresponding arcs intersect once transversely. Suppose σ and τ cut
the surface into discs, and that τ is a face of σ (i.e. τ ⊆ σ). Let Σ and T be the dual
spines to σ and τ respectively. There is a homotopy equivalence j : Σ −→ T , with j−1(v)
being a tree Fv ⊆ Σ, for each v ∈ V (T ). The inverse of an edge is always a single edge.
We may identify E(Σ) ≡ E(T ) ∪ E(F ), where F =

⋃
v∈V (T ) Fv. The resulting inclusion

E(T ) ↪→ E(Σ) is the same as the inclusion E(τ) ⊆ E(σ).
Realising each σ ∈ A as |σ| = Map

(
E(σ), (0,∞); 1

)
gives us a simplicial complex |A|.

For each σ ∈ A, we define C(σ) as follows.
If σ is not dual to a spine (some component of S \

⋃
σ is not contractible) then

C(σ) = ∅.
If σ is dual to Σ, let C(σ) be the set of θ ∈ Map

(
E(Σ), (0,∞); 1

)
satisfying

(i) θ(e) < 1/(|E| − |V |) for all e ∈ E, and

(ii)
∑
e∈EW

θ(e) < (|EW | − |W |)/(|E| − |V |), whenever ∅ 6= W 6= V .

(Note |E| − |V | = −χ.)
We see that C(σ) is an open subset of int|σ|. Let C(A) =

⋃
σ∈A C(σ).

Proposition. C(A) is an open subset of |A|.
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Proof : Let θ ∈ C(τ). Since C(τ) 6= ∅, τ is dual to some spine T . If τ is a face of
some σ ∈ A, then σ is obtained by adding finitely many additional arcs. There are a finite
number of possibilities for these arcs. Hence, τ is a face of only finitely many simplices
of A. So it is enough to show that for any simplex σ with τ ⊆ σ, all points of int|σ|
sufficiently near θ lie in C(σ).

We now fix σ with τ ⊆ σ. Let T and Σ be the respective dual spines. We have
T = j(Σ), and E(Σ) ≡ E(T ) t E(F ), where j collapses Σ along the “forest” F . We may
write V (Σ) = V (F ) =

⋃
v∈V (T ) V (Fv).

Given W ⊆ V (Σ), let W ′ = {v ∈ V (T ) |V (Fv) ⊆ W}, i.e. v ∈ W ′ means that all the
vertices of the corresponding tree lie in W . We have EW \ E(F ) ≡ j(EW ) ⊇ EW ′ . We
claim that

|EW \ E(F )| − |W ′| ≤ |EW | − |W |,
or equivalently,

|EW ∩ E(F )| ≥ |W | − |W ′|.
We have |EW ∩ E(F )| =

∑
v∈V (T ) |EW ∩ E(Fv)|, and |W | − |W ′| =

∑
v∈V (T )(|W ∩

V (Fv)| − δ(v)), where δ(v) = 0 if v /∈ W ′, and δ(v) = 1 if v ∈ W ′. Now, if v ∈ W ′, then
V (Fv) ⊆ W , and so E(Fv) ⊆ EW . In this case, |EW ∩ E(Fv)| = |E(Fv)| = |V (Fv)| − 1 =
|W ∩ V (Fv)| − δ(v). If, on the other hand, v /∈W ′, then W ∩ V (Fv) is a proper subset of
V (Fv). In this case it is easy to see (by induction on the size of V (Fv), for example) that
|EW ∩ E(Fv)| ≥ |W ∩ V (Fv)|. Summing over all v ∈ V (T ) gives the required inequality.

We have θ ∈ C(τ). So, we may find ε > 0 so that for all e ∈ E(T ),

θ(e) <
1

|E| − |V |
− 2ε

and, for all non-empty proper subsets U of V ,∑
e∈EU

θ(e) <
|EU | − |U |
|E| − |V |

− 2ε.

Under the identification of τ as a subset of |σ|, we have θ(e) = 0 for all e ∈ E(σ) \E(τ) ≡
E(F ).

Let θ′ be a point of int|σ| such that |θ′(e)− θ(e)| < ε/2|E(Σ)|. Then, θ′(e) < 1/(|E|−
|V |) for all e ∈ E(Σ), and given a non-empty proper subset W of V (Σ), we have∑

e∈EW

θ′(e) ≤
∑

e∈EW \E(F )

θ(e) + ε

≤ 1

|E| − |V |
(|EW \ E(F )| − |EW ′ |) +

∑
e∈EW ′

θ(e) + ε

<
1

|E| − |V |
(|EW \ E(F )| − |EW ′ |) +

1

|E| − |V |
(|EW ′ | − |W ′|)

=
1

|E| − |V |
(|EW \ E(F )| − |W ′|)

≤ 1

|E| − |V |
(|EW | − |W |).
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This shows that θ′ ∈ C(σ). (Recall |E(Σ)| − |V (Σ)| = |E(T )| − |V (T )| = −χ.) ♦

If g = p = 1, then Spg is the space of euclidean tori which we may identify with the
hyperbolic plane, H2. In this case, it is easily seen that C(A) = |A|, and our cellulation of
Spg gives us a tesselation of H2 by ideal triangles. For more complicated surfaces, however,
C(A) will be a proper subset of |A|. Figure 3 gives an example, with g=2 and p=1, of a
spine Σ and coordinates θ, in the corresponding simplex |σ|, so that θ /∈ C(σ). Note that
the inequality (ii) fails if we take W to consist of the three points as shown. An immersion
of ST \ PT in the plane is obtained by thickening up Σ as it is drawn.

There is a natural map µ : |A| −→ ∆p−1 = Map(P, [0, 1]; 1) defined as follows. Given
θ ∈ |σ| and y ∈ P , let

µ(θ)(y) =
1

2

∑
{θ(e) | e is incident on y}.

In this sum, we count twice any arc with both endpoints at y. Clearly, µ is well defined
and continuous, and µ(C(A)) ⊆ int∆p−1. It turns out that µ(C(A)) = int∆p−1, since it is
always possible to find a singular euclidean structure with any given set of cone angles.

5. The Cellulation of Spg .

We can define a map g : Spg −→ C(A) by associating to a singular euclidean structure
(ST , PT ) −→ (S, P ), a point g(S, P ) in the simplex int|σ|, where σ is dual to the spine Σ
for (S, P ). The coordinates θ for g(S, P ) are given by θ(e) = γ(e)/(−πχ), where γ(e) is
the angle opposite e, as defined in Section 3. We see that θ ∈ C(σ), and that µ ◦ g = λ,
where λ and µ are the maps to int∆p−1 defined above (Sections 1 and 4 respectively).

To show that g is surjective, we need to reconstruct a singular euclidean surface from
the coordinates θ ∈ C(σ) and the combinatorial information of the spine Σ.

Theorem. Suppose that ΣT is a topological spine for (ST , PT ), and suppose we have
γ ∈ Map

(
E(ΣT ), (0, π);−πχ

)
with

∑
e∈EW

γ(e) < π(|EW |−|W |) for all non-empty proper
subsets W of V (ΣT ). Then, there is a singular euclidean structure (ST , PT ) −→ (S, P ),
unique up to scale, such that the associated spine Σ is a geometric realisation of ΣT , and
for which each coordinate γ(e), with e ∈ E(Σ) ≡ E(ΣT ) gives the angle opposite the edge
e in the spinal triangulation.

The idea of the proof is as follows.
We choose a function r ∈ Map

(
V (ΣT ), (0,∞); 1

)
. For each edge e of ΣT , we construct

two congruent triangles, each with vertex angle equal to γ(e) and adjacent sides of length
r(v) and r(w), where v and w are the endpoints of e in ΣT . We can then piece together
these triangles, as dictated by the combinatorics of ΣT , to give a singular euclidean surface.
In general, we will have cone singularities at the vertices of ΣT . We will need to show that
there is a unique choice of r for which each of the cone angles is equal to 2π.

We define

f : Map
(
V (ΣT ), (0,∞); 1

)
−→ Map

(
V (ΣT ), (0,∞)

)
6
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by taking f(r)(v) to be the cone angle at v in the above construction. By summing
over all triangles, we see that

∑
v∈V (Σ) f(r)(v) = 2π|V |, so that f(r) lies in the simplex

Map
(
V, (0,∞); 2π|V |

)
. In fact, we shall show that for any fixed γ, f is injective, and that

its image is the open convex polyhedron Q defined by

Q = {s ∈Map
(
V, (0,∞); 2π|V |

)
|∑

v∈W
s(v) < 2π|EW | − 2

∑
e∈EW

γ(e) whenever ∅ 6= W ⊆ V }.

We shall need to express f(r)(v) as a sum of angles coming from the component
triangles in our construction.

Let φ(r, s, γ) be defined as in Figure 4. Then, f(r)(v) = 2
∑
e φ
(
r(v), s(w), γ(e)

)
,

where the sum is taken over all edges e incident on v. The point w is the other endpoint
of e. Throughout, we use the convention that we count twice any edge that has both its
ends at v.

Note that φ satisfies the following.

(1) ∂φ/∂s > 0

(2) ∂φ/∂r < 0

(3) φ(r, s, γ) < π − γ
(4) φ(r, s, γ) + φ(s, r, γ) = π − γ
(5) If r → 0, s bounded away from 0, then φ(r, s, γ)→ π − γ
(6) If s→ 0, r bounded away from 0, then φ(r, s, γ)→ 0

(7) For all k > 0, φ(kr, ks, γ) = φ(r, s, γ).
Property (7) shows that our construction is independent of how we choose to normalise.
We can now check the relevant facts about f .

(i) f(r) ∈ Q.
Let W be a non-empty proper subset of V . We write EW = E1

W t E2
W , where E1

W

and E2
W are the sets of edges of Σ with, respectively, one or both endpoints in W . Using

(3) and (4), we see that∑
w∈W

f(r)(w) = 2
∑
e∈E2

W

(
π − γ(e)

)
+ 2

∑
e∈E1

W

{φ
(
r(w), r(v), γ(e)

)
| e ∈ E1

W , w ∈W, w < e, v < e}

< 2
∑
e∈EW

(
π − γ(e)

)
= 2π|EW | − 2

∑
e∈EW

γ(e).

Here, v < e means that v is a vertex incident on e.
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(ii) f is injective.
Suppose r 6= r′. Let W = {v | r(v) < r′(v)}, so that W is a non-empty proper subset

of V . From (1), (2) and (4), we check that∑
w∈W

f(r)(w) >
∑
w∈W

f(r′)(w),

so that f(r) 6= f(r′).

(iii) f is proper, as a map from Map
(
V, (0,∞); 1

)
into Q.

Given a sequence rn in Map
(
V, (0,∞); 1

)
tending to the boundary of the simplex, we

need to find a subsequence r′n, with f(r′n)→ ∂Q. We may assume there exists a non-empty
proper subset W of V so that rn(v)→ 0 for all v ∈W , and with rn(v) bounded away from
0 for all v /∈W . Using (4) and (5), we get∑

w∈W
f(rn)(w) = 2

∑
e∈E2

W

(
π − γ(e)

)
+ 2

∑
{φ
(
r(w), r(v), γ(e)

)
| e ∈ E1

W , w ∈W, w < e, v < e}

→ 2
∑
e∈EW

(
π − γ(e)

)
,

and so f(rn)→ ∂Q.

Taking the one-point compactifications of Map
(
V (ΣT ), (0,∞); 1

)
and Q respectively,

we get a continuous injective map between two spheres of the same dimension. A Brouwer-
degree argument now shows that f is surjective.

To prove the theorem, we need only check that (2π, . . . , 2π) ∈ Q. But this follows since∑
e∈EW

γ(e) < π(|EW | − |W |), and so
∑
w∈W (2π) = 2π|W | < 2π|EW | − 2

∑
e∈EW

γ(e),
for any non-empty proper subset W of V .

6. The cellulation of intT pg

We stated in the introduction that our complex C(A) may be used to triangulate
the space of finite-area hyperbolic structures with a certain weight assigned to each cusp.
The proof will be identical to that for singular euclidean structures, and is based on
the observation that the function φ′, that is appropriate to this situation, and which
corresponds to φ in the euclidean case, has the same qualitative properties as φ.

Let intT pg = T pg × int∆p−1, where T pg is the Teichmüller space of a surface of genus
g with p cusps. A point of intT pg can be thought of as a marked, finite-area, complete
hyperbolic surface, S, with a fixed horoball chosen about each cusp. These horoballs are
chosen by the second coordinate x ∈ int∆p−1. In [BE], we took the horoball B(x, y)
about y ∈ P so that the length of ∂B(x, y) was equal to c0x(y), where c0 is a universal
constant small enough so that these horoballs are always disjoint. There is an alternative
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interpretation of the second coordinate which is more appropriate to the present situation
and will be discussed below. For the moment, however, we will stick with these “standard
horoballs”. We will write B(x) =

⋃
y∈P B(x, y).

Given such a surface, S, with standard horoballs B(x), we may associate a spine
Σ ⊆ S in an exactly analogous manner to that for singular euclidean structures given in
Section 2, where distance from a cone point is replaced by distance from a horoball. We
may construct a spinal triangulation by adding ribs between the vertices of Σ and the
points of P . In [BE], we then chose coordinates for S which gave us an identification of
intT pg with a certain subset of the complex |A|. Here, we shall give different coordinates,
which will identify intT pg with precisely the subset C(A), obtained for singular euclidean
structures.

Given S, x,B,Σ as above, and e ∈ E(Σ), let γ(e) be the area of one of the triangles
of the spinal triangulation which has e as an edge. (The two such triangles are isometric
to each other reflection in e.) Equivalently, γ(e) is equal to π minus the sum of the two
angles of this triangle adjacent to e. Now, by the Gauss-Bonnet theorem, we have that∑

e∈E(Σ)

γ(e) =
1

2
areaS = −πχ.

Moreover, if W ⊆ V (Σ) is a proper non-empty subset, then by summing the angles around
the vertices of W , we once more obtain∑

e∈EW

γ(e) < π(|EW | − |W |).

Thus, (σ,− 1
πχγ) ∈ C(σ), where σ is dual to Σ. We get a map ĝ : intT pg −→ C(A) in

exactly the same way as we defined g in section 5.
The proof that ĝ is bijective proceeds as in the singular euclidean case. Suppose we are

given a topological spine ΣT , and coordinates γ ∈ Map
(
E(ΣT ), (0, π);−πχ

)
, satisfying the

same conditions as in the statement of the main theorem of Section 5. We piece together
hyperbolic triangles, each with area determined by γ, but with variable shape. This gives
a hyperbolic surface with cone singularities. The argument of Section 5 will show that
there is a unique way to make each of these angles equal to 2π.

To see that this works, we define φ′ : (0,∞)
2 × (0, π) −→ (0, π), where φ′(r, s, γ)

is the angle in the hyperbolic triangle T ′(r, s, γ), of area γ, defined by Figure 5. Here,
log r and log s are the signed distances of the vertices from the horocycle. Each one is
allowed a negative value, so that φ′ is defined for r and s in (0,∞). We take logrithms for
convenience, so that φ′ satisfies precisely the same properties, (1)–(7) of Section 5, as φ.

The only property that is not immediate is that ∂φ′/∂r > 0. (Since φ′(r, s, γ) +
φ′(s, r, γ) = π − γ it follows then that ∂φ′/∂s < 0.) We need also check that the triangle
T ′(r, s, γ) is uniquely determined by the parameters r, s and γ. However, both of these
statements may be easily deduced from the following observation.

Lemma. Let C be a horocircle about the ideal point b of H2. Let c ∈ H2 be fixed, and let
a vary on C. Then, the (positive) area of the triangle abc is a strictly increasing function
of the distance between a and c.
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Proof : We may assume that c lies outside the open horodisc bounded by C, otherwise
we could reverse the roles of a and c. We imagine a as moving away from c, along C.
While the angle at a remains greater than π/2, each triangle abc is strictly contained in
any later one, and so the area is increasing. After the angle at a has become less than π/2,
the angles at a and c are both decreasing with time, and so the area of abc continues to
increase. ♦

We have shown that ĝ is bijective.
Now, let µ : C(A) −→ int∆p−1 be the map defined at the end of Section 4. Let

(S,B(x)) ∈ intT pg with spine Σ. It follows from our definitions that µ ◦ ĝ(S,B(x))(y) is

equal to − 1
2πχ times the hyperbolic area of the component of S \Σ containing the cusp y.

It would be more natural to reinterpret the coordinate x in terms of these areas.
Let (S, P ) ∈ T pg be a finite-area hyperbolic surface, and suppose x ∈ int∆p−1. Let

B(x, y) be the standard cusps defined at the start of this Section. Let Σ be the corre-
sponding spine. If y ∈ P , let jS(x)(y) be the area of the component of S \Σ containing y.
By Gauss-Bonnet, we have ∑

y∈P
jS(x)(y) = areaS = −2πχ.

Thus, jS(x) ∈ Map(P, (0,∞);−2πχ).
The Proposition below establishes that jS : int∆p−1 −→ Map(P, (0,∞);−2πχ) is a

homeomorphism for any surface S. Given this, we can set

g′ = ĝ ◦ (π1, ψ)−1 : T pg × int∆p−1 −→ C(A),

where π1 is projection to the first coordinate, and ψ(S, x) = − 1
2πχjS(x). Now, g′ is

a homeomorphism, and µ ◦ g′ : T pg × int∆p−1 −→ int∆p−1 is projection to the second
coordinate. This ties in more naturally with the case of singular euclidean structures.

Proposition. Let (S, P ) ∈ T pg and jS : int∆p−1 −→ Map(P, (0,∞);−2πχ) be as above.
Then, jS is a homeomorphism.

Proof : It is clear that jS is continuous. We show that it is injective and proper, and
thus a homeomorphism (by Brouwer degree).

Suppose that x ∈ int∆p−1 and that P = P1 t P2 is a partition of P . For i = 1, 2, let
B(x, Pi) =

⋃
y∈Pi

B(x, y). Let

D(x, P1) = {z ∈ S | d(z,B(x, P1)) ≤ d(z,B(x, P2))},

where d is the hyperbolic metric on S. Thus, D(x, P1) is the closure of the union of all
those components of S \ Σ which contain some point of P1. Thus,

areaD(x,P1) =
∑

y∈P1

jS(x)(y).

Now, suppose that x 6= x′ ∈ int∆p−1. Let P+ = {y ∈ P | x(y) < x′(y)}, and
let P− = P \ P+. Then, B(x, P+) is strictly contained in B(x′, P+), and B(x′, P−) is

10



Singular euclidean structures on surfaces

strictly contained in B(x, P−). One checks readily that D(x, P+) is strictly contained in
D(x′, P+), and so ∑

y∈P+

jS(x)(y) = areaD(x,P+)

< areaD(x′,P+)

=
∑
y∈P+

jS(x′)(y).

Thus, jS(x) 6= jS(x′), so we have shown that jS is injective.
The proof that jS is proper is similar. Suppose that xn −→ x ∈ ∂∆p−1. Let P0 =

{y ∈ P | x(y) = 0}, and P+ = P \ P0. Then
⋂
nB(xn, P0) = P0, whereas

⋂
nB(xn, P+)

contains a neighbourhood of P+. Again, it is readily checked that lim supnD(xn, P0) = P0.
Thus, ∑

y∈P0

jS(x)(y) = areaD(xn,P0) −→ 0,

and so jS(xn) −→ ∂Map(P, (0,∞);−2πχ). We have shown that jS is proper. ♦
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