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0. Introduction.

Let X be a complete simply-connected Riemannian manifold of pinched negative cur-
vature (i.e. all the sectional curvatures lie between two negative constants). The main aim
of this paper is to show that any discrete group of isometries of X fixing some ideal point is
finitely generated (Theorem 4.1). The only interesting case is that of a discrete parabolic
group (preserving setwise some horosphere in X). In this case, by applying the Margulis
Lemma (2.3), it follows that a discrete parabolic group contains a nilpotent subgroup of
finite index. We may identify this subgroup as the group generated by those elements
having “small rotational part”. In fact, the notion of the rotational part of a parabolic
isometry will be one of the main ingredients of the proof of the main theorem (see Section
3).

Conversely, it is well-known that any (virtually) nilpotent discrete group of isometries
must be “elementary”. In particular, some finite-index subgroup must fix an ideal point.
Thus, all discrete nilpotent groups are finitely generated. This rules out the possibility of
groups such as the rational numbers occuring as discrete groups. (Note that there is no
purely topological obstruction to this—see the end of Section 4.)

I suspect that one should be able to strengthen the conclusion of the main theorem,
to show that the quotient space of a discrete parabolic group is always topologically finite,
i.e. homeomorphic (or diffeomorphic) to the interior of a compact orbifold. However, I do
not have a proof of this.

The case where X has constant negative curvature is a consequence of the Bieberbach
Theorem (Section 1). Proofs of the Bieberbach theorem, usually proceed by an induction
on dimension, and so an argument along these lines would make essential use of the ex-
istence of totally geodesic subspaces. Thus, for the variable curvature case, we will need
another approach.

It turns out that both the upper and lower curvature bounds are essential for the main
theorem. In fact, it is possible for a non-cyclic free group to act as a discrete parabolic
group in cases where we have an upper bound on curvature (away from 0), but no lower
bound (away from −∞), or vice versa. Examples are due to G. Mess, and recent work of
Abresch and Schroeder, as we describe in Section 6.

† Supported by a Royal Society European Exchange Fellowship.
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The main result of this paper represents a step towards defining a notion of “geomet-
rical finiteness” for manifolds of pinched negative curvature, as I have described in another
paper [Bo2]. The concept of geometrical finiteness first arose in the context of hyperbolic
3-manifolds, and readily generalises to hyperbolic orbifolds of any dimension (see [Bo1]
for an exposition of this). More recently, some interest in the variable curvature case has
arisen, particularly from the study of the symmetric spaces. A consequence of our main
theorem here is that a geometrically finite group is finitely generated.

A brief summary of this paper is as follows. Chapter 1 reviews the case of constant
curvature (i.e. hyperbolic space). Chapter 2 is a survey of simply connected manifolds of
pinched negative curvature. In Chapter 3, we define the notion of the “rotational part”
of a parabolic isometry. In Chapter 4, we reduce the main theorem to the case of abelian
parabolic groups. We complete the proof in Section 5. Finally in Section 6, we describe
counterexamples when there are no strict curvature bounds.

Notation.
Let Y be a Riemannian manifold. We shall write Isom Y for the group of isometries

of Y . Given x ∈ Y , we write TxY for the tangent space at x. Thus, TY =
⋃
x∈Y TxY is

the total tangent space. If γ ∈ Isom Y, then γ∗ is the induced map on TY .
Suppose that Y is complete and simply connected, and has non-positive curvature.

Then, any two points x, y ∈ Y are joined by a unique geodesic [x, y]. More generally,
if x0, x1, . . . , xm ∈ Y , we write [x0, x1, . . . , xm] for the piecewise geodesic path [x0, x1] ∪
[x1, x2] ∪ · · · ∪ [xm−1, xm]. We write P (y, x) : TxY −→ TyY for parallel transport along
the geodesic [x, y]. We set

P (xm, xm−1, . . . , x0) = P (xm, xm−1) ◦ · · · ◦ P (x1, x0) : Tx0
Y −→ Txm

Y.

In other words, P (xm, xm−1, . . . , x0) is parallel transport along the path [x0, x1, . . . , xm].
We shall use En to denote euclidean n-space, thought of as a Riemannian manifold

(without any prefered coordinate system). On the other hand, Rn will be thought of as
an inner-product space over the real numbers, R.

1. The case of constant curvature.

In order to give the heuristics of the proof of the main theorem, it will be useful to
refer to the case of constant curvature. In this section, we give a brief survey of this case.
Only the notation introduced in the next paragraph will be directly relevant to the rest of
this paper.

Let 〈., .〉 be the standard inner-product on Rn, i.e. 〈ξ, ζ〉 =
∑n
i=1 ξiζi where ξ =

(ξ1, . . . , ξn) and ζ = (ζ1, . . . , ζn). Let Sn−1 be the unit sphere {ξ ∈ Rn | 〈ξ, ξ〉 = 1}. Given
ξ, ζ ∈ Sn−1, we write 6 (ξ, ζ) = cos−1〈ξ, ζ〉 ∈ [0, π] for the angle between ξ and ζ. This
gives the standard Riemannian metric on Sn−1, so that Isom Sn−1 is the orthogonal group
O(n). Given A ∈ O(n), write

|A| = max{6 (ξ, Aξ) | ξ ∈ Sn−1}.
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Thus, for any A,B ∈ O(n), we have

|A| = |A−1|,

|AB| ≤ |A|+ |B|

and
|BAB−1| = |A|.

Given any θ > 0, write
Uθ = {A ∈ O(n) | |A| ≤ θ}.

Thus, as θ → 0, the sets Uθ form a base of closed neighbourhoods of the identity in O(n).
Let En be n-dimensional euclidean space. By a trivialisation of the tangent bundle,

we mean a map φ : En ×Rn −→ TEn such that, for each x ∈ En, the map φx = φ(x, .) :
Rn −→ TxE

n is a linear isometry (it sends the standard inner-product on Rn to the
Riemannian inner-product on TxE

n). A trivialisation is standard if, for all x, y ∈ En, the
map φyφ

−1
x : TxE

n −→ TyE
n is just parallel transport, P (y, x), along the geodesic [x, y].

Clearly, there is precisely an O(n) worth of such standard trivialisations. So, given a fixed
trivialisation, φ, we may define the rotational part , Θφ(γ), of any isometry γ ∈ Isom En

according to
γ∗ ◦ φ = φ ◦ (γ,Θφ(γ)).

This gives a homomorphism
Θφ : Isom En −→ O(n).

Given any θ > 0, and a subgroup Γ of Isom En, we set Γθ to be the subgroup of Γ generated
by those elements whose rotational parts lie in Uθ. (We may write Γθ = 〈γ ∈ Γ | |Θφ(γ)| ≤
θ〉.) Since Uθ is conjugacy invariant, Γθ is defined independently of φ. Moreover, Γθ is
normal in Γ, and its index is finite and depends only on θ and n (c.f. Lemma 4.8). The
following result is standard (see [Wo], [CD] or [Bo1]).

Bieberbach Theorem (1.1) : Suppose that the subgroup Γ ⊆ Isom En is discrete
(or equivalently acts properly discontinuously on En). Then, there is a totally geodesic
Γ-invariant subspace, µ, of En, with the quotient µ/Γ compact. Moreover, there is some
δ(n) > 0 (depending only on n) such that Γδ(n) is free abelian, and acts by translation on
µ. (Thus, µ/Γδ(n) is a compact euclidean torus.)

In particular, we see that Γ is finitely generated.
Now, let Hn be n-dimensional hyperbolic space, and let Hn

I be the ideal sphere at
infinity (see Section 2). We may represent Hn as the upper-half space Rn

+ = {ξ ∈ Rn |ξn >
0}, with Riemannian metric |dξ|/|ξn| (where ξ = (ξ1, . . . , ξn)). Thus, Hn

I is the one-point
compactification, ∂Rn

+ ∪ {∞}, of ∂Rn
+ = {ξ ∈ Rn | ξn = 0}. If we put the standard

euclidean metric in Rn, then any parabolic subgroup of Isom Hn, with ideal fixed point
∞, acts by euclidean isometries on Rn

+∪∂Rn
+. From the Bieberbach Theorem, we see that

any discrete parabolic group acting on Hn is finitely generated.
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2. Review of negative curvature.

In this section, we review some relevant results in negative curvature. More details
can be found in [BaGS] or [EO].

Let (X, d) be a complete simply-connected Riemannian manifold of pinched negative
curvature. We shall normalise so that all sectional curvatures lie in the interval [−κ2,−1],
where κ ≥ 1. The exponential map based at any point x ∈ X is a diffeomorphism from
the tangent space TxX onto X. Thus if X has dimension n, then it is diffeomorphic to an
open n-ball. In fact, X can be naturally compactified by adding an ideal sphere, XI to X.
Thus, XI can be thought of as the set of equivalence classes of (semi-infinite) geodesic rays
in X, where to rays are regarded as equivalent if they remain a bounded distance apart in
X (and hence, in fact, converge exponentially). An element of XI will be called an ideal
point . The set XC = X ∪XI has a natural topological structure as a compact n-ball. By
a subspace of XC , we mean the closure, in XC , of a totally geodesic subspace of X.

Now, X is a “visibility manifold”. That is to say, any two distinct points x, y ∈ XC

may be joined by a unique geodesic, which we shall write [x, y]. We shall call [x, y] a
geodesic segment if both x and y lie in X, a geodesic ray tending to y if x ∈ X and
y ∈ XI , or a bi-infinite geodesic if x, y ∈ XI . We shall always assume that geodesics
are parameterised by arc length. If x0, x1, . . . , xm ∈ XC , we write [x0, x1, . . . , xm] for the
piecewise geodesic path [x0, x1] ∪ · · · ∪ [xm−1, xm].

For each x in X, the Riemannian metric gives an inner-product 〈., .〉x on the tangent
space TxX. We call v ∈ TxX a unit vector if 〈v, v〉x = 1, and write T 1

xX for the unit tangent
space {v ∈ TxX | 〈v, v〉x = 1}. Given v, w ∈ T 1

xX, we write 6 (v, w) = cos−1〈v, w〉x ∈ [0, π]
for the angle between v and w. Clearly 6 (v, w) + 6 (−v, w) = π. If S : TxX −→ TxX is a
linear isometry, then we write |S| = max{6 (v, Sv) | v ∈ T 1

xX}.
If x, y ∈ X, then parallel transport along the geodesic [x, y] gives us an isometry

P (y, x) : TxX −→ TyX.

More generally, if x0, x1, . . . , xm ∈ X, we write

P (xm, xm−1, . . . , x0) = P (xm, xm−1) ◦ · · · ◦ P (x1, x0)

in other words, P (xm, xm−1, . . . , x0) is parallel transport along [x0, x1, . . . , xm].
Given x ∈ X and y ∈ XC \ {x}, write −→xy for the unit tangent vector at x in the

direction of y. If y ∈ X, then clearly P (y, x)−→xy = −−→yx. If y, z ∈ XC \ {x}, we write
yx̂z = 6 (−→xy,−→xz), i.e. the angle between [x, y] and [x, z].

Lemma 2.1 : For all κ ≥ 1, there is some K = K(κ) such that if x, y and z are any
three points of X, then

|P (x, z, y, x)| ≤ K min
(
d(x, y), d(y, z), d(z, x)

)
.
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Proof : Without loss of generality, d(y, z) ≤ min(d(x, y), d(x, z)). Note that the triangle
[x, y, z, x] spans a (ruled) surface, S =

⋃
{[x,w] | w ∈ [y, z]}, of area at most d(y, z). The

total angular displacement of a unit vector transported aound the boundary of a surface
S is at most the area of S times the norm of the Riemann curvature tensor. This norm is,
in turn, bounded in terms of the pinching constants. (C.f. [BuK, Lemmas 6.2.1 and 6.7].)

♦

We shall also need the following weak form of Toponogov’s comparison theorem
[BaGS].

Proposition 2.2 : Let (X, d) be as above, and suppose that x1, x2, x3 ∈ X. Let x′1, x
′
2, x
′
3

be points in the euclidean plane, (E2, deuc), such that d(xi, xi+1) = deuc(x
′
i, x
′
i+1), for each

i (taking subscripts mod 3). Then, for each i, we have

xix̂i+1xi+2 ≤ x′ix̂′i+1x
′
i+2,

(where, of course, x′ix̂
′
i+1x

′
i+2 means the euclidean angle between the segments [x′i+1, x

′
i]

and [x′i+1, x
′
i+2]). ♦

(In fact, we could replace the euclidean plane by the hyperbolic plane in the above
theorem.)

Suppose y ∈ XI . The set of all bi-infinite geodesics with an endpoint at y gives
a 1-dimensional foliation, Fy, of X. This foliation is othogonally integrable—there is a
codimension 1 foliation, Sy, of X such that each leaf of Sy meets each leaf of Fy othogonally
in a single point. Each leaf of Sy is properly embedded C2-submanifold of X, and is C2-
diffeomorphic to Rn−1. Such a leaf is called a horosphere about y.

Suppose α, β : [0,∞] −→ XC are geodesic rays tending to y, such that α(0) and
β(0) lie in the same horosphere. Then, for any given t ∈ [0,∞), the points α(t) and β(t)
lie in the same horosphere. From standard commparison theorems, one may deduce that
d(α(t), β(t)) tends monotonically to 0 as t→∞. Moreover, there is some constant C > 0,
such that d(α(t), β(t)) ≤ Ce−t for all t. This expesses the “exponential convergence” of
geodesic rays referred to earlier.

Now, each isometry, g ∈ IsomX, extends to homeomorphism of XC , also denoted by
g. We write fix g for the set of fixed points of g in XC . Any such g is one of the following
mutually exclusive types:

(0) g is the identity.

(1) g is elliptic, i.e. g is not the identity, and X∩fix g 6= ∅. In this case, fix g is a non-empty
subspace of XC .

(2) g is parabolic, i.e. fix g is a single point of XI . In this case, g preserves setwise each
horosphere about y.

(3) g is loxodromic, i.e. fix g consists of two distinct points x, y ∈ XI . It thus preserves
setwise the loxodromic axis [x, y].

We may regard IsomX as a closed subgoup of the group of all diffeomorphisms of X
in the C1-topology. Given the subspace topology, Isom X is a locally compact topological
group. A subgroup, Γ, of Isom X is discrete if and only if it acts properly discontinuously
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on X. In such a case, the torsion elements of Γ are precisely the elliptic ones. We write
fix Γ =

⋂
g∈Γ fix g for the set of fixed points of Γ in XC . If Γ is finite, then fix Γ is a

nonempty subspace of XC .
Given p ∈ XI , we write

Isomp X = {g ∈ Isom X | gp = p}.

If Γ ⊆ Isomp X is discrete, then it is one of the following three types:

(1) Γ is finite.

(2) Γ contains a loxodromic element g, and preserves setwise the axis of g.

(3) Γ is infinite, and preserves setwise each horosphere about p.
In case (2), Γ is, group-theoretically, a semi-direct product of an infinite cyclic group,

and a finite subgroup of O(n− 1). In particular, Γ is finitely generated.

Definition : A discrete subgroup Γ of Isomp X is called parabolic if it is infinite, and
preserves some (and hence every) horosphere about p.

We shall show that every discrete parabolic group is finitely generated. It then follows
from the discussion above that any discrete subgroup of Isomp X is finitely generated.

We demanded, in the definition, that a parabolic group be infinite so as to accord
with the usual notion. In fact, we shall make no use of this hypothesis anywhere in this
paper. It is a consequence of the arguments presented in this paper (c.f. the the discussion
following the proof of Lemma 4.9) that an (infinite) parabolic group necessarily contains
a parabolic element.

The following result will be central to the proof. It is a slight rephrasing of [BaGS,
Theorem 9.5].

Margulis Lemma (2.3) : There is some universal ω > 0, and for all n ∈ N and κ > 0,
there exists ε = ε(n, κ) such that the following holds.

Suppose that (X, d) us a complete simply-connected Riemannian n-manifold, all of
whose sectional curvatures lie in [−κ2, 0]. Suppose that Γ is a discrete subgroup of Isom X,
and that x is any point of X. Let Γ(x) be the subgroup of Γ generated by all those γ ∈ Γ
which satisfy d(x, γx) ≤ ε and have 6 (v, P (x, γx) ◦ γ∗v) ≤ ω for all unit tangent vectors
v ∈ T 1

xX.
Then, Γ(x) is nilpotent. ♦

3. Trivialisations of the tangent bundle.

Given an ideal point p ∈ XI , we shall describe a preferred family of trivialisations
of the tangent bundle TX, indexed by the orthogonal group O(n). This will allow us to
define the “rotational part” of an isometry fixing p.

In Section 1, we defined the norm |A| of an element A ∈ O(n) as min{6 (ξ, Aξ) | ξ ∈
Sn−1}. Thus, the map [(A,B) 7→ |A−1B|] gives a bi-invariant metric on O(n). Thus, to
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show that a sequence Ai converges, it is enough that |A−1
j Ai| can be made arbitrarily small

for sufficiently large i and j. A similar discussion applies to automorphisms of the tangent
space TxX, at any x ∈ X, preserving the inner product 〈., .〉x.

Given x0, x1, . . . , xm ∈ X, we have defined P (xm, xm−1, . . . , x0) : Tx0
X −→ Txm

X
as parallel transport along the piecewise geodesic path [x0, x1, . . . , xm]. Note that for any
sequence of points y0, y1, . . . , yr in X, then

|P (y0, . . . , yr, xm, . . . , x0, yr, . . . , y0)| = |P (yr, xm, . . . , x0, yr)|.

Also, given x, y, z ∈ X, we have that

|P (x, z, y, x)| = |P (z, y, x, z)| = |P (y, x, z, y)|.

Lemma 2.1 tell us that |P (x, z, y, x)| ≤ Kd(x, z). Note also that if x, y, z all lie along some
geodesic in X, then P (z, y, x) = P (z, x). In particular, of course, P (x, y, x) = P (x, x) is
the identity on TxX.

Our next aim is to define P (y, p, x) : TxX −→ TyX for x, y ∈ X, and p ∈ XI .

Lemma 3.1 : Suppose x, y ∈ X and p ∈ XI . Let (wi)i∈N be any sequence of points in
X tending to p. Then, the sequence of maps P (y, wi, x) : TxX −→ TyX converges.

Proof : From the remarks above, it is enough to show that |P (y, wj , x)−1P (y, wi, x)| =
|P (x,wj , y, wi, x)| can be made arbitrarily small for all sufficiently large i and j.

Suppose δ > 0. Since the geodesic rays [x, p] and [y, p] converge, as we move towards
p, we can find points a ∈ [x, p] and b ∈ [y, p], with d(a, b) ≤ δ. As i → ∞, the geodesics
[x,wi] and [y, wi] converge on [x, p] and [y, p] respectively. Thus, there is some N ∈ N
such that for any i ≥ N , we have d(a, [x,wi]) ≤ δ and d(b, [y, wi]) ≤ δ. In other words, we
can find ai ∈ [x,wi] and bi ∈ [y, wi] such that d(a, ai) ≤ δ and d(b, bi) ≤ δ. (Figure 1.)

Suppose that i, j ≥ N . Then, the piecewise geodesic path [x,wi, y, wj , x] is spanned
by the six triangles [ai, wi, bi, ai], [bi, y, bj , bi], [bj , wj , aj , bj ], [aj , x, ai, aj ], [ai, aj , bi, ai] and
[bj , bi, aj , bj ]. Moreover, each of these three triangles has at least one side of length at most
3δ. Applying Lemma 2.1, we conclude that

|P (x,wj , y, wi, x)| ≤ 6K(3δ) = 18Kδ

which is arbitrarily small. ♦
Since the sequence (wi) was chosen arbitrarily, the limit of the maps P (y, wi, x) is

well-defined. We shall write it as P (y, p, x). The map P (y, w, x) depends continuously on
w, as w varies in XC . This may be seen by allowing the wi to be ideal points in the above
proof, and using Lemma 3.2(1) below.

Lemma 3.2 : Suppose that x, y, z ∈ X and p ∈ XI . Then:

(1) |P (x, y) ◦ P (y, p, x)| ≤ Kd(x, y),

(2) P (z, p, y) ◦ P (y, p, x) = P (z, p, x),

(3) P (y, p, x)−→xp = −→yp,
(4) If x, y and p all lie on some geodesic in X, then P (y, p, x) = P (y, x).
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Proof : Let wi → p, with wi ∈ X.

(1) By Lemma 2.1, we have |P (x, y, wi, x)| ≤ Kd(x, y) for each i.

(2) For each i, P (z, wi, y, wi, x) = P (z, wi, x).

(3) If wi /∈ {x, y}, then 6 (P (y, wi, x)−−→xwi,−−→ywi) = xŵiy. As i → ∞, then −−→xwi → −→xp,
−−→ywi → −→yp and xŵiy → 0 (Proposition 2.2).

(4) We can choose each wi ∈ [x, p]. Then P (y, wi, x) = P (y, x) for all i. ♦

Examples.
Let X = Hn be n-dimensional hyperbolic space. Suppose p ∈ XI . Any horosphere

S about p is an (n − 1)-dimensional euclidean plane in the induced Riemannian metric.
Suppose x ∈ S, and that v ∈ T 1

xX is a unit vector, tangent to S. (Thus 6 (v,−→xp) = π/2.)
Then, as y varies over S, the vectors P (y, p, x)v define a euclidean-parallel vector field on
S.

More generally, suppose that X is one of the negatively curved symmetric spaces.
Then, any horosphere S, has the structure of a nilpotent Lie group with a left-invariant
metric [He]. Let x, v be as above. Then, {P (y, p, x)v | y ∈ S} is a left-invariant vector field
on S.

We can now define our standard trivialisation of the tangent bundle of X.
By a trivialistion of the tangent bundle, we mean a bundle isomorphism

φ : X ×Rn −→ TX,

which respects the inner products on each of the fibres. For x ∈ X, we define

φx : Rn −→ TxX

by φx(ξ) = φ(x, ξ). Thus φx is a linear isometry.
Given x, y ∈ X, we define Dφ(y, x) ∈ O(n) by

Dφ(y, x) = φ−1
y ◦ P (y, x) ◦ φx.

Now, fix p ∈ XI .

Definition : A trivialisation φ : X ×Rn −→ TX is standard (with respect to p) if

φy = P (y, p, x) ◦ φx

for all x, y ∈ X.

Now if φ is standard, it follows (from Lemma 3.2(1)) that |Dφ(y, x)| ≤ Kd(x, y) for
all x, y ∈ X. Also, if y ∈ [x, p], then Dφ(y, x) is the identity in O(n) (Lemma 3.2(4)). In
fact, it is not hard to see that φ is standard precisely if these two conditions hold.

From Lemma 3.2(2), it is clear that for any p ∈ XI , standard trivialisations must
exist. Moreover, if φ is standard, and T is any element of O(n), then φ ◦ (1X , T ) is also
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standard. Conversely, suppose that φ and ψ are both standard (with respect to p). Then,
for all x, y ∈ X, we have P (y, p, x) = φyφ

−1
x = ψyψ

−1
x . Thus, φ−1

x ψx = φ−1
y ψy, and so

ψx = φx ◦ T for some fixed T ∈ O(n). In other words ψ = φ ◦ (1X , T ). The rotation T is
clearly unique given φ and ψ.

We defined Isomp X earlier to be the subgroup of isometries of X fixing the point
p. We are now in a position to define the rotational part of an element of Isomp X.
Each γ ∈ Isomp X induces a map γ∗ : TX −→ TX. If φ is a standard trivialisation,
then clearly γ∗ ◦ φ ◦ (γ−1, 1Rn) is also. Thus, there is a unique T ∈ O(n) such that
γ∗ ◦ φ ◦ (γ−1, 1Rn) = φ ◦ (1X , T ). We write Θφ(γ) = T so that we have

γ∗ ◦ φ = φ ◦ (γ,Θφ(γ)).

Definition : Given γ ∈ Isomp X, we call Θφ(γ) the rotational part of γ (with respect to
φ).

It is clear from the formula defining Θφ(γ), that this gives a homomorphism

Θφ : Isomp X −→ O(n).

If we were to replace φ by a different standard trivialisation, we would get another
homomorphism, conjugate in O(n) to Θφ. Thus, the norm |Θφ(γ)| is defined independently
of the choice of φ. It therefore makes sense to speak of an element of Isomp X having “small
rotational part”.

The following statement is just a matter of unraveling the various definitions.

Lemma 3.3 : Suppose p ∈ XI , and φ as a standard trivialisation with respect to p.
Suppose that γ ∈ Isomp X, and x ∈ X and ξ ∈ Rn. Let v = φxξ ∈ TxX. Then

6 (v, P (x, γx) ◦ γ∗v) = 6 (Dφ(γx, x)ξ,Θφ(γ)ξ).

Proof : We have
P (x, γx) ◦ γ∗ ◦ φx = φx ◦Dφ(x, γx) ◦Θφ(γ).

Thus,

6 (φxξ, P (x, γx) ◦ γ∗(φxξ)) = 6 (ξ,Dφ(x, γx) ◦Θφ(γ)ξ) = 6 (Dφ(γx, x)ξ,Θφ(γ)ξ).

♦

Remark : Using Lemma 3.2(3), we could restrict attention to standard trivialisations
φ having the property that φx(0, 0, . . . , 0, 1) = −→xp for some (and hence all) x ∈ X. This
reduces the rotational part of an element of Isomp X to O(n− 1). However, we shall have
no need to insist on this.
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4. Reduction to the abelian case.

Let p ∈ XI . We have defined Isomp X as the subgroup of isometries of X fixing p.
The main result of this paper is the following.

Theorem 4.1 : Any discrete subgroup of Isomp X is finitely generated.

We showed in Section 2 that the only interesting case is when this subgroup, Γ, is a
discrete parabolic group. It is the aim of this section to reduce further to the case when
Γ is abelian, in fact, isomorphic to a subgroup of Qn. The proof of Theorem 4.1 will be
completed in Section 5.

We first recall some basic facts about nilpotent groups.
A group, N , is said to be nilpotent if, for some m, all m-fold commutators in N are

trivial. The smallest such m is called the class of N . We define normal subgroups, Zi, of
N inductively as follows.

Z0 = {1},

Zi+1 = {y ∈ N | xyx−1y−1 ∈ Zi for all x ∈ N}.

This gives the upper central series

{1} = Z0 / Z1 / Z2 / · · · / Zm = N,

where m = class N. It is easy to see that any subgroup, or any quotient, of a nilpotent
group is nilpotent.

We quote the following results.

Proposition 4.2 [Wa] : Suppose that N is nilpotent. If x, y ∈ N both have finite order,
then xy also has finite order. ♦

Thus, T (N) = {x ∈ N | xr = 1 for some r} is a normal subgroup of N .

Proposition 4.3 : Suppose that T is a finitely generated nilpotent torsion group (every
element has finite order). Then T is finite.

Proof : We can assume, by induction on the class of T , that the commutator subgroup
[T, T ] is finite. The quotient T/[T, T ] is a finitely-generated abelian torsion group, and
hence also finite. ♦

Proposition 4.4 [Wa] : Let N be a countable nilpotent group with upper central se-
ries (Zi)

m
i=1. If the centre, Z1, is free abelian, then Zi/Zi−1 is free abelian for all i ∈

{2, 3, . . . ,m}. ♦
In such a case, we define

rank N =

m∑
i=1

rank(Zi/Zi−1).

10
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Clearly, class N ≤ rank N. Moreover, rank N is finite if and only if N is finitely generated.
The following is a theorem of Mal’cev.

Proposition 4.5 [R] or [BuK] : Let N be a finitely generated torsion-free nilpotent group.
Then N may be embedded as a discrete cocompact subgroup of a torsion-free nilpotent
Lie group, G, of dimension r = rank N. ♦

Proposition 4.6 [Ho] : Let G be a torsion-free nilpotent Lie group. Then, the exponential
map at the identity is a diffeomorphism of the Lie algebra onto G. ♦

(In fact the construction in [BuK] gives an explicit diffeomorphism of G with Rr.) In
particular, G is contractable. Propositions 4.5 and 4.6 together tell us that rank N is equal
to the cohomological dimension of N . We deduce:

Proposition 4.7 : Suppose that the nilpotent group N has free-abelian centre, and acts
properly discontinuously on some contractable n-manifold, then rank N ≤ n.

Proof : We need only check that rank N is finite, or equivalently that N is finitely
generated. However this is clear, since otherwise N would contain subgroups of arbitrarily
large finite rank. ♦

We now return to our manifold X. We want to define a subset of Isomp X consisting
of those elements of small rotational part.

Given any θ > 0, we write

Ip(θ) = {γ ∈ Isomp X | |Θφ(γ)| ≤ θ},

where Θφ is is the rotational part homomorphism defined in Section 3. As remarked in
Section 3, Ip(θ) is defined independently of our choice of trivialisation φ.

Given any subset, Q, of a group G, we shall use the notation 〈Q〉 to denote the
subgroup of G generated by Q.

Lemma 4.8 : For all n ∈ N and θ > 0, there is some ν = ν(n, θ) ∈ N such that if G is
any subgroup of Isomp X, then 〈G ∩ Ip(θ)〉 has index at most ν in G.

Proof : This is just group theory. The argument is standard.
We have a homomorphism Θ : G −→ H, where H is a compact group, in this case

O(n). Now, G′ = 〈G∩ Ip(θ)〉 = 〈g ∈ G |Θ(g) ∈ U〉, where U = Uθ = {A ∈ O(n) | |A| ≤ θ}
is a neighbourhood of the identity in H.

Let V be another neighbourhood of the identity in H with V −1V ⊆ U (for example,
take V = Uθ/2). There is an upper bound, ν, on the number of right translates of V that
can be packed disjointly into H. The number ν depends on U and H, and thus on θ and
n. It is independent of G.

Now let r ∈ N be maximal such that we can find g1, g2, . . . , gr ∈ G with the translates
V (Θ(gi)) disjoint for i ∈ {1, 2, . . . , r}. Clearly r ≤ ν. Now let g be any element of G.

11
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By maximality, V (Θ(g)) must intersect V (Θ(gi)) for some i ∈ {1, 2, . . . , k}. It follows
that Θ(gg−1

i ) ∈ V −1V ⊆ U . Thus gg−1
i ∈ G′ and so g ∈ G′gi. We have shown that

{Ggi | 1 ≤ i ≤ r} is a complete set of cosets for G′ in G. Thus [G : G′] ≤ r ≤ ν. ♦
Now, let θ0 = ω/2, where ω is the constant of the Margulis Lemma (2.3). Thus θ0

depends only on n and κ. In view of Lemma 4.8, in order to prove the main theorem
(4.1), we can restrict attention to discrete parabolic groups, Γ, which are generated by the
subset Γ ∩ Ip(θ0). We aim to show that such a group is finitely generated and nilpotent.
We begin with the following.

Lemma 4.9 : If Γ is a discrete parabolic subgroup of Ip(θ0), with Γ = 〈Γ∩Ip(θ0)〉, then
Γ is locally nilpotent (i.e. every finitely generated subgroup of Γ is nilpotent).

Proof : Let {γ1, γ2, . . . , γr} be a finite subset of Γ ∩ Ip(θ0). Choose any y ∈ X. The
geodesics γi[y, p], for i ∈ {1, 2, . . . , r}, and [y, p] itself, all converge exponentially. Thus,
we can find some x ∈ [y, p] such that, for all i, we have d(x, γix) ≤ min(ε, θ0/K), where
ε = ε(n) comes from the Margulis Lemma (2.3) and K comes from Lemma 3.2(1).

Now, choose any ξ ∈ Rn, and set v = φxξ. By Lemma 3.3, for each i,

6 (v, P (x, γix) ◦ γi∗v) = 6 (Dφ(γix, x)ξ,Θφ(γi)ξ).

But |Θφ(γi)| ≤ θ0, and by hypothesis, and by Lemma 3.2(1), we have

|Dφ(γix, x)| ≤ Kd(x, γix)

≤ K(θ0/K) = θ0.

Thus
6 (Dφ(γix, x)ξ,Θφ(γi)ξ) ≤ 2θ0 = ω.

It follows that 〈γ1, γ2, . . . , γr〉 is a subgroup of the nilpotent group Γ(x) as defined in the
Margulis Lemma. Thus, 〈γ1, γ2, . . . , γr〉 is nilpotent.

Now, any finitely generated subgroup of Γ lies inside some subgroup of the form
〈γ1, γ2, . . . , γr〉 for some r, and is thus, itself, nilpotent. ♦

The next step will be to reduce to the case where Γ is torsion-free.
Let T be the set of elements of finite order in Γ. Let x and y be any elements of T .

Then 〈x, y〉 is nilpotent. By Propositon 4.2, xy−1 has finite order. We deduce that T is a
subgroup of Γ. Clearly, T is normal.

In summary, we know that T is a discrete torsion group in which every finitely gener-
ated subgroup is nilpotent. From this we deduce that T is finite, as follows. Clearly T is
countable, so we may write T =

⋃∞
r=0 Tr, where each Tr is a finitely generated subgroup

of T , and Tr ⊆ Ts for r ≤ s. By Proposition 4.3, each Tr is, in fact, finite. Thus, its set of
fixed points, fix Tr, meets X in some non-empty totally geodesic subspace. Clearly, if r ≤ s,
then fix Ts ⊆ fix Tr. Thus, the dimension of fix Tr must stablise, and so fix T =

⋂∞
r=0 fix Tr

must meet X. It follows that T is finite.
Now, σ = X ∩ fix T is a totally geodesic subspace of X. Since T is a well-defined

subgroup of Γ, we see that σ is Γ-invariant. Moreover, it is easily checked that T is
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precisely the pointwise stabliser of σ. Thus, Γ/T acts freely and properly discontinuously
on σ. Clearly, the notion of a horosphere is respected by taking subspaces, and so we see
that Γ/T acts intrinsically as a discrete parabolic group on σ. Thus, repacing Γ by Γ/T ,
and X by σ, we are reduced to the case where Γ acts freely on X, i.e. Γ is torsion free.

As before, let n be the dimension of X. Now, any set of n elements, γ1, γ2, . . . , γn, of
Γ generate a torsion-free nilpotent group. By Proposition 4.7, this group has rank at most
n. It follows that any n-fold commutator in the γi is trivial. Since these elements were
chosen arbitrarily, we see that Γ is nilpotent.

We want to show that Γ is finitely generated. By Propositions 4.4 and 4.7, it is enough
to show that Γ has free-abelian centre. We are thus reduced to considering torsion free
abelian groups. In fact, we may reduce to a subgroup of the additive group Qn as follows.

Let G be a torsion-free abelian group. Then, the tensor product G ⊗ Q over the
integers is also torsion-free. In fact, G ⊗Q has naturally the structure of a vector space
over Q. We may identify G with its image in G ⊗ Q under the injection [g 7→ g ⊗ 1].
Under this identification, G⊗Q is spanned as a vector space by the elements of G. Thus,
we may find a basis of G⊗Q consisting entirely of elements of G. The subgroup H of G
generated by all the elements in one such basis will be a free abelian group of rank equal
to dimQ(G⊗Q). Moreover, G/H will be a torsion group.

Suppose now that G acts freely and properly discontinuously on a contractable n-
manifold. Then we deduce, from Proposition 4.7, that dimQ(G ⊗Q) ≤ n. Thus, we may
regard G as a subgroup of Qn.

In Section 5, we shall show that a discrete abelian parabolic group, G, is necessarily
free abelian. However, if n = dim X ≤ 3, a simple topological argument will suffice.

If dim X = 2, then clearly the quotient of any horosphere must be a topological circle,
and so G is infinite cyclic. Suppose that dim X = 3, and let S be some horosphere about
p. Thus, S is homeomorphic to R2. We see that F = S/Γ is a surface with π1F = G.
However, surfaces with abelian fundamental groups are easily classified, and they are each
topologically finite, i.e. homeomorphic to the interior of a compact manifold with boundary.
(The essential point is that any surface admits a compact exhaustion by subsurfaces, Fi,
whose fundamental groups inject. Thus each π1Fi is abelian. Now any compact surface
with abelian fundamental group is one of just a few possibilities, and so it is readily seen
that the homeomorphism types of the Fi must stablise.)

However, we cannot hope for a purely topological argument in higher dimensions. For
example, we describe below a free, properly discontinuous action of the diadic rationals,
Z[ 1

2 ] = {h/2k | h, k ∈ Z}, on R3. This type of example is well-known.

Let N ≡ S1 ×D2 be a solid torus, and let ι : N −→ S3 be a standard embedding of
N in the 3-sphere. (Thus the closure of S3 \ N is also a solid torus.) Let f : N −→ N
be an embedding of N in itself, so that fN is the tubular neighbourhood of a 2-strand
closed braid, with one half-twist. (Thus f∗π1N has index 2 in π1N , and ιfN is unknotted
in S3.) Let M = S3 \

⋂∞
r=0 ιf

rN . It is easily seen that π1M ≡ Z[ 1
2 ]. Moreover one can

check that the universal cover M̃ of M has the engulfing property, i.e. every compact set
lies inside some 3-ball. Thus (using the 3-dimensional annulus theorem, and the fact that
an orientation preserving diffeomorphism of the 2-sphere is isotopic to the identity) we see
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that M̃ is homeomorphic to R3. Now Z[ 1
2 ] acts on M̃ ≡ R3 by covering translations. It is

an interesting exercise to give an explicit description of this action on R3.

5. Abelian parabolic groups.

The aim of this section is to complete the proof of the main theorem (4.1) by showing
that every discrete abelian parabolic group is finitely-generated. We begin with a discussion
of abelian subgroups of O(n).

We write 〈., .〉 for the standard inner product on Rn, so that 〈ξ, ζ〉 = cos 6 (ξ, ζ) for
all unit vectors ξ, ζ ∈ Sn−1 ⊆ Rn. Complexifying, we can extend this to the standard
hermitian form on Cn, i.e. 〈z, w〉 = z1w̄1 + z2w̄2 + · · ·+ znw̄n.

Suppose G is an abelian subgroup of O(n). Then G acts on Cn preserving the hermi-

tian form. Now, Cn can be split as a direct sum, Cn =
⊕k

i=0Wi, of common eigenspaces
of the elements of G. If we take the number, k, of common eigenspaces to be minimal, then
this splitting is canonical (up to permutation of factors). In this case the eigenspaces are
mutually orthogonal, and are paired under complex conjugation. An eigenspace is paired
with itself if and only if all its eigenvalues (as g ranges over G) are equal to ±1. We shall
assume that W0 is the eigenspace {z ∈ Cn |gz = z for all g ∈ G}, even though this may be
trivial (all the other eigenspaces are assumed non-trivial). We can also assume that the set
{W0,W1, . . . ,Wq} contains precisely one eigenspace from each pair. For i ∈ {0, 1, . . . , q},
let Vi be the subspace of Rn given by Vi = {z + z̄ | z ∈Wi}. We may check the following.

Lemma 5.1 : The spaces Vi for 0 ≤ i ≤ q give a G-invariant splitting of Rn (gVi = Vi for
all g ∈ G). We have V0 = {ξ ∈ Rn |gξ = ξ for all g ∈ G}. Moreover, given i ∈ {0, 1, . . . , q},
and ξ, ζ ∈ Vi ∩ Sn−1, then 6 (ξ, gξ) = 6 (ζ, gζ) for all g ∈ G.

We extract the geometric information we need from this result in the following lemma.

Lemma 5.2 : Given any abelian subgroup, G, of O(n), then there exists some finite
subset, {g1, g2, . . . , gq} of elements of G with the following property. Given any ε > 0,
there is some η > 0 such that if ξ ∈ Sn−1 satisfies 6 (ξ, giξ) ≤ η for each i ∈ {1, 2, . . . , q},
then 6 (ξ, gξ) ≤ ε for all g ∈ G.

Proof : Let Rn = V0 ⊕ V1 ⊕ · · · ⊕ Vq be the splitting given by Lemma 5.1. Then,
given any i ∈ {1, 2, . . . , q}, there is some gi ∈ G with giξ 6= ξ for some (and hence all)
ξ ∈ Vi ∩ Sn−1. Set ki = 1 − 〈ξ, giξ〉. Thus, ki > 0, and is defined independently of the
choice of ξ ∈ Vi ∩ Sn−1. Let k = min{ki | 1 ≤ i ≤ q}.

Suppose we are given an arbitrary ξ ∈ Sn−1. We want to show that if 〈ξ, giξ〉 is
close to 1 for all i ∈ {1, 2, . . . , q}, then 〈ξ, gξ〉 is close to 1 for all g ∈ G. So suppose
〈ξ, giξ〉 ≥ 1− µ for all i ∈ {1, 2, . . . , q}.
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Write ξ =
∑q
i=0 aiξi, where ai ∈ R and ξi ∈ Vi for all i. Since ξ ∈ Sn−1, we have

q∑
i=0

a2
i = 1.

Now, if i ≥ 1,

1− µ ≤ 〈ξ, giξ〉 =

q∑
j=0

a2
j 〈ξj , giξj〉

≤
∑
j 6=i

a2
j + a2

i (1− ki)

= 1− kia2
i .

Thus a2
i ≤ µ/ki ≤ µ/k for all i ≥ 1.

Now, given any g ∈ G,

〈ξ, gξ〉 =

q∑
i=0

a2
i 〈ξi, gξi〉

≥ a2
0 −

q∑
i=1

a2
i = 1− 2

q∑
i=1

a2
i

≥ 1− 2qµ/k.

The lemma now follows. Given any ε > 0, define µ > 0 by cos ε = 1 − 2qµ/k. Then
η > 0 is given by cos η = 1− µ. ♦

We shall use Lemma 5.2 in the following form.

Lemma 5.3 : Let Γ be a subgroup of Qm which spans Qm as a vector space. Suppose
that Ψ : Γ −→ O(n) is any homomorphism. Then, we can find e1, e2, . . . , em ∈ Γ which
form a vector space basis for Qm and have the following property. Given any ε > 0, there
is some δ > 0 such that for any ξ ∈ Sn−1 with 6 (ξ,Ψ(ei)ξ) ≤ δ for all i ∈ {1, 2, . . . ,m},
we have 6 (ξ,Ψ(g)ξ) ≤ ε for all g ∈ Γ.

Proof : Let G = Ψ(Γ) be the image of Γ in O(n). We can find {g1, g2, . . . , gq} ⊆ Γ so
that {Ψ(g1),Ψ(g2), . . . ,Ψ(gq)} ⊆ O(n) has the property expressed in Lemma 5.2. Now,
〈g1, g2, . . . , gq〉 is free abelian. Let {e1, e2, . . . , ed} be a free set of generators for this
subgroup of Γ. Let N be the maximal word length of any of the gi expressed in terms of
{e1, e2, . . . , ed}. Now, given any ε > 0, let η > 0 be as in Lemma 5.2, and let δ = η/N .
Suppose we are given ξ ∈ Sn−1 such that, for each i ∈ {1, 2, . . . , d},

6 (ξ,Ψ(ei)ξ) ≤ δ,

then for each j ∈ {1, 2, . . . , q}, we have

6 (ξ,Ψ(gi)ξ) ≤ Nδ ≤ η.

15



Discrete parabolic groups

Thus, by Lemma 5.2,
6 (ξ,Ψ(g)ξ) ≤ ε

for each g ∈ Γ.
Now, e1, e2, . . . , ed are linearly independent over Q, so we may extend arbitrarily to

a basis {e1, e2, . . . , em} ⊆ Γ of Qm. ♦
We stated at the beginning that the aim of this section is to show that discrete torsion-

free abelian parabolic groups are finitely generated. In order to give the idea of the proof,
we begin by considering a discrete abelian group, Γ, acting freely on En. We want to
show that Γ is free abelian. Of course, this is an immediate consequence of the Bieberbach
Theorem (1.1). However, a proof along these lines would make essential use of the existence
of totally geodesic subspaces of En. Below, we give a proof that avoids this, and can be
generalised to an argument for variable curvature.

As described in Section 4, we can regard Γ as a subgroup of Qm, with Qm generated
as a vector space by the elements of Γ. We shall, however, continue to use multiplicative
notation for the group operations in Γ.

Let φ be a standard trivialisation of the tangent bundle of En, and let Θ = Θφ :
Isom En −→ O(n) the corresponding rotational part homomorphism (see Section 1).

Let {e1, e2, . . . , em} be as in Lemma 5.3 (with Ψ = Θ). Let H be the subgroup of
Γ generated by {e1, e2, . . . , em}. Thus, Γ/H is a torsion group. Our aim is to show that
Γ/H is finite.

Taking ε = π/8, let δ > 0 be as in Lemma 5.3. Choose any point x ∈ En, and let

λ = max{d(x, eix) | 1 ≤ i ≤ m}.

Let l0 = 2
3λcosec(δ/8), so that in any triangle, abc, with d(a, b) ≥ 3

4 l0, d(a, c) ≥ 3
4 l0 and

d(b, c) ≤ λ, we have bâc ≤ δ/4. Let l = max(4mλ, l0).
We claim that, for any g ∈ Γ, we have

gHx ∩Nl(x) 6= ∅.

In other words, each coset. gH, of H contains some element, h, with d(x, hx) ≤ l. Since Γ
acts properly discontinuously, it will follow that there are only finitely many such cosets.

So, suppose, for contradiction, that there is some g0 ∈ Γ with g0Hx ∩Nl(x) = ∅. Let
G be the subgroup of Γ generated by H ∪ {g0}. Thus G/H is finite cyclic.

Let r = max{d(x, gHx) | g ∈ G}. Thus r > l. Choose k ∈ G such that d(x, kHx) = r.
We must have d(x, k2Hx) ≤ r, and so there is some h0 ∈ H with d(x, k2h0x) ≤ r.

Let H ′ = {h2 | h ∈ H}. Thus H ′ is a subgroup of index 2m in H. Since d(x, eix) ≤ λ
for each i ∈ {1, 2, . . . ,m}, we see that every point in the orbit Hx lies within a distance
mλ of the orbit H ′x. In particular, we can find h ∈ H so that d(h0x, h

2x) ≤ mλ, and so
d(k2h0x, k

2h2x) ≤ mλ. Thus, d(x, γ2x) ≤ r +mλ ≤ r + r
4 = 5

4r, where γ = kh ∈ G. Now
γ ∈ kH, and so d(x, γx) ≥ r.

Now fix, for the moment, i ∈ {1, 2, . . . ,m}, and consider the four points x, y = γx,
xi = eix and yi = γeix = eiγx. We have

d(x, xi) = d(y, yi) ≤ λ
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and
d(x, y) = d(xi, yi) ≥ r ≥ l.

Thus, d(x, yi) ≥ r − λ ≥ r − r
4 = 3

4r. We chose l large in relation to λ, so that we must
have yx̂yi ≤ δ/4 and xŷixi ≤ δ/4. (Figure 2.)

Let v = −→xy, so that ei∗v = −−→xiyi. Let vi be the parallel transport of v to the point xi.
Then, from the definition of rotational part, we have

6 (ξ,Θ(ei)ξ) = 6 (vi, ei∗v),

where ξ = φ−1
x v = φ−1

xi
vi ∈ Sn−1. But 6 (vi, ei∗v) ≤ yx̂yi + xŷixi ≤ δ/4 + δ/4 = δ/2 < δ.

We have shown that
6 (ξ,Θ(ei)ξ) ≤ δ

for each i ∈ {1, 2, . . . ,m}. Applying Lemma 5.3, we get that 6 (ξ,Θ(g)ξ) ≤ ε = π/8 for all
g ∈ Γ. In particular, 6 (ξ,Θ(γ)ξ) ≤ π/8.

Now, let z = γ2x, so that γ∗v = −→yz. The element γ was chosen so that d(x, z) ≤ 5
4r.

Let v′ = φy(ξ) ∈ T 1
yEn, i.e. v′ is the parallel transport of v = −→xy to y. From the definition

of rotational part, we see that

6 (−−→yx,−→yz) = 6 (v′, γ∗v) = 6 (ξ,Θ(γ)ξ) ≤ π/8.

Thus xŷz = π − 6 (−−→yx,−→yz) ≥ π − π
8 >

3
4π.

In summary, we have deduced that d(x, y) = d(y, z) ≥ r, d(x, z) ≤ 5
4r and xŷz ≥ 3

4π.
Simple trigonometry shows that this is impossible.

We have contradicted the existence of g0 ∈ Γ with d(x, g0Hx) ≥ l. This concludes the
proof that Γ is free abelian.

The idea now is to give a similar argument in the case where Γ is a discrete abelian
parabolic group acting freely on X. Let us consider the ingredients of the proof we have
just given. We have used an identification of the tangent spaces at different points, as well
as the notion of the rotational part of an isometry. These are already provided for in X
(Section 3). Our use of trigonometry allowed for some margin of error, and thus could be
made to work in some perturbation of the metric. The idea therefore will be to carry out
the argument in a small neighbourhood of a suitably chosen point of X, where the metric
can be assumed to be almost euclidean.

Proposition 5.4 : Let Γ be a subgroup of Qm (with multiplicative notation). If Γ acts
as a discrete parabolic group on X, then Γ is free abelian.

Proof : Let φ : X × Rn −→ TX be a standard trivialisation of the tangent bundle of
X with respect to the fixed point p. Let Θ = Θφ : Γ −→ O(n) be the rotational part
homomorphism.

We can assume that Qm is generated as a vector space by Γ. Let {e1, e2, . . . , em} be
as in Lemma 5.3 (with Ψ = Θ). Let H = 〈e1, e2, . . . , em〉 ⊆ Γ. Thus Γ/H is torsion, and
we want to show that it is finite.
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Let K be the constant of Lemmas 2.1 and 3.2(1) (so that |Dφ(y, x)| ≤ Kd(x, y) for
all x, y ∈ X). Let l = π/8K. Taking ε = π/8, let δ > 0 be as in Lemma 5.3. Let
η0 = 3

2 l sin(δ/8), so that in any euclidean triangle abc with d(a, b) ≥ 3
4 l, d(a, c) ≥ 3

4 l and
d(b, c) ≤ η0, we have bâc ≤ δ/4. Let η = min(η0, l/4m, δ/4K).

From the exponential convergence of geodesic rays, it is clear that we can find a point
a ∈ X with d(a, eia) ≤ η for each i ∈ {1, 2, . . . ,m}. We claim that gHa∩Nl(a) 6= ∅ for all
g ∈ Γ. By discreteness, this will prove that Γ/H is finite.

Let β : [0,∞] −→ XC be the geodesic [a, p], parameterised by arc-length. Thus,
β(0) = a, and β(∞) = p. For any g ∈ Γ, d(β(t), gβ(t)) tends monotonically to 0 as t tends
to ∞. Given any subset ∆ of Γ, and t ∈ [0,∞), define

M(∆, t) = d(β(t),∆β(t))

= min{d(β(t), gβ(t)) | g ∈ ∆}.

This minimum is attained since Γ acts properly discontinuously. Clearly, M(∆, t) tends
monotonically to 0 as t→∞. Moreover M(∆, t) is continuous in t. To see this, fix t0 ≥ 0,
and note that if |t − t0| ≤ 1, then any g ∈ ∆ which minimises d(β(t), gβ(t)) must satisfy
d(β(t0), gβ(t0)) ≤ M(∆, t0) + 2. There are only finitely many such g, and for each, we
have that d(β(t), gβ(t)) is continuous in t.

We want to show that gHa meets Nl(a) for each g ∈ Γ. So suppose, for contradiction,
that there is some g0 ∈ Γ with g0Ha ∩ Nl(a) = ∅, i.e. M(g0H, 0) > l. Let G be the
subgroup of Γ generated by H ∪ {g0}, so that G/H is finite cyclic.

Now, L(t) = max{M(gH, t) | g ∈ G} is continuous and tends monotonically to 0 as
t→∞. Thus, there is some t0 ∈ [0,∞) with L(t0) = l. Let b = β(t0). Choose k ∈ G such
that d(b, kHb) = l. Now, d(b, gHb) ≤ l for all g ∈ G. In particular d(b, k2Hb) ≤ l, and so
there is some h0 ∈ H with d(b, k2h0b) ≤ l.

We chose a ∈ X so that d(a, eia) ≤ η for each i ∈ {1, 2, . . . ,m}. Since b ∈ [a, p], we
have also d(b, eib) ≤ η. Let H ′ = {h2 | h ∈ H}, so that H ′ is a subgroup of index 2m in H.
Clearly, each point of the orbit Hb lies within a distance mη of the orbit H ′b. In particular,
there is some h ∈ H with d(h0b, h

2b) ≤ mη, and so d(k2h0b, k
2h2b) ≤ mη. Setting γ = kh,

we see that d(b, γ2b) ≤ l + mη ≤ l + l
4 = 5

4 l. Now, γ ∈ kH and d(b, kHb) = l. Thus
d(b, γb) ≥ l.

Now d(β(t), γβ(t)) and d(β(t), γ2β(t)) both tend monotonically to 0. Thus we may
find x ∈ [b, p] with d(x, γx) = l and d(x, γ2x) ≤ 5

4 l.
Let us fix, for the moment, i ∈ {1, 2, . . . ,m} and consider the four points x, y = γx,

xi = eix and yi = γeix = eiγx. (Figure 3.) We have

d(x, xi) = d(y, yi) ≤ η

and
d(x, y) = d(xi, yi) = l.

Thus d(x, yi) ≥ l − η ≥ l − l
4m ≥

3
4 l. We chose η ≤ η0 = 3

2 sin(δ/8), and so, applying
the comparison theorem (Proposition 2.2) to the triangle yxyi, we find that yx̂yi ≤ δ/4.
Similarly, xŷixi ≤ δ/4.
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Consider now the four unit vectors −→xy, −→xyi, P (x, yi, xi)−−→xiyi and P (x, xi)−−→xiyi, based
at x. We have 6 (−→xy,−→xyi) = yx̂yi ≤ δ/4 and 6 (−→xyi, P (x, yi, xi)−−→xiyi) = xŷixi ≤ δ/4.
From Lemma 2.1, we have |P (xi, x, yi, xi)| ≤ Kd(x, xi) ≤ Kη ≤ K(δ/4K) = δ/4. Thus
6 (P (x, yi, xi)−−→xiyi, P (x, xi)−−→xiyi) = 6 (−−→xiyi, P (xi, x, yi, xi)−−→xiyi) ≤ δ/4. We thus get that
6 (−→xy, P (x, xi)−−→xiyi) ≤ 3δ/4.

Let v = −→xy, so that −−→xiyi = ei∗v. Let ξ = φ−1
x v ∈ Sn−1. Lemma 3.3 tells us that

6 (Dφ(xi, x)ξ,Θ(ei)ξ) = 6 (v, P (x, xi) ◦ ei∗v) ≤ 3δ/4.

From Lemma 3.2(1), we have that

|Dφ(xi, x)| ≤ Kd(x, xi) ≤ Kη ≤ K(δ/4K) = δ/4.

Thus, 6 (ξ,Dφ(xi, x)ξ) ≤ δ/4, and so

6 (ξ,Θ(ei)ξ) ≤ δ/4 + 3δ/4 = δ.

Now, this is true for each i ∈ {1, 2, . . . ,m}, and so applying Lemma 5.3, we get that
6 (ξ,Θ(g)ξ) ≤ ε = π

8 for all g ∈ Γ. In particular, 6 (ξ,Θ(γ)ξ) ≤ π
8 .

From Lemma 3.2(1), we see that

|Dφ(y, x)| ≤ Kd(x, y) = Kl = K(π/8K) =
π

8
,

and so 6 (ξ,Dφ(y, x)ξ) ≤ π
8 . Thus 6 (Dφ(y, x)ξ,Θ(γ)ξ) ≤ π

8 + π
8 = π

4 . By Lemma 3.3, this
means that

6 (v, P (x, y) ◦ γ∗v) ≤ π

4
.

We defined v = −→xy, and so γ∗v = −→yz where z = γ2x. Thus

6 (−−→yx,−→yz) = 6 (P (y, x)−→xy,−→yz) = 6 (v, P (x, y) ◦ γ∗v) ≤ π

4
,

and so

xŷz = π − 6 (−−→yx,−→yz) ≥ π − π

4
=

3

4
π.

However, we have d(x, y) = d(y, z) = l and d(x, z) ≤ 5
4 l. Applying the comparison

theorem (Proposition 2.2), we find that

xŷz ≤ 2 sin−1(5/8) <
3

4
π.

We have contradicted the existence of g0 ∈ Γ with d(a, g0Ha) > l. We conclude that
gHa meets Nl(a) for all g ∈ Γ, as claimed. ♦
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6. Counterexamples.

In this section, we describe examples of complete simply connected negatively curved
riemannian manifolds which admit non-finitely generated discrete parabolic group actions.
In fact, one can arrange either that the curvature be bounded above (away from 0) or
below (away from −∞). The former case is due to G. Mess. The latter case is related to
recent work of Abresch and Schroeder [AS]. I am indebted to V. Schroeder for bringing
their paper to my attention.

Let H2 be the hyperbolic plane, with infinitessimal distance dx. We put a riemannian
metric on X = H2 × R so that the infinitesimal distance ds at the point (x, t) is given
by ds2 = f(t)2dx2 + dt2, where f : R −→ (0,∞) is smooth. One may verify that all the

sectional curvatures at the point (x, t) lie between − 1
f
d2f
dt2 and − 1

f2

(
1 +

(
df
dt

)2
)

. Thus,

X is negatively curved, provided f is convex. If f is bounded as t → ∞, then the set of
geodesic rays of the form [t 7→ (x, t)] : [0,∞) −→ X define an ideal point p of X. Now, X
is foliated by horospheres about p of the form H2 × {t} for t ∈ R. Any isometry, γ, of H2

induces an isometry [(x, t) 7→ (γx, t)] of X, preserving setwise each such horosphere. Thus,
any infinite discrete group action on H2 gives us a discrete parabolic subgroup of IsomX.
There are plenty of non-cyclic free, and hence also non-finitely generated, examples of such.

Note that if we set f(t) = e−t then all sectional curvatures lie in the interval (−∞,−1].
If we set f(t) = 1 + e−t, then they lie in the interval (−1, 0).

We also remark that, by taking a surface group acting on H2, we can arrange that the
quotient of a horosphere be compact, and so the quotient of a horoball is a “parabolic cusp”,
whose fundamental group is not virtually nilpotent. In the case of an upper curvature
bound, such a cusp automatically has finite volume. In the case of a lower curvature
bound the volume is infinite. However, one can construct examples in dimension 4 which
have finite volume. The idea is to take a product with a circle, whose diameter tends
to 0 as we move out the cusp. This construction closely related to that described in
[AS], where examples are given of complete finite-volume negatively curved riemannian
4-manifolds, with a lower bound on curvature, and whose ends are foliated by compact
graph manifolds. The fundamental groups of such ends are not parabolic, but contain
non-cyclic free subgroups which are.
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