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Abstract.

We give an account of the minimal volume of the plane, as defined by Gromov, and
first computed by Bavard and Pansu. We also describe some related geometric inequalities.

0. Introduction.

The “minimal volume”, as defined by Gromov [8], is an invariant associated to a
smooth manifold. Gromov observed that the minimal volume of the plane, R2, is at most
2π(1 +

√
2), and conjectured that it was, in fact, equal to this. This was shown to be

the case by Bavard and Pansu [1]. In this paper, we give some exposition of the geometry
underlying this result, and offer a somewhat different proof of Bavard and Pansu’s theorem.

Most of the material for this paper was prepared at the University of Melbourne,
with the support of an A.R.C. Fellowship. It was written at the University of Aberdeen
under an S.E.R.C. Research Assistantship. I would like to thank both institutions for their
hospitality.

1. The minimal volume of a manifold.

We give a general outline of the ideas behind the notion of minimal volume. Beyond
the main definition below, this section is not directly relevant to the rest of the paper.

Let M be a smooth riemannian manifold (without boundary). In [8], Gromov defined
the minimal volume of M , min vol(M), to be the infinum of all volumes vol(M, g) as g
ranges over the set, G(M), of all complete riemannian metrics on M having sectional
curvatures between −1 and 1. Thus, min vol(M) might be zero, infinite, or finite and
positive. In general, it is an interesting and difficult problem to compute the minimal
volume, or even to decide between these three alternatives.

Suppose, for example, that M admits a finite-volume hyperbolic metric, ghyp (constant
curvature −1). Then it is conjectured that this metric attains the minimum volume, i.e.
min vol(M) = vol(M, ghyp). This seems to be only known in dimension 2 (as we describe
in Section 2). For some partial results in higher dimensions, see [7].

On the other hand, there are many examples where the minimal volume is zero. This
is clearly true of tori (or manifolds finitely covered by tori)—just scale any flat metric so
that the volume tends to zero. Also, an example of Berger shows how a 3-sphere may be
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“collapsed” down to a 2-sphere, starting with the spherical metric (constant curvature 1),
and then uniformly shrinking the fibres of a Hopf fibration [4]. This may be done while
keeping the curvature bounded, and so min vol(S3) = 0. More generally, a similar argument
may be applied to (orientable) Seifert-fibred 3-manifolds (those foliated by circles), and
manifolds obtained by gluing together Seifert-fibred manifolds along 2-toroidal boundary
components. In the latter case, the fibrations need not be compatible on different sides of
the 2-tori. In fact, if we introduce enough 2-tori into such a 3-manifold, we can assume
that all complementary pieces are homeomorphic to a surface times a circle.

Thus for example, a more direct way to see that min vol(S3) = 0 is as follows. Take
a 2-disc, and put on it any riemannian metric having curvature between −1 and 1, having
area at most, say, 100, and having geodesic boundary of length ε. Now take a product with
a circle of length ε to obtain a solid torus, and glue together two such solid tori so as to
obtain a 3-sphere. As ε tends to 0, the 3-sphere “collapses”, and the volume tends to 0. A
similar, but more complicated argument [8] shows that min vol(R3) = 0. (This involves an
“infinite” construction. In contrast to the 2-dimensional situation, R3 seems not to admit
a finite-volume metric of bounded curvature and “cusp-like” end—c.f. Section 5.)

The 3-manifolds we have just described are said to admit “F -structures (of positive
rank)”. The definition of an F -structure is somewhat involved, but to first approximation
it can be thought of as a decomposition of M into tori (or manifolds finitely covered by tori)
of varying dimensions. Cheeger and Gromov [5,6] show that if min vol(M) = 0, then M
admits an F -structure. Thus we imagine M collapsing down along the tori. This theorem
holds in any dimension. There is a converse in dimensions 2 and 3.

In dimension 3, this is related to Thurston’s geometrisation conjecture [16]. Suppose
M3 is a closed orientable 3-manifold with π2(M3) = 0. Then one can define the (possibly
empty) “characteristic submanifold”, M3

0 , of M3 [10,11]. This is, in some sense, the
“maximal” F -structured submanifold, and is well defined up to isotopy. If we take a
volume-minimising sequence of metrics in G(M3), then we imagine M3 collapsing down
on M3

0 , while the remainder M3 \M3
0 becomes hyperbolic. For example, if M3

0 consists of
a single 2-torus, then M3 gets stretched out along a tube which, in the limit, turns into
two toroidal cusps. However, most of this remains in the realm of conjecture.

In general, in order to compensate for collapsing, it may be necessary to stretch M in
an “orthogonal” direction. Thus the diameter may tend to ∞, and the volume need not
tend to 0. Indeed, there are examples, in higher dimensions, of F -structured manifolds
(which admit global collapses) for which the minimal volume is non-zero [5].

The question we have been considering can be reinterpreted as minimising the L∞-
norm of sectional curvature over all complete riemannian metrics on M of a fixed volume.
One could similarly consider minimising the Lp-norm for some p < ∞. This is, in many
ways, qualitatively similar, but seems more amenable to analytic methods. See for example
[17], and the references contained therein, for some of the fruits of this approach.

2. Surfaces.

Since the higher-dimensional situation is evidently quite complicated, let’s restrict
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attention to dimension 2. Most of this can be dismissed by applying the Gauß-Bonnet
Theorem.

Theorem 2.1 : Suppose M2 is a topologically finite surface, not diffeomorphic to R2.
Then,

min vol(M2) = 2π|χ(M2)|,

where χ(M2) is the Euler characteristic of M2.

Proof : If g ∈ G(M2), then the Gauß-Bonnet Theorem tells us that area(M2, g) ≥
2π|χ(M2)|. (If M2 is non-compact, we need to observe that if area(M2, g) <∞, then the
ends of (M2, g) are “cusp-like” in the sense that they can be cut off by arbitrarily short
curves of bounded outward curvature. The arguments of Section 5 effectively show this.
We can thus ignore the boundary term of the Gauß-Bonnet Theorem.) Now if χ(M2) 6= 0,
then M2 admits a metric of constant curvature ±1 and area ±2πχ(M2), so this bound is
attained. We have already observed that the flat torus and klein bottle can be scaled to
have arbitrarily small area, and it is a simple exercise to construct complete metrics on
the annulus and möbius band of arbitrarily small area and bounded curvature. ♦

This leaves only the plane, R2, unaccounted for. In this case, Gromov suggested a
candidate for achieving the minimal volume. It can be described as a surface of revolution
in euclidean 3-space. Imagine taking a round sphere of radius 1, and a pseudosphere (of
curvature −1), both embedded in 3-space. Now bring them together until they touch along
some circle C (of length π

√
2). Now cut along C, and glue together the spherical cap and

the unbounded portion of the pseudosphere (Figure 1). The resulting surface has area
2π(1 +

√
2). Thus, Gromov conjectured that min vol(R2) = 2π(1 +

√
2). This was shown

to be indeed the case by Bavard and Pansu [1].

Their proof proceeds by analysing the “isoperimetric profile” of a riemannian metric
g ∈ G(R2). For this they appeal to compactness and regularity results for integral currents
in dimension 2. One should imagine blowing larger and larger bubbles in (R2, g), until
they expand out the end of R2, eventually filling out the entire space. The isoperimetric
profile measures how the length of the “surface” of a bubble varies with the area enclosed.

Here, we shall do the opposite. We start out the end, and work our way into the
interior. Our approach avoids any direct use of geometric measure theory. We shall
appeal to the Spherical Isoperimetric Inequality (Section 3). Admittedly, most proofs of
this use some high-powered machinery, though if one is prepared to ignore some technical
complications, one can give a fairly simple argument (see [14]).

Since it involves no extra work, we shall prove the more general result that if we
constrain the sectional curvatures to lie between −κ2 and 1, for some κ > 0, then we

obtain a minimal area of 2π
(

1 +
√

1+κ2

κ

)
. This arises similarly, by connecting a spherical

cap to a pseudosphere, scaled to have constant curvature −κ2, along a circle of length
2π/
√

1 + κ2.

We have been a bit vague about the category of metrics with which we are working.
One can certainly make sense of curvature bounds for C1 riemannian metrics, and indeed
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the extremal metrics described are only C1. However, it will be technically convenient to
assume that our metrics are at least C2.

The theorem of Bavard and Pansu (in the case κ = 1) states:

Theorem 2.2 : If κ > 0, and g is any complete riemannian metric on R2 having
curvature between −κ2 and 1, then

area(R2, g) ≥ 2π

(
1 +

√
1 + κ2

κ

)
.

In Section 8, we decribe a similar result for riemannian metrics on the disc with
geodesic boundary (Theorem 8.1). This can also be interpreted in terms of metrics on the
2-sphere with injectivity radius less than π (Theorem 8.2). See also [1, Théorème 10] for
an account of this.

3. The spherical isoperimetric inequality.

A key ingredient in the argument is the Spherical Isoperimetric Inequality, which we
quote:

Theorem 3.1 : Suppose that g is a riemannian metric on the disc, D, such that ∂D is
rectifiable, and such that g has curvature ≤ 1 on the interior. Then

L2 ≥ A(4π −A)

where L = length(∂D) and A = area(D). ♦

Thus, for fixed A < 4π, the shortest possible boundary is obtained by taking a round
circle (of length

√
A(4π −A)) bounding a spherical cap of area A.

The history of this result can be traced back a long way. Versions of the theorem,
similar to that stated, were proven by Bol and Fiala in the 1940s. We refer to Osserman’s
articles [14,15] for expositions of this and related inequalities.

If we view the inequality as a question of spanning a curve of fixed length L < 2π
by a disc of curvature ≤ 1, then the following dichotomy arises. Either area(D) ≤ A−(L)
or else area(D) ≥ A+(L), where A±(L) = 2π ±

√
4π2 − L2. Thus A−(L) and A+(L) are,

respectively, the areas of the small and large spherical caps bounded by a round circle of
length L on the spherical 2-sphere. Note that A−(L) < L < 2π < A+(L).

One way to express this dichotomy is as follows. We say that a rectifiable closed
curve of length < 2π is shrinkable if it can be homotoped to a point in such a way that
all the intermediate curves are also rectifiable and of length < 2π. It turns out that
area(D) ≤ A−(L) if and only if ∂D is shrinkable in D (see [2]). We shall not formally need
the notion of shrinkability in the proof, though it seems an intuitively useful idea to keep
in mind.
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Suppose now that g is a complete riemannian metric of curvature ≤ 1 on R2, and that
γ ⊆ R2 is a simple closed rectifiable curve of length < 2π. Then γ bounds a disc D(γ)
and an annulus R(γ).

Definition : We say that γ is essential if area(D(γ)) ≥ 2π.

We see that equivalent ways to say that γ is essential are:

(1) area(D(γ)) ≥ A+(L),

(2) area(D(γ)) > A−(L),

(3) γ is not shrinkable in D(γ),

and, in fact [2],

(4) γ is not shrinkable in R2.
We only formally need the equivalence with (1) and (2).

4. The idea of the proof.

Suppose g is a compete riemannian metric on R2 with curvature between −κ2 and 1,
and with area(R2, g) <∞.

The first step is to show that the end of (R2, g) is “cusp-like” (Section 5). In particular,
we define a horofunction h : R2 −→ [0,∞). This is a proper 1-lipshitz map, with the
property that for any x ∈ R2, there is a geodesic ray αx : [0,∞) −→ R2 with αx(0) = x
and h(αx(t)) = h(x) + t for all t ∈ [0,∞).

Definition : A horocycle at level t is the boundary of a component of h−1[0, t).

Thus a horocycle is a closed subset of the level set h−1t.

Lemma 4.1 (Section 6) : A horocycle is a Jordan curve.

Thus, a horocycle, γ, bounds a disc D(γ) (the closure of a component of h−1[0, t)) and an
annulus R(γ). In fact:

Lemma 4.2 (Section 6) : A horocycle γ is rectifiable, and length(γ) ≤ κarea(R(γ)).

This only makes essential use of the lower curvature bound −κ2.
Now, if γ is an essential horocycle (Section 3) of length L < 2π, then (from the upper

curvature bound) we obtain
area(D(γ)) ≥ A+(L).

Thus,

area(R2, g) ≥ 1

κ
L+A+(L).

In fact, we claim:
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Proposition 4.3 (Section 7) : Given any L ∈ (0, 2π), there is some essential horocycle
of length L.

On substituting L = 2π/
√

1 + κ2, we arrive at the result area(R2, g) ≥ 2π
(

1 +
√

1+κ2

κ

)
,

and Theorem 2.2 is proved.
We shall prove Proposition 4.3 by applying an intermediate value theorem to a certain

function, f , of the parameter t ∈ [0,∞). Note that for any t, there can only be finitely
many essential horocycles at level t. Define f(t) to be the length of the longest essential
horocycle. If there is no essential horocycle, set f(t) = 2π. Clearly, f(0) = 2π. From the
cusp-like nature of the end we obtain:

Lemma 4.4 (Section 7) : As t→∞, f(t)→ 0.

As t decreases, the growth of f is bounded by an exponential function coming from the
lower curvature bound. However, f need not be continuous. Its value may fall suddenly
due typically to a horocycle dividing into two or more “components”. Even so, f must
eventually attain the value of 2π, and hence any intermediate value. Intuitively, this can
be thought of in terms of shrinkability. More formally, we need to verify that when an
essential horocycle splits up, at least one of the components arising is essential.

To give the idea, suppose that at some “critical” time t, the level set h−1t contains
a “figure-of-eight” curve which represents a “horocycle” γ = γ1 ∪ γ2 splitting into two
horocycles γ1 and γ2. We can think of D(γ) as the union of D(γ1) and D(γ2). Let
Ai = area(D(γi)) and Li = length(γi). If γ1 and γ2 are inessential, we have

area(D(γ)) = A1 +A2 ≤ A−(L1) +A−(L2) ≤ L1 + L2 = length(γ) < 2π,

and so γ is inessential. Of course, the general situation may be much more complicated
than this, so we will have to approach the matter more formally.

The property of f that we require is:

Lemma 4.5 (Section 7) : If t, u ∈ [0,∞), then f(u− t) ≤ eκtf(u).

5. The horofunction.

Suppose g is a complete riemannian metric on R2, and d is the induced path-metric.

Definition : By a geodesic ray , α, based at x ∈ R2, we mean a path α : [0,∞) −→ R2

such that α(0) = x, and d(α(t), α(u)) = |t− u| for all t, u ∈ [0,∞).

Such a ray must exist for all x ∈ R2, and we write αx for some choice of ray based
at x. Thus αx need not vary continuously in x. However, given any x, y ∈ R2, either the
images of αx and αy are disjoint, or else one is contained in the other.

Let’s now assume that (R2, g) has curvature ≤ 1, and finite area.
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Let α be any geodesic ray. Clearly, the injectivity radius at α(t) must tend to 0 as
t → ∞. For n ∈ N, let βn be a shortest non-constant geodesic loop based at α(n). Thus
βn is a simple closed curve, and bounds a disc Dn ⊆ R2. By Gauß-Bonnet, area(Dn) ≥ π.
Since area(R2) <∞, we can suppose that Dm ⊆ Dn whenever m ≤ n. We conclude:

Lemma 5.1 : There is an exhaustion of R2 by a nested sequence of discs (Dn)n∈N such
that length(∂Dn)→ 0 as n→∞. ♦

Now, given any x ∈ R2, set

h(x) = lim
t→∞

(t− d(x, α(t))) + constant.

Lemma 5.1 shows that this limit exists. The constant is chosen so that we can assume, for
convenience that h(x) ≥ 0 for all x ∈ R2. We see that h is in fact a 1-lipshitz proper map
of R2 to [0,∞). Moreover, for any x ∈ X and t ∈ [0,∞), we have h(αx(t)) = h(x) + t.

We refer to a h as a horofunction on R2. (Any two horofunctions defined in such a
way will differ by an additive constant.)

6. Horocycles.

This is a somewhat technical section. We shall appeal to some basic planar topology
such as the Jordan Curve Theorem (see [13]), as well as some standard comparison the-
orems of riemannian geometry such as those of Toponogov (see [4] or [12]). We also use
(implicitly) the fact that a path-connected hausdorff space is arc-connected.

If K is a compact connected metric space such that K \ {x, y} is disconnected for any
pair of distint points x, y ∈ K, then either K is a point, or it is homeomorphic to a circle
[9, Theorem 2-28]. We arrive at the following characterisation of Jordan curves.

Lemma 6.1 : Suppose that K ⊆ R2 is compact and that R2 \ K has precisely two
components U1 and U2. Suppose that every point of K is accessible from both U1 and U2.
Then, K is a Jordan curve (i.e. homeomorphic to a circle).

To say that x ∈ K is accessible from Ui means that there is a continuous path β : [0, 1] −→
R2 such that β(0) = x and β((0, 1]) ⊆ Ui.

Proof : Given any distinct x, y ∈ K, there is a Jordan curve γ such that γ ∩K = {x, y}
and γ ∩ Ui 6= ∅ for i = 1, 2. Apply the Jordan Curve Theorem. ♦

Now let’s suppose that g is a complete, finite-area riemannian metric on R2 with
curvature between −κ2 and 1. Let d be the induced path metric. We use N(x, r) to
denote the closed metric r-neighbourhood of x.

If x, y ∈ h−1t are distinct, then the rays αx and αy are disjoint. If x and y are close
enough together, they will be joined by a unique geodesic β, and the path αx ∪β ∪αy will
be a properly embedded line. This line divides R2 into two closed triangular regions T1

and T2.
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Proof of Lemma 4.1 : We aim the show that each horocycle at level t is a Jordan
curve. Let F = h−1[t,∞). Thus F is a closed connected neighbourhood of infinity in R2,
and so a component, U , of R2 \ F is an open disc. We want to see that its closure, Ū , is
a closed disc, or equivalently, that ∂U is a Jordan curve.

We first show that V = R2 \ Ū is connected, by joining every point x ∈ V to infinity
by a path in V . If h(x) ≥ t, then αx will do the trick, so we suppose that h(x) = u < t.
We can assume that there is some point y ∈ V ∩ h−1u \ {x} close to x. (Move x a bit if
necessary.) Let T1 and T2 be the triangular regions described above. Now neither αx nor
αy meets U . Thus U and hence Ū lies inside one of these regions, say T1. We can now
connect x to infinity by a path in T2. This shows that V is connected.

Now R2 \ ∂U = U ∪ V , and clearly every point x ∈ ∂U ⊆ h−1t is accessible (by a
geodesic segment) from V . Thus, by Lemma 6.1, it suffices to show that x is accessible
from U . We claim, in fact, that for all ε > 0 sufficiently small (smaller than the convexity
radius), any two points of U∩N(x, ε/3) can be joined by a path in U∩N(x, ε). Accessibility
then follows by taking a sequence of points of U converging to x.

To prove the claim, note first that if p ∈ F ∩ ∂N(x, ε), then the ray αp does not meet
N(x, ε/3) (otherwise h(x) > h(p) ≥ t). Suppose then that y, z ∈ U ∩N(x, ε/3). Join y to
z by an arc β in U . Suppose J ⊆ β is a component of β \ N(x, ε/3). Join the endpoints
of J by an arc in N(x, ε/3) to form a Jordan curve C which bounds a disc D. Note that
if p ∈ F ∩ ∂N(x, ε), then αp cannot meet either J or N(x, ε/3), and hence cannot meet
C. It follows that D ∩ F ∩ ∂N(x, ε) = ∅. Thus D ∩ ∂N(x, ε) ⊆ U (since ∂U ⊆ F ). We
can now replace (by induction on complexity) all those parts of J which venture outside
N(x, ε) by segments of ∂N(x, ε) lying in U . We eventually end up joining y to z by a path
in U ∩N(x, ε), as claimed. ♦

Lemma 6.2 : Given u, t0 ∈ [0,∞) and µ > 1, there is some δ > 0 such that if x, y ∈ h−1u
and d(x, y) ≤ δ, and t ∈ [0, t0], then d(αx(t), αy(t)) ≥ e−µκtd(x, y).

Proof : Choose any µ′ ∈ (1, µ). Choose t1 > t0, large, depending on t0, µ, µ
′, κ. Choose

η > 0, small, depending on µ′, κ. Choose δ > 0 less than the injectivity radius on
h−1[u, u + t1], and small, depending on η, µ′, κ. The properties required of t1, η, δ will
become apparent in the course of the proof.

Suppose then that x, y ∈ h−1u, and that d(x, y) = r < δ. Set j(v) = d(αx(v), αy(v))
for v ∈ [0,∞). Suppose, for contradiction, that there is some t ∈ [0, t0] with j(t) < re−µκt.
Thus t > 0. Let [a, b] be the maximal subinterval of [0, t1] containing t, such that j(v) ≤ r
for all v ∈ [a, b]. Thus, j(a) = r, and either b = t1 or j(b) = r.

We chose δ less than the injectivity radius, and so, for all v ∈ [a, b], there is a unique
geodesic segment, βv, joining αx(v) to αy(v). Moreover, βv varies smoothly in v. Let θ(v)
and φ(v) be the angles made by βv with αx([v,∞)) and αy([v,∞)) respectively. Now,
if δ is small enough, in relation to η, then (using Toponogov’s comparison theorem) we
have θ(v) ≥ π

2 − η and φ(v) ≥ π
2 − η. Also (since j is non-increasing at a) we can

deduce that θ(v) + φ(v) ≤ π + 2η (again provided that δ is sufficiently small). Thus
θ(v), φ(v) ∈

[
π
2 − η,

π
2 + η

]
. Now, if we choose η and δ sufficiently small (depending on

µ′), then by standard comparison arguments, we see that j must satisfy a differential
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inequality d2j
dv2 ≤ µ

′κj on [a, b]. (The infinitesimal case as µ′ → 1 and η, δ → 0 is the Rauch
Comparison Theorem.) Provided we have chosen t1 large enough, depending on t0, µ, µ

′, κ,
the boundary conditions imply that j(v) ≥ re−µκv for all v ∈ [a, b], in particular, for v = t.

♦
Continuing with the same line of argument, we deduce:

Lemma 6.3 : Given u ∈ [0,∞) and σ > 1, there exists δ > 0 such that if x, y ∈ h−1u
and d(x, y) < δ, then d(x, y) ≤ σκarea(T ), where T is either one of the triangular regions
bounded by αx, αy and the geodesic segment joining x to y.

Proof : Choose µ > 1 close to 1, and t0 large, both depending on σ and κ. We apply
Lemma 6.2. Let r = d(x, y) < δ. In this case we can assume that d(αx(t), αy(t)) is small
for all t ∈ [0, t0] (since we can assume that area(T ) is small). Thus, for all such t, the
angles θ(t) and φ(t), as in the proof of Lemma 6.2, can be assumed to lie between π

2 −η and
π
2 + η for small η > 0. We get a lower bound for area(T ) of the form rν(η, δ)

∫ t0
0
e−µκtdt,

where ν(η, δ) tends to 1 as η and δ tend to 0. For suitable δ, µ, t0, and hence η and ν(η, δ),

we can arrange that ν(η, δ)
∫ t0

0
e−µκtdt ≥ 1/σκ. ♦

Proof of Lemma 4.2 : Suppose γ is a horocycle at level u. Given σ > 1, choose δ
as in Lemma 6.3. Suppose x1, . . . xn are cyclically ordered on γ and that d(xi, xi+1) < δ
for all i. Set αi = αxi

. For each i, choose the triangular region Ti bounded by αi, αi+1

and the geodesic segment joining xi to xi+1, so that the interiors of all the Ti are disjoint
away from γ. It is conceivable that the Ti may overlap in a δ-neighbourhood of γ, but
such overlaps can be eliminated on further subdivision of γ. We can thus assume that the
interiors of the Ti are disjoint. Now

⋃n
i=1 Ti ⊆ N(R(γ), δ) and so, by Lemma 6.3,

n∑
i=1

d(xi, xi+1) ≤
n∑
i=1

σκarea(Ti) ≤ σκarea(N(R(γ)), δ)).

Letting σ → 1 and δ → 0, we deduce

length(γ) ≤ κarea(R(γ)).

♦

7. The intermediate value theorem.

In this section, we define and describe the properties of the function f mentioned in
Section 4, and thereby conclude the proof of Theorem 2.2.

Suppose u ∈ [0,∞). If there is an essential horocycle at level u, we define f(u) to be
the length of the longest such. Otherwise, we set f(u) = 2π. Note that f(0) = 2π.

We show (Lemma 4.4) that f(u)→ 0 as u→∞.
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Proof of Lemma 4.4 : By Lemma 5.1, there is a compact exhaustion of R2 by discs
Dn such that length(∂Dn) → 0. From the Spherical Isoperimetric Inequality (Section 3),
we can suppose that area(Dn) ≥ 2π for all n. Given any ε > 0, we can find n such that
area(R2 \Dn) < ε/κ, and then u(ε) such that Dn ⊆ h−1[0, u(ε)]. It follows that for all u >
u(ε), there is some horocycle γ such that Dn ⊆ D(γ). We see that γ is the unique essential
horocycle at level u, and so (by Lemma 4.2) we have f(u) = length(γ) ≤ κarea(R(γ)) < ε.

♦

Lemma 7.1 : Suppose γ is a horocycle at level u, and that Γ is a set of horocycles at
level u− t (t > 0) such that γ′ ⊆ D(γ) for all γ′ ∈ Γ. Then∑

γ′∈Γ

length(γ′) ≤ eκtlength(γ).

Proof : Let’s suppose, first, that Γ consists of a single element γ′. Given µ > 1, and
t0 = t, choose δ as in Lemma 6.2. Let x1, . . . , xn ∈ γ′ be a cyclically ordered sequence
of points of γ′ such that d(xi, xi+1) ≤ δ for all i. Thus, writing yi = αxi

(t) we have
d(yi, yi+1) ≥ e−µκtd(xi, xi+1) for all i. Since γ′ ⊆ D(γ), we see easily that yi ∈ γ. In
fact, from the topology of the situation, the points yi must be cyclically ordered around
γ. Thus,

n∑
i=1

d(xi, xi+1) ≤ eµκt
n∑
i=1

d(yi, yi+1) ≤ eµκtlength(γ).

Letting µ→ 1 and δ → 0, we find that length(γ′) ≤ eκtlength(γ).
Now suppose that Γ consists of a finite number, m, of horocycles, γ1, . . . , γm. The

argument is similar. Given µ > 0, choose δ > 0, suppose (xji )i are cyclically ordered on

γj with d(xji , x
j
i+1) ≤ δ, and set yji = αxj

i
(t). This time, the order of the points (yji )

j
i on

γ can be obtained, combinatorially, by cutting the circles γj , and splicing them together
to form γ. (Figure 2.) We need to make at most 2m − 2 cuts. In other words, all but at
most 2m− 2 adjacent pairs of points xji correspond to adjacent points yji on γ. Thus

m∑
j=1

∑
i

d(xji , x
j
i+1) ≤ eµκtlength(γ) + (2m− 2)δ.

Letting µ→ 1 and δ → 0, we obtain

m∑
j=1

length(γj) ≤ eκtlength(γ).

The result now follows also for Γ infinite. ♦

10
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Proof of Lemma 4.5 : Suppose u ∈ [0,∞) and t > 0. We want to show that
f(u− t) ≤ eκtf(u).

Note that if γ′ is any essential horocycle at level u−t, then γ′ ⊆ D(γ) for some essential
horocycle γ at level u. Thus, by Lemma 7.1, length(γ′) ≤ eκtlength(γ) ≤ eκtf(u). We thus
need to show that if eκtf(u) < 2π, then there is indeed at least one essential horocycle at
level u− t.

We claim that there is some function ε : (0, 2π) −→ (0,∞) such that if u1, u2 ∈ [0,∞)
with 0 < u2 − u1 ≤ ε(L), and if γ is an essential horocycle at level u2 of length at most L,
then D(γ) contains an essential horocycle at level u1.

To see that the result follows from the claim, suppose, for contradiction, that t0 =
inf{v > 0 | f(u− v) = 2π} ≤ t. Then L = eκt0f(u) ≤ eκtf(u) < 2π. Choose u1, u2 so that

u − t0 − ε(L)
2 < u1 < u − t0 < u2 < u − t0 + ε(L)

2 . Thus f(u1) < eκt0f(u) = L, and so
f(u2) < 2π. This contradicts the definition of t0.

To prove the claim, fix L ∈ (0, 2π), and choose ε < 1
κ log 1

2

(
1 + 2π

L

)
, and such that

area(N(β, ε)) < 1
2 (2π −L) for any rectifiable curve, β, of length ≤ 2π. Let Γ be the set of

all horocycles at level u1 contained in D(γ). By Lemma 7.1, we have∑
γ′∈Γ

length(γ′) ≤ eκ(u2−u1)length(γ) ≤ eκεL < 1

2
(L+ 2π).

Now, if each γ′ ∈ Γ were inessential, we would have area(D(γ′)) ≤ A−(length(γ′)) ≤
length(γ′), and so area

(⋃
γ′∈ΓD(γ′)

)
≤ 1

2 (L+ 2π). Now, D(γ) ⊆ N(γ, ε) ∪
⋃
γ′∈ΓD(γ′),

and so area(D(γ)) < 1
2 (2π − L) + 1

2 (2π + L) = 2π. Thus γ would be inessential. This
proves the claim. ♦

Proof of Proposition 4.3 : Note that f(0) = 2π. If L < 2π, let t = inf{u > 0 | f(u) <
L}. From Lemma 4.5, we see that f(t) = L. ♦

Proof of Theorem 2.2 : By Proposition 4.3, Lemma 4.2 and Theorem 3.1, we have
area(R2) ≥ 1

κL+A+(L) for all L ∈ (0, 2π). Substitute L = 2π/
√

1 + κ2. ♦

8. Generalities.

We can apply similar arguments to obtain a result about riemannian metrics on the
disc, D2:

Theorem 8.1 : Suppose that g is a riemannian metric on the disc D2 such that the
boundary, ∂D2, is geodesic, and such that g has curvature between −κ2 and 1 on the
interior. If length(∂D2) = 2πλ for λ < 1, then

area(D2, g) ≥ 2π

(
1 +

1

κ

√
(1 + κ2)(1− λ2)

)
.

11
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Thus Theorem 2.2 can be viewed as the limiting case as λ→ 0. Here we use “geodesic” in
the riemannian sense to mean that ∂D2 has zero extrinsic curvature.

The bound of the theorem is sharp, as the following construction demonstrates. Set

r = 1
κ cosh−1

(
1
λ

√
1+λ2κ2

1+κ2

)
, and let N be a one-sided r-neighbourhood of a biinfinite

geodesic in the plane of constant curvature −κ2. Let τ be a hyperbolic isometry which
translates the geodesic through a distance of 2πλ. Let F be the annulus N/τ . Now, F

has area 2π
κ

√
1−λ2

1+κ2 , and ∂F consists of a closed geodesic of length 2πλ, and a curve of

length L = 2π
√

1+λ2κ2

1+κ2 and inward curvature κ
√

1−λ2

1+λ2κ2 . We now take a large spherical

cap bounded by a round circle of length L (and hence outward curvature κ
√

1−λ2

1+λ2κ2 ) and

of area A+(L) = 2π
(

1 + κ
√

1−λ2

1+κ2

)
. Joining these together, we get the required metric on

the disc, of area 2π
(

1 + 1
κ

√
(1 + κ2)(1− λ2)

)
.

Proof of Theorem 8.1 (sketch) : The argument proceeds along similar lines to that
of Theorem 2.2. Geodesic rays are replaced by shortest paths to the boundary, ∂D2. The
“horofunction” h is defined by h(x) = T − d(x, ∂D2) (where the constant T is chosen
so that h ≥ 0). We define “horocycle” in the same way. Thus, ∂D2 = h−1T is the
unique horocycle at level T . The Gauß-Bonnet Theorem tells us that area(D2) ≥ 2π,
and so ∂D2 is essential. If u ∈ [0, T ] and γ is a horocycle at level u, then length(γ) ≤
κ(cothκ(T − u))area(R(γ)), where R(γ) is the annulus lying between γ and ∂D2. (This
reduces to Lemma 4.2 as T → ∞, and can be proved by similar arguments.) Also, for

t, u ∈ [0, T ], we have f(u−t) ≤ coshκ(t+T−u)
coshκ(T−u) f(u) (which reduces to Lemma 4.5 as T →∞).

In particular f(T −t) ≤ 2πλ coshκt. (Note that, for small t > 0, h−1t is a smooth essential
horocycle.) These results imply that f attains every value between 2πλ and 2π.

Suppose then that γ is an essential horocycle at level u = T − t, of length L ∈
[2πλ, 2π). Now L ≤ f(u) ≤ 2πλ coshκt, and so area(R(γ)) ≥ tanhκt

κ L ≥ L
κ

√
1−

(
2πλ
L

)2
=

1
κ

√
L2 − (2πλ)2. Thus, we have area(D2, g) ≥ A+(L) + 1

κ

√
L2 − (2πλ)2. On substituting

L = 2π
√

1+λ2κ2

1+κ2 , we obtain area(D2, g) ≥ 2π
(

1 + 1
κ

√
(1 + κ2)(1− λ2)

)
as required. ♦

We can apply this result metrics on the 2-sphere, S2.

Suppose that g is a riemannian metric on S2 of curvature ≤ 1. If (S2, g) contains a
closed geodesic (in the riemannian sense) of length less than 2π, then, following Charney
and Davis [3], we define the systole, sys(S2, g), of (S2, g), to be the length of a shortest
closed geodesic. Such a shortest geodesic is necessarily embedded. The systole seems to
be natural quantity to associate to such a metric. For example, suppose 0 < λ < 1. Then,
the statement that sys(S2, g) ≤ 2πλ (i.e. that there exists a closed geodesic of length at
most 2πλ) is equivalent to either of the statements:

(1) The injectivity radius of (S2, g) (at some point) is at most πλ, or

(2) There is a non-shrinkable closed curve of length at most 2πλ.

(“Shrinkable” is defined in Section 3.) For proofs, see [3,2].
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The following result reduces to [1, Théorème 10] when κ = 1:

Theorem 8.2 : Suppose g is a riemannian metric on S2, with curvature between −κ2

and 1. Suppose sys(S2, g) ≤ 2πλ for some λ < 1. Then,

area(S2, g) ≥ 4π

(
1 +

1

κ

√
(1 + κ2)(1− λ2)

)
.

Proof : The shortest closed geodesic divides S2 into two discs. Apply Theorem 8.1. ♦

Again, this inequality is sharp. The bound is attained by taking the disc described
after Theorem 8.1, and doubling it in its boundary.
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