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0. Introduction.

In his article [9], Busemann developed a theory of non-positive curvature for path-
metric spaces, based on a simple axiom of convexity of the distance function. This work
has received renewed attention recently, particularly in the light of new ideas developed
by Gromov in his paper on hyperbolic groups [12]. In this paper Gromov introduces a
notion of (strict) negative curvature applicable equally to finitely generated groups and
path-metric spaces. A number of results relate this “hyperbolicity” criterion to that of
non-positive curvature. To describe non-positive curvature, Gromov adopts a comparison
axiom he calls CAT(0). This axiom has its origins in earlier work of Aleksandrov and
Toponogov. Much of the theory of Hadamard manifolds, as developed in [3], for example
can be adapted to this context—see [6, 8]. The CAT(0) axiom is stronger than Busemann’s
convexity condition, as is exemplified by the fact that all Banach spaces are Busemann
spaces, whereas a Banach space is CAT(0) if and only if it is a Hilbert space. Despite
this many of the results about CAT(0) spaces generalise to this simpler and more general
context. The main focus of the paper will be a proof of the following result:

Theorem 1 : Suppose X is a Busemann space which admits a discrete cocompact
isometric action of a group Γ. Then either Γ is hyperbolic (in the sense of Gromov), or
else X contains a totally geodesic embedding of a minkowskian plane.

Here, of course, a “Busemann space” is a path-metric space satisfying Busemann’s
axiom, as described in Section 1. A “minkowskian n-space” is an n-dimensional Banach
space (Section 2).

This generalises a result announced by Gromov [12], where “Busemann space” is
replaced by “CAT(0) space” and “minkowskian plane” by “euclidean plane”. An exposition
of some of Gromov’s work, including a proof of this assertion for CAT(0) spaces was given
by Heber, [14]. More recently, a detailed account of Gromov’s statement has been given
by Bridson [7]. The argument presented here is somewhat different, and was arrived at
independently.

Note that the Cayley graph of Γ is quasiisometric to X. Since hyperbolicity is a
quasiisometry invariant, saying that Γ is hyperbolic is equivalent to saying that X is
hyperbolic.

Another, much simpler result, which comes directly out of the methods of this paper
is:
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Theorem 2 : Suppose X is a Busemann space which admits a discrete cocompact
isometric action of a group Γ. If Γ contains a free abelian group, G, of rank n, then X has
a totally geodesic n-dimensional minkowskian subspace, invariant under the action of G,
and on which G acts by translation.

In fact we can weaken the hypotheses, as we describe in Section 2. (We only really
need the larger group Γ in order that minimal translation distances be attained.) In the
context of non-positively curved riemannian manifolds, this result is classical—see [15].
For a proof for CAT(0) spaces, see [8]. Again we get a euclidean space in these cases.

Note that an obvious question remains unanswered by the above two results; namely,
with the hypotheses of Theorem 1, if Γ is not hyperbolic, then must it contain a free abelian
group of rank 2? This question remains open even for CAT(0) spaces. By analogy with
the existence of forced non-periodic tilings of the plane (see [13] and the references therein)
one might conjecture that it be false in general, though no explicit counterexample has
yet been produced. However an affirmative answer can be given in certain contexts: for
smooth riemannian 3-manifolds [11]; for analytic riemannian manifolds of any dimension
[4]; and, more recently [16], for cubed 3-manifolds in the sense of Aitchison and Rubinstein
[1]. (In each case this is under the assumption of non-positive curvature). More generally,
one can ask when the existence of an n-dimensional space implies the existence of a free
abelian group of rank n. This is true for analytic riemannian manifolds (again by [4]), and
for codimension-1 planes in the smooth riemannian category [18].

The structure of this paper is as follows. In Section 1, we introduce Busemann spaces.
In Section 2, we discuss the the geometry of minkowskian spaces, and give a proof of
Theorem 2. In Section 3, we give a proof of Theorem 1.

Most of the material for this paper was worked out while visiting the University of
Melbourne with the support of an Australian Research Council Fellowship. I am particu-
larly indebted to Iain Aitchison and Hyam Rubinstein for inviting me to Melbourne, and
for introducing me to these questions in the context of cubed manifolds. I should also
thank Craig Hodgson for helpful conversations.

1. Busemann Spaces.

Let (X, d) be a metric space. A geodesic α : I −→ X is a map of a closed interval
I ⊆ R into X such that d(α(t), α(u)) = |t − u| for all t, u ∈ I. We shall assume that
(X, d) is a length space, i.e. that any two points of x, y ∈ X are joined by a geodesic
β : [0, d(x, y)] −→ X with β(0) = x and β(d(x, y)) = y. A linearly reparameterised
geodesic is a map of the form [t 7→ α(λt)], where α is a geodesic, and λ ∈ R.

Definition : We say that a length space (X, d) is a Busemann space if, for any two linearly
reparameterised geodesics, α, β : I −→ X, the map [t 7→ d(α(t), β(t)] is convex in t.

It follows that a geodesic between any x and y in X must be unique. We write it as
[x→ y]. We write its image in X as [x, y].
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Remarks:

(1) There are various equivalent ways of expressing the Busemann condition. Note that it
amounts to saying that d(α(t), β(t)) ≤ td(α(0), β(0)) + (1− t)d(α(1), β(1)) for any linearly
reparameterised geodesics, α, β : [0, 1] −→ X and t ∈ [0, 1]. It’s not hard to see that we
can take α(0) = β(0). Indeed we also restrict to the case where t = 1/2 provided we
assume geodesics vary continuously in their endpoints (for example if X is complete and
locally compact). This latter corresponds to Busemann’s original formulation in terms of
midpoints. (Busemann originally worked with an additional hypothesis of prolongation of
geodesics, though we shall have no need of this.)

(2) There is also a notion of a locally Busemann space, where X is covered by open sets
having the Busemann property. This local property expresses the idea of non-positive
curvature. There is a “Cartan-Hadamard” theorem for such spaces [2, 17]: if (X, d) is
locally Busemann, then it is (globally) Busemann if and only if it is simply connected. In
fact a Busemann space is contractible.

(3) If (X, d) is a Busemann space, then the property of a path being geodesic is a local
one: suppose α : I −→ X is a path, and I has an open cover U such that if U ∈ U , and
x, y ∈ U then d(α(t), α(u)) = |t− u|, then it follows that α is geodesic.

As mentioned in the introduction, all CAT(0) spaces are Busemann, so this provides
a large class of examples, including Hadamard manifolds, and simply connected, non-
positively curved polyhedral complexes [6]. Other examples include minkowskian spaces,
described in Section 2.

Definition : Suppose (X, d) is a Busemann space. We say that two bi-infinite geodesics
α, β : R −→ X are parallel if d(α(t), β(t)) is bounded.

Since [t 7→ d(α(t), β(t))] is convex, it follows that it must be constant. This defines an
equivalence relation on the set of bi-infinite geodesics.

We have the following “Strip Lemma”:

Lemma 1.1 (Strip Lemma) : Suppose α, α′ : R −→ X are parallel geodesics, so that
d(α(t), α′(t)) = r, say. For t ∈ R, let βt : [0, r] −→ X be the geodesic joining α(t) to α′(t).
Define β : R× [0, r] −→ X by β(t, u) = βt(u). Then:

(1) For each u ∈ [0, r], the map αu = [t 7→ β(t, u)] is a bi-infinite geodesic parallel to α
and α′.

(2) For each t0 ∈ R, and λ ∈ R, the map [u 7→ β(t0 + λu, u)] is a linearly reparameterised
geodesic.

Proof :

(1) Fix u ∈ [0, r], and suppose t0 < t1 ∈ R. Let µ = d(αu(t0), αu(t1))/(t1 − t0). Thus,
|µ − 1| ≤ 2r/(t1 − t0). (In fact, by convexity, µ ≤ 1). Let γ : [0, µ(t1 − t0)] −→ X be the
geodesic joining αu(t0) to αu(t1). Given t ∈ [t0, t1], let x = γ(µ(t− t0)) (so that x cuts γ
in the same ratio as t cuts [t0, t1]). By convexity applied to the geodesics γ and α|[t0, t1],
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we see that d(x, α(t)) ≤ u. Similarly, d(x, α′(t)) ≤ r − u. But d(α(t), α′(t)) = r, and so
d(x, α(t)) = u and d(x, α′(t)) = r−u. Thus x = βt(u), and so αu(t) = βt(u) = γ(µ(t−t0)).
This is true for all t ∈ [t0, t1], and so αu|[t0, t1] is a geodesic scaled by a factor µ.

Now let t0 → −∞ and t1 →∞. Since the scale factor is constant, we see that it must
equal 1.

(2) Let t1 = t0 + λr, and h = d(α(t0), α′(t1)). Let γ : [0, h] −→ X be the geodesic
joining α(t0) to α′(t1). Suppose u ∈ [0, r], and let t = t0 + λu. Let x = γ(hu/r). By
convexity applied to the geodesics γ and α|[t0, t1], we see that d(x, α(t)) ≤ u. Similarly,
d(x, α′(t)) ≤ r − u. As in part (1), we see that βt(u) = x = β(t0 + λu, u), and so
[u 7→ β(t0 + λu, u)] is a linear reparameterisation of the geodesic γ. ♦

In the case where α and α′ have disjoint images, the map β is injective, and β(R×[0, r])
is a totally geodesic subspace. In fact, applying the arguments of Proposition 2.2, one can
show that it is isometric to a strip in a minkowskian plane. Thus, in the case of a CAT(0)
space, we get a euclidean strip (c.f. [3]).

2. Minkowskian geometry.

Let V be a vector space over R. A pseudonorm on V is a map φ : V −→ [0,∞) such
that for all x, y ∈ V and λ ∈ R, we have φ(λx) = |λ|φ(x) and φ(x + y) ≤ φ(x) + φ(y).
If φ(x) = 0 if and only if x = 0, then φ is a norm. Such a norm is derived from an
inner-product if and only if φ(x+ y)2 + φ(x− y)2 = 2(φ(x)2 + φ(y)2) for all x, y ∈ V .

Given a norm, φ, we define a metric, d, on V by d(x, y) = φ(x − y). With respect
to this metric, affine lines are linearly reparametrised geodesics. If the unit ball in V is
strictly convex, then these are the only geodesics, and thus (V, d) is a Busemann space.
We make the following observation:

Proposition 2.1 : If V is a normed vector space with metric d, then the following are
equivalent:

(1) V is an inner-product space.

(2) (V, d) is CAT(0).

(3) Every 2-dimensional subspace of V is isometric to the euclidean plane.

(4) Every finite-dimensional subspace of V is isometric to a euclidean space. ♦

We shall be particularly interested in the case where V ≡ Rn is finite dimensional.
In this case, (Rn, d) is referred to as a minkowskian space. There are many ways one can
characterise minkowskian spaces by metric properties [10]. (For example: if d is a metric
on Rn which induces the usual topology, and for which the affine midpoint of any two
points is a midpoint for the metric d, then (Rn, d) is minkowskian.)

We describe one way in which minkowskian spaces arise in Busemanm spaces. Let
{e1, . . . , en} be the standard basis of Rn, i.e., ei = (0, . . . , 0, 1, 0, . . . , 0).
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Definition : An n-dimensional grid in X is a map f : Rn −→ X such that for all
x ∈ Rn, λ ∈ R, and i ∈ {1, 2, . . . , n}, we have d(f(x), f(x+ λei)) = |λ|. (In other words,
[t 7→ f(x+ tei)] : R −→ X is a bi-infinite geodesic.) We say that f is non-degenerate if it
is injective.

Proposition 2.2 : Suppose f : Rn −→ X is a non-degenerate grid, and that ρ is the
pull-back metric on Rn, then (Rn, ρ) is minkowskian. (From which it follows that ρ is a
path-metric, and so f(Rn) is totally geodesic.)

Proof : We claim that ρ is translation-invariant, so that ρ(x, y) = φ(x− y) where φ(z) =
ρ(z, 0). First note that distances remain bounded under translation: if x = (x1, . . . , xn)
and y = (y1, . . . , yn) lie in Rn, then ρ(x, y) ≤

∑n
i=1 |xi − yi| (changing one coordinate at

a time). It follows that, for each i ∈ {1, 2, . . . , n} the bi-infinite geodesics [t 7→ f(x+ tei)]
and [t 7→ f(y + tei)] are parallel. Thus ρ(x+ tei, y + tei) = ρ(x, y) for all t, i. Since the ei
form a basis of Rn, it follows that ρ(x, y) = φ(x− y) as claimed.

Next we claim that if x ∈ Rn, then the map [t 7→ f(tx)] : R −→ X is a linearly
reparameterised geodesic. We prove this by induction on the nested subspaces R ⊆ R2 ⊆
· · · ⊆ Rn−1 ⊆ Rn. So suppose that x = y + λen with y ∈ Rn−1 and λ ∈ R. and
λ ∈ R. By induction, we suppose [t 7→ f(ty)] is geodesic. Since ρ is translation-invariant,
[t 7→ f(ty + µen)] is geodesic for all µ ∈ R. Given, u0, u1 ∈ R, consider the map β =
[(t, u) 7→ f(yu+ ten)] : R× [u0, u1] −→ X. Now, α = [t 7→ β(t, u0)] and α′ = [t 7→ β(t, u1)]
are parallel geodesics, and so applying the Strip Lemma (1.1), we see that [t 7→ f(tx) =
f(ty + tλen)] for t ∈ [u0, u1] is a linearly reparameterised geodesic. Since, u0 and u1 are
arbitrary, this is true as t varies in R, so the claim follows.

It now follows immediately that φ(λx) = |λ|φ(x) for all λ ∈ R and x ∈ Rn. Also,
since ρ is translation invariant, the map [t 7→ tx + (1 − t)y] is a linearly reparameterised
geodesic for all x, y ∈ Rn. By convexity, we see that φ(x+y) = 2φ( 1

2 (x+y)) ≤ φ(x)+φ(y).
Thus φ is a norm on Rn. ♦

Thus a non-degenerate grid is essentially the same as an embedded totally geodesic
minkowskian subspace (parameterised so that all the standard basis elements have unit
length). In general, a (possibly degenerate) grid will factor through such a subspace:

Proposition 2.3 : If f : Rn −→ X is a grid, then f = g ◦ T , where T : Rn −→ Rm is a
surjective linear map, and g : Rm −→ X is non-degenerate grid.

Proof : In this case, the same argument as Proposition 2.2 gives us a pseudonorm ψ on
Rn so that d(f(x), f(y)) = ψ(x− y). Now V = {x ∈ Rn | ψ(x) = 0} is a subspace of Rn,
and ψ projects to a norm φ on Rn/V so that φ(V + x) = ψ(x) for all x ∈ Rn. We define
g : Rn/V −→ X by g(V +x) = f(x). We now identify Rn/V with Rm in such a way that
φ(ei) = 1 for all i ∈ {1, 2, . . . ,m}. ♦

In particular, we see that a degenerate 2-dimensional grid has the form [(t, u) 7→
α(t± u)] where α : R −→ X is a bi-infinite geodesic.

It turns out that it is enough that f be defined on a lattice in Rn. If f is a “discrete
grid” then it extends uniquely to a grid in the sence already defined.
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Definition : Suppose λ1, λ2, . . . , λn > 0. Let Λ be the lattice λ1Z⊕λ2Z⊕· · ·⊕λnZ ⊆ Rn.
A discrete grid is a map f : Λ −→ X such that d(f(x), f(x+mλiei)) = |m|λi for all x ∈ Λ,
m ∈ Z and i ∈ {1, 2, . . . , n}.

Proposition 2.4 : If (X, d) is a Busemann space, then a discrete grid f : Λ −→ X
extends to a grid f : Rn −→ X.

Proof : To simplify notation, we shall assume that λi = 1 for each i, so that Λ = Zn.
The general argument is exactly the same.

Note first that the 1-dimensional case is trivial. A 1-dimensional discrete grid f :
Z −→ X extends to a bi-infinite geodesic f : R −→ X by joining f(m) to f(m + 1) by a
geodesic segment (f |[m,m+ 1]) : [m,m+ 1] −→ X for each m ∈ Z.

It follows that an n-dimensional discrete grid f : Zn −→ X extends to map f :
Zn−1 ⊕ R −→ X such that [t 7→ f(x, t)] is a bi-infinite geodesic for each x ∈ Zn−1.
Moreover any two such geodesics remain a bounded distance apart, and are thus parallel
(c.f. Proposition 2.2). It follows that for each t ∈ R, the map [x 7→ f(x, t)] : Zn−1 −→ X
is an (n − 1)-dimensional discrete grid. By induction on dimension we can assume that
f extends to a map f : Rn −→ X such that [x 7→ f(x, t)] : Rn−1 −→ X is an (n − 1)-
dimensional grid for all t ∈ R.

We claim that f : Rn −→ X is an n-dimensional grid. For this we need to know
that the map [t 7→ f(x, t)] : R −→ X is bi-infinite geodesic for all x ∈ Rn. But this is a
consequence of the Strip Lemma (1.1), and Propositions 2.3 and 2.4, for all x ∈ Qn. The
result now follows by continuity. ♦

We immediately arrive at a proof of Theorem 2:

Proof of Theorem 2 : Let {g1, . . . , gn} be the standard generating set for Zn ⊆ Γ.
Choose x ∈ X so as to minimise

∑n
i=1 d(x, gi(x)). This is attained since Γ acts cocom-

pactly. Let λi = d(x, gi(x)). Now, for all m ∈ Z, we must have d(x, (mgi)(x)) = |m|λi,
otherwise we could replace x by the midpoint of the geodesic joining x to (mgi)(x),
and contradict minimality. Let Λ =

⊕n
i=1 λiZ ⊆ Rn, and define f : Λ −→ X by

f(m1λ1, . . . ,mnλn) = (
∑n

i=1migi) (x). Since Zn acts by isometry, we see that f is a
Zn-equivariant discrete grid. By Proposition 2.4, it extends to a grid f : Rn −→ X. By
naturality, this is also Zn invariant. Using Proposition 2.3, since Zn acts discretely, we
see easily that f must be non-degenerate. Thus, by Proposition 2.2, f(Rn) is the required
Zn-invariant minkowskian subspace. ♦

As remarked, in the introduction, all we really require is that we should have an
action by isometry of Zn so that for each i ∈ {1, 2, . . . , n}, the minimal translation distance
min{d(x, gi(x)) | x ∈ X} is attained. From this, a simple induction argument shows that
there is some x ∈ X which attains each of these minima simultaneously, and the result
follows, as above.

Note that in the case of a CAT(0) space, we get an embedded euclidean n-space. We
refer to [8] for details.
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3. Hyperbolicity and minkowskian subspaces.

The aim of this section is to prove the dichotomy given by Theorem 1. The idea
will be, under the assumption of non-hyperbolicity, to construct a discrete grid as a limit
of “approximate grids”. The method of constructing these approximating grids can be
described quite generally. The assumption of non-hyperbolicity will only enter to verify
that the limiting grid must be non-degenerate. Propositions 2.4 and 2.2 then show that it
gives rise to an embedded minkowskian plane.

Let (X, d) be a Busemann space. (For the moment, this is our only assumption.)
Given n ∈ N, let In = {0, 1, 2, . . . , n}. Suppose ε > 0.

Definition : An (n, ε)-grid is a map f : I2n −→ X such that for all i, i′, j, j′ ∈ In, we have

|i− i′| − ε ≤ d(f(i, j), f(i′, j)) ≤ |i− i′|

and

|j − j′| − ε ≤ d(f(i, j), f(i, j′)) ≤ |j − j′|.

An equivalent way to express this is as follows. Define a metric ρ on I2n by ρ((i, j), (i′, j′)) =
|i− i′|+ |j− j′|. An (n, ε)-grid is then a distance non-increasing map f : (I2n, ρ) −→ (X, d)
satisfying d(f(0, j), f(n, j)) ≥ n− ε and d(f(i, 0), f(i, n)) ≥ n− ε for all i, j ∈ In.

We aim to construct a sequence of such grids, with n → ∞ and ε → 0. We describe
the construction in this general setting, though it will only be of interest when additional
hypotheses are added.

Given n ∈ N and ε > 0, let q be a natural number greater than 2n2/ε. Suppose that
α : [0, qn] −→ X is a geodesic, and that a ∈ X is any point with d(a, α([0, qn])) ≥ n. For
each i ∈ [0, qn]∩N, let βi : [0, d(a, α(i))] −→ X be the geodesic joining α(i) to a. For each
p ∈ {0, 1, . . . , q−1} and i, j ∈ In, set fp(i, j) = βpn+i(j). This defines a map fp : I2n −→ X
for each such p (Figure 1).

By construction, if 0 ≤ p ≤ q − 1 and i, i′, j, j′ ∈ In, then

d(fp(i, j), fp(i, j′)) = |j − j′|

and

d(fp(i, 0), fp(i′, 0)) = |i− i′|.

Also, by convexity applied to the geodesics βpn+i and βpn+i′ , we see that

d(fp(i, j), fp(i′, j)) ≤ |i− i′|.

For 0 ≤ p ≤ q − 1 and j ∈ In, let h(p, j) = n − d(fp(0, j), fp(n, j)) ≥ 0. Let
Jj = {p | h(p, j) > ε} ⊆ {0, 1, . . . , q − 1}. Now since

d(f0(0, j), fq−1(n, j)) = d(β0(j), βqn(j)) ≥ qn− 2j ≥ qn− 2n,
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we see that

ε|Jj | ≤
q−1∑
p=0

h(p, j) ≤ 2n.

Thus ∣∣∣∣∣∣
n⋃

j=1

Jj

∣∣∣∣∣∣ ≤ 2n2/ε < q,

and so there must be some p ∈ {0, 1, . . . , q−1}\
⋃n

j=1 Jj . For such a p, we have h(p, j) ≤ ε
for all j ∈ In. In other words, d(fp(0, j), fp(n, j)) ≥ n− ε, and so fp is an (n, ε)-grid.

Provided that X is unbounded (as a metric space) this construction gives a sequence
f(n) of (n, ε)-grids with n→∞ and ε→ 0.

Now suppose in addition, X admits a cocompact group action. For each m ∈ N, we
define g(m) : ([−m,m] ∩ Z)2 −→ X by g(m)(i, j) = f(2m)(m+ i,m+ j). In other words,
we shift the origin to the centre of our grid. Now, a diagonal subsequence argument allows
us to find a subsequence g(mi) converging on a map g : Z2 −→ X. It is easily verified that
g must be a discrete grid. In general, we would expect the grid we arrive at in this way
to be degenerate. We shall show that if (X, d) is not hyperbolic in the sense of Gromov,
then, with care, we can ensure that the limiting grid is non-degenerate. By Propositions
2.2 and 2.4, it follows that g gives rise to a totally geodesic minkowskian subspace.

The characterisation of hyperbolicity we shall use is the following. It is a slight variant
of definition H5 described in [5].

Proposition 3.1 : A path-metric space (X, d) is hyperbolic if and only if there is some
a ∈ X and constants L > η > 0 such that the following holds.

Suppose x, y ∈ X so that d(a, x) = d(a, y) and L ≤ d(x, y) ≤ 4L. Suppose β is a path
joining x to y with d(a, β) ≥ d(a, x), then length(β) ≥ d(x, y) + η.

Sketch of Proof : We may as well assume that (X, d) is a length-space. Also we are only
interested here in the implication in one direction. Thus we assume that (X, d) satisfies the
hypothesis with a, L and η as described. We can deduce a form of the linear isoperimetric
property as follows.

Suppose that γ is a closed curve in X of length greater than 8L. For large enough
r we have that γ lies in the uniform r-ball, N(a, r), about a. By continuously decreasing
r, we find that at some point we will have an arc β ⊆ γ with endpoints x, y ∈ ∂N(a, r),
lying outside the interior of N(a, r) and satisfying 2L ≤ length(β) ≤ 4L. In particular,
d(x, y) ≤ 4L. Now either d(x, y) ≤ L, or else length(β) ≥ d(x, y) + η. Either way,
length(β)− d(x, y) ≥ η.

Let α = γ \ β, and let γ1 = α ∪ [x, y] and δ1 = β ∪ [x, y]. We have cut γ into two
closed curves γ1 and δ1 with length(γ1) ≤ length(γ)− η and length(δ1) ≤ 8L.

Now repeat the construction with γ1 replacing γ, to get two sequences of closed curves
γ1, γ2, . . . and δ1, δ2, . . .. After at most p < length(γ)/η steps, we arrive at a curve γp of
length at most 8L. We have thus cut γ into p+ 1 = O(length(γ)) curves δ1, δ2, . . . , δp, γp,
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each of length at most 8L. This is one form the linear isoperimetric inequality (H3 as
described in [5]). We refer to [5] for more details. ♦

We shall also need the following observation:

Lemma 3.2 : Suppose (X, d) is a Busemann space which admits a cocompact isometric
group action. Then for all k, h > 0, there is some η > 0 such that the following holds.
Suppose x, y ∈ X with d(x, y) ≤ k. If β is any path joining x to y with length(β) ≤
d(x, y) + η, then for all z ∈ [x, y], we have d(z, β) ≤ h.

Proof : Suppose the conclusion fails. Then we can find sequences xi, yi ∈ X and zi ∈
[xi, yi], and paths βi joining xi to yi so that d(xn, yn) ≤ k, length(βi) ≤ d(xi, yi) + 1/i and
d(zi, βi) > h. We can take all the βi to be defined on the same domain and parameterised
proportionally to arc length. Up to the action of the group, we can assume, after taking a
subsequence, that xi → x, yi → y, and zi → z ∈ [x, y]. From the uniqueness of geodesics,
we see that the βi must converge to [x, y], contradicting the fact that d(z, βi) is bounded
away from 0. ♦

(Note that if X happens to be a CAT(0) space, then we can obtain η directly as a
function if h and k without the assumption of a cocompact group action.)

We are now ready to finish the proof of our main result.

Proof of Theorem 1 : Suppose that (X, d) is a non-hyperbolic Busemann space which
admits a cocompact group action. We show that X admits a non-degenerate discrete grid
g : Z2 −→ X.

Given n > 0 and ε > 0, we construct an (n, ε)-grid as follows. Let q be some natural
number greater than 2n2/ε. Given k = 4qn and h = 1/2, let η be the constant given by
Lemma 3.2. We can assume that η < qn.

Now choose any a ∈ X, and apply Proposition 3.1 with L = qn > η. We find that
there must exist points x, y ∈ X with qn ≤ d(x, y) ≤ 4qn and d(a, x) = d(a, y) = r, say,
together with a path β joining x to y such that d(a, β) ≥ r and length(β) ≤ d(x, y) + η.
Suppose z ∈ [x, y]. By convexity, we have d(a, z) ≤ r. Also, from the choice of η, we have
d(z, β) ≤ 1

2 , so d(a, z) ≥ r− 1
2 . Note that 2r ≥ d(x, y) ≥ L = qn, so we can choose q large

enough so that r − 1
2 ≥ n.

Writing α : [0, d(x, y)] −→ X for the geodesic from x to y, we can perform the
construction described above. This gives an (n, ε)-grid, f = fp : I2n −→ X, with the
property that for all i ∈ In,

r − 1

2
≤ d(f(i, 0), a) ≤ r.
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For i, j ∈ {0, 1, . . . , n− 1}, let δ(i, j) = d(f(i, j), f(i+ 1, j + 1)). Now,

r − 1

2
≤ d(f(i, 0), a)

≤ d(f(i, 0), f(i, j)) + d(f(i, j), f(i+ 1, j + 1)) + d(f(i+ 1, j + 1), a)

= j + δ(i, j) + d(f(i+ 1, j), a)− 1

= δ(i, j) + d(f(i+ 1, 0), a)− 1

≤ δ(i, j) + r − 1,

and so d(f(i, j), f(i+ i, j+ i)) = δ(i, j) ≥ 1
2 . By a similar argument, we see that d(f(i, j+

1), f(i+ 1, j)) ≥ 1
2 .

We may now take a sequence of such (n, ε)-grids, f(n), with n → ∞ and ε → 0.
This gives rise to a limiting grid g : Z2 −→ X. From the construction, we see that
d(g(0, 0), g(1, 1)) ≥ 1

2 , and d(g(0, 1), g(1, 0)) ≥ 1
2 . By Proposition 2.4, g extends to a grid

g : R2 −→ X. From the form of degenerate 2-dimensional grids described after Proposition
2.3, we see that g must be non-degenerate. The theorem now follows from Proposition 2.2.

♦

References.

[1] I.R.Aitchison, J.H.Rubinstein, An introduction to polyhedral metrics of non-positive
curvature on 3-manifolds : in “Geometry of low-dimensional manifolds: 2”, ed. S.K.Donal-
dson & C.B.Thomas, L.M.S. Lecture Notes Series 151, Cambridge University Press (1990)
127–161.

[2] S.B.Alexander, R.L.Bishop, The Hadamard-Cartan theorem in locally convex spaces :
Enseign. Math. 36 (1990) 309–320.

[3] W.Ballmann, M.Gromov, V.Schroeder, Manifolds of non-positive curvature : Progress
in Maths. 61, Birkhäuser (1985).
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