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0. Introduction.

A Hadamard manifold is a complete, simply-connected Riemannian manifold of non-
positive curvature. By a pinched Hadamard manifold , we shall mean a Hadamard manifold
of pinched negative curvature, i.e. all the sectional curvatures lie between two negative
constants.

The aim of this paper is to describe a notion of “geometrical finiteness” for a discrete
group, Γ, acting on a pinched Hadamard manifold X.

The notion of geometrical finiteness has been principally used in the case where X
is 3-dimensional hyperbolic space H3. The original definition supposed that Γ should
possess a finite-sided fundamental polyhedron. Under this hypothesis, Ahlfors showed
that the limit set of Γ has either zero or full spherical Lebesgue measure [Ah]. Since that
time, other definitions of geometrical finiteness have been given, notably by Marden [M],
Beardon and Maskit [BeM] and Thurston [T], and the notion has become central to the
study of 3-dimensional hyperbolic groups.

As an isolated object, a geometrically finite group is not particularly interesting. A
major problem in 3-dimensional hyperbolic geometry is to understand finitely-generated
discrete hyperbolic groups that are not geometrically finite. An important conjecture is
that every such group is an “algebraic limit” of geometrically finite groups.

In 3 dimensions, Teichmüller theory together with ideas of Thurston have provided
powerful tools for understanding hyperbolic groups. In higher dimensions, the theory is
much less well developed, and has been some confusion in the literature as to the correct
notion of geometrical finiteness in this context. The existence of finite sided fundamental
polyhedra, without further qualification, becomes an inapropriate hypothesis. My previous
paper [Bo1] was an attempt to clarify this matter.

It seems natural to wonder what happens if one generalises in another direction,
by allowing variable curvature. The extra flexibility would potentially allow for more
possibilities in the construction of exotic examples. The first step, however, is to clearly
understand the “geometrically finite” groups. This paper is aimed in that direction.

Let us suppose that Γ is a discrete group of isometries of a pinched Hadamard manifold,
X. We want to say what it means for Γ to be geometrically finite. Now, the description
involving finite sided fundamental polyhedra falls apart altogether, and it is not clear
how to give a new definition on this basis. In this paper, I will not have much to say
about fundamental polyhedra. The subject of Dirichlet polyhedra for discrete groups
acting on complex hyperbolic space has been explored by Goldman, Parker and Phillips
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[G,GP,Ph,Pa]. In particular, the example of a discrete parabolic group given in [GP]
suggests that no elegant formulation of geometrical finiteness, along these lines exists.

However, the remaining definitions (as described in [Bo1]) all have a natural interpre-
tation for pinched negative curvature. One of the principal aims of this paper, therefore,
is to show the equivalence of these notions (Theorem 6.1). Many of the arguments will run
parallel to those given [Bo1], though we lose some of the useful tools such as the existence
of nice convex half-spaces.

We shall retain the term “geometrical finiteness” for the notion thus defined, although
it is clearly less appropriate in this context. We shall see that geometrically finite groups
are finitely generated (Proposition 5.5.1), have finitely many conjugacy classes of finite sub-
groups (Proposition 5.5.2), and have finitely many conjugacy classes of maximal parabolic
subgroups (Corollary 6.5).

It seems reasonable to conjecture that geometrical finiteness implies topological finite-
ness (i.e. that X/Γ is orbifold-homeomorphic to the interior of a compact orbifold with
boundary). The problem reduces to the case of discrete parabolic groups of isometries.
In [Bo2], it was shown that such groups are finitely generated, though the question of
topological finiteness, to my knowledge, remains open.

The four main definitions of geometrical finiteness we shall use may be outlined as
follows. Each definition may be stated in more than one way, and we shall describe in
Chapter 5 some of the variants.

The definition which we consider the central one, since in some sense it gives us the
most information, is the generalisation of Marden’s definition. To the orbifold X/Γ, we
adjoin the quotient, Ω/Γ, of the discontinuity domain, Ω of the ideal sphere at infinity.
We thus obtain an orbifold with boundary MC(Γ) = (X ∪ Ω)/Γ. We say that Γ is “F1”
(geometrically finite in the first sense) if MC(Γ) has only finitely many topological ends,
and each such end is a “parabolic end”. To say that an end is a “parabolic end” means
essentially that it can identified with the end of MC(G), where G is a maximal parabolic
subgroup of Γ.

The second definition, F2, demands that the limit set Λ of Γ should consist enirely of
“conical limit points” and “bounded parabolic fixed points”. This definition can be made
intrinsic to the action of Γ on Λ. It is due, in constant curvature, to Beardon and Maskit.

In [Bo1], due to lack of foresight, the third definition was that of finite-sided funda-
mental polyhedra, so we shall call the remaining definitions F4 and F5. These are both
due to Thurston in the constant curvature case. We leave F3 for someone else to define.

Property F4 says that the “thick part” of the “convex core” of X/Γ is compact. The
“convex core” is the quotient, under Γ, of the (closed) convex hull of the limit set. In the
case where Γ is torsion-free, so that X/Γ is a manifold, the “thick part” of the convex
core is the set of points where the injectivity radius is greater than or equal to some small
positive number. We give a definition of the thick part of an orbifold in Section 3.5.

Finally, F5 says that for some η > 0, the unform η-neighbourhood of the convex core
has finite volume, and that there is a bound on the orders of finite subgroups of Γ. I
suspect that this latter assumption is superfluous. Certainly, if X/Γ has finite volume,
then there is necessarily such a bound, and in this case it follows that X/Γ is topologically
finite as an orbifold (Proposition 6.6).
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We made, at the beginning, the assumption that X has pinched negative curvature.
The upper curvature bound (away from 0) is essential for the Toponogov comparison the-
orem (Proposition 1.1.2), the consequences of which are used throughout this paper. The
lower curvature bound (away from −∞) is needed for the Margulis Lemma (Proposition
3.5.1), and to give an upper bound on the the volumes of uniform balls (Proposition 1.2.2).
The construction of convex sets (due to Anderson [An]), which we describe in Section 2.5,
uses both curvature bounds, though for most purposes one could make do with some no-
tion of quasiconvexity, which would only require a bound away from 0. Both bounds are
also used in [Bo2], as quoted in Chapter 4 — see Proposition 4.1.

It will be assumed throughout this paper that X has curvature at most −1. The
additional assumption of a lower curvature bound (−κ2) will be made in Sections 1.2, 2.5
and 3.5, and throughout Chapters 4, 5 and 6. Results given in these places should be
assumed to take this as a hypothesis, though we will not always say so explicitly.

The structure of this paper, in outline, is as follows. In Chapter 1, we collect together
the basic facts about Hadamard manifolds which we shall need. Chapter 2 is discussion
of convexity and quasiconvexity. In Chapter 3, we describe some constructions relating to
discrete group actions. In Chapter 4, we say something of the geometry of discrete parabolic
groups. In Chapter 5, we give in detail the various definitions of geometric finiteness, and
show some basic group-theoretic properties. Finally, in Chapter 6, we complete the proofs
of equivalence of the four definitions F1, F2, F4 and F5.

1. Review of negative curvature.

The purpose of this chapter is introduce some terminology and notation, and to sum-
marise some basic results about Hadamard manifolds which we shall need. A good reference
for such manifolds is [BaGS].

A basic fact about Hadamard manifolds in general is that the exponential map based
at any point is injective. Thus, any such manifold, X, is diffeomorphic to Rn. In fact, X
can be naturally compactified by adjoining an ideal sphere XI to X. Thus, XC = X ∪XI

is homeomorphic to a closed n-dimensional ball.
Much of theory of Hadamard manifolds can be refined or simplified when the curvature

is bounded away from 0. In this case, we can always scale the metric so that all sectional
curvatures are at most −1. This will be assumed throughout this paper.

In Section 1.1, we give some properties of X under this assumption. In Section 1.2,
we describe some additional properties when there is also a lower curvature bound.

1.1. Curvature bounded away from 0.

Suppose X has all sectional curvatures at most −1. Let d be the Riemannian path-
metric on X.

In this case X is a visibility manifold i.e. any two points x, y ∈ XC can be joined by
a unique geodesic, which we denote by [x, y]. The geodesic [x, y] depends continuously on
its endpoints x and y. We shall usually think of [x, y] as a closed subset of XC . When we
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speak of geodesics as paths, they will always be assumed parameterised by arc-length. If
x, y ∈ X, we call [x, y] a geodesic segment . If x ∈ X and y ∈ XI , we call [x, y] a geodesic
ray based at x, and tending to y. If x, y ∈ XI , we call [x, y] a bi-infinite geodesic.

Any two geodesic rays, [a, y] and [b, y], tending to the same ideal point y ∈ XI “con-
verge exponentially”. This will be made precise by Proposition 1.1.11. For the moment,
we just note that we can find sequences an ∈ [a, y] ∩X, and bn ∈ [b, y] ∩X, both tending
to y, with d(an, bn) → 0. We can regard XI as the set of equivalence classes of geodesic
rays, where equivalence is defined by convergence of rays.

We shall write TxX and T 1
xX, respectively, for the tangent space and unit-tangent

space to X at x. Given x ∈ X, and y ∈ XC \ {x}, we shall write −→xy ∈ T 1
xX for the

unit tangent vector based at x in the direction of y, i.e. −→xy is the derivative α′(0), where
α : [0, d(x, y)] −→ XC is the geodesic [x, y]. If x ∈ X, and y, z ∈ XC \ {x}, we write yx̂z
for the angle 6 (−→xy,−→xz) between −→xy and −→xz.

If Q is a closed subset of XC , and r ≥ 0, let NC
r (Q) be the closure, in XC , of the

set {y ∈ X | d(y,Q ∩ X) ≤ r}. Set Nr(Q) = Q ∪ NC
r (Q). We call Nr(Q) the uniform

r-neighbourhood of Q. We will only be interested in the case where Q ∩X is dense in Q,
and so Q ⊆ NC

r (Q). If Q1 and Q2 are both closed in XC , with Q1∩X and Q2∩X dense in
Q1 and Q2 respectively, we shall write d(Q1, Q2) = d(Q1 ∩X,Q2 ∩X) = inf {d(x, y) | x ∈
Q1 ∩X, y ∈ Q2 ∩X}.

Suppose x ∈ X. We choose an identification of the tangent space TxX with Rn, so
that the standard inner-product on Rn induces the Riemannian inner-product on TxX.
This defines an exponential map exp(X,x) : Rn −→ X. We have that exp(X,x) is a
diffeomorphism from Rn to X.

Let Hn be n-dimensional hyperbolic space. Fix some basepoint a0 ∈ Hn, and an
identification of Rn with Ta0H

n. The map

e = e(X,x) = exp(Hn, a0) ◦ exp(X,x)−1 : X −→ Hn

is a diffeomorphism with a0 = e(x). It follows from the Rauch comparison theorem [CE],
that:

Proposition 1.1.1 : The map e : X −→ Hn is distance non-increasing. ♦
One simple consequence, is the following version of Toponogov’s comparison theorem,

which is the basis of most of the results of this section [CE].

Proposition 1.1.2 : Suppose x, y, z are any three distinct points in X. Let x′, y′, z′

be three points in the hyperbolic plane (H2, d′) satisfying d′(x′, y′) = d(x, y), d′(y′, z′) =
d(y, z) and d′(z′, x′) = d(z, x). Then xŷz ≤ x′ŷ′z′, yẑx ≤ y′ẑ′x′ and zx̂y ≤ z′x̂′y′. ♦

We call x′y′z′ a comparison triangle for xyz.

Corollary 1.1.3 : Suppose x ∈ X, and y, z ∈ XC \ {x} are distinct. Let θ = yx̂z, and
r = d(x, [y, z]). Then

sin(θ/2) ≤ sech r.
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Proof : The inequality comes from the following formula of hyperbolic trigonometry.
Suppose a and b are distinct points of the hyperbolic plane (H2, d′). Suppose c ∈ H2

I

with ab̂c = π/2, bâc = φ and d′(a, b) = R. Then sinφ coshR = 1. From this, one deduces

easily that in the more general situation where c ∈ XC \ {a, b}, and ab̂c ≥ π/2, we have
sinφ ≤ sechR.

The result now follows by letting w ∈ [x, y] be any (in fact the unique) nearest point
to x, and applying Proposition 1.1.2 to the triangles xwz and/or xwy. ♦

By similar arguments, one may show:

Corollary 1.1.4 : Suppose that x, y, z ∈ X are distinct, with xŷz ≥ π/2. Let r = d(y, z).
Then,

d(x, z) ≥ d(x, y) + log(cosh r).

♦
Another comparison theorem central to the study of negative curvature is the following

“CAT(−1)” inequality (See for example [Br]).

Proposition 1.1.5 (CAT(−1)) : Suppose x, y, z ∈ X, and u ∈ [x, y] and v ∈ [x, z]. Let
x′y′z′ be a comparison triangle for xyz in the hyperbolic plane (H2, d′), i.e. d′(x′, y′) =
d(x, y), d′(y′, z′) = d(y, z) and d′(z′, x′) = d(z, x). Let u′ ∈ [x′, y′] and v′ ∈ [x′, z′] be the
points with d′(x′, u′) = d(x, u) and d′(x′, v′) = d(x, v). Then d(u, v) ≤ d′(u′, v′).

Proof : By applying Proposition 1.1.2, first to the triangles xuv and yuv, and then to the
triangles xvy and zvy. ♦

Corollary 1.1.6 : If x, y, z ∈ XC , then [y, z] ⊆ Nλ0([x, y]∪[x, z]), where λ0 = cosh−1
√

2.

Proof : By continuity, we can suppose that x, y, z ∈ X. By Proposition 1.1.5, it is enough
to prove the result for a triangle in the hyperbolic plane. This is an exercise in hyperbolic
trigonometry. ♦

Given a ∈ X, define ha : X ×X −→ R by

ha(x, y) = d(x, a)− d(x, y).

Let ∆(XI) ⊆ XC ×XC be the diagonal

∆(XI) = {(x, x) | x ∈ XI}.

Proposition 1.1.7 : For all a ∈ X, the map ha extends uniquely to a continuous map

ha : (XC ×XC) \∆(XI) −→ [−∞,∞),

with ha(x, y) = −∞ if and only if y ∈ XI .
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Proof : Suppose (x, y) ∈ (XC×XC)\∆(XI). It is enough to show that for any sequences
xn → x and yn → y with xn, yn ∈ X we have ha(xn, yn) convergent in [−∞,∞), i.e. either
ha(xn, yn) is Cauchy, or ha(xn, yn)→ −∞.

Clearly ha is continuous on X ×X, so we can suppose that (x, y) /∈ X ×X. If x ∈ X
and y ∈ XI , then ha(xn, yn)→ −∞. Thus, we can suppose that x ∈ XI .

Given any ε > 0, we can find, by the convergence of geodesic rays, points u ∈ [a, x]
and v ∈ [y, x] with d(u, v) ≤ ε. Now, d(u, [a, xn]) → 0 and d(v, [a, yn]) → 0 as n → ∞.
Thus, for some n0, we have points un ∈ [a, xn] and vn ∈ [yn, xn] with d(u, un) ≤ ε and
d(v, vn) ≤ ε, for all n ≥ n0. It follows that |ha(xn, yn)− ha(u, yn)| ≤ 6ε for all n ≥ n0.

If y ∈ XI , then clearly ha(u, yn)→ −∞, and so ha(xn, yn)→ −∞.
Suppose y ∈ X. Ifm,n ≥ n0, then |ha(xn, yn)−ha(xm, ym)| ≤ |ha(u, yn)−ha(u, ym)|+

12ε ≤ d(yn, ym) + 12ε. It follows, in this case, that ha(xn, yn) is a Cauchy sequence. ♦

Th last result is needed for our discussion of projection to quasiconvex sets, in Chapter
2. It also gives us the basic properties of “Busemann functions”. Note that if a, b, x, y ∈ X,
then hb(x, y)− ha(x, y) = hb(x, a). Thus Proposition 1.1.7 tells us that:

Corollary 1.1.8 : For all a, b ∈ X, and (x, y) ∈ (XC ×XC) \∆(XI), we have hb(x, y)−
ha(x, y) = hb(x, a). ♦

Corollary 1.1.9 : Suppose a, y ∈ X, and x ∈ XC . If z ∈ [a, x], then ha(z, y) ≤ ha(x, y).

Proof : The case where x ∈ X is just the triangle inequality. The case where x ∈ XI

follows by continuity (Proposition 1.1.7), after taking a sequence xn ∈ [z, x] ∩X tending
to x. ♦

If x ∈ XI , a function of the form [y 7→ ha(x, y)] is called a Busemann function about
x. Corollary 1.1.8 tells us that any two Busemann functions about x differ by a constant.
By convention, we take the value of a Busemann function at x itself to be +∞. It turns
out that any Busemann function, h, is C2 [HI], and the norm of its gradient is everywhere
equal to 1. The level sets of h are called horospheres about x. Thus the horospheres form
a codimension-1 foliation of X, orthogonal to the foliation by bi-infinite geodesics having
one endpoint at x.

A set of the form h−1[r,∞) for r ∈ R is called a horoball about x. Using Corollary
1.1.9, such a horoball may alternatively be described as the closure of the set

⋃
{Nt(β(t+

u)) | t ∈ [0,∞)}, where β : [0,∞) is a geodesic ray tending to x, with β(0) ∈ h−1r. In
particular, horoballs are convex.

Applying Propositon 1.1.7, we may extend Corollary 1.1.4 as follows:

Proposition 1.1.10 : Suppose x ∈ XI , and that h is a Busemann function about x.
Suppose y, z ∈ X with xŷz ≥ π/2, and d(x, y) = r. Then,

h(y)− h(z) ≥ log cosh r.

♦
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We introduce the following (non-standard) notation. Suppose x ∈ XI , and let h :
XC −→ [−∞,∞] be a Busemann function about x. Let φt be the gradient flow for −h.
Given y ∈ X, we shall write y + t for φt(x). Thus, if y lies in the bi-infinite geodesic [z, x]
and t ≥ 0, then y + t and y − t are the points in [y, x] and [z, y] respectively, at distance t
from y. We shall write y −∞ for z, and y +∞ for x.

The following describes the exponential convergence of geodesic rays tending to the
same ideal point. It may be deduced from the constant curvature case using the CAT(−1)
inequality (Poposition 1.1.5).

Proposition 1.1.11 :

(1) Given any y, z ∈ X, d(y + t, z + t) is monotonically decreasing in t.

(2) For all r, there exists R, such that if y, z ∈ X satisfy h(y) = h(z) and d(y, z) ≤ r, then
d(y + t, z + t) ≤ Re−t for all t. ♦

Finally, we find a second direct application of Proposition 1.1.1 to give a lower bound
on the volumes of uniform balls in X.

Let V (r, n) be the volume of the uniform r-ball in Hn. Then:

Proposition 1.1.12 : For any x ∈ X and r ≥ 0, the volume of the uniform r-ball,
Nr(x), is at least V (r, n).

Proof : Let e = e(X,x) : X −→ Hn be as in Proposition 1.1.1. Then e(Nr(x)) is the
uniform r-ball in Hn about e(x). The result follows since e is distance non-increasing. ♦

1.2. Curvature bounded away from −∞.

In this section, we suppose that all the sectional curvatures of X are at least −κ2,
where κ ≥ 1.

Let Hn(κ) be the Hadamard manifold of constant curvature −κ2. (Thus Hn(1) =
Hn.) Suppose that a0 ∈ Hn(κ) is some fixed basepoint. Given any x ∈ X, we may define,
as with Proposition 1.1.1, the map

eκ = eκ(X,x) : X −→ Hn(κ)

by eκ(X,x) = exp(Hn(κ), a0) ◦ exp(X,x)−1. Thus, as before, eκ is a diffeomorphism.
Again, by the Rauch comparison theorem we have:

Proposition 1.2.1 : The map eκ : X −→ Hn(κ) is distance non-decreasing. ♦

The corresponding version of Toponogov’s comparison theorem now gives a lower
bound on angles (c.f. Proposition 1.1.2):
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Proposition 1.2.2 : Suppose x, y, z are distinct points of X. Let x0, y0, z0 be three points
in (H2(κ), d0) satisfying d0(x0, y0) = d(x, y), d0(y0, z0) = d(y, z) and d0(z0, x0) = d(z, x).
Then, xŷz ≥ x0ŷ0z0, yẑx ≥ y0ẑ0x0 and zx̂y ≥ z0x̂0y0. ♦

Corollary 1.2.3 : Suppose x, y ∈ X are distinct and z ∈ XI . Let r = d(x, y) and
θ = yx̂z. If xŷz ≤ π/2, then sin θ ≥ sech(κr).

Proof : Suppose a, b are two points in (H2(κ), d0) and c an ideal point with ab̂c = π/2.
If R = d0(a, b), then bâc = sin−1 sech(κr) (c.f. Corollary 1.1.3). We can deduce that if

a, b, c ∈ H2(κ) with d(a, b) = R, d(b, c) = h, and ab̂c ≤ π/2, then bâc ≥ sin−1 sech(κR) −
εκ,R(h), where εκ,R → 0 as h→∞.

Suppose now that x, y, z, r, θ are as in the hypotheses. Choose a sequence of points
zi ∈ [y, z]∩X with zi → z. Let x0y0zi0 be a comparison triangle in H2(κ) for xyzi. Thus,
by Proposition 1.2.3, we have x0ŷ0zi0 ≤ xŷzi = xŷz ≤ π/2. Thus, again by Proposition
1.2.3, we have yx̂zi ≥ y0x̂0zi0 ≥ sin−1 sech(κr)− εκ,r(d(y, zi)). As i → ∞, yx̂zi → θ, and
d(y, zi)→∞ so εκ,r(d(y, zi))→ 0. Thus, θ ≥ sin−1 sech(κr) as required. ♦

Another consequence of Propositon 1.2.1 is an upper bound on the volumes of uniform
balls (c.f. Proposition 1.1.12). Note that the volume of a uniform r-ball in Hn(κ) is
V (κr, n)/κn.

Proposition 1.2.4 : If x ∈ X and r ≥ 0, then the volume of the uniform r-ball Nr(x)
is at most V (κr, n)/κn. ♦

2. Convexity.

Let X be a Hadamard manifold. For Sections 2.1–2.4, we assume only an upper
curvature bound, −1, for X. For Section 2.5, we need also a lower curvature bound.

A subset Q of XC is convex if [x, y] ⊆ Q for all x, y ∈ Q. The lack of a good notion of
half-space in a variably curved manifold means that convex sets are difficult to construct
and work with. A construction, due to Anderson, for pinched Hadamard manifolds will
be described in Section 2.5. For most purposes, however, one could make do with some
notion of quasiconvexity, as we describe in Section 2.2. We begin with a general discussion
of projection to closed sets. A detailed discussion of the constant curvature case is given
in [EM].

2.1. Projection.

Suppose that Q ⊆ XC is closed. Let

proj0Q = {(x, y) ∈ X × (Q ∩X) | d(x, y) = d(x,Q)}.
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In other words, {y | (x, y) ∈ proj0Q} is the set of nearest points of Q to x. Clearly, proj0Q is

a closed subset of X ×X. Let projCQ be the closure of proj0Q in XC ×XC , and set

projQ = ∆(Q) ∪ projCQ,

where ∆(Q) is the diagonal {(x, x) | x ∈ Q}. We shall only be interested in cases where
Q ∩X is dense in Q, and so ∆(Q) ⊆ projCQ.

Given x ∈ XC , we write

projQ(x) = {y ∈ XC | (x, y) ∈ projQ}.

Clearly, projQ(x) ⊆ Q.
Suppose Q∩X 6= ∅. If x ∈ X, we have projQ(x) ⊆ X, which we have already described

as the set of nearest points to x. We want to describe projQ(x) in the case where x ∈ XI .
Suppose x ∈ XI , and let h : XC −→ [−∞,∞] be a Busemann function about x. Let

m(x) = {y ∈ X | h(z) ≤ h(y) for all z ∈ Q ∩X},

i.e. m(x) is the set of those y ∈ Q which maximise h(y). (Perhaps m(x) = ∅ if x ∈ Q∩XI .)
Note that m(x) is defined independently of the choice of h.

Proposition 2.1.1 : Suppose Q ⊆ XC is closed, and Q ∩X 6= ∅.
If x ∈ Q ∩XI , then projQ(x) = {x} ∪m(x).

If x ∈ XI \Q, then projQ(x) = m(x).

Proof : We choose a Busemann function h = [y 7→ ha(x, y)] for some a ∈ X.
Note that since projQ(x) ⊆ Q, we have x ∈ projQ(x) if and only if x ∈ XI . We claim

that m(x) ⊆ projQ(x) ⊆ {x} ∪m(x).
First, we show projQ(x) ⊆ {x} ∪ m(x). Suppose that y ∈ projQ(x) \ {x}. Then

(x, y) ∈ projCQ, and so there is a sequence (xn, yn) ∈ proj0Q, with (xn, yn)→ (x, y). Suppose

z ∈ Q ∩X. By the definition of proj0Q, we have d(xn, z) ≥ d(xn, yn). Thus ha(xn, yn) −
ha(xn, z) ≥ 0 for all n. By continuity of ha (Proposition 1.1.7), we have that ha(xn, yn)−
ha(xn, z)→ ha(x, y)−ha(x, z) = h(y)−h(z). Thus h(z) ≤ h(y). This shows that y ∈ m(x).

It remains to see that m(x) ⊆ projQ(x). Suppose y ∈ m(x) ⊆ Q. Let xn ∈ [y, x] ∩X
be a sequence of points tending to x. If z ∈ Q ∩ X, then h(y) ≥ h(z). By Corollary
1.1.8, we have hy(x, z) = ha(x, z) − ha(x, y) = h(z) − h(y) ≤ 0. By Lemma 1.1.9, we
have hy(xn, z) ≤ hy(x, z) ≤ 0 for all n. Thus d(xn, y) ≤ d(xn, z). We conclude that
(xn, y) ∈ proj0Q for all n. But (xn, y)→ (x, y) and so (x, y) ∈ projQ, i.e. y ∈ projQ(x). ♦

2.2. Quasiconvexity.

Recall the definition of uniform neighbourhoods Nr(Q) from Chapter 1.

9
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Definition : A closed subset Q ⊆ XC is λ-quasiconvex if [x, y] ⊆ Nλ(Q) for all x, y ∈ Q.

We say that a set is quasiconvex if it is λ-quasiconvex for some λ ∈ [0,∞). Note that
if Q is quasiconvex and contains more than one point, then Q meets X. In fact, Q ∩X is
dense in Q.

Definition : A closed subset Q ⊆ XC is starlike about x ∈ XC if [x, y] ⊆ Q for all y ∈ Q.

Corollary 1.1.6 shows that any starlike set is λ0-quasiconvex, where λ0 = cosh−1
√

2.
The following lemma provides more examples of quasiconvex sets.

Lemma 2.2.1 : Suppose x0, x1, . . . , xn ∈ XC are n+ 1 points, then

[x0, xn] ⊆ Nλ([x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn]),

where λ = λ0dlog2 ne, where λ0 = cosh−1
√

2, and dlog2 ne is the smallest integer greater
than or equal to log2 n.

Proof : We can assume that n = 2r for some r ∈ N. Let m = n
2 = 2r−1. By Corollary

1.1.6, we have
[x0, xn] ⊆ Nλ0

([x0, xm] ∪ [xm, xn]).

The result follows by induction on r. ♦

Thus, any set Q in which any two points can be joined by a piecewise geodesic path
with a bounded number of segments is quasiconvex.

Given any closed subset Q ⊆ XC , we define

join(Q) =
⋃
{[x, y] | x, y ∈ Q}.

Thus, join(Q) will be a first approximation to the convex hull of Q. By Lemma 2.2.1,
see that join(Q) is (2λ0)-quasiconvex for any closed set Q ⊆ XC . We also have that
join(Q) ∩ XI = Q ∩ XI . Note that to say that Q is λ-quasiconvex means precisely that
join(Q) ⊆ Nλ(Q).

Definition : Given two closed subsets Q1, Q2 ⊆ XC , the Hausdorff distance between Q1

and Q2 is the minimal r ∈ [0,∞] such that both Q1 ⊆ Nr(Q2) and Q2 ⊆ Nr(Q1).

We write hd(Q1, Q2) for the Hausdorff distance. Note that if hd(Q1, Q2) < ∞, then
Q1 ∩XI = Q2 ∩XI .

If hd(Q1, Q2) = r < ∞ and Q1 is λ-quasiconvex, then Q2 is (2r + λ)-quasiconvex.
(This uses the CAT(−1) inequality.) We see that quasiconvexity is invariant under the
equivalence relation of having finite Hausdorff distance.

We next want to consider projection to quasiconvex sets.

10
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Proposition 2.2.2 : Suppose Q1, Q2 ⊆ XC are both closed and λ-quasiconvex, and
that both meet X. Suppose that hd(Q1, Q2) = r < ∞ (so that Q1 ∩XI = Q2 ∩XI). If
x ∈ XC \ (Q1 ∩XI), then

diam
(
projQ1

(x) ∪ projQ2
(x)
)
≤ r + cosh−1 eλ + cosh−1 eλ+r.

♦
Proof : Suppose first, that x ∈ X.

Let y, z ∈ projQ1
(x) ∪ projQ2

(x). Without loss of generality, we can suppose that
d(x, y) ≥ d(x, z) and that y ∈ projQ1

(x). Since hd(Q1, Q2) ≤ r, there is some w ∈ Q1 with
d(z, w) ≤ r (Figure 2a).

Figure 2a.

Let u be a nearest point on [y, w] to x (in fact the unique nearest point). Since Q1 is
λ-quasiconvex, u ∈ Nλ(Q). Since y ∈ projQ1

(x), we must have

d(x, y) ≤ d(x, u) + λ.

Also,
d(x,w) ≤ d(x, z) + r ≤ d(x, y) + r

≤ d(x, u) + λ+ r.

If u 6= y, then xûy ≥ π/2. Since d(x, y) − d(x, u) ≤ λ, applying Corollary 1.1.4, we find
that log cosh(d(u, y)) ≤ λ, thus

d(u, y) ≤ cosh−1 eλ.

Similarly, we get that
d(u,w) ≤ cosh−1 eλ+r.

We conclude that
d(y, z) ≤ r + cosh−1 eλ + cosh−1 eλ+r

as required.
The case where x ∈ XI follows similarly, applying Lemma 1.1.10 in place of Corollary

1.1.4, and using the description of projQi
(x) given by Proposition 2.1.1. In this case, we

take u to be a point (in fact the unique point) on [y, w] maximising a Busemann function.
♦

Corollary 2.2.3 : Suppose Q ⊆ XC is closed, λ-quasiconvex, and meets X. If x ∈
XC \ (Q ∩XI), then

diam projQ(x) ≤ 2 cosh−1 eλ.

11
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Proof : Set Q = Q1 = Q2 in Proposition 2.2.2. ♦
It is easy to check that if Q is quasiconvex, and x ∈ Q ∩XI then projQ(x) = {x}.
In particular, we see that if Q is convex (i.e. 0-quasiconvex), then projQ(x) consists

of a single point of Q, for each x ∈ XC . Thus, in this case, we may think of projQ as a
map from XC to Q. Since the graph is closed, by definition, this map is continuous. Thus,
projQ is a retraction of XC onto Q.

Lemma 2.2.4 : Suppose Q ⊆ XC is convex.

(1) Suppose x ∈ X, and that y ∈ Q ∩ X locally minimises the function [z 7→ d(x, z)] on
Q ∩X. Then, y = projQ x.

(2) Suppose x ∈ XI . Let h be a Busemann function about x. Suppose y ∈ Q ∩X locally
maximises h on H ∩X. Then y = projQ x.

Proof : Suppose that y 6= z = projQ x. Then xŷz < π/2 (by Toponogov’s comparison
theorem, if x ∈ X, and so by continuity if x ∈ XI). But [y, z] ⊆ Q, which contradicts the
hypothesis on y. ♦

Note that one can generalise to the case where Q is quasiconvex. Thus, if y ∈ Q ∩X
minimises the distance to x over a sufficiently large part of Q ∩X, then y ∈ projQ x.

2.3. Pseudoconvexity.

This section is a digression. We shall not refer to it again in the rest of this paper.
The definition of quasiconvexity we have just given is a standard notion. It is some-

what unfortunate that the intersection of two quasiconvex sets need not be quasiconvex. It
thus does not make much sense to speak of “quasiconvex hulls” of arbitrary sets. However,
in the context in which we are working, we could replace quasiconvexity by the following
notion of “pseudoconvexity”. Given µ ∈ [0,∞), we say that Q ⊆ XC is µ-pseudoconvex if
[x, y] ⊆ Q whenever x, y ∈ Q and d(x, y) > µ. This is clearly closed under intersection.
Given X ⊆ XC , we define hullµ(Q) as the smallest µ-pseudoconvex set containing Q.

It is not hard to see that, given any µ > 0, there is some R(µ) > 0, so that for any
Q ⊆ XC , NR(µ)(join(Q)) is µ-pseudoconvex. In particular, if Q is λ-quasiconvex, then
hullµ(Q) ⊆ Nλ+R(µ)(Q).

Most of the discussion involving convex hulls in this paper can be interpreted for µ-
pseudoconvex hulls, though we shall make no explicit mention of this. It is not clear what
the boundary of a pseudoconvex hull looks like in general. Note that as µ → 0, then the
quantity R(µ) will necessarily tend to ∞. Thus, this does not give rise to a construction
of convex sets. For this, we need to assume a lower curvature bound (Section 2.5).

2.4. Cones and visual radii.

Let ξ be a unit tangent vector based at x ∈ X. Given any θ ∈ [0, π], write

cone(ξ, θ) = {y ∈ XC | 6 (ξ,−→xy) ≤ θ}.

12
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Recall that −→xy is the unit tangent vector at x in the direction of y. We use 6 ( , ) for the
angle between two tangent vectors. We call cone(ξ, θ) the cone of angle θ about ξ. It is
the closure, in XC , of the image of a spherical cone in Rn under the the exponential map
based at x. If θ = π/2, we shall refer to cone(ξ, π/2) as the half-space about ξ.

Suppose that y, z ∈ XC are distinct. Then [y, z] ⊆ XC is convex. Thus, as remarked at
the end of Section 2.2, proj[y,z] is a retraction of XC onto [y, z]. By applying Toponogov’s
comparison theorem (Propostion 1.1.2), we arrive at the following alternative description
of half-spaces:

Lemma 2.4.1 : Suppose ξ ∈ T 1
x (X). Suppose that y and z are distinct points of XC

with x ∈ [y, z] \ {y, z} and ξ = −→xy. Then

cone(ξ, π/2) = proj−1
[y,z][x, y].

♦

Given any closed set Q ⊆ XC , and x ∈ X \Q, we define

vr(Q, x) = min
y∈XI

max
z∈Q

yx̂z.

We call vr(Q, x) the visual radius of Q at x. In other words, it is the smallest θ > 0 such
that Q lies inside some cone of angle θ based at x.

It is not hard to see that the map [x 7→ vr(Q, x)] is continuous on X \ Q. Setting
vr(Q, x) = π for x ∈ Q, it becomes upper-semicontinuous on the whole of X.

Given any θ ∈ (0, π) we write

V 0
θ (Q) = {x ∈ X | vr(Q) ≥ θ}.

We see that V 0
θ (Q) is a closed subset of X. Let V Cθ (Q) be the closure of V 0

θ (Q) in XC ,
and set Vθ(Q) = Q ∪ V Cθ (Q).

We remark that, given 0 < φ < θ ≤ π/2, then there is some r such that for any Q,
we have Vφ ⊆ NrVθ(Q). We have no explicit use for this result, however we shall need the
following.

Lemma 2.4.2 : Given any θ ∈ (0, π/2] and λ ∈ [0,∞), there is some r = r(θ, λ), such
that if Q ⊆ XC is closed and λ-quasiconvex, then

Vθ(Q) ⊆ Nr(Q).

13
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Proof : Let r = λ+ sech−1 sin(θ/2).

Suppose that x ∈ X with d(x,Q) > r. If y, z ∈ Q, then d(x, [y, z]) > r − λ =
sech−1 sin(θ/2). By Corollary 1.1.3, we find that yx̂z < θ, so certainly, vr(Q, x) < θ. Thus
x /∈ Vθ(Q). This shows that V 0

θ (Q) = Vθ(Q) ∩X ⊆ Nr(Q).

But Nr(Q) is, by definition, closed in XC , and contains Q. Thus Vθ(Q) ⊆ Nr(Q). ♦

Now, if Q ⊆ XC is any closed set, we know that joinQ is (2λ0)-quasiconvex. Thus,
by Lemma 2.4.2, we have

Vθ(Q) ⊆ Vθ(joinQ) ⊆ Nr(joinQ),

for some r depending only on θ. Note that Nr(joinQ) ∩ XI = (joinQ) ∩ XI = Q ∩ XI .
Thus:

Corollary 2.4.3 : Given any closed set Q ⊆ XC and any θ ∈ (0, π/2] we have

Vθ(Q) ∩XI = Q ∩XI .

Another way to say this is that if (xn) is a sequence of points tending to a point of
XI \Q, then vr(Q, xn) tends to 0.

2.5. Construction of convex sets.

In this section, we assume that all the sectional curvatures of X lie between −κ2 and
−1.

Given any closed set Q ⊆ XC , we write hull(Q) for the (closed) convex hull of Q, i.e.
the smallest closed convex set containing Q. One can show that hull(Q) varies continuously
with Q, in the Hausdorff topology [Bo3], though we shall not need this fact here.

In [An], Anderson gives a means of constructing convex sets in X. We state the result
in the following form.

Proposition 2.5.1 : For any κ ≥ 1, there is some θ0 = θ0(κ) such that if ξ is a unit
tangent vector to X, then

hull cone(ξ, θ0) ⊆ cone(ξ, π/2).
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Proof : Fix, for the moment, some R > 0.

Suppose ξ ∈ T 1
xX, and let y ∈ X be the point with −→xy = ξ and d(x, y) = R. In

[An], Anderson constructs a convex set H ⊆ XC with smooth boundary, ∂H, and ξ as the
inward-pointing normal to ∂H at x. It follows that H ⊆ cone(ξ, π/2). [An, Lemma 2.4]
says that there is some φ(R, κ) ∈ [0, π] such that if z ∈ XI \H, then xŷz ≤ φ(R, κ) (Figure
2b).

Figure 2b.

Moreover, from the description given of φ(R, κ), it is clear that φ(R, κ)→ 0 as R→∞.
Thus, we can choose R = R(κ) so that φ(R, κ) ≤ π/2. In other words, if z ∈ XI \ H,
then xŷz ≤ π/2. It follows by Corollary 1.2.3, that yx̂z ≥ θ0 where θ0 = θ0(κ) =
sin−1 sech(κR(κ)). We see that cone(ξ, θ0) ∩XI ⊆ H. Since H is convex and contains x,
we have cone(ξ, θ0) ⊆ H. Thus hull cone(ξ, θ0) ⊆ H ⊆ cone(ξ, π/2). ♦

Proposition 2.5.2 : If Q ⊆ XC is closed, then

hull(Q) ⊆ Vθ0(Q).

Proof : Suppose x ∈ X \ Vθ0(Q). Thus Q ⊆ cone(ξ, θ), where θ < θ0, and ξ is a unit
tangent vector at x. Let z ∈ XI be the ideal point with −→xz = ξ. If y ∈ [x, z] \ {x} is
sufficiently close to x, then clearly Q ⊆ cone(−→yz, θ0). Thus,

hull(Q) ⊆ hull cone(−→yz, θ0) ⊆ cone(−→yz, π/2).

But x /∈ cone(−→yz, π/2), and so x /∈ hull(Q).

Suppose x ∈ XI \ Vθ0(Q). Choose any z ∈ Q. By Corollary 2.4.3, Vθ0/2(Q) ∩ XI =
Q∩XI = Vθ0(Q)∩XI , and so we can find y ∈ [x, z]∩X \Vθ0/2(Q). Since vr(Q, y) ≤ θ0/2,
and z ∈ Q, we must have Q ⊆ cone(−→yz, θ0). As in the first part, we see that x /∈ hull(Q).
♦

Since (by Corollary 2.4.3), Q ∩XI = Vθ0(Q) ∩XI , we have as a corollary, the result
of Anderson:

Corollary 2.5.3 : If Q ⊆ XC is closed, then

hull(Q) ∩XI = Q ∩XI .

Also, applying Lemma 2.4.2, we get:
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Proposition 2.5.4 : Given κ ≥ 1, and λ ∈ [0,∞), there is some r ∈ [0,∞) such that if
Q ⊆ XC is closed and λ-quasiconvex, then

hull(Q) ⊆ Nr(Q).

3. Groups of isometries.

In this Chapter, we shall describe some constructions relating to discrete group actions.
We assume throughout that X has curvature at most −1. In Section 3.5, we assume that
X has curvature at least −κ2.

3.1. Elementary and nilpotent groups.

By a subspace, Y , of XC , we shall mean a totally geodesic subset which meets X (i.e.
Y ∩X 6= ∅), such that if x, y ∈ Y are distinct, then the bi-infinite geodesic through x and
y lies in Y . (Thus, a single point of X is a subspace, but a single point of XI is not.) Such
a set is necessarily closed in XC , and has, itself, the structure of a compactified Hadamard
manifold, with the same curvature bounds. We say that Y is proper if Y 6= XC .

Any isometry g of X extends to a homeomorphism of XC , which we shall also denote
by g. We shall write fix g for the set of fixed points of g in XC . We have the following
classification of isometries.

Any isometry g of X is of precisely one of the following types.

(0) g is the identity.

(1) g is elliptic. Thus fix g is a proper non-empty subspace of XC .

(2) g is parabolic. Thus, fix g consists of a single point p ∈ XI , and g preserves setwise
each horosphere about p.

(3) g is loxodromic. Thus, fix g = {p, q} where p and q are distinct points of XI . For all
x ∈ XC \ {p, q}, we have gnx→ p and g−nx→ q. We call p the attracting fixed point of g,
and q the repelling fixed point of g. The bi-infinite geodesic [p, q] is called the loxodromic
axis. It is preserved setwise by g.

Suppose G is a group of isometries acting on X. We write fixG for the set of all fixed
points of G in XC , i.e. fixG =

⋂
g∈G fix g.

Definition : The group G is elementary if either fixG 6= ∅, or else if G preserves setwise
some bi-infinite geodesic in XC .

It is not hard to separate elementary groups into three mutually exclusive classes.

Case(1): fixG is a non-empty subspace of XC .

Case(2): fixG consists of a single point of XI .
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Case(3): G has no fixed point in X, and G preserves setwise a unique bi-infinite geodesic
in X.

Proposition 3.1.1 : Any virtually nilpotent group of isometries of X is elementary.

Proof : First, we deal with the case where our group G is abelian. Choose any non-trivial
g ∈ G. If g is elliptic, then fix g is a proper G-invariant subspace of XC , and so we can use
induction on dimension. If g is parabolic, then its fixed point must be fixed by G. If g is
loxodromic, then G preserves setwise the loxodromic axis. We find that G is elementary.

Now, suppose that G is nilpotent. Let Z be the centre of G. If fixZ is a non-empty
subspace of XC (Case(1)), then G/Z acts on fixZ, and the result follows by induction on
dimension. If fixZ consists of a single point p ∈ XI (Case(2)), then p is fixed by G. If
X ∩ fixZ = ∅ and Z preserves a unique bi-infinite geodesic (Case(3)), then this geodesic
is preserved by G.

Finally, suppose that G has a nilpotent subgroup H of finite index. We can assume
that H is normal in G (by intersecting its conjugates). If fixH is a non-empty subspace of
XC , then fixH is G-invariant, and G/H is finite and acts on fixH. It follows that G/H,
and hence G, has a fixed point in X ∩ fixH. (See the beginning of Section 3.5). If fixH
consists of a single point of XI , then this point is fixed by G. If H preserves setwise a
unique bi-infinite geodesic, then this geodesic is preserved also by G. ♦

The interest in virtually nilpotent groups arises from the Margulis Lemma (3.5.1).
We are particularly interested in the following two types of elementary groups.

Definition : A group of isometries, G, of X is parabolic if fixG consists of a single point
p ∈ XI , and if G preserves setwise some (and hence every) horosphere about p.

Definition : A group of isometries, G, of X is loxodromic if G contains a loxodromic
element and preserves setwise its axis.

It is easily seen that a loxodromic group is precisely what is described by Case(3)
above. There are two types of loxodromic group. Either fixG = {x, y}, where x and y are
the endpoints of the loxodromic axis, or else there is some element of G which swaps x
and y, in which case fixG = ∅. We call these situations loxodromic of the first and second
type respectively.

3.2. Discrete isometry groups.

We say that a group Γ acts properly discontinuously on a locally compact topological
space if each compact set meets only finitely many images of itself under Γ. Alternatively,
we may say that Γ acts properly discontinuously if, for each compact set K, the set of
images, ΓK, of K under Γ is locally finite. (We take this to imply that stabΓK is finite.)
It is a simple exercise that these definitions are equivalent.

We write IsomX for the set of isometries of X. Thus, IsomX has naturally the
structure of a locally compact topological group. A subgroup Γ of IsomX is discrete as a
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subgroup if and only if it acts properly discontinuously on X. In such a case, the torsion
elements of Γ (i.e. the non-trivial elements of finite order) are precisely the elliptic ones.
In fact, any finite subgroup of IsomX must have a fixed point in X.

It’s not hard to see that if G is a discrete subgroup of IsomX with fixG 6= ∅, then G
is finite, parabolic or loxodromic of the first type. As a corollary, we have:

Proposition 3.2.1 : A discrete elementary subgroup of IsomX is finite, parabolic or
loxodromic.

Note that these three cases are mutually exclusive.

Suppose that Γ ⊆ IsomX is discrete. Given any subset Q ⊆ XC , we shall write

stabΓQ = {γ ∈ Γ | γQ = Q}

for the setwise stabliser of Q.

Suppose G ⊆ Γ is parabolic with fixed point p. By Proposition 3.2.1, we see that
stabΓ p is also parabolic. In fact, we see easily that stabΓ p is a maximal parabolic subgroup
of Γ.

Definition : We call p ∈ XI a parabolic fixed point of Γ if stabΓ p is parabolic.

Note that there is a bijective correspondence between orbits of parabolic fixed points
and conjugacy classes of maximal parabolic subgroups.

Suppose G ⊆ Γ is loxodromic with axis β. Again using Proposition 3.2.1, we see that
stabΓ β is a maximal loxodromic subgroup of Γ. We have shown:

Lemma 3.2.2 : Suppose Γ ⊆ IsomX is discrete. Every infinite elementary subgroup of
Γ is contained in a unique maximal elementary subgroup.

Clearly, every subgroup of an elementary group is elementary, so we have:

Corollary 3.2.3 : If G,G′ ⊆ Γ are maximal elementary, and intersect in an infinite
subgroup, then G = G′.

Given G ⊆ Γ, we write

NΓ(G) = {γ ∈ Γ | γGγ−1 = G}

for the normaliser of G in Γ.

Lemma 3.2.4 : If G ⊆ Γ is infinite maximal elementary, then NΓ(G) = G.
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Proof : Supppose G is parabolic with fixed point p. If γ ∈ NΓ(G), then {γp} = γfixG =
fix γGγ−1 = fixG = {p}. Thus p ∈ fixNΓ(G). By proposition 3.2.1, we see that NΓ(G) is
parabolic. Thus NΓ(G) = G.

If G is loxodromic, then NΓ(G) preserves the loxodromic axis. Again NΓ(G) = G. ♦

We remark that a discrete loxodromic group of the first type is group-theoretically
just an infinite-cyclic extention of a finite subgroup of orthogonal group O(n− 1). (For a
description of discrete parabolic groups in the case where X has a lower curvature bound,
see Chapter 4.)

Suppose that Γ ⊆ IsomX is discrete. Given any x ∈ XC , we write Γx for the orbit of
x under Γ. For any x ∈ X, we write Λ = Λ(Γ) ⊆ XI for the set of accumulation points
of Γx. Thus, Λ is closed and Γ-invariant. Also, Λ is defined independently of the choice
of x ∈ X. (If xn → z ∈ XI and d(xn, yn) is bounded, then yn → z.) In fact, we shall see
that, unless Γ is loxodromic of the first type and x is a fixed point of Γ, then Λ is the set of
accumulation points of Γx for any x ∈ XI . We call Λ the limit set of Γ. The complement
Ω = Ω(Γ) = XI \ Λ is called the discontinuity domain.

It is easily verified that Λ(Γ) = ∅ if and only if Γ is finite, that Λ(Γ) consists of a
single point if and only if Γ is parabolic, and that Λ(Γ) consists of two points if and only
if Γ is loxodromic.

Lemma 3.2.5 : Suppose that Q ⊆ XI is closed and Γ-invariant and contains at least
two points. Then, Γ acts properly discontinuously of XC \Q.

Proof : Let J = join(Q), as defined in Section 2.2. Then J∩X is dense in J . Suppose that
K is a compact subset of XC \Q. Then, projQK =

⋃
x∈K projQ(x) is a compact subset of

X (since projQ ⊆ XC ×XC is closed). Now, projQ is Γ-equivariant, and so if γK ∩K 6= ∅
for some γ ∈ Γ, then γ projQK ∩ projQK 6= ∅. Since Γ acts properly discontinuously on
X, there are only finitely many such γ. ♦

If Γ is any discrete group, then clearly Γ does not act properly discontinuously at any
point of the limit set, Λ. By Lemma 3.2.5, we see that if Γ is not loxodromic, then Λ is the
minimal non-empty closed Γ-invariant subset. Note that the set if accumulation points of
Γx for x ∈ XI is such a subset, and thus equal to Λ. In fact, the only exceptional case is
when Γ is loxodromic of the first type, and x is a fixed point of Γ.

Proposition 3.2.6 : Suppose Γ ⊆ IsomX is discrete, and Ω = Ω(Γ) is the discontinuity
domain. Then, Γ acts properly discontinuously on X ∪ Ω.

Proof : By Lemma 3.2.5, we need only verify the cases where Γ is finite or parabolic. If
Γ is finite, the statement is trivial. If Γ is parabolic, we can use the argument of Lemma
3.2.5, with J replaced by a horoball about the fixed point. ♦

We have already remarked that the torsion elements of a discrete group Γ are precisely
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the elliptic ones. Let
S = {fix γ | γ ∈ Γ is elliptic}.

Let Σ =
⋃
S. Thus Σ ∩X is the set of points, x, of X for which stabΓ x is non-trivial.

Lemma 3.2.7 : S is locally finite on X ∪ Ω.

Proof : Suppose, to the contrary, that there is some sequence (γn) of distinct elements of
Γ with the sets fix γn accumulating on some point x ∈ X ∪Ω. We can find points xn ∈ X
with γnxn = xn and xn → x. Thus, if K is any compact neighbourhood of x, disjoint
from Λ, we have γnK ∩ K 6= ∅ for all sufficiently large n. This contradicts the proper
discontinuity of Γ on X ∪ Ω. (Proposition 3.2.6). ♦

If G ⊆ Γ is finite then fixG is a subspace of Γ. By an induction on dimension, we
see that every finite subgroup of Γ is contained in some (possibly many) maximal finite
subgroup. If G ⊆ Γ is maximal finite, then clearly fixG determines G. Let

G = {fixG |G ⊆ Γ is maximal finite}.

Thus G is a disjoint collection of subsets of XC . Each element of G is a finite intersection
of elements of S, and so:

Corollary 3.2.8 : G is locally finite on X ∪ Ω.

Given the discrete group Γ, we write

MC = MC(Γ) = (X ∪ Ω)/Γ.

Thus, MC = M ∪MI , where M = M(Γ) = X/Γ and MI = MI(Γ) = Ω/Γ. Note that
Σ ∩ (X ∪ Ω) descends to a closed subset, Σ̂ of MC which we call the singular set of MC .
We shall say more about this in Section 3.4.

Suppose G ⊆ Γ is maximal finite, so that fixG ∈ G. If γ ∈ Γ, then γfixG = fix γGγ−1,
and so the set

⋃
ΓfixG =

⋃
γ∈Γ γfixG corresponds to the conjugacy class of G in Γ. Let

Ĝ = {π(
⋃

ΓF \ Λ) | F ∈ G},

where π : X ∪Ω −→MC is the projection. Thus, Ĝ is a locally finite collection of disjoint
closed subsets of MC . The elements of Ĝ are in bijective correspondence with the conjugacy
classes of maximal finite subgroups of Γ.

3.3. Dirichlet domains.

Suppose Γ ⊆ IsomX is discrete, with discontinuity domain Ω ⊆ XI .
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Proposition 3.3.1 : Suppose Q ⊆ XC is quasiconvex, and that ΓQ = {γQ | γ ∈ Γ} is
locally finite on X. Then ΓQ is locally finite on X ∪ Ω.

Proof : Suppose x ∈ Ω. Let V1, V2, V3 ⊆ X ∪ Ω be three compact neighbourhoods of x,
with V1 contained in the interior of V2, and V2 contained in the interior of V3. Let W be
the closure, in XC , of XC \ V3. Thus, (V1 ∪W ) ∩ ∂V2 = ∅. Let J = join(V1 ∪W ), so that
J ∩XI ⊆ V1 ∪W . We see that J meets ∂V2 in a compact subset, K, of X. Any geodesic
from point in V1 to a point in W must meet K. (Figure 3a.)

Figure 3a.

Let Q be as in the hypothesis. Thus Q is λ-quasiconvex for some λ ≥ 0. We claim that
V1 can meet only finitely many images of Q under Γ. Since V3 ⊆ X ∪ Ω, certainly V3 can
only contain finitely many such images. Suppose γQ meets V1 but is mot contained in V3.
Then we can find y ∈ V1 ∩ γQ and z ∈W ∩ γQ. Now, [y, z] ⊆ Nλ(γQ) and [y, z] ∩K 6= ∅.
Thus γQ meets the compact set Nλ(K) ⊆ X. Since ΓQ is locally finite on X, this can
happen for only finitely many γ ∈ Γ. ♦

Proposition 3.3.1 will be used in the discussion of conical limit points in Chapter 5.
Another application is to Dirichlet domains for Γ.

Suppose A ⊆ X is a discrete subset and a ∈ A. We write D(a,A) for the closure in
XC of {x ∈ X | d(x, a) ≤ d(x,A)}. It is easy to see that D(a,A) is starlike about a, and
hence λ0-quasiconvex. Moreover, the collection D(A) = {D(a,A) | a ∈ A} is locally finite
on X and covers X.

Of particular interest is the case where A = Γa is an orbit under the discrete group
Γ. We call D(a,Γa) a Dirichlet domain. Note that the stabliser stabΓD(a,Γa) = stabΓa
is finite. Since D(Γa) = ΓD(a,Γa), applying Proposition 3.3.1, we get:

Corollary 3.3.2 : D(Γa) is locally finite on X ∪ Ω.

Note that it follows that
⋃
D(Γa) ∩ (X ∪Ω) =

⋃
γ∈Γ γD(a,Γa) ∩ (X ∪Ω) is closed in

X ∪ Ω. Thus X ∪ Ω ⊆
⋃
D(Γa).

3.4. Orbifolds.

For the definitions of geometrical finiteness, we shall need to refer to orbifold having
both ideal and metric boundaries. In this section, we clarify what is meant by this.

The notion of an orbifold was defined by Thurston [T] as a generalisation of a manifold.
A typical example of an orbifold is the quotient of a manifold by a group action which is
properly discontinuous though not necessarily free. (However not every orbifold is obtained
in this way.) Thus an orbifold is locally modelled on Rn quotiented out by a finite subgroup
of the orthogonal group O(n). These subgroups are considered part of the structure of the
orbifold. Thus we may define orbifold homeomorphism. There are also notions of covering
spaces, universal cover and fundamental group for an orbifold. A good orbifold is one
which is covered by a manifold. Thus a good orbifold is the quotient of a simply connected
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manifold (its universal cover) by the action of its fundamental group. For details see [T].
We shall only be interested in good orbifolds.

We can also speak of an orbifold with boundary. Boundary points are locally modelled
on a quotient of Rn−1×[0,∞) by a finite subgroup of O(n−1) (acting on the Rn−1 factor).
We can also define a (codimension-0) suborbifold, N ′, of an orbifold with boundary, N .
At a point of the topological boundary of N ′ in N , the pair (N,N ′) is locally modelled on
either (Rn,Rn−1 × [0,∞)) quotiented by a finite subgroup of O(n − 1), or else (Rn−1 ×
[0,∞),Rn−2 × [0,∞)2) quotiented by a finite subgroup of O(n − 2). Thus a suborbifold
of an orbifold with boundary is itself an orbifold with boundary.

Suppose Γ is a discrete subgroup of IsomX. Then M = M(Γ) = X/Γ is a (good)
orbifold. M also has a metric structure induced from X. This is a Riemannian metric
away from the singular set Σ̂ ∩ M , as defined is Section 3.2. Clearly X and Γ can be
completely recovered from the metric and orbifold structures on M . (In fact, the orbifold
structure of M , i.e. the system of subgroups of O(n), is completely determined just by the
metric structure.)

Since Γ acts properly discontinuously on X ∪ Ω, we can define

MC = MC(Γ) = (X ∪ Ω)/Γ.

Thus, MC is an orbifold with boundary. We have Γ = π1M = π1MC , where π1 is the
orbifold fundamental group.

We shall want to speak about negatively curved orbifolds with convex boundary. This
may be defined intrinsically, though since we are only interested in good orbifolds, it is
most simply done with reference to the universal cover.

Suppose that Y is a metrically complete simply connected Riemannian manifold, with
convex boundary ∂Y , all of whose sectional curvatures (in the interior) are at most −1.
As with X, we may define the ideal boundary, YI , of Y as a set of equivalence classes of
geodesic rays in Y . Thus, YC = Y ∪ YI is compact, in fact homeomorphic to an n-ball. If
it happens that Y ⊆ X, then we may identify YC as the closure of Y in XC .

If Γ is a group acting faithfully and properly discontinuously on Y , we may define
the discontinuity domain ΩY ⊆ YI , just as for X. Let MY = MY (Γ) = Y/Γ and MY

C =
MY
C (Γ) = (Y ∪ ΩY )/Γ. Thus, MY

C is an orbifold with boundary. The orbifold boundary
of MY

C is the union of the ideal boundary YI/Γ and the convex boundary ∂Y/Γ. We
have Γ = π1M

Y = π1M
Y
C . In the case where Γ is a discrete subgroup of IsomX, and

Y is a closed convex Γ-invariant subset of X, we will have ΩY = YI ∩ Ω, where Ω is
the discontinuity domain in XI , and where we have identified YI as a subset of XI . The
topological boundary of MY

C in MC is the closure of the convex boundary.

Suppose, more generally that we have groups Γ and G acting faithfully and properly
discontinuously on X and Y respectively. Suppose that MY

C (G) may be identified as a
“convex suborbifold” of MC(Γ) i.e. a suborbifold with convex boundary. From the orbifold
definitions, it follows that the inclusion MY (G) ↪→MY

C (Γ) lifts to a map of universal covers
Y −→ X, which is a local isometry. Since Y has convex boundary, this map is injective,
and so we can identify Y has a convex subset of X, and YC as a subset of XC . It follows
that that G = π1M

Y (G) injects into π1M(Γ) = Γ. In other words, we can identify G as
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a subgroup of Γ. In summary, YC ⊆ XC is closed convex and G-invariant, where G ⊆ Γ.
For our purposes, we can take this conclusion as the definition of “convex suborbifold”.

The convex suborbifolds in which we will be interested are neighbourhoods of end
of quotients of parabolic groups (Chapter 4), and uniform neigbourhoods of convex cores
(Section 5.3).

3.5. The Margulis Lemma and thick-thin decomposition.

The thick-thin decomposition is central to the study of negatively curved manifolds
[BaGS]. Here we shall need a generalisation to the orbifold case, for which I know of no
written account. We set out in this section the basic facts we shall need. We shall assume
that all the sectional curvatures of X lie between −κ2 and −1.

Given x ∈ X, and ε > 0, write

Iε(x) = {γ ∈ IsomX | d(x, γx) ≤ ε}.

If Γ ⊆ IsomX is discrete, we write

Γε(x) = 〈Γ ∩ Iε(x)〉,

i.e. Γε(x) is generated by those elements of Γ which move the point x a distance at most ε.

Proposition 3.5.1. (Margulis Lemma) : There is a constant ε(n, κ) > 0 such that
if Γ ⊆ IsomX is discrete, and x ∈ X, then Γε(x) is virtually nilpotent for all ε ≤ ε(n, κ).
Here, ε(n, κ) depends only on the dimension, n, of X, and the lower curvature bound,
−κ2.

Proof : See, for example, [BaGS]. ♦

We call ε(n, κ) the Margulis constant .

Given a discrete subgroup, Γ, of IsomX, we write

Tε(Γ) = {x ∈ X | Γε(x) is infinite}.

Thus, Tε(Γ) is a closed Γ-invariant subset of X. Note that, since Γ acts properly discon-
tinuously on X ∪ Ω, the closure of Tε(G) in XC is a subset of X ∪ Λ. First, we describe
Tε(G) for an elementary group G. Clearly Tε(G) = ∅ if G is finite.

Proposition 3.5.2 : Suppose G ⊆ IsomX is discrete parabolic, with fixed point p, and
suppose ε > 0. Then, Tε(G) is connected. Moreover, if x ∈ XC \ {p}, then [x, p] meets
Tε(G) in a non-empty ray tending to p. (Thus Tε(G) ∪ {p} is closed in XC , and starlike
about p.)
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Proof : We shall need the fact (Proposition 4.2) that G contains a parabolic element γ.

Suppose x ∈ X, and y ∈ [x, p] \ {p}. Given any g ∈ G, then, applying Proposition
1.1.11(1), we see that d(y, gy) ≤ d(x, gx). Thus, Gε(x) ⊆ Gε(y). It follows that if x ∈ Tε(G)
then [x, p] ⊆ Tε(G) ∪ {p}.

Suppose now that x and y are any points of Tε(G). Let α : [0.1] −→ X be any
path with α(0) = x and α(1) = y. Set r = max{d(α(u), γα(u)) | u ∈ [0, 1]}. Let R be
the constant given by Proposition 1.1.11(2), and set t = max(loge(R/ε), 0). Thus, for all
u ∈ [0, 1] we have d(α(u) + t, γ(α(u) + t)) ≤ ε. It follows that γ ∈ Gε(α(u) + t), and so
α(u) + t ∈ Tε(G). We see that the path [u 7→ α(u) + t] joins x + t to y + t in Tε(G). We
already know that [x, x + t] ⊆ Tε(G) and [y, y + t] ⊆ Tε(G). Thus we have shown that
Tε(G) is connected.

It remains to see that for any x ∈ XI \ {p}, both [x, p] ∩ Tε(G) and X ∩ [x, p] \ Tε(G)
are non-empty. Again, this follows easily from Proposition 1.1.11(2). ♦

The situation for loxodromic groups is a little more complicated. Suppose G ⊆ IsomX
is discrete loxodromic with axis β. Suppose x ∈ X, and let z = projβ x. If y ∈ [x, z],
and g ∈ G, then using the CAT(−1) inequality, we see that d(y, gy) ≤ d(x, gx). Thus
Gε(x) ⊆ Gε(y), and so if x ∈ Tε(G) then [x, z] ⊆ Tε(G). We see that Tε(G) retracts onto
β ∩ Tε(G). Let γ ∈ G be a loxodromic element of minimal translation distance, µ, on β.
Suppose first that G is loxodromic of the first type (i.e. G respects the orientation of β).
In this case, we see that if µ ≤ ε, then β∩X ⊆ Tε(G), whereas if µ > ε, then β∩Tε(G) = ∅,
and so Tε(G) = ∅. Thus Tε(G) is connected (or empty). Suppose now that G is of the
second type (i.e. there is an element of G which swaps the two endpoints of β). This time,
there are three possibilities. If µ ≤ ε, again β ∩ X ⊆ Tε(G), and Tε(G) is connected. If
ε < µ ≤ 2ε then β ∩ Tε(G) consists of a countable disjoint union of closed intervals (or
points if µ = 2ε). These are the images under G of a single interval, and so (β ∩ Tε(G))/G
and thus Tε(G)/G are connected. Finally, if µ > 2ε, then Tε(G) = ∅.

Note that we have shown:

Proposition 3.5.3 : If G ⊆ IsomX is discrete elementary, and ε > 0, then Tε(G)/G is
connected (or empty). ♦

Suppose now that Γ ⊆ IsomX is any discrete group. Suppose that x ∈ X, that
ε ≤ ε(n, κ), where ε(n, κ) is the Margulis constant. By the Margulis Lemma (Proposition
3.5.1), we have that Γε(x) is virtually nilpotent, and so by Proposition 3.1.1, Γε(x) is
elementary. If x ∈ Tε(Γ), then Γε(x) is infinite, and so, by Lemma 3.2.2, Γε(x) is contained
in a unique maximal elementary subgroup of G of Γ. Clearly x ∈ Tε(G) ⊆ Tε(Γ). We
have shown that Tε(Γ) is a union of Tε(G) as G varies over all maximal infinite elementary
subgroups of Γ. We also have:

Proposition 3.5.4 : Suppose ε < ε(n, κ). Let δ > 0 be such that ε + 2δ ≤ ε(n, κ).
Suppose Γ ⊆ IsomX is discrete, and that G and G′ are two distinct maximal elementary
subgroup of Γ. Then d(Tε(G), Tε(G

′)) ≥ δ. (Of course one or both of Tε(G) and Tε(G
′)

may be empty.)
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Proof : Suppose, to the contrary, that x ∈ Tε(G) and x′ ∈ Tε(G′) with d(x, x′) ≤ δ. It
is easily seen that Γε(x) and Γε(x

′) are both subgroup of Γε+2δ(x), which by the Margulis
lemma is virtually nilpotent and thus elementary. It follows that Γε+2δ(x) is contained in
a maximal elementary subgroup G′′ of Γ. We have Γε(x) ⊆ G∩G′′ and Γε(x

′) ⊆ G′ ∩G′′.
Applying Corollary 3.2.3, we see that G = G′′ = G′. ♦

In particular, we have shown:

Proposition 3.5.5 : Suppose ε < ε(n, κ), and Γ ⊆ IsomX is discrete. Then Tε(Γ) is a
disjoint union of Tε(G), as G ranges over all maximal infinite elementary subgroups of Γ.

Corollary 3.5.6 : Suppose ε < ε(n, κ) and T0 is an unbounded connected component of
Tε(Γ), then T0 = Tε(G) where G = stabΓ T0.

Proof : By Proposition 3.5.5, we know that T0 is a component of Tε(G) where G is a
maximal infinite elementary subgroup of Γ. Since Tε(G) contains an unbounded connected
set, namely T0, we see from the possible forms of Tε(G) described above, that Tε(G) must
be connected. Thus T0 = Tε(G).

If γ ∈ stabΓ T0, then γTε(G) = Tε(γGγ
−1) = Tε(G). By Proposition 3.5.4, we have

that γGγ−1 = G, i.e. γ ∈ NΓ(G). By Lemma 3.2.4, we have γ ∈ G. Thus G = stabΓ T0.
♦

Corollary 3.5.7 : Suppose ε < ε(n, κ) and T0 is a bounded connected component of
Tε(Γ), then T0 is a connected component of Tε(G), where G is a maximal loxodromic
subgroup of Γ, of the second type.

Proof : By Proposition 3.5.5, T0 is a component of Tε(G), where G ⊆ Γ is maximal
elementary. Since T0 is bounded, the only possibility is for G to be loxodromic of the
second type. ♦

Given ε < ε(n, κ), and a discrete group Γ, set

thinε(M) = Tε(Γ)/Γ.

Thus thinε(M) is a closed subset of the quotient orbifold M = X/Γ. We call thinε(M) the
thin part of M . By Propositions 3.5.3, 3.5.4 and 3.5.5, we see that thinε(M) is (topologi-
cally) a disjoint union of its connected components, and that each such component has the
form Tε(G)/G where G is an maximal infinite elementary subgroup of Γ. If G is parabolic,
we call Tε(G)/G a Margulis cusp. If G is loxodromic, we call Tε(G)/G a Margulis tube.

We write thickε(M) for the closure of M \thinε(M) in M . We call thickε(M) the thick
part of M . We write cuspε(M) for the union of all the Margulis cusps, and noncuspε(M) for
the closure of M \cuspε(M) in M . We call these respectively the cuspidal and non-cuspidal
parts of M . Obviously, cuspε(M) ⊆ thinε(M) and thickε(M) ⊆ noncuspε(M).

Note that if M is a manifold (i.e. if Γ is torsion-free), then

thinε(M) = {x ∈M | inj(x,M) ≤ ε/2},
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where inj(x,M) is the injectivity radius of M at x. In this case, Margulis tubes are either
closed geodesics of length ε, or tubular neighbourhoods of closed geodesics of length less
than ε.

4. Parabolic Groups.

In this chapter (and for the rest of this paper) we assume that all the sectional cur-
vatures of X lie between −κ2 and −1.

Suppose p ∈ XI . In Section 1.1, we introduced the notation x + t for x ∈ X and
t ∈ [−∞,∞]. Thus, suppose x lies in the bi-infinite geodesic [y, p] where y ∈ XI . If t ≥ 0,
then x+ t is the point of [x, p] with d(x, x+ t) = t. If t ≤ 0, then x+ t is the point of [y, x]
with d(x, x+ t) = −t. We set x+∞ = p and x−∞ = y.

We defined a parabolic group G ⊆ IsomX as one for which fixG consists of a single
point p ∈ XI , and which preserves setwise each horosphere about p. It follows that G is
infinite.

We begin by stating the following result proved in [Bo2], though we shall not need it
for the rest of this chapter.

Proposition 4.1 : A discrete parabolic group is finitely generated and virtually nilpotent.
♦

The point here is that G is finitely generated. Given this, it is a simple consequence
of the Margulis Lemma (Proposition 3.5.1), and convergence of geodesic rays (Proposition
1.1.11(2)) that G is virtually nilpotent.

Proposition 4.2 : A discrete parabolic group contains a parabolic element.

Proof : We give a proof without reference to Proposition 4.1. Suppose, for contradiction,
that G is a discrete parabolic group with no parabolic element. Then G is torsion (every
element has finite order). By the Margulis Lemma, and convergence of geodesic rays, we
see that every finitely generated subgroup of G is virtually nilpotent, and hence finite. We
may thus take an exhaustion of G by finite subgroups, G =

⋃
nGn, with Gn ⊆ Gn+1. Each

set fixGn is a non-empty subspace of XC , and fixGn+1 ⊆ fixGn. Clearly, the dimensions
of the fixGn must stablise, and so fixG =

⋂
n fixGn meets X. Thus G is finite. This

contradicts the supposition that G is parabolic. ♦

Note that the limit set Λ(G) of a discrete parabolic group G consists of the fixed point
p. Thus,

MC(G) = (XC \ {p})/G.

The main purpose of this chapter is to describe some relationships between certain
naturally occurring closed G-invariant subsets of XC \ {p}. The main results being aimed
at are Propositions 4.12 and 4.14. Each of the G invariant subsets, S, we consider, has the
property that S ∪ {p} is starlike about p. We make the following observation.
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Lemma 4.3 : Suppose S∪{p} ⊆ XC is closed and starlike about p. Then, for any r ≥ 0,
the uniform neighbourhood Nr(S ∪ {p}) is starlike about p.

Proof : Using the monotonic convergence of geodesic rays, Proposition 1.1.11(1). ♦

If Q is a closed subset of XC \ {p}, we write

Nr(Q) = Nr(Q ∪ {p}) \ {p}.

Figure 4a.

The main types of sets that concern us are summarised below. Figure 4a gives a
schematic representation of these sets, which is meant to evoke the upper half-space model
for hyperbolic space with the fixed point p at∞. We imagine G to be acting in a direction
orthogonal to the paper.

One obvious type of G-invariant set is a horoball B about p (Figure 4a(1)).
If Q is a closed G-invariant subset of XI \ {p}, we set W = W (Q) =

⋃
{[x, p] | x ∈

Q} \ {p}. We are principally interested in the case where Q/G is compact. In Figure
4a(2), a uniform neighbourhood Nr(W ) is also represented. Note that, by Lemma 4.3,
Nr(W ) ∪ {p} is starlike about p.

Of particular interest is the case where Q is the orbit, Gy, of a single point y ∈
XI \ {p}. Figure 4a(3) shows L = L(y) = W (Gy) =

⋃
γ∈G γ[y, p] \ {p}, and its uniform

neighbourhood Nr(L).
Again, if Q ⊆ XI \ {p} is closed in XI \ {p} and G-invariant, we we can consider the

convex hull, H = H(Q) = hull(Q ∪ {p}) \ {p} (Figure 4a(4)).
Given any ε ∈ (0,∞), we defined the subset T = Tε(G) in Section 3.5 (Figure 4a(5)).

Of course, we are primarily interested in Tε(G) when ε is less than the Margulis constant
ε(n, κ), though we shall have no need to assume this in this chapter.

Let θ0 be the constant of Proposition 2.5.1. Suppose x ∈ X. Then hull cone(−→xp, θ0) ⊆
cone(−→xp, π/2). Set C = C(x) =

⋂
γ∈G γhull cone(−→xp, θ0) \ {p} (Figure 4a(6)). Clearly,

C is a convex subset of XC \ {p}. Thus, C/G is a convex suborbifold of MC(G) =
(XC \ {p})/G (Section 3.4). The complement of C/G in MC(G) is relatively compact.
Also

⋂
t∈[0,∞) C(x+ t) = ∅. We have shown:

Proposition 4.4 : If G is discrete parabolic, then MC(G) has precisely one topological
end. Moreover, we can find a system of neighbourhoods for the end consisting of convex
suborbifolds of MC(G).

We now begin a sequence of lemmas relating the various sets we have described.

Lemma 4.5 : Suppose that B is a horoball about p and that y ∈ XI \{p}. Let L = L(y).
Let ρ be the restriction of projL to XC \ {p}. Suppose x ∈ L ∩B. Let C = C(x). Then

C ⊆ ρ−1(L ∩B)
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where ρ−1(L ∩B) = {z ∈ XC \ {p} | ρ(z) ∩ (L ∩B) 6= ∅}. (Figure 4b.)

Figure 4b.

Proof : Suppose z ∈ C. Let w ∈ ρ(z). Without loss of generality, we can assume that
w, x ∈ [y, p]. Now C ⊆ cone(−→xp, π/2) and so by Lemma 2.4.1, w = proj[y,p] z ∈ [x, p] ⊆
L ∩B. Thus ρ(z) ⊆ L ∩B, and so certainly ρ(z) meets L ∩B. Thus z ∈ ρ−1(L ∩B). ♦

Lemma 4.6 : Suppose S ⊆ XC \ {p} is closed, and that S ∪ {p} is starlike about p. If
B is any horoball about p, and r ≥ 0, then

Nr(S) ∩B ⊆ Nr(S ∩B).

(Figure 4c.)

Figure 4c.

Proof : If x ∈ Nr(S) ∩ B, let y = projS∪{p} x. Then xŷp ≥ π/2. It follows easily that
y ∈ B, so d(x, S ∩B) ≤ d(x, y) ≤ r. ♦

Lemma 4.7 : Suppose B is a horoball about p, and Q ⊆ XI \ {p} is closed and G-
invariant with Q/G compact. Suppose y ∈ XI \ {p}. Let L = L(y). Then, there is some
r ≥ 0 such that

W ∩B ⊆ Nr(L).

(Figure 4d.)

Figure 4d.

Proof : The map [x 7→ x−∞] gives a homeomorphism of (W ∩ ∂B)/G onto Q/G. Thus
(W ∩ ∂B)/G is compact, and so W ∩ ∂B ⊆ Nr(Gx), for some r ≥ 0, where x is the point
of intersection of [y, p] and ∂B. It follows from the monotonic convergence of geodesic rays
(Proposition 1.1.11(1)) that

W ∩B =
⋃
{[z, p] | z ∈W ∩ ∂B} \ {p}

⊆ Nr(
⋃
G[x, p]) \ {p}

⊆ Nr(L).

♦
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Lemma 4.8 : There is some r0 > 0 such that if Q ⊆ XI is closed, then

H ⊆ Nr0(W ),

where H = H(Q) = hull(Q ∪ {p}) \ {p}, and W = W (Q). (Figure 4e.)

Figure 4e.

Proof : The set W ∪ {p} is starlike about and hence λ0-quasiconvex (Corollary 1.1.6).
Proposition 2.5.4 gives us a constant r0 such that

hull(Q ∪ {p}) = hull(W ∪ {p}) ⊆ Nr0(W ) ∪ {p}.
♦

Lemma 4.9 : Suppose ε > 0. Let T = Tε(G). Suppose Q ⊆ XI \ {p} is closed and
G-invariant with Q/G compact. Let W = W (Q). Then, for any r ≥ 0, there is a horoball
B about p with

T ∩Nr(W ) ⊆ B.
(Figure 4f.)

Figure 4f.

Proof : Proposition 1.1.11(2) gives us a constant R > 0 such that if x and y lie in the
same horosphere about x, and d(x, y) ≤ ε then d(x+ t, y + t) ≤ Re−t.

Choose any horoball B0 about p. Now (W ∩ ∂B0)/G is homeomorphic to Q/G and
hence compact. Thus, there is a compact set K ⊆ ∂B0 with Nr(W ) ∩ ∂B0 ⊆

⋃
GK =⋃

γ∈G γG. Let η = 1
2 min{d(x, γx) | x ∈ K, γ ∈ G} > 0. Let h = max(0, loge(R/η)). Let B

be the horoball Nh(B0). We claim that T ∩Nr(W ) ⊆ B.
Suppose, for contradiction, that there is some x ∈ T ∩Nr(W )\B. We have y = x+t ∈

∂B0 for some t ≥ h. Now, Nr(W )∪{p} is starlike about p (Lemma 4.3), and so y ∈ Nr(W ).
Thus, y ∈

⋃
GK, and so, without loss of generality, we can assume that y ∈ K. Since

x ∈ T , there is some γ ∈ G with d(x, γx) ≤ ε. Thus d(y, γy) ≤ Re−t ≤ Re−h ≤ η which
contradicts the definition of η. ♦

Lemma 4.10 : Given ε > 0, let T = Tε(G). Suppose Q ⊆ XI \ {p} is closed and G-
invariant with Q/G compact. Let H = H(Q) = hull(Q∪{p})\{p}. Suppose y ∈ XI \{p}.
Let L = L(y). Then, there is some r > 0, and a horoball B about p such that

H ∩ T ⊆ H ∩B ⊆ Nr(L) ∩B.
(Figure 4g.)

Figure 4g.
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Proof : Let W = W (Q), so that by Lemma 4.8, H ⊆ Nr0(W ). By Lemma 4.9, there is
a horoball B about p so that T ∩Nr0(W ) ⊆ B. Thus T ∩H ⊆ B. By Lemma 4.7, there
is some r1 ≥ 0 such that W ∩ B ⊆ Nr1(L). Thus H ∩ B ⊆ Nr0(W ) ∩ B ⊆ Nr(L), where
r = r0 + r1, and so H ∩ T ⊆ H ∩B ⊆ Nr(L) ∩B. ♦
Lemma 4.11 : Given ε > 0, let T = Tε(G). Suppose r > 0, and y ∈ XI \ {p}. Let
L = L(y). Then, there is some horoball B about p such that

Nr(L) ∩B ⊆ T.

(Figure 4h.)

Figure 4h.

Proof : From the bounds on the volumes of balls, Propositions 1.1.12 and 1.2.4, we see
that an R-ball in X can contain at most M(r, ε) disjoint (ε/2)-balls, where M(r, ε) is the
integer part of V (κr, n)/κnV (ε/2, n). Set R = r + 1 + ε/2, and M = M(R, ε).

By Proposition 4.2, G contains a parabolic element γ. By the convergence of geodesic
rays, there is some x ∈ [y, p] with d(x, γx) ≤ 1/M . Let B be the horoball about p with
x ∈ ∂B. We claim that Nr(L) ∩B ⊆ T .

Suppose z ∈ Nr(L)∩B. Let w be the nearest point to z in L. Translating everything
by an element of G, we may as well suppose that w ∈ [y, p]. Since pŵz = π/2 and z ∈ B,
we see that w ∈ B. Hence (Proposition 1.1.11(1)), d(w, γw) ≤ d(x, γx) ≤ 1/M . For any
integer i ∈ {0, 1, . . . ,M}, we have d(γiz, w) = d(z, γ−iw) ≤ r + i/M ≤ r + 1. Thus, the
(ε/2)-balls about each γiz are all contained in the (R + 1)-ball about w. Thus, for some
i 6= j ∈ {0, 1, . . . ,M}, we have Nε/2(γiz) ∩ Nε/2(γjz) 6= ∅. Thus d(z, γi−jz) ≤ ε and so
γi−j ∈ Γε(z). It follows that Γε(z) is infinite and so z ∈ Tε(G) = T . ♦

Proposition 4.12 : Suppose Q ⊆ XI \ {p} is closed, G-invariant and non-empty, with
Q/G compact. Let H = H(Q) = hull(Q ∪ {p}) \ {p}. Let ρ : XC \ {p} −→ H be
the restriction of proj(H∪{p}) to XC \ {p}. Suppose ε > 0. Let T = Tε(G). Given any
y ∈ XI \ {p}, then there is some x ∈ [y, p] ∩X such that

C(x) ⊆ ρ−1(H ∩ T ).

(Figure 4i.)

Figure 4i.

Proof : Let L = L(y). Now, there is some r > 0, and a horoball B about p such that

H ∩B ⊆ Nr(L) ∩B.

By Lemma 4.11, there is another horoball B′ with

Nr(L) ∩B′ ⊆ T.
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This follows either from Lemma 4.10, or (since we don’t need the first inclusion) more
directly from Lemmas 4.7 and 4.8. Without loss of generality, we can suppose that B′ is
strictly included in B. Thus H ∩B′ ⊆ H ∩B ⊆ Nr(L) and so

H ∩B′ ⊆ T.

Now H ∩B ⊆ Nr(L)∩B ⊆ Nr(L∩B) (Lemma 4.6). Also, since Q 6= ∅, it is clear that
L ∩ B lies inside some uniform neighbourhood of H ∩ B. In other words, the Hausdorff
distance between H ∩B and L ∩B is finite. Now, H ∩B is convex, and (L ∩B) ∪ {p} is
starlike about p, and hence λ0-quasiconvex (Corollary 1.1.6). Let ρ1 = proj(H∩B)∪{p} and
ρ2 = proj(L∩B)∪{p}. Proposition 2.2.2 gives us a constant k ≥ 0 such that if z ∈ XC \ {p}
then diam(ρ1(z) ∪ ρ2(z)) ≤ k.

Let x ∈ [y, p] ∩B′ be the point distant k from the intersection of [y, p] with ∂B′. We
claim that C(x) ⊆ ρ−1(H ∩ T ).

Suppose z ∈ C(x). Lemma 4.5 tells us that projL∪{p}(z) meets B′′, where B′′ is the
horoball about p with x ∈ ∂B′′ (so that B′ = Nk(B′′)). Choose some w ∈ projL∪{p}(z) ∩
B′′. Since B′′ ⊆ B, clearly w ∈ proj(L∩B)∪{p}(z) = ρ2(z). Since H ∩ B is convex, ρ1(z)
consists of a single point u ∈ H ∩ B′. We assumed that B′ is strictly included in B,
and so u lies in the interior of B. Thus, the point u locally minimises in H the distance
to z (or locally maximises a Busemann function about z if z ∈ XI). By Lemma 2.2.4,
u = projH∪{p}(z) = ρ(z). But u ∈ H ∩B′ ⊆ T . Thus ρ(z) ∈ H ∩ T . We have shown that

C(x) ⊆ ρ−1(H ∩ T ). ♦

Lemma 4.13 : Suppose y ∈ XI \ {p}. Let L = L(y). Suppose B is a horoball about B,
and r ≥ 0. Then (Nr(L) ∩B)/G has finite volume. (Figure 4j.)

Figure 4j.

Proof : We first prove the case where G is infinite cyclic, generated by a parabolic γ ∈ G.
Let x be the point of intersection of β = [y, p] and ∂B. For i ∈ N, let xi = x+ i loge 2.

Thus x0 = x. By the convergence of geodesic rays (Proposition 1.1.11(2)), we have d(x+
t, γ(x+ t)) ≤ Re−t for some constant R ≥ 0. Thus d(xi, γxi) ≤ R/2i.

Let Bi be the horoball about p with xi ∈ ∂Bi. (thus Bi = Nloge 2(Bi−1).)
Suppose z ∈ Nr+R(β) ∩ (B0 \ B1). Let w be the nearest point to z on β. Thus

pŵz = π/2 and so w ∈ B0. We have d(w, z) ≤ r +R, and it is easily seen that d(x0, w) ≤
d(z, w) + loge 2 ≤ r + R + loge 2. Thus d(x0, z) ≤ 2r + 2R + loge 2. This shows that
Nr(β) ∩ (B0 \ B1) ⊆ N = N2r+2R+loge 2(x0). Since L =

⋃
Gβ =

⋃
g∈G gβ, we have

Nr+R(L) ∩ (B0 \B1) ⊆
⋃
GN . By Proposition 1.2.4, N has volume at most V = V (2r +

2R+ loge 2, n). It follows that

vol
(
(Nr+R(L) ∩ (B0 \B1))/G

)
≤ V.

So, certainly
vol
(
(Nr(L) ∩ (B0 \B1))/G

)
≤ V.
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Now, given any i ∈ N, let Gi be the subgroup of G generated by γ2i

. Let Li =
⋃
Giβ.

We claim that L ∩ Bi ⊆ NR(Li) ∩ Bi. To see this, suppose that z ∈ L ∩ Bi. Then
z ∈ g[xi, p] for some g ∈ G. Now g = hγ−j where h ∈ Gi and j ∈ {0, 1, . . . , 2i − 1}.
Thus γjz ∈ h[xi, p] ⊆ Li ∩Bi. By Proposition 1.1.11(2), we have d(z, γjz) ≤ d(xi, γ

jxi) ≤
j(R/2i) ≤ R. Thus z ∈ NR(Li) as claimed.

By Lemma 4.3, NR(Li) ∪ {p} is starlike about p. Applying Lemma 4.6,

Nr(L) ∩Bi ⊆ Nr(L ∩Bi) ⊆ Nr(NR(Li) ∩Bi) ⊆ Nr+R(Li).

Thus Nr(L) ∩ (Bi \Bi+1) ⊆ Nr+R(Li) ∩ (Bi \Bi+1). Exactly as with the first part of the
argument (the case i = 0), we see that

vol
(
(Nr+R(Li) ∩ (Bi \Bi+1))/Gi

)
≤ V

and so
vol
(
(Nr(L) ∩ (Bi \Bi+1))/Gi

)
≤ V.

Since Gi has index 2i in G, we have

vol
(
(Nr(L) ∩ (Bi \Bi+1))/G

)
≤ V/2i.

Since B =
⋃∞
i=0(Bi \Bi+1), we have

vol
(
(Nr(L) ∩B)/G

)
≤ V

∞∑
i=0

2−i = 2V.

Now, if G is any discrete parabolic group, Proposition 4.2 tells us that G contains a
parabolic element γ. Let G′ be the subgroup of G generated by γ. Let L′ =

⋃
G′β, where

β = [y, p]. We have
vol
(
(Nr(L

′) ∩B)/G′) <∞.
But (Nr(L) ∩ B)/G is a quotient of (Nr(L

′) ∩ B)/G′ by an equivalence relation, and so
also has finite volume. ♦

Proposition 4.14 : Given ε > 0, let T = Tε(G). Suppose Q ⊆ XI \ {p} is closed and
G-invariant with Q/G compact. Let H = H(Q) = hull(Q ∪ {p}) \ {p}. Then, for any
r ≥ 0, Nr(H ∩ T )/G has finite volume. (Figure 4k.)

Figure 4k.

Proof : Let y be any point of XI \ {p}, and set L = L(y). By Lemma 4.10, there is some
horoball B about p, and r′ ≥ 0 so that

H ∩ T ⊆ Nr′(L) ∩B.
Thus,

Nr(H ∩ T ) ⊆ Nr(Nr′(L) ∩B) ⊆ Nr+r′(L) ∩Nr(B).

Note that Nr(B) is a horoball about p. The result now follows from Lemma 4.13. ♦
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5. Definitions.

We assume that all the sectional curvatures of X lie between −κ2 and −1.
In this chapter, we give the four basic definitions of geometrical finiteness, F1, F2,

F4 and F5. From property F1, we deduce that a geometrically finite group is finitely
generated, and contains only finitely many conjugacy classes of finite subgroups.

5.1. Definition F1.

Suppose Γ ⊆ IsomX is discrete. Let MC(Γ) = (X ∪ Ω)/Γ. As a topological space,
MC(Γ) has associated to it a compact totally-disconnected space of ends. This space can
be used to compactify MC(Γ). Suppose E ⊆ MC(Γ) is a closed subset with compact
(topological) boundary. Then, the space of ends of E can be naturally identified as an
open and closed subset of the space of ends of MC(Γ).

Write π : X ∪ Ω −→ MC(Γ) for the natural projection. Suppose y ∈ Λ, and yn → y,
with each yn ∈ X. Clearly, the sequence πyn leaves every compact subset of MC(Γ). If
it happens that πyn tends to an end e of MC(Γ), we shall say that y is associated to e.
In general, of course, a limit point has no ends associated to it, or indeed, it may have
more that one, depending on the sequence (yn). (Consider, for example, a double limit of
quasifuchsian groups in H3.) We shall be interested only in very special cases.

Suppose that E ⊆ MC(Γ) is closed, connected, non-compact, and has compact topo-
logical boundary, ∂CE. Let Y0 be a connected component of the lift of π−1E of E to
X ∪ Ω. Let G = stabΓ Y0. Thus, G is determined by E up to conjugacy in Γ. Suppose
that G is a parabolic group, with fixed point p. We may identify E as a subset, Y0/G of
MC(G) = (XC \ {p})/G. Thus, ∂CE is identified with ∂CY0/G where ∂CY0 is the topo-
logical boundary of Y0 in X ∪ Ω. We claim that E is closed in MC(G). This amounts to
saying that Y0 ∪ {p} is closed in XC . Suppose, for contradiction, that y ∈ Λ \ {p} lies in
the closure of Y0. Then there is a sequence of points yn ∈ Y0 tending to y. Choose any
orbit Γz ⊆ X disjoint from Y0. Since y ∈ Λ, there is a sequence zn ∈ Γz with zn → y.
Each geodesic [yn, zn] meets ∂CY0. Choosing wn ∈ [yn, zn] ∩ ∂CY0, we see that wn → y.
Since ∂CY0/G is compact, there is a compact set K ⊆ X ∪ Ω with GK covering ∂CY0.
We see that the sets GK accumulate at y, contradicting the fact that G acts properly
discontinuously on XC \ {p} (Proposition 3.2.6). This proves the claim. It follows easily
that ∂CE = ∂CY0/G is the topological boundary of E in MC(G).

We know from Proposition 4.4, that MC(G) has precisely one topological end. Thus
E is a neighbourhood of that end. It follows that E itself has precisely one end. Thinking
of E again as a subset of MC(Γ), we see that E is a neighbourhood of an end of MC(Γ).
This end, e, is determined by E, and is isolated in the space of ends of MC(Γ).

By Proposition 4.4, we can assume that E is an orbifold with convex boundary. Thus,
Y0 has the form Y ∪ΩY (G) as described in Section 3.3, where Y ⊆ X is closed and convex.
Note that Y contains a horoball about p, and so for all γ ∈ stabΓ p, we have γY ∩ Y 6= ∅,
thus γY = Y . We see that G = stabΓ Y = stabΓ p. Thus G is a maximal parabolic
subgroup of Γ.

Let yn ∈ X be any sequence of points tending to p. Let πG : XC \ {p} −→ MC(G)
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be the natural projection. Now, πGyn leaves every compact set in MC(G). Since MC(G)
has only one end, we have πGyn ∈ (Y ∪ ΩY (G))/G ⊆ MC(G) for all sufficiently large n.
Thus, πyn ∈ E ⊆ MC(Γ) for all sufficiently large n. It follows that the end e of MC(Γ)
is associated to p, in the sense defined above, and that it is the unique end of MC(Γ)
associated to p. Moreover, we see easily that any other limit point associated to e lies in
the orbit Γp of p.

Definition : In the situation described above, we shall call e a parabolic end of MC(Γ),
and E a standard cusp region (which we assume to be a convex suborbifold).

Suppose p ∈ Λ = Λ(Γ) is associated to a parabolic end of MC(Γ). Then p is a
parabolic fixed point, so that G = stabΓ p is a maximal parabolic subgroup of Γ. Now
Λ \ {p} ⊆ Ω(G) = XC \ {p} and so (Λ \ {p})/G ⊆MC(G). Let E ⊆MC(Γ) be a standard
cusp region. We may identify E with (Y ∪ ΩY (G))/G ⊆ MC(G), where Y ⊆ X is closed
and convex. Now Y ∪ ΩY (G) does not meet Λ \ {p}, and so, in MC(G), E does not meet
(Λ \ {p})/G. Since (Λ \ {p})/G is closed in MC(G), and since E is a neighbourhood of the
end, it follows that (Λ \ {p})/G is compact.

Definition : A parabolic fixed point p ∈ Λ is bounded if (Λ \ {p})/ stabΓ p is compact.

We have shown:

Lemma 5.1.1 : If p ∈ Λ is associated to a parabolic end, then p is a bounded parabolic
fixed point.

We shall see that the converse of Lemma 5.1.1 is also true (Corollary 6.3).
We can give an intrinsic characterisation of standard cusp regions as follows. We say

that an orbifold E with boundary is an intrinsic standard cusp region if:

(1) E has the form MY
C (G) (as described in Section 3.3), where Y is a metrically complete,

simply connected manifold, with all sectional curvatures between −κ2 and −1, with convex
boundary ∂Y , and where G acts properly discontinuously on Y ,

(2) ∂Y/G is relatively compact in MY
C (G), and

(3) G is infinite, and has a unique fixed point in YI .
These properties (1)–(3) characterise standard cusp regions in the following sense.

Proposition 5.1.2 : Suppose Γ ⊆ IsomX is discrete, and E ⊆ MC(Γ) is a convex
suborbifold which is an intrinsic standard cusp region. Then, E is a standard cusp region
in MC(Γ).

Proof : From the definitions of convex suborbifold, we know that E has the form MY ′

C (G′)
where Y ′ ⊆ X and G′ ⊆ Γ. We can identify Y ′ with Y , and G′ with G, in the definition of
intrinsic standard cusp region. Since Y is G-invariant, and G has a unique fixed point in
YI , we see that G is parabolic. The statement that E is a convex suborbifold tells us that
the topological boundary of E in MC(Γ) is the closure of ∂Y/G in E, which, by hypothesis,
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is compact. Also E is connected and non-compact. From the discussion above, it follows
that E is a standard cusp region. ♦

We can now give the first definition of geometrical finiteness.

Definition : The discrete group Γ ⊆ IsomX is “F1” if MC(Γ) has finitely many ends,
each a parabolic end.

Another way to say this that MC = MC(Γ) is the union of a compact set, K, and a finite
number of standard cusp regions, Ei for 1 ≤ i ≤ k. We can suppose that K is the closure
of MC \

⋃k
i=1Ei in MC , and thus a suborbifold with boundary. Note that for any standard

cusp regions E′i ⊆ Ei, we will have that MC \
⋃k
i=1Ei is relatively compact. In this way,

we can always arrange that d(Ei, Ej) is arbitrarily large for i 6= j.

5.2. Definition F2.

The second definition gives a description of geometrical finiteness intrinsic to the
action of Γ on Λ.

We shall need the notion of “conical limit point” which is based on the following
observation.

Proposition 5.2.1 : Suppose Γ ⊆ IsomX is discrete and not loxodromic. Suppose (γn)
is a sequence of distinct elements of Γ, and that y ∈ Λ. Then the following are equivalent.

1a(1b): For some (each) x ∈ X and some (each) geodesic ray β tending to y, we have
γnx→ y and d(γn, β) bounded.

2a(2b): For some (each) geodesic ray β tending to y, and for every subsequence (γni) of
(γn), the sets γ−1

ni
β accumulate somewhere in X.

3a: For each z ∈ Λ \ {y}, the sequence of ordered pairs (γ−1
n y, γ−1

n z) remains in a compact
subset of (Λ× Λ) \∆(Λ), where ∆(Λ) = {(x, x) | x ∈ Λ}.

Proof : The only implication that requires comment is that (3) implies (1). If Γ is finite
or parabolic, this is vacuous. Since Γ is not loxodromic, we can suppose that there are
distinct points z and z′ in Λ \ {y}. Let α be the bi-infinite geodesic [y, z], and let x be any
point of X. Saying that (γ−1

n y, γ−1
n z) remains in a compact subset (Λ × Λ) \∆(Λ) is the

same as saying that d(γ−1
n α, x) is bounded. Thus d(α, γnx) is bounded. It follows that the

set of accumulation points of {γnx} is a subset of {y, z}. Similarly, this set of accumulation
points is also a subset of {y, z′}, and thus equal to {y}. In other words, γnx→ y. ♦

Definition : Suppose Γ ⊆ IsomX is discrete. Then y ∈ Γ is a conical limit point if there
is a sequence (γn) of distinct elements of Γ so that, for each z ∈ Γ \ {y}, the sequence
(γny, γnz) lies in a compact subset of (Λ× Λ) \∆(Γ).

Thus, y is a conical limit point if and only if for some (or each) x ∈ X, and some (or

35



Geometrical finiteness with variable negative curvature

each) geodesic ray β tending to y, then for some r ≥ 0, the set Γx∩Nr(β) accumulates at
y.

Alternatively, y is a conical limit point if and only if for some (or each) ray β tending to
y, π(β∩X) accumulates in M = X/Γ, where π : X −→M is the natural projection. (This
means that there is a sequence of points, zn ∈ β ∩X, tending to y, with πzn convergent
in M .)

Note that, in the above two statements, we need make no special qualifications for
loxodromic groups.

Saying that π(β ∩X) does not accumulate in M is the same as saying that the orbit
Γβ of β is locally finite in X. From Proposition 3.3.1, it follows that Γβ is locally finite on
X ∪ Ω, in other words, π(β ∩X) does not accumulate in MC . Thus:

Lemma 5.2.2 : Suppose y ∈ Λ, and β is a geodesic ray tending to y. Let π be the
projection from X ∪ Ω to MC . If π(β ∩X) accumulates in MC , then y is a conical limit
point. ♦

Note that a parabolic fixed point, p ∈ Λ, may be recognised from the action of Γ on
Λ. Thus, p is a parabolic fixed point if and only if it is the unique fixed point in Λ of the
infinite group stabΓ p. The definition of bounded parabolic fixed point given in Section 5.1
is already intrinsic to Λ.

Definition : The discrete group Γ ⊆ IsomX is “F2” if the limit set Λ consists entirely of
conical limit points and bounded parabolic fixed points.

It is easily seen that a limit point cannot be both a conical limit point and a bounded
parabolic fixed point. We shall see (Lemma 6.4) that if Γ is geometrically finite, then
every parabolic fixed point is bounded.

5.3. Definition F4.

Suppose Γ ⊆ IsomX is discrete. The (closed) convex hull of the limit set, hull(Λ), is
Γ-invariant. Thus we may define

core(M) = (hull(Λ))/Γ ⊆M = X/Γ.

We call core(M) the convex core of M . If core(M) has non-empty interior, then it has the
structure of an orbifold with boundary, though in general, it may not. (However, for any
η > 0, the η-neighbourhood, Nηcore(M), is a convex suborbifold of M .)

Definition : The discrete group Γ ⊆ IsomX is “F4” if, for some ε ∈ (0, ε(n, κ)), we have
that core(M) ∩ thickε(M) is compact.

Here, ε(n, κ) is the Margulis constant (Section 3.5). Note that the thick part of the
convex core, core(M) ∩ thickε(M), is defined intrinsically to core(M).
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There are several variations on this definition one could give. For example, we could
replace core(M) by (join(Λ))/Γ. Instead of thickε(M) we could take noncuspε(M). Instead
of saying “for some ε ∈ (0, ε(n, κ))”, we could say “for all ε ∈ (0, ε(n, κ))”. That all
combinations arising in this way give rise to the same notion of geometrical finiteness
should be apparent from the proofs of equivalence given in the next chapter.

5.4. Definition F5.

Definition : Suppose Γ ⊆ IsomX is discrete. Γ is “F5” if there is a bound on the orders
of every finite subgroup of Γ, and if, for some η > 0, Nηcore(M) has finite volume.

Again, we could replace core(M) by (join(Λ))/Γ, or say that every η-neighbourhood
has finite volume.

We have already remarked that Nηcore(M) is a convex suborbifold. The group Γ
is the orbifold fundamental group of Nηcore(M). Thus, the definition F5 is intrinsic to
Nηcore(M). This statement becomes more transparent given:

Proposition 5.4.1 : If Γ ⊆ IsomX is discrete, and neither finite nor parabolic, then
every finite subgroup, G, of Γ has a fixed point in hull(Λ).

Proof : We know that G has a fixed point in X. Since the projection to hull(Λ) is
Γ-equivariant, we see that the projection of this point to hull(Λ) is also fixed by G. ♦

Thus, the bound on the order of finite subgroups of Γ translates to a bound on
the orders of the subgroups of the orthogonal group defining the orbifold structure of
Nηcore(M).

In fact, I suspect that this bound is superfluous, i.e. it should be implied by the
statement that Nηcore(M) has finite volume. This is certainly the case if M itself has
finite volume.

Proposition 5.4.2 : Suppose Γ ⊆ IsomX is discrete, and that M = X/Γ has finite
volume. Then, there is a bound on the orders of finite subgroups of Γ.

Proof : Given the lower bound on the volumes of uniform balls in X, (Proposition 1.1.12),
the proof is essentially the same as that in the constant curvature case given in [Bo1]. We
shall not reproduce the argument here. ♦

In fact, we shall see that if M has finite volume, then it is topologically finite as an
orbifold (Proposition 6.6).

5.5. Basic group-theoretic properties.

Proposition 5.5.1 : If Γ is F1, then Γ is finitely generated.
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Proof : Write MC = K ∪
⋃k
i−1Ei, where each Ei is a standard cusp region, and K is a

compact set which we can take to be a suborbifold with boundary. The orbifold funda-
mental group of each Ei is isomorphic to the corresponding maximal parabolic subgroup.
Such a subgroup is finitely generated by Proposition 4.1. The result now follows by the
orbifold van-Kampen theorem. ♦

Proposition 5.5.2 : If Γ is F1, then Γ has finitely many conjugacy classes of finite
subgroups.

Proof : We have already observed (Section 3.2), that every finite subgroup of Γ lies inside
at least one maximal finite subgroup. It thus suffices to show that there are only finitely
many conjugacy classes of maximal finite subgroups.

At the end of Section 3.2, we defined the locally finite collection, Ĝ of disjoint subsets
of MC(Γ), which are in bijective correspondence with the conjugacy classes of maximal
finite subgroups of Γ. We see that only finitely many elements of Ĝ can meet the compact
set K. On the other hand, if an element of Ĝ meets a standard cusp region Ei, we see that
(up to conjugacy in Γ) the corresponding maximal finite subgroup lies inside the maximal
parabolic subgroup corresponding to Ei. Now, Proposition 4.1 tells us that a parabolic
subgroup of Γ is finitely generated and virtually nilpotent. The proposition thus reduces
to the following group-theoretic statement (Lemma 5.5.3). ♦

Lemma 5.5.3 : A finitely generated virtually nilpotent group has finitely many conjugacy
classes of finite subgroups.

Proof : Suppose P is finitely generated, and contains a nilpotent subgroup N of finite
index. Then N is also finitely generated, and we can suppose that N is normal in P . Let Z
be the centre of N . It is well known that Z is finitely generated. (Alternatively, we could
take Z to be the first group of the lower central series, which is clearly finitely generated.)
Let T be the torsion subgroup of Z. Thus T is finite. Since T and Z are characteristic in
N , they are normal in P . By induction on the height of N , we can suppose that P/Z has
only finitely many conjugacy classes of finite subgroup.

Suppose F1 and F2 are finite subgroups of P . We can assume that F1Z and F2Z are
conjugate in P . Thus, we can take F1Z = F2Z = K say. We claim that K/T contains
only finitely many transversal subgroups to Z/T up to conjugacy in K/T . Given this, we
can assume that F1T = F2T . But this group is finite, and so contains only finitely many
subgroups. This, then, completes the proof.

To prove the claim, let H = K/T , and A = Z/T . Thus, A is free abelian, and normal
and of finite index in H. The rest of the argument is standard group cohomology. Let G
be a transversal subgroup to A in H, i.e. GA = H, and G ∩ A = {0}. If G′ is another
transversal subgroup, we have a unique monomorphism θ : G −→ H such that the image
θ(G) equals G′, and θ(g)g−1 ∈ A for all g ∈ G.

Suppose that the transversal subgroups G1 and G2 have corresponding monomor-
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phisms θ1 and θ2 : G −→ H. If a ∈ A and g ∈ G, then

aθ1(g)a−1g−1 = a(θ1(g)g−1)ga−1g−1 = (θ1(g)g−1)aga−1g−1.

Thus, θ2(g) = aθ1(g)a−1 if and only if θ2(g)θ1(g)−1 = aga−1g−1. We say that G1 and
G2 are A-conjugate if for some a ∈ A, we have θ2(g)θ1(g)−1 = aga−ig−1 for all g ∈
G. We see that A-conjugacy is an equivalence relation on transversal subgroups (defined
independently of the choice of G). Clearly, A-conjugate transversals are conjugate as
subgroups of H.

Now, the set of all maps from G into A form a free abelian group under multipli-
cation in A, of rank equal to |G|rankA. Those maps of the form [g 7→ θ(g)g−1], for a
monomorphism θ, form a free abelian subgroup C. Those of the form [g 7→ aga−1g−1],
for a ∈ A, form a subgroup B of C. Thus, A-conjugacy classes of transversal subgroups
are in bijective correspondence with the elements of C/B. (C/B is the first cohomology
group H1(G,A).) We claim that C/B is finite. Since C is finitely generated free abelian,
it suffices to see that C/B is a torsion group.

Given a map [g 7→ θ(g)g−1] ∈ C, let b =
∏
h∈G(θ(h)h−1) ∈ A. Then, for any g ∈ G,

b =
∏
h∈G

θ(gh)(gh)−1 =
∏
h∈G

(θ(g)g−1)g(θ(h)h−1)g−1

= (θ(g)g−1)ngbg−1

where n = |G|. Thus,
(θ(g)g−1)n = bgb−1g−1,

and so
[g 7→ θ(g)g−1]n = [g 7→ bgb−1g−1] ∈ B.

♦

6. Proofs of equivalence.

We assume that X has pinched negative curvature. The main aim of this chapter is
to show the equivalence of the main definitions of geometrical finiteness from Chapter 5.

Theorem 6.1 : The properties F1, F2, F4 and F5, of a discrete subgroup of IsomX, are
all equivalent.

This will be largely a matter of tying up loose ends—most of the work has already
been done. We shall give proofs of the following implications:
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We include F1 ⇒ F2 since it admits a direct proof much simpler than following the
cycle. The proof of F1 ⇒ F5 uses F1 ⇒ F4.

Proof of F1 ⇒ F2 : Suppose Γ is F1. We write MC(Γ) = K ∪
⋃k
i=1Ei where each Ei

is a standard cusp region, and K is compact. Let π : X ∪Ω −→MC(Γ) be the projection.

Each Ei corresponds to an orbit, Πi, of a parabolic fixed point. Let Π =
⋃k
i=1 Πi ⊆ Λ. By

Lemma 5.1.1, each element of Π is a bounded parabolic fixed point.

Suppose y ∈ Λ \ Π. Let β be any geodesic ray tending to y. Now, each component

of
⋃k
i=1 π

−1Ei is a convex set whose closure meets Λ in a single point of Π. It follows
easily that β ∩ π−1K is unbounded. We see that π(β ∩X) must accumulate somewhere in
K ⊆MC(Γ). By Lemma 5.2.2, y is a conical limit point. ♦

Next, we aim to prove F2 ⇒ F1.

Lemma 6.2 : Suppose Γ ⊆ IsomX is discrete. Let Π ⊆ Λ be the set of all bounded
parabolic fixed points. Write Π as a disjoint union Π =

⊔
i∈I Πi of orbits under Γ, where I

is a finite or countable indexing set. Then, each orbit Πi is associated to a standard cusp
region Ei ⊆MC(Γ). Moreover, the Ei are all disjoint in MC(Γ). In fact, given any r > 0,
we can arrange that d(Ei, Ej) ≥ r if i 6= j.

Proof : Let H = hull(Λ). Let ρ = projH : XC −→ H. Choose any ε ∈ (0, ε(n, κ)), and
let T = Tε(Γ) ⊆ X as in Section 3.5.

Suppose pi ∈ Πi. Let Gi = stabΓ pi. Thus Gi is maximal parabolic, and Ti = Tε(Gi)
is a connected component of T . Since pi is a bounded parabolic fixed point, (Λ\{pi})/Gi is
compact. Thus, by Proposition 4.12, we can find a convex set Ci ⊆ ρ−1(H∩Ti) ⊆ XC \{pi}
so that Ci/Gi is a standard cusp region in MC(Gi). Clearly, ρ−1(H ∩ Ti) cannot meet Λ,
and so Ci ⊆ X∪Ω. We see that Ci/Gi descends to a standard cusp region Ei = (

⋃
ΓCi)/Γ

in MC(Γ). Note that
⋃

ΓCi = ρ−1(H ∩ (
⋃

ΓTi)).

We perform this construction for each i ∈ I. By Proposition 3.5.4, we have that, for
some δ > 0, if i 6= j, then d(

⋃
ΓTi,

⋃
ΓTj) ≥ δ. It follows that the Ei are disjoint. In fact,

by Proposition 4.4, we can arrange that d(Ei, Ej) is arbitrarily large for i 6= j. ♦

Corollary 6.3 : A limit point is associated to a parabolic end of MC(Γ) if and only if
it is a bounded parabolic fixed point.

Proof : By Lemmas 5.1.1 and 6.2. ♦
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Proof of F2⇒ F1 : Suppose that Γ is F2. Let Π ⊆ Λ be the set of all bounded parabolic
fixed points. Write Π as a disjoint union Π =

⊔
i∈I Πi, where I is a finite or countable

indexing set. Lemma 6.2 gives us a corresponding collection of standard cusp regions,
Ei ⊆ MC(Γ). We may suppose that d(Ei, Ej) ≥ 1 if i 6= j. Let E◦i be the topological
interior of Ei in MC . We claim that MC \

⋃
i∈I E

◦
i is compact. It then follows that I is

finite, and so Γ is F1.
Let π : X ∪ Ω −→ MC be the quotient map. Let Z =

⋃
i∈I π

−1E◦i = (X ∪ Ω) \
π−1K. To each point p ∈ Π is associated a component Y (p) of Z, so that Y (p)/G(p)
is a neighbourhood of the end of MC(G(p)), where G(p) is the maximal parabolic group
stabΓ p. Distinct components of Z are at least a distance 1 apart, thus Y (p) is open in
X ∪ Ω, and hence in XC \ {p}. We see that (XC \ (Y (p) ∪ {p}))/G(p) is compact.

Let D ⊆ XC be any Dirichlet domain for Γ (Section 3.3). Thus D is closed in XC

and quasiconvex. Write ΓD for the collection of images of D under Γ. By Corollary 3.3.2,
ΓD is locally finite on X ∪Ω, and so X ∪Ω ⊆

⋃
ΓD. We see that π−1K = (X ∪Ω) \Z ⊆⋃

Γ(D \ (Λ ∪ Z)) and so K = π(D \ (Λ ∪ Z)). To prove the claim, it thus suffices to see
that D \ (Λ ∪ Z) is compact.

Since D is quasiconvex, and ΓD is locally finite on X, it follows easily that D cannot
contain any conical limit point of Γ. Since Γ is F2, we have that D ∩ Λ ⊆ Π, and so
D \ (Λ∪Z) = D \

⋃
p∈Π(Y (p)∪ {p}). Since D is compact Hausdorff, it thus suffices to see

that D ∩ (Y (p) ∪ {p}) is open in D for all p ∈ Π.
Fix p ∈ Π, and let Y = Y (p) and G = G(p). By Corollary 3.3.2, we know that GD is

locally finite on Ω(G) = XC \ {p}. Now, certainly D \ (Y ∪ {p}) is closed in XC \ {p}, and
(XC \ (Y ∪ {p}))/G is compact. We conclude that D \ (Y ∪ {p}) is compact, and hence
closed in D. Thus D ∩ (Y ∪ {p}) is open in D. ♦

Proof of F1 ⇒ F4 : Suppose Γ is F1. Let e1, . . . , ek be the parabolic ends of MC .
Suppose pi ∈ Λ is associated to ei. By Lemma 5.1.1, pi is a bounded parabolic fixed
point. Let Gi = stabΓ pi, so that (Λ \ {pi})/Gi is compact. Given any ε ∈ (0, ε(n, κ)), let
Ti = Tε(Gi) be as defined in Section 3.5. Let H = hull(Λ) and ρ = projH : XC −→ H.
Proposition 4.12 gives us a convex set Ci ⊆ XC \ {pi}, with Ci ⊆ ρ−1(H ∩ Ti), and such
that Ci/Gi is a closed neighbourhood of the end of MC(Gi). It follows that

⋃
ΓCi projects

to a standard cusp region Ei ⊆ MC(Γ), which is a neighbourhood of the end ei. Since
Ci ⊆ ρ−1(H ∩ Ti), we certainly have H ∩ Ci ⊆ Ti.

We perform this construction for each i ∈ {1, 2, . . . , k}. Thus H ∩ (
⋃k
i=1

⋃
ΓCi) ⊆⋃k

i=1

⋃
ΓTi.

Projecting to MC , we have

core(M) ∩ (
k⋃
i=1

Ei) ⊆ cuspε(M),

and so

core(M) \ cuspε(M) ⊆MC \
k⋃
i=1

Ei.
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Since Γ is F1, it follows that the closure, core(M) ∩ noncuspε(M), of core(M) \ cuspε(M)
is compact. Thus core(M) ∩ thickε(M) is compact. ♦

Lemma 6.4 : If Γ is F4, then every parabolic fixed point is bounded.

Proof : Let H = hull(Λ). Suppose p ∈ Λ is a parabolic fixed point. Let G = stabΓ p.
Given ε ∈ (0, ε(n, κ)) let T = Tε(G). Let ∂T be the topological boundary of T in X. Let
v : XC \ {p} −→ XI \ {p} be the map [x 7→ x−∞]. Thus v is a G-equivariant continuous
retraction of XC \ {p} onto XI \ {p}. From the form of T described by Proposition 3.5.2,
it is clear that v(∂T ) = XI \ {p}. (In fact, v|∂T is a homeomorphism.) From Section
3.5, we know that T/G may be identified as a component of thinε(M). Thus, ∂T/G
may be identified as a boundary component, S, of thickε(M). Under this identification,
(H∩∂T )/G is identified with core(M)∩S, which is a closed subset of core(M)∩thickε(M)
and hence compact. Now v(H ∩ ∂T ) ⊇ Λ \ {p}, and so (Λ \ {p})/G is a closed subset of
v(H ∩ ∂T )/G and hence compact. Thus, p is a bounded parabolic fixed point. ♦

Corollary 6.5 : If Γ is F1, then Γ has finitely many conjugacy classes of maximal
parabolic subgroups.

Proof : We know that Γ is also F4, and so by Lemma 6.4, every parabolic fixed point
is bounded. Now, maximal parabolic subgroups of Γ are in bijective correspondence with
orbits of parabolic fixed points. These in turn (applying Corollary 6.3) are in bijective
correspondence with parabolic ends of MC . Since Γ is F1, there are only finitely many
such ends. ♦

Proof of F4 ⇒ F2 : Suppose Γ is F4. Thus core(M) ∩ thickε(M) is compact for
some ε ∈ (0, ε(n, κ)). Since Margulis tubes do not accumulate in M (Proposition 3.5.4),
it follows that core(M) ∩ thickε(M) meets only finitely many Margulis tubes. Since each
such tube is compact, it follows that core(M) ∩ noncuspε(M) is compact.

Let Π ⊆ Λ be the set of all parabolic fixed points. By Lemma 6.4, each such fixed
point is bounded. Suppose y ∈ Λ \ Π. Choose any X in X ∩ hull(Λ), and let β be the
ray [x, y]. Thus β ⊆ hull(Λ). From the form of Margulis cusps described by Proposition
3.5.2, it is clear that β ∩ π−1noncuspε(M) is unbounded, where π : X ∪ Ω → MC is the
natural projection. It follows that π(β ∩ X) must accumulate somewhere in core(M) ∩
noncuspε(M) ⊆M . Thus y is a conical limit point.

Proof of F1 ⇒ F5 : Suppose Γ is F1. Proposition 5.5.2 tells us that there is a bound
on the orders of finite subgroups of Γ. Suppose ε ∈ (0, ε(n, κ)) and η > 0.

Since Γ is F4, we know that core(M)∩noncuspε(M) is compact. Thus Nη(core(M)∩
noncuspε(M)) is compact. We thus need to show that Nη(core(M)∩ cuspε(M)) has finite
volume.

By Corollary 6.5, we know that cuspε(M) consists of finitely many Margulis cusps.
Each Margulis cusp has the form Tε(G)/G, where G = stabΓ p is a maximal parabolic
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subgroup of Γ, with fixed point p. By Lemma 6.4, (Λ \ {p})/G is compact, and so by
Proposition 4.14, Nη(H ∩ Tε(G))/G has finite volume, where H = hull(Λ). Summing over
the set of Margulis cusps, we conclude that Nη(core(M)∩ cuspε(M)) has finite volume. ♦

Proof of F5 ⇒ F4 : Suppose that Γ is F5. Thus, for some η > 0, Nη(core(M)) has finite
volume, V0 say. Also, there is a bound, m, on the orders of finite subgroups of Γ. Given
ε ∈ (0, ε(n, κ)), we want to show that core(M)∩thickε(M) is compact. Let δ = min(η, ε/2).

Let π : X −→ M be the projection. Suppose a ∈ thickε(M). Choose x ∈ X with
πx = a. Thus x ∈ Tε(Γ), and so Γε(x) is finite, of order at most m. Since δ ≤ ε/2, it
follows that Nδ(x) meets at most m images of itself under Γ. Applying Proposition 1.1.12,
we see that πNδ(x) ⊆ M has volume at least V (δ, n)/m. Now, πNδ(x) is the uniform
δ-ball, Nδ(a) about a in M . We thus have a lower bound on the volumes of δ-balls in M
centred on thickε(M).

Now choose a maximal subset A ⊆ core(M)∩thickε(M), such that the balls {Nδ(a)|a ∈
A} are disjoint in M . Since δ ≤ η and Nη(core(M)) has finite volume, the set A must be
finite. (It has at most mV0/V (δ,m) elements.) Since A is maximal, we have core(M) ∩
thickε(M) ⊆ N2δ(A). Thus core(M) ∩ thickε(M) is compact. ♦

This concludes the proofs of equivalence (Theorem 6.1).
To finish off, we give the following result, which is a generalisation of a well-known

result in case of manifolds. We say that an orbifold is topologically finite if it is orbifold-
homeomorphic to the interior of a compact orbifold with boundary (Section 3.4).

Proposition 6.6 : Suppose Γ ⊆ IsomX is discrete. If M = X/Γ has finite volume, then
it is topologically finite as an orbifold.

Proof : By Proposition 5.4.2, there is a bound on the orders of finite subgroups of Γ.
Thus Γ is F5, and so F1. We can thus write MC(Γ) = K ∪

⋃k
i=1Ei, where each Ei is

standard cusp region, and K is compact subset which we can take to be an orbifold with
boundary.

Now, each Ei has the form Ci/Gi, where Gi ⊆ Γ is a maximal parabolic subgroup,
with fixed point pi, and Ci is a closed convex Gi-invariant subset of XC \ {pi}. Let v
be the retraction [x 7→ x −∞] of XC \ {pi} to XI \ {pi}. Since Ei has finite volume, it
is clear that v(∂Ci) = XI \ {pi}, where ∂Ci is the boundary of Ci in XC \ {pi}. Since
Ei is a neighbourhood of the end of MC(Gi), we have that ∂Ci/Gi is compact. Since
v is Gi-equivariant, we have that (XI \ {pi})/Gi = v(∂Ci)/Gi is compact. Now, Ei is
topologically (as an orbifold) a product of (XI \ {pi})/Gi and a half-open interval, and
thus topologically finite. ♦
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