Geometrical finiteness with variable negative curvature.

B. H. Bowditch \dagger

Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton, SO9 5NH, Great Britain.

Email: bhb@maths.soton.ac.uk

0. Introduction.

A Hadamard manifold is a complete, simply-connected Riemannian manifold of nonpositive curvature. By a pinched Hadamard manifold, we shall mean a Hadamard manifold of pinched negative curvature, i.e. all the sectional curvatures lie between two negative constants.

The aim of this paper is to describe a notion of "geometrical finiteness" for a discrete group, Γ, acting on a pinched Hadamard manifold X.

The notion of geometrical finiteness has been principally used in the case where X is 3 -dimensional hyperbolic space \mathbf{H}^{3}. The original definition supposed that Γ should possess a finite-sided fundamental polyhedron. Under this hypothesis, Ahlfors showed that the limit set of Γ has either zero or full spherical Lebesgue measure [Ah]. Since that time, other definitions of geometrical finiteness have been given, notably by Marden [M], Beardon and Maskit [BeM] and Thurston [T], and the notion has become central to the study of 3 -dimensional hyperbolic groups.

As an isolated object, a geometrically finite group is not particularly interesting. A major problem in 3-dimensional hyperbolic geometry is to understand finitely-generated discrete hyperbolic groups that are not geometrically finite. An important conjecture is that every such group is an "algebraic limit" of geometrically finite groups.

In 3 dimensions, Teichmüller theory together with ideas of Thurston have provided powerful tools for understanding hyperbolic groups. In higher dimensions, the theory is much less well developed, and has been some confusion in the literature as to the correct notion of geometrical finiteness in this context. The existence of finite sided fundamental polyhedra, without further qualification, becomes an inapropriate hypothesis. My previous paper [Bo1] was an attempt to clarify this matter.

It seems natural to wonder what happens if one generalises in another direction, by allowing variable curvature. The extra flexibility would potentially allow for more possibilities in the construction of exotic examples. The first step, however, is to clearly understand the "geometrically finite" groups. This paper is aimed in that direction.

Let us suppose that Γ is a discrete group of isometries of a pinched Hadamard manifold, X. We want to say what it means for Γ to be geometrically finite. Now, the description involving finite sided fundamental polyhedra falls apart altogether, and it is not clear how to give a new definition on this basis. In this paper, I will not have much to say about fundamental polyhedra. The subject of Dirichlet polyhedra for discrete groups acting on complex hyperbolic space has been explored by Goldman, Parker and Phillips

[^0][G,GP,Ph,Pa]. In particular, the example of a discrete parabolic group given in [GP] suggests that no elegant formulation of geometrical finiteness, along these lines exists.

However, the remaining definitions (as described in [Bo1]) all have a natural interpretation for pinched negative curvature. One of the principal aims of this paper, therefore, is to show the equivalence of these notions (Theorem 6.1). Many of the arguments will run parallel to those given [Bo1], though we lose some of the useful tools such as the existence of nice convex half-spaces.

We shall retain the term "geometrical finiteness" for the notion thus defined, although it is clearly less appropriate in this context. We shall see that geometrically finite groups are finitely generated (Proposition 5.5.1), have finitely many conjugacy classes of finite subgroups (Proposition 5.5.2), and have finitely many conjugacy classes of maximal parabolic subgroups (Corollary 6.5).

It seems reasonable to conjecture that geometrical finiteness implies topological finiteness (i.e. that X / Γ is orbifold-homeomorphic to the interior of a compact orbifold with boundary). The problem reduces to the case of discrete parabolic groups of isometries. In [Bo2], it was shown that such groups are finitely generated, though the question of topological finiteness, to my knowledge, remains open.

The four main definitions of geometrical finiteness we shall use may be outlined as follows. Each definition may be stated in more than one way, and we shall describe in Chapter 5 some of the variants.

The definition which we consider the central one, since in some sense it gives us the most information, is the generalisation of Marden's definition. To the orbifold X / Γ, we adjoin the quotient, Ω / Γ, of the discontinuity domain, Ω of the ideal sphere at infinity. We thus obtain an orbifold with boundary $M_{C}(\Gamma)=(X \cup \Omega) / \Gamma$. We say that Γ is "F1" (geometrically finite in the first sense) if $M_{C}(\Gamma)$ has only finitely many topological ends, and each such end is a "parabolic end". To say that an end is a "parabolic end" means essentially that it can identified with the end of $M_{C}(G)$, where G is a maximal parabolic subgroup of Γ.

The second definition, F2, demands that the limit set Λ of Γ should consist enirely of "conical limit points" and "bounded parabolic fixed points". This definition can be made intrinsic to the action of Γ on Λ. It is due, in constant curvature, to Beardon and Maskit.

In [Bo1], due to lack of foresight, the third definition was that of finite-sided fundamental polyhedra, so we shall call the remaining definitions F4 and F5. These are both due to Thurston in the constant curvature case. We leave F3 for someone else to define.

Property F4 says that the "thick part" of the "convex core" of X / Γ is compact. The "convex core" is the quotient, under Γ, of the (closed) convex hull of the limit set. In the case where Γ is torsion-free, so that X / Γ is a manifold, the "thick part" of the convex core is the set of points where the injectivity radius is greater than or equal to some small positive number. We give a definition of the thick part of an orbifold in Section 3.5.

Finally, F5 says that for some $\eta>0$, the unform η-neighbourhood of the convex core has finite volume, and that there is a bound on the orders of finite subgroups of Γ. I suspect that this latter assumption is superfluous. Certainly, if X / Γ has finite volume, then there is necessarily such a bound, and in this case it follows that X / Γ is topologically finite as an orbifold (Proposition 6.6).

We made, at the beginning, the assumption that X has pinched negative curvature. The upper curvature bound (away from 0) is essential for the Toponogov comparison theorem (Proposition 1.1.2), the consequences of which are used throughout this paper. The lower curvature bound (away from $-\infty$) is needed for the Margulis Lemma (Proposition 3.5.1), and to give an upper bound on the the volumes of uniform balls (Proposition 1.2.2). The construction of convex sets (due to Anderson [An]), which we describe in Section 2.5, uses both curvature bounds, though for most purposes one could make do with some notion of quasiconvexity, which would only require a bound away from 0 . Both bounds are also used in [Bo2], as quoted in Chapter 4 - see Proposition 4.1.

It will be assumed throughout this paper that X has curvature at most -1 . The additional assumption of a lower curvature bound $\left(-\kappa^{2}\right)$ will be made in Sections 1.2, 2.5 and 3.5 , and throughout Chapters 4,5 and 6 . Results given in these places should be assumed to take this as a hypothesis, though we will not always say so explicitly.

The structure of this paper, in outline, is as follows. In Chapter 1, we collect together the basic facts about Hadamard manifolds which we shall need. Chapter 2 is discussion of convexity and quasiconvexity. In Chapter 3, we describe some constructions relating to discrete group actions. In Chapter 4, we say something of the geometry of discrete parabolic groups. In Chapter 5, we give in detail the various definitions of geometric finiteness, and show some basic group-theoretic properties. Finally, in Chapter 6, we complete the proofs of equivalence of the four definitions F1, F2, F4 and F5.

1. Review of negative curvature.

The purpose of this chapter is introduce some terminology and notation, and to summarise some basic results about Hadamard manifolds which we shall need. A good reference for such manifolds is [BaGS].

A basic fact about Hadamard manifolds in general is that the exponential map based at any point is injective. Thus, any such manifold, X, is diffeomorphic to \mathbf{R}^{n}. In fact, X can be naturally compactified by adjoining an ideal sphere X_{I} to X. Thus, $X_{C}=X \cup X_{I}$ is homeomorphic to a closed n-dimensional ball.

Much of theory of Hadamard manifolds can be refined or simplified when the curvature is bounded away from 0 . In this case, we can always scale the metric so that all sectional curvatures are at most -1 . This will be assumed throughout this paper.

In Section 1.1, we give some properties of X under this assumption. In Section 1.2, we describe some additional properties when there is also a lower curvature bound.

1.1. Curvature bounded away from 0 .

Suppose X has all sectional curvatures at most -1 . Let d be the Riemannian pathmetric on X.

In this case X is a visibility manifold i.e. any two points $x, y \in X_{C}$ can be joined by a unique geodesic, which we denote by $[x, y]$. The geodesic $[x, y]$ depends continuously on its endpoints x and y. We shall usually think of $[x, y]$ as a closed subset of X_{C}. When we
speak of geodesics as paths, they will always be assumed parameterised by arc-length. If $x, y \in X$, we call $[x, y]$ a geodesic segment. If $x \in X$ and $y \in X_{I}$, we call $[x, y]$ a geodesic ray based at x, and tending to y. If $x, y \in X_{I}$, we call $[x, y]$ a bi-infinite geodesic.

Any two geodesic rays, $[a, y]$ and $[b, y]$, tending to the same ideal point $y \in X_{I}$ "converge exponentially". This will be made precise by Proposition 1.1.11. For the moment, we just note that we can find sequences $a_{n} \in[a, y] \cap X$, and $b_{n} \in[b, y] \cap X$, both tending to y, with $d\left(a_{n}, b_{n}\right) \rightarrow 0$. We can regard X_{I} as the set of equivalence classes of geodesic rays, where equivalence is defined by convergence of rays.

We shall write $T_{x} X$ and $T_{x}^{1} X$, respectively, for the tangent space and unit-tangent space to X at x. Given $x \in X$, and $y \in X_{C} \backslash\{x\}$, we shall write $\overrightarrow{x y} \in T_{x}^{1} X$ for the unit tangent vector based at x in the direction of y, i.e. $\overrightarrow{x y}$ is the derivative $\alpha^{\prime}(0)$, where $\alpha:[0, d(x, y)] \longrightarrow X_{C}$ is the geodesic $[x, y]$. If $x \in X$, and $y, z \in X_{C} \backslash\{x\}$, we write $y \hat{x} z$ for the angle $\angle(\overrightarrow{x y}, \overrightarrow{x z})$ between $\overrightarrow{x y}$ and $\overrightarrow{x z}$.

If Q is a closed subset of X_{C}, and $r \geq 0$, let $N_{r}^{C}(Q)$ be the closure, in X_{C}, of the set $\{y \in X \mid d(y, Q \cap X) \leq r\}$. Set $N_{r}(Q)=Q \cup N_{r}^{C}(Q)$. We call $N_{r}(Q)$ the uniform r-neighbourhood of Q. We will only be interested in the case where $Q \cap X$ is dense in Q, and so $Q \subseteq N_{r}^{C}(Q)$. If Q_{1} and Q_{2} are both closed in X_{C}, with $Q_{1} \cap X$ and $Q_{2} \cap X$ dense in Q_{1} and Q_{2} respectively, we shall write $d\left(Q_{1}, Q_{2}\right)=d\left(Q_{1} \cap X, Q_{2} \cap X\right)=\inf \{\mathrm{d}(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in$ $\left.\mathrm{Q}_{1} \cap \mathrm{X}, \mathrm{y} \in \mathrm{Q}_{2} \cap \mathrm{X}\right\}$.

Suppose $x \in X$. We choose an identification of the tangent space $T_{x} X$ with \mathbf{R}^{n}, so that the standard inner-product on \mathbf{R}^{n} induces the Riemannian inner-product on $T_{x} X$. This defines an exponential map $\exp (X, x): \mathbf{R}^{n} \longrightarrow X$. We have that $\exp (X, x)$ is a diffeomorphism from \mathbf{R}^{n} to X.

Let \mathbf{H}^{n} be n-dimensional hyperbolic space. Fix some basepoint $a_{0} \in \mathbf{H}^{n}$, and an identification of \mathbf{R}^{n} with $T_{a_{0}} \mathbf{H}^{n}$. The map

$$
e=e(X, x)=\exp \left(\mathbf{H}^{n}, a_{0}\right) \circ \exp (X, x)^{-1}: X \longrightarrow \mathbf{H}^{n}
$$

is a diffeomorphism with $a_{0}=e(x)$. It follows from the Rauch comparison theorem [CE], that:

Proposition 1.1.1 : The map $e: X \longrightarrow \mathbf{H}^{n}$ is distance non-increasing.
One simple consequence, is the following version of Toponogov's comparison theorem, which is the basis of most of the results of this section [CE].

Proposition 1.1.2 : Suppose x, y, z are any three distinct points in X. Let $x^{\prime}, y^{\prime}, z^{\prime}$ be three points in the hyperbolic plane $\left(\mathbf{H}^{2}, d^{\prime}\right)$ satisfying $d^{\prime}\left(x^{\prime}, y^{\prime}\right)=d(x, y), d^{\prime}\left(y^{\prime}, z^{\prime}\right)=$ $d(y, z)$ and $d^{\prime}\left(z^{\prime}, x^{\prime}\right)=d(z, x)$. Then $x \hat{y} z \leq x^{\prime} \hat{y}^{\prime} z^{\prime}, y \hat{z} x \leq y^{\prime} \hat{z}^{\prime} x^{\prime}$ and $z \hat{x} y \leq z^{\prime} \hat{x}^{\prime} y^{\prime}$.

We call $x^{\prime} y^{\prime} z^{\prime}$ a comparison triangle for $x y z$.
Corollary 1.1.3 : Suppose $x \in X$, and $y, z \in X_{C} \backslash\{x\}$ are distinct. Let $\theta=y \hat{x} z$, and $r=d(x,[y, z])$. Then

$$
\sin (\theta / 2) \leq \operatorname{sech} r
$$

Proof : The inequality comes from the following formula of hyperbolic trigonometry.
Suppose a and b are distinct points of the hyperbolic plane $\left(\mathbf{H}^{2}, d^{\prime}\right)$. Suppose $c \in \mathbf{H}_{I}^{2}$ with $a \hat{b} c=\pi / 2, b \hat{a} c=\phi$ and $d^{\prime}(a, b)=R$. Then $\sin \phi \cosh R=1$. From this, one deduces easily that in the more general situation where $c \in X_{C} \backslash\{a, b\}$, and $a \hat{b} c \geq \pi / 2$, we have $\sin \phi \leq \operatorname{sech} R$.

The result now follows by letting $w \in[x, y]$ be any (in fact the unique) nearest point to x, and applying Proposition 1.1.2 to the triangles $x w z$ and/or $x w y$.

By similar arguments, one may show:
Corollary 1.1.4: Suppose that $x, y, z \in X$ are distinct, with $x \hat{y} z \geq \pi / 2$. Let $r=d(y, z)$. Then,

$$
d(x, z) \geq d(x, y)+\log (\cosh r)
$$

Another comparison theorem central to the study of negative curvature is the following " $\mathrm{CAT}(-1)$ " inequality (See for example $[\mathrm{Br}]$).

Proposition 1.1.5 (CAT(-1)) : Suppose $x, y, z \in X$, and $u \in[x, y]$ and $v \in[x, z]$. Let $x^{\prime} y^{\prime} z^{\prime}$ be a comparison triangle for $x y z$ in the hyperbolic plane $\left(\mathbf{H}^{2}, d^{\prime}\right)$, i.e. $d^{\prime}\left(x^{\prime}, y^{\prime}\right)=$ $d(x, y), d^{\prime}\left(y^{\prime}, z^{\prime}\right)=d(y, z)$ and $d^{\prime}\left(z^{\prime}, x^{\prime}\right)=d(z, x)$. Let $u^{\prime} \in\left[x^{\prime}, y^{\prime}\right]$ and $v^{\prime} \in\left[x^{\prime}, z^{\prime}\right]$ be the points with $d^{\prime}\left(x^{\prime}, u^{\prime}\right)=d(x, u)$ and $d^{\prime}\left(x^{\prime}, v^{\prime}\right)=d(x, v)$. Then $d(u, v) \leq d^{\prime}\left(u^{\prime}, v^{\prime}\right)$.

Proof : By applying Proposition 1.1.2, first to the triangles $x u v$ and $y u v$, and then to the triangles $x v y$ and $z v y$.

Corollary 1.1.6 : If $x, y, z \in X_{C}$, then $[y, z] \subseteq N_{\lambda_{0}}([x, y] \cup[x, z])$, where $\lambda_{0}=\cosh ^{-1} \sqrt{2}$.
Proof : By continuity, we can suppose that $x, y, z \in X$. By Proposition 1.1.5, it is enough to prove the result for a triangle in the hyperbolic plane. This is an exercise in hyperbolic trigonometry.

Given $a \in X$, define $h_{a}: X \times X \longrightarrow \mathbf{R}$ by

$$
h_{a}(x, y)=d(x, a)-d(x, y) .
$$

Let $\Delta\left(X_{I}\right) \subseteq X_{C} \times X_{C}$ be the diagonal

$$
\Delta\left(X_{I}\right)=\left\{(x, x) \mid x \in X_{I}\right\} .
$$

Proposition 1.1.7 : For all $a \in X$, the map h_{a} extends uniquely to a continuous map

$$
h_{a}:\left(X_{C} \times X_{C}\right) \backslash \Delta\left(X_{I}\right) \longrightarrow[-\infty, \infty),
$$

with $h_{a}(x, y)=-\infty$ if and only if $y \in X_{I}$.

Proof : Suppose $(x, y) \in\left(X_{C} \times X_{C}\right) \backslash \Delta\left(X_{I}\right)$. It is enough to show that for any sequences $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ with $x_{n}, y_{n} \in X$ we have $h_{a}\left(x_{n}, y_{n}\right)$ convergent in $[-\infty, \infty)$, i.e. either $h_{a}\left(x_{n}, y_{n}\right)$ is Cauchy, or $h_{a}\left(x_{n}, y_{n}\right) \rightarrow-\infty$.

Clearly h_{a} is continuous on $X \times X$, so we can suppose that $(x, y) \notin X \times X$. If $x \in X$ and $y \in X_{I}$, then $h_{a}\left(x_{n}, y_{n}\right) \rightarrow-\infty$. Thus, we can suppose that $x \in X_{I}$.

Given any $\epsilon>0$, we can find, by the convergence of geodesic rays, points $u \in[a, x]$ and $v \in[y, x]$ with $d(u, v) \leq \epsilon$. Now, $d\left(u,\left[a, x_{n}\right]\right) \rightarrow 0$ and $d\left(v,\left[a, y_{n}\right]\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, for some n_{0}, we have points $u_{n} \in\left[a, x_{n}\right]$ and $v_{n} \in\left[y_{n}, x_{n}\right]$ with $d\left(u, u_{n}\right) \leq \epsilon$ and $d\left(v, v_{n}\right) \leq \epsilon$, for all $n \geq n_{0}$. It follows that $\left|h_{a}\left(x_{n}, y_{n}\right)-h_{a}\left(u, y_{n}\right)\right| \leq 6 \epsilon$ for all $n \geq n_{0}$.

If $y \in X_{I}$, then clearly $h_{a}\left(u, y_{n}\right) \rightarrow-\infty$, and so $h_{a}\left(x_{n}, y_{n}\right) \rightarrow-\infty$.
Suppose $y \in X$. If $m, n \geq n_{0}$, then $\left|h_{a}\left(x_{n}, y_{n}\right)-h_{a}\left(x_{m}, y_{m}\right)\right| \leq\left|h_{a}\left(u, y_{n}\right)-h_{a}\left(u, y_{m}\right)\right|+$ $12 \epsilon \leq d\left(y_{n}, y_{m}\right)+12 \epsilon$. It follows, in this case, that $h_{a}\left(x_{n}, y_{n}\right)$ is a Cauchy sequence.

Th last result is needed for our discussion of projection to quasiconvex sets, in Chapter 2. It also gives us the basic properties of "Busemann functions". Note that if $a, b, x, y \in X$, then $h_{b}(x, y)-h_{a}(x, y)=h_{b}(x, a)$. Thus Proposition 1.1.7 tells us that:

Corollary 1.1.8 : For all $a, b \in X$, and $(x, y) \in\left(X_{C} \times X_{C}\right) \backslash \Delta\left(X_{I}\right)$, we have $h_{b}(x, y)-$ $h_{a}(x, y)=h_{b}(x, a)$.

Corollary 1.1.9: Suppose $a, y \in X$, and $x \in X_{C}$. If $z \in[a, x]$, then $h_{a}(z, y) \leq h_{a}(x, y)$.
Proof : The case where $x \in X$ is just the triangle inequality. The case where $x \in X_{I}$ follows by continuity (Proposition 1.1.7), after taking a sequence $x_{n} \in[z, x] \cap X$ tending to x.

If $x \in X_{I}$, a function of the form $\left[y \mapsto h_{a}(x, y)\right]$ is called a Busemann function about x. Corollary 1.1.8 tells us that any two Busemann functions about x differ by a constant. By convention, we take the value of a Busemann function at x itself to be $+\infty$. It turns out that any Busemann function, h, is $C^{2}[\mathrm{HI}]$, and the norm of its gradient is everywhere equal to 1 . The level sets of h are called horospheres about x. Thus the horospheres form a codimension- 1 foliation of X, orthogonal to the foliation by bi-infinite geodesics having one endpoint at x.

A set of the form $h^{-1}[r, \infty)$ for $r \in \mathbf{R}$ is called a horoball about x. Using Corollary 1.1.9, such a horoball may alternatively be described as the closure of the set $\bigcup\left\{N_{t}(\beta(t+\right.$ $u)) \mid t \in[0, \infty)\}$, where $\beta:[0, \infty)$ is a geodesic ray tending to x, with $\beta(0) \in h^{-1} r$. In particular, horoballs are convex.

Applying Propositon 1.1.7, we may extend Corollary 1.1.4 as follows:
Proposition 1.1.10 : Suppose $x \in X_{I}$, and that h is a Busemann function about x. Suppose $y, z \in X$ with $x \hat{y} z \geq \pi / 2$, and $d(x, y)=r$. Then,

$$
h(y)-h(z) \geq \log \cosh r .
$$

We introduce the following (non-standard) notation. Suppose $x \in X_{I}$, and let h : $X_{C} \longrightarrow[-\infty, \infty]$ be a Busemann function about x. Let ϕ_{t} be the gradient flow for $-h$. Given $y \in X$, we shall write $y+t$ for $\phi_{t}(x)$. Thus, if y lies in the bi-infinite geodesic $[z, x]$ and $t \geq 0$, then $y+t$ and $y-t$ are the points in $[y, x]$ and $[z, y]$ respectively, at distance t from y. We shall write $y-\infty$ for z, and $y+\infty$ for x.

The following describes the exponential convergence of geodesic rays tending to the same ideal point. It may be deduced from the constant curvature case using the $\operatorname{CAT}(-1)$ inequality (Poposition 1.1.5).

Proposition 1.1.11 :

(1) Given any $y, z \in X, d(y+t, z+t)$ is monotonically decreasing in t.
(2) For all r, there exists R, such that if $y, z \in X$ satisfy $h(y)=h(z)$ and $d(y, z) \leq r$, then $d(y+t, z+t) \leq R e^{-t}$ for all t.

Finally, we find a second direct application of Proposition 1.1.1 to give a lower bound on the volumes of uniform balls in X.

Let $V(r, n)$ be the volume of the uniform r-ball in \mathbf{H}^{n}. Then:

Proposition 1.1.12 : For any $x \in X$ and $r \geq 0$, the volume of the uniform r-ball, $N_{r}(x)$, is at least $V(r, n)$.

Proof : Let $e=e(X, x): X \longrightarrow \mathbf{H}^{n}$ be as in Proposition 1.1.1. Then $e\left(N_{r}(x)\right)$ is the uniform r-ball in \mathbf{H}^{n} about $e(x)$. The result follows since e is distance non-increasing. \diamond

1.2. Curvature bounded away from $-\infty$.

In this section, we suppose that all the sectional curvatures of X are at least $-\kappa^{2}$, where $\kappa \geq 1$.

Let $\mathbf{H}^{n}(\kappa)$ be the Hadamard manifold of constant curvature $-\kappa^{2}$. (Thus $\mathbf{H}^{n}(1)=$ \mathbf{H}^{n}.) Suppose that $a_{0} \in \mathbf{H}^{n}(\kappa)$ is some fixed basepoint. Given any $x \in X$, we may define, as with Proposition 1.1.1, the map

$$
e_{\kappa}=e_{\kappa}(X, x): X \longrightarrow \mathbf{H}^{n}(\kappa)
$$

by $e_{\kappa}(X, x)=\exp \left(\mathbf{H}^{n}(\kappa), a_{0}\right) \circ \exp (X, x)^{-1}$. Thus, as before, e_{κ} is a diffeomorphism. Again, by the Rauch comparison theorem we have:

Proposition 1.2.1 : The map $e_{\kappa}: X \longrightarrow \mathbf{H}^{n}(\kappa)$ is distance non-decreasing.
The corresponding version of Toponogov's comparison theorem now gives a lower bound on angles (c.f. Proposition 1.1.2):

Proposition 1.2.2: Suppose x, y, z are distinct points of X. Let x_{0}, y_{0}, z_{0} be three points in $\left(\mathbf{H}^{2}(\kappa), d_{0}\right)$ satisfying $d_{0}\left(x_{0}, y_{0}\right)=d(x, y), d_{0}\left(y_{0}, z_{0}\right)=d(y, z)$ and $d_{0}\left(z_{0}, x_{0}\right)=d(z, x)$. Then, $x \hat{y} z \geq x_{0} \hat{y}_{0} z_{0}$, $y \hat{z} x \geq y_{0} \hat{z}_{0} x_{0}$ and $z \hat{x} y \geq z_{0} \hat{x}_{0} y_{0}$.

Corollary 1.2.3 : Suppose $x, y \in X$ are distinct and $z \in X_{I}$. Let $r=d(x, y)$ and $\theta=y \hat{x} z$. If $x \hat{y} z \leq \pi / 2$, then $\sin \theta \geq \operatorname{sech}(\kappa r)$.

Proof : Suppose a, b are two points in $\left(\mathbf{H}^{2}(\kappa), d_{0}\right)$ and c an ideal point with $a \hat{b} c=\pi / 2$. If $R=d_{0}(a, b)$, then $b \hat{a} c=\sin ^{-1} \operatorname{sech}(\kappa r)$ (c.f. Corollary 1.1.3). We can deduce that if $a, b, c \in \mathbf{H}^{2}(\kappa)$ with $d(a, b)=R, d(b, c)=h$, and $a \hat{b} c \leq \pi / 2$, then $b \hat{a} c \geq \sin ^{-1} \operatorname{sech}(\kappa R)-$ $\epsilon_{\kappa, R}(h)$, where $\epsilon_{\kappa, R} \rightarrow 0$ as $h \rightarrow \infty$.

Suppose now that x, y, z, r, θ are as in the hypotheses. Choose a sequence of points $z_{i} \in[y, z] \cap X$ with $z_{i} \rightarrow z$. Let $x_{0} y_{0} z_{i 0}$ be a comparison triangle in $\mathbf{H}^{2}(\kappa)$ for $x y z_{i}$. Thus, by Proposition 1.2.3, we have $x_{0} \hat{y}_{0} z_{i 0} \leq x \hat{y} z_{i}=x \hat{y} z \leq \pi / 2$. Thus, again by Proposition 1.2.3, we have $y \hat{x} z_{i} \geq y_{0} \hat{x}_{0} z_{i 0} \geq \sin ^{-1} \operatorname{sech}(\kappa r)-\epsilon_{\kappa, r}\left(d\left(y, z_{i}\right)\right)$. As $i \rightarrow \infty, y \hat{x} z_{i} \rightarrow \theta$, and $d\left(y, z_{i}\right) \rightarrow \infty$ so $\epsilon_{\kappa, r}\left(d\left(y, z_{i}\right)\right) \rightarrow 0$. Thus, $\theta \geq \sin ^{-1} \operatorname{sech}(\kappa r)$ as required.

Another consequence of Propositon 1.2.1 is an upper bound on the volumes of uniform balls (c.f. Proposition 1.1.12). Note that the volume of a uniform r-ball in $\mathbf{H}^{n}(\kappa)$ is $V(\kappa r, n) / \kappa^{n}$.

Proposition 1.2.4 : If $x \in X$ and $r \geq 0$, then the volume of the uniform r-ball $N_{r}(x)$ is at most $V(\kappa r, n) / \kappa^{n}$.

2. Convexity.

Let X be a Hadamard manifold. For Sections 2.1-2.4, we assume only an upper curvature bound, -1 , for X. For Section 2.5, we need also a lower curvature bound.

A subset Q of X_{C} is convex if $[x, y] \subseteq Q$ for all $x, y \in Q$. The lack of a good notion of half-space in a variably curved manifold means that convex sets are difficult to construct and work with. A construction, due to Anderson, for pinched Hadamard manifolds will be described in Section 2.5. For most purposes, however, one could make do with some notion of quasiconvexity, as we describe in Section 2.2. We begin with a general discussion of projection to closed sets. A detailed discussion of the constant curvature case is given in $[\mathrm{EM}]$.

2.1. Projection.

Suppose that $Q \subseteq X_{C}$ is closed. Let

$$
\operatorname{proj}_{Q}^{0}=\{(x, y) \in X \times(Q \cap X) \mid d(x, y)=d(x, Q)\}
$$

In other words, $\left\{y \mid(x, y) \in \operatorname{proj}_{Q}^{0}\right\}$ is the set of nearest points of Q to x. Clearly, $\operatorname{proj}_{Q}^{0}$ is a closed subset of $X \times X$. Let $\operatorname{proj}_{Q}^{C}$ be the closure of $\operatorname{proj}_{Q}^{0}$ in $X_{C} \times X_{C}$, and set

$$
\operatorname{proj}_{Q}=\Delta(Q) \cup \operatorname{proj}_{Q}^{C},
$$

where $\Delta(Q)$ is the diagonal $\{(x, x) \mid x \in Q\}$. We shall only be interested in cases where $Q \cap X$ is dense in Q, and so $\Delta(Q) \subseteq \operatorname{proj}_{Q}^{C}$.

Given $x \in X_{C}$, we write

$$
\operatorname{proj}_{Q}(x)=\left\{y \in X_{C} \mid(x, y) \in \operatorname{proj}_{Q}\right\} .
$$

Clearly, $\operatorname{proj}_{Q}(x) \subseteq Q$.
Suppose $Q \cap X \neq \emptyset$. If $x \in X$, we have $\operatorname{proj}_{Q}(x) \subseteq X$, which we have already described as the set of nearest points to x. We want to describe $\operatorname{proj}_{Q}(x)$ in the case where $x \in X_{I}$.

Suppose $x \in X_{I}$, and let $h: X_{C} \longrightarrow[-\infty, \infty]$ be a Busemann function about x. Let

$$
m(x)=\{y \in X \mid h(z) \leq h(y) \text { for all } z \in Q \cap X\},
$$

i.e. $m(x)$ is the set of those $y \in Q$ which maximise $h(y)$. (Perhaps $m(x)=\emptyset$ if $x \in Q \cap X_{I}$.) Note that $m(x)$ is defined independently of the choice of h.

Proposition 2.1.1 : Suppose $Q \subseteq X_{C}$ is closed, and $Q \cap X \neq \emptyset$.
If $x \in Q \cap X_{I}$, then $\operatorname{proj}_{Q}(x)=\{x\} \cup m(x)$.
If $x \in X_{I} \backslash Q$, then $\operatorname{proj}_{Q}(x)=m(x)$.
Proof: We choose a Busemann function $h=\left[y \mapsto h_{a}(x, y)\right]$ for some $a \in X$.
Note that since $\operatorname{proj}_{Q}(x) \subseteq Q$, we have $x \in \operatorname{proj}_{Q}(x)$ if and only if $x \in X_{I}$. We claim that $m(x) \subseteq \operatorname{proj}_{Q}(x) \subseteq\{x\} \cup m(x)$.

First, we show $\operatorname{proj}_{Q}(x) \subseteq\{x\} \cup m(x)$. Suppose that $y \in \operatorname{proj}_{Q}(x) \backslash\{x\}$. Then $(x, y) \in \operatorname{proj}_{Q}^{C}$, and so there is a sequence $\left(x_{n}, y_{n}\right) \in \operatorname{proj}_{Q}^{0}$, with $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$. Suppose $z \in Q \cap X$. By the definition of $\operatorname{proj}_{Q}^{0}$, we have $d\left(x_{n}, z\right) \geq d\left(x_{n}, y_{n}\right)$. Thus $h_{a}\left(x_{n}, y_{n}\right)-$ $h_{a}\left(x_{n}, z\right) \geq 0$ for all n. By continuity of h_{a} (Proposition 1.1.7), we have that $h_{a}\left(x_{n}, y_{n}\right)-$ $h_{a}\left(x_{n}, z\right) \rightarrow h_{a}(x, y)-h_{a}(x, z)=h(y)-h(z)$. Thus $h(z) \leq h(y)$. This shows that $y \in m(x)$.

It remains to see that $m(x) \subseteq \operatorname{proj}_{Q}(x)$. Suppose $y \in m(x) \subseteq Q$. Let $x_{n} \in[y, x] \cap X$ be a sequence of points tending to x. If $z \in Q \cap X$, then $h(y) \geq h(z)$. By Corollary 1.1.8, we have $h_{y}(x, z)=h_{a}(x, z)-h_{a}(x, y)=h(z)-h(y) \leq 0$. By Lemma 1.1.9, we have $h_{y}\left(x_{n}, z\right) \leq h_{y}(x, z) \leq 0$ for all n. Thus $d\left(x_{n}, y\right) \leq d\left(x_{n}, z\right)$. We conclude that $\left(x_{n}, y\right) \in \operatorname{proj}_{Q}^{0}$ for all n. But $\left(x_{n}, y\right) \rightarrow(x, y)$ and so $(x, y) \in \operatorname{proj}_{Q}$, i.e. $y \in \operatorname{proj}_{Q}(x)$.

2.2. Quasiconvexity.

Recall the definition of uniform neighbourhoods $N_{r}(Q)$ from Chapter 1.

Definition : A closed subset $Q \subseteq X_{C}$ is λ-quasiconvex if $[x, y] \subseteq N_{\lambda}(Q)$ for all $x, y \in Q$.
We say that a set is quasiconvex if it is λ-quasiconvex for some $\lambda \in[0, \infty)$. Note that if Q is quasiconvex and contains more than one point, then Q meets X. In fact, $Q \cap X$ is dense in Q.

Definition : A closed subset $Q \subseteq X_{C}$ is starlike about $x \in X_{C}$ if $[x, y] \subseteq Q$ for all $y \in Q$.
Corollary 1.1.6 shows that any starlike set is λ_{0}-quasiconvex, where $\lambda_{0}=\cosh ^{-1} \sqrt{2}$. The following lemma provides more examples of quasiconvex sets.

Lemma 2.2.1: Suppose $x_{0}, x_{1}, \ldots, x_{n} \in X_{C}$ are $n+1$ points, then

$$
\left[x_{0}, x_{n}\right] \subseteq N_{\lambda}\left(\left[x_{0}, x_{1}\right] \cup\left[x_{1}, x_{2}\right] \cup \cdots \cup\left[x_{n-1}, x_{n}\right]\right),
$$

where $\lambda=\lambda_{0}\left\lceil\log _{2} n\right\rceil$, where $\lambda_{0}=\cosh ^{-1} \sqrt{2}$, and $\left\lceil\log _{2} n\right\rceil$ is the smallest integer greater than or equal to $\log _{2} n$.

Proof : We can assume that $n=2^{r}$ for some $r \in \mathbf{N}$. Let $m=\frac{n}{2}=2^{r-1}$. By Corollary 1.1.6, we have

$$
\left[x_{0}, x_{n}\right] \subseteq N_{\lambda_{0}}\left(\left[x_{0}, x_{m}\right] \cup\left[x_{m}, x_{n}\right]\right)
$$

The result follows by induction on r.
Thus, any set Q in which any two points can be joined by a piecewise geodesic path with a bounded number of segments is quasiconvex.

Given any closed subset $Q \subseteq X_{C}$, we define

$$
\operatorname{join}(Q)=\bigcup\{[x, y] \mid x, y \in Q\}
$$

Thus, join (Q) will be a first approximation to the convex hull of Q. By Lemma 2.2.1, see that join (Q) is ($2 \lambda_{0}$)-quasiconvex for any closed set $Q \subseteq X_{C}$. We also have that $\operatorname{join}(Q) \cap X_{I}=Q \cap X_{I}$. Note that to say that Q is λ-quasiconvex means precisely that join $(Q) \subseteq N_{\lambda}(Q)$.

Definition : Given two closed subsets $Q_{1}, Q_{2} \subseteq X_{C}$, the Hausdorff distance between Q_{1} and Q_{2} is the minimal $r \in[0, \infty]$ such that both $Q_{1} \subseteq N_{r}\left(Q_{2}\right)$ and $Q_{2} \subseteq N_{r}\left(Q_{1}\right)$.

We write $\operatorname{hd}\left(Q_{1}, Q_{2}\right)$ for the Hausdorff distance. Note that if $\operatorname{hd}\left(Q_{1}, Q_{2}\right)<\infty$, then $Q_{1} \cap X_{I}=Q_{2} \cap X_{I}$.

If $\operatorname{hd}\left(Q_{1}, Q_{2}\right)=r<\infty$ and Q_{1} is λ-quasiconvex, then Q_{2} is $(2 r+\lambda)$-quasiconvex. (This uses the $\operatorname{CAT}(-1)$ inequality.) We see that quasiconvexity is invariant under the equivalence relation of having finite Hausdorff distance.

We next want to consider projection to quasiconvex sets.

Proposition 2.2.2 : Suppose $Q_{1}, Q_{2} \subseteq X_{C}$ are both closed and λ-quasiconvex, and that both meet X. Suppose that $\operatorname{hd}\left(Q_{1}, Q_{2}\right)=r<\infty$ (so that $Q_{1} \cap X_{I}=Q_{2} \cap X_{I}$). If $x \in X_{C} \backslash\left(Q_{1} \cap X_{I}\right)$, then

$$
\operatorname{diam}\left(\operatorname{proj}_{Q_{1}}(x) \cup \operatorname{proj}_{Q_{2}}(x)\right) \leq r+\cosh ^{-1} e^{\lambda}+\cosh ^{-1} e^{\lambda+r} .
$$

Proof : Suppose first, that $x \in X$.
Let $y, z \in \operatorname{proj}_{Q_{1}}(x) \cup \operatorname{proj}_{Q_{2}}(x)$. Without loss of generality, we can suppose that $d(x, y) \geq d(x, z)$ and that $y \in \operatorname{proj}_{Q_{1}}(x)$. Since $\operatorname{hd}\left(Q_{1}, Q_{2}\right) \leq r$, there is some $w \in Q_{1}$ with $d(z, w) \leq r$ (Figure 2a).

Figure 2a.
Let u be a nearest point on $[y, w]$ to x (in fact the unique nearest point). Since Q_{1} is λ-quasiconvex, $u \in N_{\lambda}(Q)$. Since $y \in \operatorname{proj}_{Q_{1}}(x)$, we must have

$$
d(x, y) \leq d(x, u)+\lambda
$$

Also,

$$
\begin{aligned}
d(x, w) & \leq d(x, z)+r \leq d(x, y)+r \\
& \leq d(x, u)+\lambda+r .
\end{aligned}
$$

If $u \neq y$, then $x \hat{u} y \geq \pi / 2$. Since $d(x, y)-d(x, u) \leq \lambda$, applying Corollary 1.1.4, we find that $\log \cosh (d(u, y)) \leq \lambda$, thus

$$
d(u, y) \leq \cosh ^{-1} e^{\lambda}
$$

Similarly, we get that

$$
d(u, w) \leq \cosh ^{-1} e^{\lambda+r}
$$

We conclude that

$$
d(y, z) \leq r+\cosh ^{-1} e^{\lambda}+\cosh ^{-1} e^{\lambda+r}
$$

as required.
The case where $x \in X_{I}$ follows similarly, applying Lemma 1.1.10 in place of Corollary 1.1.4, and using the description of $\operatorname{proj}_{Q_{i}}(x)$ given by Proposition 2.1.1. In this case, we take u to be a point (in fact the unique point) on $[y, w]$ maximising a Busemann function.

Corollary 2.2.3 : Suppose $Q \subseteq X_{C}$ is closed, λ-quasiconvex, and meets X. If $x \in$ $X_{C} \backslash\left(Q \cap X_{I}\right)$, then

$$
\operatorname{diam} \operatorname{proj}_{Q}(x) \leq 2 \cosh ^{-1} e^{\lambda} .
$$

Proof : Set $Q=Q_{1}=Q_{2}$ in Proposition 2.2.2.
It is easy to check that if Q is quasiconvex, and $x \in Q \cap X_{I}$ then $\operatorname{proj}_{Q}(x)=\{x\}$.
In particular, we see that if Q is convex (i.e. 0-quasiconvex), then $\operatorname{proj}_{Q}(x)$ consists of a single point of Q, for each $x \in X_{C}$. Thus, in this case, we may think of proj_{Q} as a map from X_{C} to Q. Since the graph is closed, by definition, this map is continuous. Thus, proj_{Q} is a retraction of X_{C} onto Q.

Lemma 2.2.4 : Suppose $Q \subseteq X_{C}$ is convex.
(1) Suppose $x \in X$, and that $y \in Q \cap X$ locally minimises the function $[z \mapsto d(x, z)]$ on $Q \cap X$. Then, $y=\operatorname{proj}_{Q} x$.
(2) Suppose $x \in X_{I}$. Let h be a Busemann function about x. Suppose $y \in Q \cap X$ locally maximises h on $H \cap X$. Then $y=\operatorname{proj}_{Q} x$.

Proof : Suppose that $y \neq z=\operatorname{proj}_{Q} x$. Then $x \hat{y} z<\pi / 2$ (by Toponogov's comparison theorem, if $x \in X$, and so by continuity if $x \in X_{I}$). But $[y, z] \subseteq Q$, which contradicts the hypothesis on y.

Note that one can generalise to the case where Q is quasiconvex. Thus, if $y \in Q \cap X$ minimises the distance to x over a sufficiently large part of $Q \cap X$, then $y \in \operatorname{proj}_{Q} x$.

2.3. Pseudoconvexity.

This section is a digression. We shall not refer to it again in the rest of this paper.
The definition of quasiconvexity we have just given is a standard notion. It is somewhat unfortunate that the intersection of two quasiconvex sets need not be quasiconvex. It thus does not make much sense to speak of "quasiconvex hulls" of arbitrary sets. However, in the context in which we are working, we could replace quasiconvexity by the following notion of "pseudoconvexity". Given $\mu \in[0, \infty)$, we say that $Q \subseteq X_{C}$ is μ-pseudoconvex if $[x, y] \subseteq Q$ whenever $x, y \in Q$ and $d(x, y)>\mu$. This is clearly closed under intersection. Given $X \subseteq X_{C}$, we define $\operatorname{hull}_{\mu}(Q)$ as the smallest μ-pseudoconvex set containing Q.

It is not hard to see that, given any $\mu>0$, there is some $R(\mu)>0$, so that for any $Q \subseteq X_{C}, N_{R(\mu)}(\operatorname{join}(Q))$ is μ-pseudoconvex. In particular, if Q is λ-quasiconvex, then $\operatorname{hull}_{\mu}(Q) \subseteq N_{\lambda+R(\mu)}(Q)$.

Most of the discussion involving convex hulls in this paper can be interpreted for μ pseudoconvex hulls, though we shall make no explicit mention of this. It is not clear what the boundary of a pseudoconvex hull looks like in general. Note that as $\mu \rightarrow 0$, then the quantity $R(\mu)$ will necessarily tend to ∞. Thus, this does not give rise to a construction of convex sets. For this, we need to assume a lower curvature bound (Section 2.5).

2.4. Cones and visual radii.

Let ξ be a unit tangent vector based at $x \in X$. Given any $\theta \in[0, \pi]$, write

$$
\operatorname{cone}(\xi, \theta)=\left\{y \in X_{C} \mid \angle(\xi, \overrightarrow{x y}) \leq \theta\right\}
$$

Recall that $\overrightarrow{x y}$ is the unit tangent vector at x in the direction of y. We use $\angle($,$) for the$ angle between two tangent vectors. We call cone (ξ, θ) the cone of angle θ about ξ. It is the closure, in X_{C}, of the image of a spherical cone in \mathbf{R}^{n} under the the exponential map based at x. If $\theta=\pi / 2$, we shall refer to cone $(\xi, \pi / 2)$ as the half-space about ξ.

Suppose that $y, z \in X_{C}$ are distinct. Then $[y, z] \subseteq X_{C}$ is convex. Thus, as remarked at the end of Section 2.2, $\operatorname{proj}_{[y, z]}$ is a retraction of X_{C} onto $[y, z]$. By applying Toponogov's comparison theorem (Propostion 1.1.2), we arrive at the following alternative description of half-spaces:

Lemma 2.4.1 : Suppose $\xi \in T_{x}^{1}(X)$. Suppose that y and z are distinct points of X_{C} with $x \in[y, z] \backslash\{y, z\}$ and $\xi=\overrightarrow{x y}$. Then

$$
\operatorname{cone}(\xi, \pi / 2)=\operatorname{proj}_{[y, z]}^{-1}[x, y] .
$$

Given any closed set $Q \subseteq X_{C}$, and $x \in X \backslash Q$, we define

$$
\operatorname{vr}(Q, x)=\min _{y \in X_{I}} \max _{z \in Q} y \hat{x} z
$$

We call $\operatorname{vr}(Q, x)$ the visual radius of Q at x. In other words, it is the smallest $\theta>0$ such that Q lies inside some cone of angle θ based at x.

It is not hard to see that the map $[x \mapsto \operatorname{vr}(Q, x)]$ is continuous on $X \backslash Q$. Setting $\operatorname{vr}(Q, x)=\pi$ for $x \in Q$, it becomes upper-semicontinuous on the whole of X.

Given any $\theta \in(0, \pi)$ we write

$$
V_{\theta}^{0}(Q)=\{x \in X \mid \operatorname{vr}(Q) \geq \theta\}
$$

We see that $V_{\theta}^{0}(Q)$ is a closed subset of X. Let $V_{\theta}^{C}(Q)$ be the closure of $V_{\theta}^{0}(Q)$ in X_{C}, and set $V_{\theta}(Q)=Q \cup V_{\theta}^{C}(Q)$.

We remark that, given $0<\phi<\theta \leq \pi / 2$, then there is some r such that for any Q, we have $V_{\phi} \subseteq N_{r} V_{\theta}(Q)$. We have no explicit use for this result, however we shall need the following.

Lemma 2.4.2 : Given any $\theta \in(0, \pi / 2]$ and $\lambda \in[0, \infty)$, there is some $r=r(\theta, \lambda)$, such that if $Q \subseteq X_{C}$ is closed and λ-quasiconvex, then

$$
V_{\theta}(Q) \subseteq N_{r}(Q) .
$$

Proof : Let $r=\lambda+\operatorname{sech}^{-1} \sin (\theta / 2)$.
Suppose that $x \in X$ with $d(x, Q)>r$. If $y, z \in Q$, then $d(x,[y, z])>r-\lambda=$ $\operatorname{sech}^{-1} \sin (\theta / 2)$. By Corollary 1.1.3, we find that $y \hat{x} z<\theta$, so certainly, $\operatorname{vr}(Q, x)<\theta$. Thus $x \notin V_{\theta}(Q)$. This shows that $V_{\theta}^{0}(Q)=V_{\theta}(Q) \cap X \subseteq N_{r}(Q)$.

But $N_{r}(Q)$ is, by definition, closed in X_{C}, and contains Q. Thus $V_{\theta}(Q) \subseteq N_{r}(Q) . \diamond$
Now, if $Q \subseteq X_{C}$ is any closed set, we know that join Q is $\left(2 \lambda_{0}\right)$-quasiconvex. Thus, by Lemma 2.4.2, we have

$$
V_{\theta}(Q) \subseteq V_{\theta}(\operatorname{join} Q) \subseteq N_{r}(\operatorname{join} Q)
$$

for some r depending only on θ. Note that $N_{r}(\operatorname{join} Q) \cap X_{I}=(\operatorname{join} Q) \cap X_{I}=Q \cap X_{I}$. Thus:

Corollary 2.4.3 : Given any closed set $Q \subseteq X_{C}$ and any $\theta \in(0, \pi / 2]$ we have

$$
V_{\theta}(Q) \cap X_{I}=Q \cap X_{I}
$$

Another way to say this is that if $\left(x_{n}\right)$ is a sequence of points tending to a point of $X_{I} \backslash Q$, then $\operatorname{vr}\left(Q, x_{n}\right)$ tends to 0 .

2.5. Construction of convex sets.

In this section, we assume that all the sectional curvatures of X lie between $-\kappa^{2}$ and -1 .

Given any closed set $Q \subseteq X_{C}$, we write hull (Q) for the (closed) convex hull of Q, i.e. the smallest closed convex set containing Q. One can show that hull (Q) varies continuously with Q, in the Hausdorff topology [Bo3], though we shall not need this fact here.

In [An], Anderson gives a means of constructing convex sets in X. We state the result in the following form.

Proposition 2.5.1 : For any $\kappa \geq 1$, there is some $\theta_{0}=\theta_{0}(\kappa)$ such that if ξ is a unit tangent vector to X, then

$$
\text { hull cone }\left(\xi, \theta_{0}\right) \subseteq \operatorname{cone}(\xi, \pi / 2)
$$

Proof : Fix, for the moment, some $R>0$.
Suppose $\xi \in T_{x}^{1} X$, and let $y \in X$ be the point with $\overrightarrow{x y}=\xi$ and $d(x, y)=R$. In [An], Anderson constructs a convex set $H \subseteq X_{C}$ with smooth boundary, ∂H, and ξ as the inward-pointing normal to ∂H at x. It follows that $H \subseteq \operatorname{cone}(\xi, \pi / 2)$. [An, Lemma 2.4] says that there is some $\phi(R, \kappa) \in[0, \pi]$ such that if $z \in X_{I} \backslash H$, then $x \hat{y} z \leq \phi(R, \kappa)$ (Figure 2 b).

Figure 2b.
Moreover, from the description given of $\phi(R, \kappa)$, it is clear that $\phi(R, \kappa) \rightarrow 0$ as $R \rightarrow \infty$. Thus, we can choose $R=R(\kappa)$ so that $\phi(R, \kappa) \leq \pi / 2$. In other words, if $z \in X_{I} \backslash H$, then $x \hat{y} z \leq \pi / 2$. It follows by Corollary 1.2.3, that $y \hat{x} z \geq \theta_{0}$ where $\theta_{0}=\theta_{0}(\kappa)=$ $\sin ^{-1} \operatorname{sech}(\kappa R(\kappa))$. We see that $\operatorname{cone}\left(\xi, \theta_{0}\right) \cap X_{I} \subseteq H$. Since H is convex and contains x, we have $\operatorname{cone}\left(\xi, \theta_{0}\right) \subseteq H$. Thus hull cone $\left(\xi, \theta_{0}\right) \subseteq H \subseteq \operatorname{cone}(\xi, \pi / 2)$.

Proposition 2.5.2 : If $Q \subseteq X_{C}$ is closed, then

$$
\operatorname{hull}(Q) \subseteq V_{\theta_{0}}(Q)
$$

Proof : Suppose $x \in X \backslash V_{\theta_{0}}(Q)$. Thus $Q \subseteq \operatorname{cone}(\xi, \theta)$, where $\theta<\theta_{0}$, and ξ is a unit tangent vector at x. Let $z \in X_{I}$ be the ideal point with $\overrightarrow{x z}=\xi$. If $y \in[x, z] \backslash\{x\}$ is sufficiently close to x, then clearly $Q \subseteq \operatorname{cone}\left(\vec{y} \vec{z}, \theta_{0}\right)$. Thus,

$$
\operatorname{hull}(Q) \subseteq \operatorname{hull} \operatorname{cone}\left(\vec{y} \vec{z}, \theta_{0}\right) \subseteq \operatorname{cone}(\vec{y} \vec{z}, \pi / 2) .
$$

But $x \notin \operatorname{cone}(\overrightarrow{y z}, \pi / 2)$, and so $x \notin \operatorname{hull}(Q)$.
Suppose $x \in X_{I} \backslash V_{\theta_{0}}(Q)$. Choose any $z \in Q$. By Corollary 2.4.3, $V_{\theta_{0} / 2}(Q) \cap X_{I}=$ $Q \cap X_{I}=V_{\theta_{0}}(Q) \cap X_{I}$, and so we can find $y \in[x, z] \cap X \backslash V_{\theta_{0} / 2}(Q)$. Since $\operatorname{vr}(Q, y) \leq \theta_{0} / 2$, and $z \in Q$, we must have $Q \subseteq \operatorname{cone}\left(\vec{y} z, \theta_{0}\right)$. As in the first part, we see that $x \notin \operatorname{hull}(Q)$. \diamond

Since (by Corollary 2.4.3), $Q \cap X_{I}=V_{\theta_{0}}(Q) \cap X_{I}$, we have as a corollary, the result of Anderson:

Corollary 2.5.3 : If $Q \subseteq X_{C}$ is closed, then

$$
\operatorname{hull}(Q) \cap X_{I}=Q \cap X_{I} .
$$

Also, applying Lemma 2.4.2, we get:

Proposition 2.5.4: Given $\kappa \geq 1$, and $\lambda \in[0, \infty)$, there is some $r \in[0, \infty)$ such that if $Q \subseteq X_{C}$ is closed and λ-quasiconvex, then

$$
\operatorname{hull}(Q) \subseteq N_{r}(Q)
$$

3. Groups of isometries.

In this Chapter, we shall describe some constructions relating to discrete group actions. We assume throughout that X has curvature at most -1. In Section 3.5, we assume that X has curvature at least $-\kappa^{2}$.

3.1. Elementary and nilpotent groups.

By a subspace, Y, of X_{C}, we shall mean a totally geodesic subset which meets X (i.e. $Y \cap X \neq \emptyset$), such that if $x, y \in Y$ are distinct, then the bi-infinite geodesic through x and y lies in Y. (Thus, a single point of X is a subspace, but a single point of X_{I} is not.) Such a set is necessarily closed in X_{C}, and has, itself, the structure of a compactified Hadamard manifold, with the same curvature bounds. We say that Y is proper if $Y \neq X_{C}$.

Any isometry g of X extends to a homeomorphism of X_{C}, which we shall also denote by g. We shall write fix g for the set of fixed points of g in X_{C}. We have the following classification of isometries.

Any isometry g of X is of precisely one of the following types.
(0) g is the identity.
(1) g is elliptic. Thus fix g is a proper non-empty subspace of X_{C}.
(2) g is parabolic. Thus, fix g consists of a single point $p \in X_{I}$, and g preserves setwise each horosphere about p.
(3) g is loxodromic. Thus, fix $g=\{p, q\}$ where p and q are distinct points of X_{I}. For all $x \in X_{C} \backslash\{p, q\}$, we have $g^{n} x \rightarrow p$ and $g^{-n} x \rightarrow q$. We call p the attracting fixed point of g, and q the repelling fixed point of g. The bi-infinite geodesic $[p, q]$ is called the loxodromic axis. It is preserved setwise by g.

Suppose G is a group of isometries acting on X. We write fix G for the set of all fixed points of G in X_{C}, i.e. fix $G=\bigcap_{g \in G}$ fix g.

Definition : The group G is elementary if either fix $G \neq \emptyset$, or else if G preserves setwise some bi-infinite geodesic in X_{C}.

It is not hard to separate elementary groups into three mutually exclusive classes.
Case(1): fix G is a non-empty subspace of X_{C}.
Case(2): fix G consists of a single point of X_{I}.

Case(3): G has no fixed point in X, and G preserves setwise a unique bi-infinite geodesic in X.

Proposition 3.1.1 : Any virtually nilpotent group of isometries of X is elementary.
Proof : First, we deal with the case where our group G is abelian. Choose any non-trivial $g \in G$. If g is elliptic, then fix g is a proper G-invariant subspace of X_{C}, and so we can use induction on dimension. If g is parabolic, then its fixed point must be fixed by G. If g is loxodromic, then G preserves setwise the loxodromic axis. We find that G is elementary.

Now, suppose that G is nilpotent. Let Z be the centre of G. If fix Z is a non-empty subspace of X_{C} (Case(1)), then G / Z acts on fix Z, and the result follows by induction on dimension. If fix Z consists of a single point $p \in X_{I}(\operatorname{Case}(2))$, then p is fixed by G. If $X \cap$ fix $Z=\emptyset$ and Z preserves a unique bi-infinite geodesic (Case(3)), then this geodesic is preserved by G.

Finally, suppose that G has a nilpotent subgroup H of finite index. We can assume that H is normal in G (by intersecting its conjugates). If fix H is a non-empty subspace of X_{C}, then fix H is G-invariant, and G / H is finite and acts on fix H. It follows that G / H, and hence G, has a fixed point in $X \cap$ fix H. (See the beginning of Section 3.5). If fix H consists of a single point of X_{I}, then this point is fixed by G. If H preserves setwise a unique bi-infinite geodesic, then this geodesic is preserved also by G.

The interest in virtually nilpotent groups arises from the Margulis Lemma (3.5.1). We are particularly interested in the following two types of elementary groups.

Definition : A group of isometries, G, of X is parabolic if fix G consists of a single point $p \in X_{I}$, and if G preserves setwise some (and hence every) horosphere about p.

Definition : A group of isometries, G, of X is loxodromic if G contains a loxodromic element and preserves setwise its axis.

It is easily seen that a loxodromic group is precisely what is described by Case(3) above. There are two types of loxodromic group. Either fix $G=\{x, y\}$, where x and y are the endpoints of the loxodromic axis, or else there is some element of G which swaps x and y, in which case fix $G=\emptyset$. We call these situations loxodromic of the first and second type respectively.

3.2. Discrete isometry groups.

We say that a group Γ acts properly discontinuously on a locally compact topological space if each compact set meets only finitely many images of itself under Γ. Alternatively, we may say that Γ acts properly discontinuously if, for each compact set K, the set of images, ΓK, of K under Γ is locally finite. (We take this to imply that $\operatorname{stab}_{\Gamma} K$ is finite.) It is a simple exercise that these definitions are equivalent.

We write Isom X for the set of isometries of X. Thus, Isom X has naturally the structure of a locally compact topological group. A subgroup Γ of Isom X is discrete as a
subgroup if and only if it acts properly discontinuously on X. In such a case, the torsion elements of Γ (i.e. the non-trivial elements of finite order) are precisely the elliptic ones. In fact, any finite subgroup of Isom X must have a fixed point in X.

It's not hard to see that if G is a discrete subgroup of Isom X with fix $G \neq \emptyset$, then G is finite, parabolic or loxodromic of the first type. As a corollary, we have:

Proposition 3.2.1 : A discrete elementary subgroup of Isom X is finite, parabolic or loxodromic.

Note that these three cases are mutually exclusive.
Suppose that $\Gamma \subseteq$ Isom X is discrete. Given any subset $Q \subseteq X_{C}$, we shall write

$$
\operatorname{stab}_{\Gamma} Q=\{\gamma \in \Gamma \mid \gamma Q=Q\}
$$

for the setwise stabliser of Q.
Suppose $G \subseteq \Gamma$ is parabolic with fixed point p. By Proposition 3.2.1, we see that $\operatorname{stab}_{\Gamma} p$ is also parabolic. In fact, we see easily that $\operatorname{stab}_{\Gamma} p$ is a maximal parabolic subgroup of Γ.

Definition : We call $p \in X_{I}$ a parabolic fixed point of Γ if $\operatorname{stab}_{\Gamma} p$ is parabolic.

Note that there is a bijective correspondence between orbits of parabolic fixed points and conjugacy classes of maximal parabolic subgroups.

Suppose $G \subseteq \Gamma$ is loxodromic with axis β. Again using Proposition 3.2.1, we see that $\operatorname{stab}_{\Gamma} \beta$ is a maximal loxodromic subgroup of Γ. We have shown:

Lemma 3.2.2 : Suppose $\Gamma \subseteq$ Isom X is discrete. Every infinite elementary subgroup of Γ is contained in a unique maximal elementary subgroup.

Clearly, every subgroup of an elementary group is elementary, so we have:

Corollary 3.2.3 : If $G, G^{\prime} \subseteq \Gamma$ are maximal elementary, and intersect in an infinite subgroup, then $G=G^{\prime}$.

Given $G \subseteq \Gamma$, we write

$$
N_{\Gamma}(G)=\left\{\gamma \in \Gamma \mid \gamma G \gamma^{-1}=G\right\}
$$

for the normaliser of G in Γ.

Lemma 3.2.4 : If $G \subseteq \Gamma$ is infinite maximal elementary, then $N_{\Gamma}(G)=G$.

Proof : Supppose G is parabolic with fixed point p. If $\gamma \in N_{\Gamma}(G)$, then $\{\gamma p\}=\gamma \mathrm{fix} G=$ fix $\gamma G \gamma^{-1}=\operatorname{fix} G=\{p\}$. Thus $p \in \operatorname{fix} N_{\Gamma}(G)$. By proposition 3.2.1, we see that $N_{\Gamma}(G)$ is parabolic. Thus $N_{\Gamma}(G)=G$.

If G is loxodromic, then $N_{\Gamma}(G)$ preserves the loxodromic axis. Again $N_{\Gamma}(G)=G . \diamond$
We remark that a discrete loxodromic group of the first type is group-theoretically just an infinite-cyclic extention of a finite subgroup of orthogonal group $O(n-1)$. (For a description of discrete parabolic groups in the case where X has a lower curvature bound, see Chapter 4.)

Suppose that $\Gamma \subseteq$ Isom X is discrete. Given any $x \in X_{C}$, we write Γx for the orbit of x under Γ. For any $x \in X$, we write $\Lambda=\Lambda(\Gamma) \subseteq X_{I}$ for the set of accumulation points of Γx. Thus, Λ is closed and Γ-invariant. Also, Λ is defined independently of the choice of $x \in X$. (If $x_{n} \rightarrow z \in X_{I}$ and $d\left(x_{n}, y_{n}\right)$ is bounded, then $y_{n} \rightarrow z$.) In fact, we shall see that, unless Γ is loxodromic of the first type and x is a fixed point of Γ, then Λ is the set of accumulation points of Γx for any $x \in X_{I}$. We call Λ the limit set of Γ. The complement $\Omega=\Omega(\Gamma)=X_{I} \backslash \Lambda$ is called the discontinuity domain.

It is easily verified that $\Lambda(\Gamma)=\emptyset$ if and only if Γ is finite, that $\Lambda(\Gamma)$ consists of a single point if and only if Γ is parabolic, and that $\Lambda(\Gamma)$ consists of two points if and only if Γ is loxodromic.

Lemma 3.2.5 : \quad Suppose that $Q \subseteq X_{I}$ is closed and Γ-invariant and contains at least two points. Then, Γ acts properly discontinuously of $X_{C} \backslash Q$.

Proof : Let $J=$ join (Q), as defined in Section 2.2. Then $J \cap X$ is dense in J. Suppose that K is a compact subset of $X_{C} \backslash Q$. Then, $\operatorname{proj}_{Q} K=\bigcup_{x \in K} \operatorname{proj}_{Q}(x)$ is a compact subset of X (since $\operatorname{proj}_{Q} \subseteq X_{C} \times X_{C}$ is closed). Now, proj_{Q} is Γ-equivariant, and so if $\gamma K \cap K \neq \emptyset$ for some $\gamma \in \Gamma$, then $\gamma \operatorname{proj}_{Q} K \cap \operatorname{proj}_{Q} K \neq \emptyset$. Since Γ acts properly discontinuously on X, there are only finitely many such γ.

If Γ is any discrete group, then clearly Γ does not act properly discontinuously at any point of the limit set, Λ. By Lemma 3.2.5, we see that if Γ is not loxodromic, then Λ is the minimal non-empty closed Γ-invariant subset. Note that the set if accumulation points of Γx for $x \in X_{I}$ is such a subset, and thus equal to Λ. In fact, the only exceptional case is when Γ is loxodromic of the first type, and x is a fixed point of Γ.

Proposition 3.2.6: Suppose $\Gamma \subseteq \operatorname{Isom} X$ is discrete, and $\Omega=\Omega(\Gamma)$ is the discontinuity domain. Then, Γ acts properly discontinuously on $X \cup \Omega$.

Proof : By Lemma 3.2.5, we need only verify the cases where Γ is finite or parabolic. If Γ is finite, the statement is trivial. If Γ is parabolic, we can use the argument of Lemma 3.2 .5 , with J replaced by a horoball about the fixed point.

We have already remarked that the torsion elements of a discrete group Γ are precisely
the elliptic ones. Let

$$
\mathcal{S}=\{\operatorname{fix} \gamma \mid \gamma \in \Gamma \text { is elliptic }\} .
$$

Let $\Sigma=\bigcup \mathcal{S}$. Thus $\Sigma \cap X$ is the set of points, x, of X for which stab ${ }_{\Gamma} x$ is non-trivial.
Lemma 3.2.7: \mathcal{S} is locally finite on $X \cup \Omega$.
Proof : Suppose, to the contrary, that there is some sequence $\left(\gamma_{n}\right)$ of distinct elements of Γ with the sets fix γ_{n} accumulating on some point $x \in X \cup \Omega$. We can find points $x_{n} \in X$ with $\gamma_{n} x_{n}=x_{n}$ and $x_{n} \rightarrow x$. Thus, if K is any compact neighbourhood of x, disjoint from Λ, we have $\gamma_{n} K \cap K \neq \emptyset$ for all sufficiently large n. This contradicts the proper discontinuity of Γ on $X \cup \Omega$. (Proposition 3.2.6).

If $G \subseteq \Gamma$ is finite then fix G is a subspace of Γ. By an induction on dimension, we see that every finite subgroup of Γ is contained in some (possibly many) maximal finite subgroup. If $G \subseteq \Gamma$ is maximal finite, then clearly fix G determines G. Let

$$
\mathcal{G}=\{\operatorname{fix} G \mid G \subseteq \Gamma \text { is maximal finite }\} .
$$

Thus \mathcal{G} is a disjoint collection of subsets of X_{C}. Each element of \mathcal{G} is a finite intersection of elements of \mathcal{S}, and so:

Corollary 3.2.8: \mathcal{G} is locally finite on $X \cup \Omega$.
Given the discrete group Γ, we write

$$
M_{C}=M_{C}(\Gamma)=(X \cup \Omega) / \Gamma
$$

Thus, $M_{C}=M \cup M_{I}$, where $M=M(\Gamma)=X / \Gamma$ and $M_{I}=M_{I}(\Gamma)=\Omega / \Gamma$. Note that $\Sigma \cap(X \cup \Omega)$ descends to a closed subset, $\hat{\Sigma}$ of M_{C} which we call the singular set of M_{C}. We shall say more about this in Section 3.4.

Suppose $G \subseteq \Gamma$ is maximal finite, so that fix $G \in \mathcal{G}$. If $\gamma \in \Gamma$, then γ fix $G=$ fix $\gamma G \gamma^{-1}$, and so the set $\bigcup \Gamma$ fix $G=\bigcup_{\gamma \in \Gamma} \gamma$ fix G corresponds to the conjugacy class of G in Γ. Let

$$
\hat{\mathcal{G}}=\{\pi(\bigcup \Gamma F \backslash \Lambda) \mid F \in \mathcal{G}\},
$$

where $\pi: X \cup \Omega \longrightarrow M_{C}$ is the projection. Thus, $\hat{\mathcal{G}}$ is a locally finite collection of disjoint closed subsets of M_{C}. The elements of $\hat{\mathcal{G}}$ are in bijective correspondence with the conjugacy classes of maximal finite subgroups of Γ.

3.3. Dirichlet domains.

Suppose $\Gamma \subseteq$ Isom X is discrete, with discontinuity domain $\Omega \subseteq X_{I}$.

Proposition 3.3.1 : Suppose $Q \subseteq X_{C}$ is quasiconvex, and that $\Gamma Q=\{\gamma Q \mid \gamma \in \Gamma\}$ is locally finite on X. Then ΓQ is locally finite on $X \cup \Omega$.

Proof : Suppose $x \in \Omega$. Let $V_{1}, V_{2}, V_{3} \subseteq X \cup \Omega$ be three compact neighbourhoods of x, with V_{1} contained in the interior of V_{2}, and V_{2} contained in the interior of V_{3}. Let W be the closure, in X_{C}, of $X_{C} \backslash V_{3}$. Thus, $\left(V_{1} \cup W\right) \cap \partial V_{2}=\emptyset$. Let $J=$ join $\left(V_{1} \cup W\right)$, so that $J \cap X_{I} \subseteq V_{1} \cup W$. We see that J meets ∂V_{2} in a compact subset, K, of X. Any geodesic from point in V_{1} to a point in W must meet K. (Figure 3a.)

Figure 3a.
Let Q be as in the hypothesis. Thus Q is λ-quasiconvex for some $\lambda \geq 0$. We claim that V_{1} can meet only finitely many images of Q under Γ. Since $V_{3} \subseteq X \cup \Omega$, certainly V_{3} can only contain finitely many such images. Suppose γQ meets V_{1} but is mot contained in V_{3}. Then we can find $y \in V_{1} \cap \gamma Q$ and $z \in W \cap \gamma Q$. Now, $[y, z] \subseteq N_{\lambda}(\gamma Q)$ and $[y, z] \cap K \neq \emptyset$. Thus γQ meets the compact set $N_{\lambda}(K) \subseteq X$. Since ΓQ is locally finite on X, this can happen for only finitely many $\gamma \in \Gamma$.

Proposition 3.3.1 will be used in the discussion of conical limit points in Chapter 5. Another application is to Dirichlet domains for Γ.

Suppose $A \subseteq X$ is a discrete subset and $a \in A$. We write $D(a, A)$ for the closure in X_{C} of $\{x \in X \mid d(x, a) \leq d(x, A)\}$. It is easy to see that $D(a, A)$ is starlike about a, and hence λ_{0}-quasiconvex. Moreover, the collection $\mathcal{D}(A)=\{D(a, A) \mid a \in A\}$ is locally finite on X and covers X.

Of particular interest is the case where $A=\Gamma a$ is an orbit under the discrete group Γ. We call $D(a, \Gamma a)$ a Dirichlet domain. Note that the stabliser $\operatorname{stab}_{\Gamma} D(a, \Gamma a)=\operatorname{stab}_{\Gamma} a$ is finite. Since $\mathcal{D}(\Gamma a)=\Gamma D(a, \Gamma a)$, applying Proposition 3.3.1, we get:

Corollary 3.3.2: $\mathcal{D}(\Gamma a)$ is locally finite on $X \cup \Omega$.
Note that it follows that $\bigcup \mathcal{D}(\Gamma a) \cap(X \cup \Omega)=\bigcup_{\gamma \in \Gamma} \gamma D(a, \Gamma a) \cap(X \cup \Omega)$ is closed in $X \cup \Omega$. Thus $X \cup \Omega \subseteq \bigcup \mathcal{D}(\Gamma a)$.

3.4. Orbifolds.

For the definitions of geometrical finiteness, we shall need to refer to orbifold having both ideal and metric boundaries. In this section, we clarify what is meant by this.

The notion of an orbifold was defined by Thurston $[\mathrm{T}]$ as a generalisation of a manifold. A typical example of an orbifold is the quotient of a manifold by a group action which is properly discontinuous though not necessarily free. (However not every orbifold is obtained in this way.) Thus an orbifold is locally modelled on \mathbf{R}^{n} quotiented out by a finite subgroup of the orthogonal group $O(n)$. These subgroups are considered part of the structure of the orbifold. Thus we may define orbifold homeomorphism. There are also notions of covering spaces, universal cover and fundamental group for an orbifold. A good orbifold is one which is covered by a manifold. Thus a good orbifold is the quotient of a simply connected
manifold (its universal cover) by the action of its fundamental group. For details see $[T]$. We shall only be interested in good orbifolds.

We can also speak of an orbifold with boundary. Boundary points are locally modelled on a quotient of $\mathbf{R}^{n-1} \times[0, \infty)$ by a finite subgroup of $O(n-1)$ (acting on the \mathbf{R}^{n-1} factor). We can also define a (codimension-0) suborbifold, N^{\prime}, of an orbifold with boundary, N. At a point of the topological boundary of N^{\prime} in N, the pair $\left(N, N^{\prime}\right)$ is locally modelled on either $\left(\mathbf{R}^{n}, \mathbf{R}^{n-1} \times[0, \infty)\right.$) quotiented by a finite subgroup of $O(n-1)$, or else $\left(\mathbf{R}^{n-1} \times\right.$ $\left.[0, \infty), \mathbf{R}^{n-2} \times[0, \infty)^{2}\right)$ quotiented by a finite subgroup of $O(n-2)$. Thus a suborbifold of an orbifold with boundary is itself an orbifold with boundary.

Suppose Γ is a discrete subgroup of Isom X. Then $M=M(\Gamma)=X / \Gamma$ is a (good) orbifold. M also has a metric structure induced from X. This is a Riemannian metric away from the singular set $\hat{\Sigma} \cap M$, as defined is Section 3.2. Clearly X and Γ can be completely recovered from the metric and orbifold structures on M. (In fact, the orbifold structure of M, i.e. the system of subgroups of $O(n)$, is completely determined just by the metric structure.)

Since Γ acts properly discontinuously on $X \cup \Omega$, we can define

$$
M_{C}=M_{C}(\Gamma)=(X \cup \Omega) / \Gamma
$$

Thus, M_{C} is an orbifold with boundary. We have $\Gamma=\pi_{1} M=\pi_{1} M_{C}$, where π_{1} is the orbifold fundamental group.

We shall want to speak about negatively curved orbifolds with convex boundary. This may be defined intrinsically, though since we are only interested in good orbifolds, it is most simply done with reference to the universal cover.

Suppose that Y is a metrically complete simply connected Riemannian manifold, with convex boundary ∂Y, all of whose sectional curvatures (in the interior) are at most -1 . As with X, we may define the ideal boundary, Y_{I}, of Y as a set of equivalence classes of geodesic rays in Y. Thus, $Y_{C}=Y \cup Y_{I}$ is compact, in fact homeomorphic to an n-ball. If it happens that $Y \subseteq X$, then we may identify Y_{C} as the closure of Y in X_{C}.

If Γ is a group acting faithfully and properly discontinuously on Y, we may define the discontinuity domain $\Omega^{Y} \subseteq Y_{I}$, just as for X. Let $M^{Y}=M^{Y}(\Gamma)=Y / \Gamma$ and $M_{C}^{Y}=$ $M_{C}^{Y}(\Gamma)=\left(Y \cup \Omega^{Y}\right) / \Gamma$. Thus, M_{C}^{Y} is an orbifold with boundary. The orbifold boundary of M_{C}^{Y} is the union of the ideal boundary Y_{I} / Γ and the convex boundary $\partial Y / \Gamma$. We have $\Gamma=\pi_{1} M^{Y}=\pi_{1} M_{C}^{Y}$. In the case where Γ is a discrete subgroup of Isom X, and Y is a closed convex Γ-invariant subset of X, we will have $\Omega^{Y}=Y_{I} \cap \Omega$, where Ω is the discontinuity domain in X_{I}, and where we have identified Y_{I} as a subset of X_{I}. The topological boundary of M_{C}^{Y} in M_{C} is the closure of the convex boundary.

Suppose, more generally that we have groups Γ and G acting faithfully and properly discontinuously on X and Y respectively. Suppose that $M_{C}^{Y}(G)$ may be identified as a "convex suborbifold" of $M_{C}(\Gamma)$ i.e. a suborbifold with convex boundary. From the orbifold definitions, it follows that the inclusion $M^{Y}(G) \hookrightarrow M_{C}^{Y}(\Gamma)$ lifts to a map of universal covers $Y \longrightarrow X$, which is a local isometry. Since Y has convex boundary, this map is injective, and so we can identify Y has a convex subset of X, and Y_{C} as a subset of X_{C}. It follows that that $G=\pi_{1} M^{Y}(G)$ injects into $\pi_{1} M(\Gamma)=\Gamma$. In other words, we can identify G as
a subgroup of Γ. In summary, $Y_{C} \subseteq X_{C}$ is closed convex and G-invariant, where $G \subseteq \Gamma$. For our purposes, we can take this conclusion as the definition of "convex suborbifold".

The convex suborbifolds in which we will be interested are neighbourhoods of end of quotients of parabolic groups (Chapter 4), and uniform neigbourhoods of convex cores (Section 5.3).

3.5. The Margulis Lemma and thick-thin decomposition.

The thick-thin decomposition is central to the study of negatively curved manifolds [BaGS]. Here we shall need a generalisation to the orbifold case, for which I know of no written account. We set out in this section the basic facts we shall need. We shall assume that all the sectional curvatures of X lie between $-\kappa^{2}$ and -1 .

Given $x \in X$, and $\epsilon>0$, write

$$
\mathcal{I}_{\epsilon}(x)=\{\gamma \in \operatorname{Isom} X \mid d(x, \gamma x) \leq \epsilon\} .
$$

If $\Gamma \subseteq$ Isom X is discrete, we write

$$
\Gamma_{\epsilon}(x)=\left\langle\Gamma \cap \mathcal{I}_{\epsilon}(x)\right\rangle,
$$

i.e. $\Gamma_{\epsilon}(x)$ is generated by those elements of Γ which move the point x a distance at most ϵ.

Proposition 3.5.1. (Margulis Lemma) : There is a constant $\epsilon(n, \kappa)>0$ such that if $\Gamma \subseteq$ Isom X is discrete, and $x \in X$, then $\Gamma_{\epsilon}(x)$ is virtually nilpotent for all $\epsilon \leq \epsilon(n, \kappa)$. Here, $\epsilon(n, \kappa)$ depends only on the dimension, n, of X, and the lower curvature bound, $-\kappa^{2}$.

Proof : See, for example, [BaGS].
We call $\epsilon(n, \kappa)$ the Margulis constant.
Given a discrete subgroup, Γ, of Isom X, we write

$$
T_{\epsilon}(\Gamma)=\left\{x \in X \mid \Gamma_{\epsilon}(x) \text { is infinite }\right\} .
$$

Thus, $T_{\epsilon}(\Gamma)$ is a closed Γ-invariant subset of X. Note that, since Γ acts properly discontinuously on $X \cup \Omega$, the closure of $T_{\epsilon}(G)$ in X_{C} is a subset of $X \cup \Lambda$. First, we describe $T_{\epsilon}(G)$ for an elementary group G. Clearly $T_{\epsilon}(G)=\emptyset$ if G is finite.

Proposition 3.5.2 : Suppose $G \subseteq$ Isom X is discrete parabolic, with fixed point p, and suppose $\epsilon>0$. Then, $T_{\epsilon}(G)$ is connected. Moreover, if $x \in X_{C} \backslash\{p\}$, then $[x, p]$ meets $T_{\epsilon}(G)$ in a non-empty ray tending to p. (Thus $T_{\epsilon}(G) \cup\{p\}$ is closed in X_{C}, and starlike about p.)

Proof : We shall need the fact (Proposition 4.2) that G contains a parabolic element γ.
Suppose $x \in X$, and $y \in[x, p] \backslash\{p\}$. Given any $g \in G$, then, applying Proposition 1.1.11(1), we see that $d(y, g y) \leq d(x, g x)$. Thus, $G_{\epsilon}(x) \subseteq G_{\epsilon}(y)$. It follows that if $x \in T_{\epsilon}(G)$ then $[x, p] \subseteq T_{\epsilon}(G) \cup\{p\}$.

Suppose now that x and y are any points of $T_{\epsilon}(G)$. Let $\alpha:[0.1] \longrightarrow X$ be any path with $\alpha(0)=x$ and $\alpha(1)=y$. Set $r=\max \{d(\alpha(u), \gamma \alpha(u)) \mid u \in[0,1]\}$. Let R be the constant given by Proposition 1.1.11(2), and set $t=\max \left(\log _{e}(R / \epsilon), 0\right)$. Thus, for all $u \in[0,1]$ we have $d(\alpha(u)+t, \gamma(\alpha(u)+t)) \leq \epsilon$. It follows that $\gamma \in G_{\epsilon}(\alpha(u)+t)$, and so $\alpha(u)+t \in T_{\epsilon}(G)$. We see that the path $[u \mapsto \alpha(u)+t]$ joins $x+t$ to $y+t$ in $T_{\epsilon}(G)$. We already know that $[x, x+t] \subseteq T_{\epsilon}(G)$ and $[y, y+t] \subseteq T_{\epsilon}(G)$. Thus we have shown that $T_{\epsilon}(G)$ is connected.

It remains to see that for any $x \in X_{I} \backslash\{p\}$, both $[x, p] \cap T_{\epsilon}(G)$ and $X \cap[x, p] \backslash T_{\epsilon}(G)$ are non-empty. Again, this follows easily from Proposition 1.1.11(2).

The situation for loxodromic groups is a little more complicated. Suppose $G \subseteq$ Isom X is discrete loxodromic with axis β. Suppose $x \in X$, and let $z=\operatorname{proj}_{\beta} x$. If $y \in[x, z]$, and $g \in G$, then using the $\operatorname{CAT}(-1)$ inequality, we see that $d(y, g y) \leq d(x, g x)$. Thus $G_{\epsilon}(x) \subseteq G_{\epsilon}(y)$, and so if $x \in T_{\epsilon}(G)$ then $[x, z] \subseteq T_{\epsilon}(G)$. We see that $T_{\epsilon}(G)$ retracts onto $\beta \cap T_{\epsilon}(G)$. Let $\gamma \in G$ be a loxodromic element of minimal translation distance, μ, on β. Suppose first that G is loxodromic of the first type (i.e. G respects the orientation of β). In this case, we see that if $\mu \leq \epsilon$, then $\beta \cap X \subseteq T_{\epsilon}(G)$, whereas if $\mu>\epsilon$, then $\beta \cap T_{\epsilon}(G)=\emptyset$, and so $T_{\epsilon}(G)=\emptyset$. Thus $T_{\epsilon}(G)$ is connected (or empty). Suppose now that G is of the second type (i.e. there is an element of G which swaps the two endpoints of β). This time, there are three possibilities. If $\mu \leq \epsilon$, again $\beta \cap X \subseteq T_{\epsilon}(G)$, and $T_{\epsilon}(G)$ is connected. If $\epsilon<\mu \leq 2 \epsilon$ then $\beta \cap T_{\epsilon}(G)$ consists of a countable disjoint union of closed intervals (or points if $\mu=2 \epsilon$). These are the images under G of a single interval, and so $\left(\beta \cap T_{\epsilon}(G)\right) / G$ and thus $T_{\epsilon}(G) / G$ are connected. Finally, if $\mu>2 \epsilon$, then $T_{\epsilon}(G)=\emptyset$.

Note that we have shown:

Proposition 3.5.3: If $G \subseteq \operatorname{Isom} X$ is discrete elementary, and $\epsilon>0$, then $T_{\epsilon}(G) / G$ is connected (or empty).

Suppose now that $\Gamma \subseteq$ Isom X is any discrete group. Suppose that $x \in X$, that $\epsilon \leq \epsilon(n, \kappa)$, where $\epsilon(n, \kappa)$ is the Margulis constant. By the Margulis Lemma (Proposition 3.5.1), we have that $\Gamma_{\epsilon}(x)$ is virtually nilpotent, and so by Proposition 3.1.1, $\Gamma_{\epsilon}(x)$ is elementary. If $x \in T_{\epsilon}(\Gamma)$, then $\Gamma_{\epsilon}(x)$ is infinite, and so, by Lemma 3.2.2, $\Gamma_{\epsilon}(x)$ is contained in a unique maximal elementary subgroup of G of Γ. Clearly $x \in T_{\epsilon}(G) \subseteq T_{\epsilon}(\Gamma)$. We have shown that $T_{\epsilon}(\Gamma)$ is a union of $T_{\epsilon}(G)$ as G varies over all maximal infinite elementary subgroups of Γ. We also have:

Proposition 3.5.4 : Suppose $\epsilon<\epsilon(n, \kappa)$. Let $\delta>0$ be such that $\epsilon+2 \delta \leq \epsilon(n, \kappa)$. Suppose $\Gamma \subseteq$ Isom X is discrete, and that G and G^{\prime} are two distinct maximal elementary subgroup of Γ. Then $d\left(T_{\epsilon}(G), T_{\epsilon}\left(G^{\prime}\right)\right) \geq \delta$. (Of course one or both of $T_{\epsilon}(G)$ and $T_{\epsilon}\left(G^{\prime}\right)$ may be empty.)

Proof : Suppose, to the contrary, that $x \in T_{\epsilon}(G)$ and $x^{\prime} \in T_{\epsilon}\left(G^{\prime}\right)$ with $d\left(x, x^{\prime}\right) \leq \delta$. It is easily seen that $\Gamma_{\epsilon}(x)$ and $\Gamma_{\epsilon}\left(x^{\prime}\right)$ are both subgroup of $\Gamma_{\epsilon+2 \delta}(x)$, which by the Margulis lemma is virtually nilpotent and thus elementary. It follows that $\Gamma_{\epsilon+2 \delta}(x)$ is contained in a maximal elementary subgroup $G^{\prime \prime}$ of Γ. We have $\Gamma_{\epsilon}(x) \subseteq G \cap G^{\prime \prime}$ and $\Gamma_{\epsilon}\left(x^{\prime}\right) \subseteq G^{\prime} \cap G^{\prime \prime}$. Applying Corollary 3.2.3, we see that $G=G^{\prime \prime}=G^{\prime}$.

In particular, we have shown:
Proposition 3.5.5 : Suppose $\epsilon<\epsilon(n, \kappa)$, and $\Gamma \subseteq \operatorname{Isom} X$ is discrete. Then $T_{\epsilon}(\Gamma)$ is a disjoint union of $T_{\epsilon}(G)$, as G ranges over all maximal infinite elementary subgroups of Γ.

Corollary 3.5.6 : Suppose $\epsilon<\epsilon(n, \kappa)$ and T_{0} is an unbounded connected component of $T_{\epsilon}(\Gamma)$, then $T_{0}=T_{\epsilon}(G)$ where $G=\operatorname{stab}_{\Gamma} T_{0}$.

Proof : By Proposition 3.5.5, we know that T_{0} is a component of $T_{\epsilon}(G)$ where G is a maximal infinite elementary subgroup of Γ. Since $T_{\epsilon}(G)$ contains an unbounded connected set, namely T_{0}, we see from the possible forms of $T_{\epsilon}(G)$ described above, that $T_{\epsilon}(G)$ must be connected. Thus $T_{0}=T_{\epsilon}(G)$.

If $\gamma \in \operatorname{stab}_{\Gamma} T_{0}$, then $\gamma T_{\epsilon}(G)=T_{\epsilon}\left(\gamma G \gamma^{-1}\right)=T_{\epsilon}(G)$. By Proposition 3.5.4, we have that $\gamma G \gamma^{-1}=G$, i.e. $\gamma \in N_{\Gamma}(G)$. By Lemma 3.2.4, we have $\gamma \in G$. Thus $G=\operatorname{stab}_{\Gamma} T_{0}$. \diamond

Corollary 3.5.7 : Suppose $\epsilon<\epsilon(n, \kappa)$ and T_{0} is a bounded connected component of $T_{\epsilon}(\Gamma)$, then T_{0} is a connected component of $T_{\epsilon}(G)$, where G is a maximal loxodromic subgroup of Γ, of the second type.

Proof : By Proposition 3.5.5, T_{0} is a component of $T_{\epsilon}(G)$, where $G \subseteq \Gamma$ is maximal elementary. Since T_{0} is bounded, the only possibility is for G to be loxodromic of the second type.

Given $\epsilon<\epsilon(n, \kappa)$, and a discrete group Γ, set

$$
\operatorname{thin}_{\epsilon}(M)=T_{\epsilon}(\Gamma) / \Gamma .
$$

Thus $\operatorname{thin}_{\epsilon}(M)$ is a closed subset of the quotient orbifold $M=X / \Gamma$. We call thin ${ }_{\epsilon}(M)$ the thin part of M. By Propositions 3.5.3, 3.5.4 and 3.5.5, we see that thin (M) is (topologically) a disjoint union of its connected components, and that each such component has the form $T_{\epsilon}(G) / G$ where G is an maximal infinite elementary subgroup of Γ. If G is parabolic, we call $T_{\epsilon}(G) / G$ a Margulis cusp. If G is loxodromic, we call $T_{\epsilon}(G) / G$ a Margulis tube.

We write thick $\epsilon_{\epsilon}(M)$ for the closure of $M \backslash \operatorname{thin}_{\epsilon}(M)$ in M. We call thick ${ }_{\epsilon}(M)$ the thick part of M. We write $\operatorname{cusp}_{\epsilon}(M)$ for the union of all the Margulis cusps, and noncusp (M) for the closure of $M \backslash \operatorname{cusp}_{\epsilon}(M)$ in M. We call these respectively the cuspidal and non-cuspidal parts of M. Obviously, $\operatorname{cusp}_{\epsilon}(M) \subseteq \operatorname{thin}_{\epsilon}(M)$ and $\operatorname{thick}_{\epsilon}(M) \subseteq \operatorname{noncusp}_{\epsilon}(M)$.

Note that if M is a manifold (i.e. if Γ is torsion-free), then

$$
\operatorname{thin}_{\epsilon}(M)=\{x \in M \mid \operatorname{inj}(x, M) \leq \epsilon / 2\}
$$

where $\operatorname{inj}(x, M)$ is the injectivity radius of M at x. In this case, Margulis tubes are either closed geodesics of length ϵ, or tubular neighbourhoods of closed geodesics of length less than ϵ.

4. Parabolic Groups.

In this chapter (and for the rest of this paper) we assume that all the sectional curvatures of X lie between $-\kappa^{2}$ and -1 .

Suppose $p \in X_{I}$. In Section 1.1, we introduced the notation $x+t$ for $x \in X$ and $t \in[-\infty, \infty]$. Thus, suppose x lies in the bi-infinite geodesic $[y, p]$ where $y \in X_{I}$. If $t \geq 0$, then $x+t$ is the point of $[x, p]$ with $d(x, x+t)=t$. If $t \leq 0$, then $x+t$ is the point of $[y, x]$ with $d(x, x+t)=-t$. We set $x+\infty=p$ and $x-\infty=y$.

We defined a parabolic group $G \subseteq$ Isom X as one for which fix G consists of a single point $p \in X_{I}$, and which preserves setwise each horosphere about p. It follows that G is infinite.

We begin by stating the following result proved in [Bo2], though we shall not need it for the rest of this chapter.

Proposition 4.1 : A discrete parabolic group is finitely generated and virtually nilpotent.

The point here is that G is finitely generated. Given this, it is a simple consequence of the Margulis Lemma (Proposition 3.5.1), and convergence of geodesic rays (Proposition 1.1.11(2)) that G is virtually nilpotent.

Proposition 4.2 : A discrete parabolic group contains a parabolic element.
Proof : We give a proof without reference to Proposition 4.1. Suppose, for contradiction, that G is a discrete parabolic group with no parabolic element. Then G is torsion (every element has finite order). By the Margulis Lemma, and convergence of geodesic rays, we see that every finitely generated subgroup of G is virtually nilpotent, and hence finite. We may thus take an exhaustion of G by finite subgroups, $G=\bigcup_{n} G_{n}$, with $G_{n} \subseteq G_{n+1}$. Each set fix G_{n} is a non-empty subspace of X_{C}, and fix $G_{n+1} \subseteq$ fix G_{n}. Clearly, the dimensions of the fix G_{n} must stablise, and so fix $G=\bigcap_{n}$ fix G_{n} meets X. Thus G is finite. This contradicts the supposition that G is parabolic.

Note that the limit set $\Lambda(G)$ of a discrete parabolic group G consists of the fixed point p. Thus,

$$
M_{C}(G)=\left(X_{C} \backslash\{p\}\right) / G
$$

The main purpose of this chapter is to describe some relationships between certain naturally occurring closed G-invariant subsets of $X_{C} \backslash\{p\}$. The main results being aimed at are Propositions 4.12 and 4.14. Each of the G invariant subsets, S, we consider, has the property that $S \cup\{p\}$ is starlike about p. We make the following observation.

Lemma 4.3 : Suppose $S \cup\{p\} \subseteq X_{C}$ is closed and starlike about p. Then, for any $r \geq 0$, the uniform neighbourhood $N_{r}(S \cup\{p\})$ is starlike about p.

Proof : Using the monotonic convergence of geodesic rays, Proposition 1.1.11(1).
If Q is a closed subset of $X_{C} \backslash\{p\}$, we write

$$
N_{r}(Q)=N_{r}(Q \cup\{p\}) \backslash\{p\} .
$$

Figure 4a.
The main types of sets that concern us are summarised below. Figure 4a gives a schematic representation of these sets, which is meant to evoke the upper half-space model for hyperbolic space with the fixed point p at ∞. We imagine G to be acting in a direction orthogonal to the paper.

One obvious type of G-invariant set is a horoball B about p (Figure 4a(1)).
If Q is a closed G-invariant subset of $X_{I} \backslash\{p\}$, we set $W=W(Q)=\bigcup\{[x, p] \mid x \in$ $Q\} \backslash\{p\}$. We are principally interested in the case where Q / G is compact. In Figure $4 \mathrm{a}(2)$, a uniform neighbourhood $N_{r}(W)$ is also represented. Note that, by Lemma 4.3, $N_{r}(W) \cup\{p\}$ is starlike about p.

Of particular interest is the case where Q is the orbit, $G y$, of a single point $y \in$ $X_{I} \backslash\{p\}$. Figure 4a(3) shows $L=L(y)=W(G y)=\bigcup_{\gamma \in G} \gamma[y, p] \backslash\{p\}$, and its uniform neighbourhood $N_{r}(L)$.

Again, if $Q \subseteq X_{I} \backslash\{p\}$ is closed in $X_{I} \backslash\{p\}$ and G-invariant, we we can consider the convex hull, $H=H(Q)=\operatorname{hull}(Q \cup\{p\}) \backslash\{p\}$ (Figure $4 \mathrm{a}(4))$.

Given any $\epsilon \in(0, \infty)$, we defined the subset $T=T_{\epsilon}(G)$ in Section 3.5 (Figure 4a(5)). Of course, we are primarily interested in $T_{\epsilon}(G)$ when ϵ is less than the Margulis constant $\epsilon(n, \kappa)$, though we shall have no need to assume this in this chapter.

Let θ_{0} be the constant of Proposition 2.5.1. Suppose $x \in X$. Then hull cone $\left(\overrightarrow{x p}, \theta_{0}\right) \subseteq$ cone $(\overrightarrow{x p}, \pi / 2)$. Set $C=C(x)=\bigcap_{\gamma \in G} \gamma$ hull cone $\left(\overrightarrow{x p}, \theta_{0}\right) \backslash\{p\}$ (Figure 4a(6)). Clearly, C is a convex subset of $X_{C} \backslash\{p\}$. Thus, C / G is a convex suborbifold of $M_{C}(G)=$ $\left(X_{C} \backslash\{p\}\right) / G$ (Section 3.4). The complement of C / G in $M_{C}(G)$ is relatively compact. Also $\bigcap_{t \in[0, \infty)} C(x+t)=\emptyset$. We have shown:

Proposition 4.4 : If G is discrete parabolic, then $M_{C}(G)$ has precisely one topological end. Moreover, we can find a system of neighbourhoods for the end consisting of convex suborbifolds of $M_{C}(G)$.

We now begin a sequence of lemmas relating the various sets we have described.
Lemma 4.5 : Suppose that B is a horoball about p and that $y \in X_{I} \backslash\{p\}$. Let $L=L(y)$. Let ρ be the restriction of proj_{L} to $X_{C} \backslash\{p\}$. Suppose $x \in L \cap B$. Let $C=C(x)$. Then

$$
C \subseteq \rho^{-1}(L \cap B)
$$

where $\rho^{-1}(L \cap B)=\left\{z \in X_{C} \backslash\{p\} \mid \rho(z) \cap(L \cap B) \neq \emptyset\right\}$. (Figure 4b.)
Figure 4b.

Proof : Suppose $z \in C$. Let $w \in \rho(z)$. Without loss of generality, we can assume that $w, x \in[y, p]$. Now $C \subseteq \operatorname{cone}(\overrightarrow{x p}, \pi / 2)$ and so by Lemma 2.4.1, $w=\operatorname{proj}_{[y, p]} z \in[x, p] \subseteq$ $L \cap B$. Thus $\rho(z) \subseteq L \cap B$, and so certainly $\rho(z)$ meets $L \cap B$. Thus $z \in \rho^{-1}(L \cap B)$.

Lemma 4.6 : Suppose $S \subseteq X_{C} \backslash\{p\}$ is closed, and that $S \cup\{p\}$ is starlike about p. If B is any horoball about p, and $r \geq 0$, then

$$
N_{r}(S) \cap B \subseteq N_{r}(S \cap B) .
$$

(Figure 4c.)
Figure 4c.

Proof : If $x \in N_{r}(S) \cap B$, let $y=\operatorname{proj}_{S \cup\{p\}} x$. Then $x \hat{y} p \geq \pi / 2$. It follows easily that $y \in B$, so $d(x, S \cap B) \leq d(x, y) \leq r$.

Lemma 4.7 : \quad Suppose B is a horoball about p, and $Q \subseteq X_{I} \backslash\{p\}$ is closed and G invariant with Q / G compact. Suppose $y \in X_{I} \backslash\{p\}$. Let $L=L(y)$. Then, there is some $r \geq 0$ such that

$$
W \cap B \subseteq N_{r}(L) .
$$

(Figure 4d.)
Figure 4d.

Proof : The map $[x \mapsto x-\infty]$ gives a homeomorphism of $(W \cap \partial B) / G$ onto Q / G. Thus $(W \cap \partial B) / G$ is compact, and so $W \cap \partial B \subseteq N_{r}(G x)$, for some $r \geq 0$, where x is the point of intersection of $[y, p]$ and ∂B. It follows from the monotonic convergence of geodesic rays (Proposition 1.1.11(1)) that

$$
\begin{aligned}
W \cap B & =\bigcup\{[z, p] \mid z \in W \cap \partial B\} \backslash\{p\} \\
& \subseteq N_{r}(\bigcup G[x, p]) \backslash\{p\} \\
& \subseteq N_{r}(L) .
\end{aligned}
$$

Lemma 4.8: There is some $r_{0}>0$ such that if $Q \subseteq X_{I}$ is closed, then

$$
H \subseteq N_{r_{0}}(W)
$$

where $H=H(Q)=\operatorname{hull}(Q \cup\{p\}) \backslash\{p\}$, and $W=W(Q)$. (Figure 4e.)
Figure 4 e .

Proof : The set $W \cup\{p\}$ is starlike about and hence λ_{0}-quasiconvex (Corollary 1.1.6). Proposition 2.5.4 gives us a constant r_{0} such that

$$
\operatorname{hull}(Q \cup\{p\})=\operatorname{hull}(W \cup\{p\}) \subseteq N_{r_{0}}(W) \cup\{p\}
$$

Lemma 4.9 : Suppose $\epsilon>0$. Let $T=T_{\epsilon}(G)$. Suppose $Q \subseteq X_{I} \backslash\{p\}$ is closed and G-invariant with Q / G compact. Let $W=W(Q)$. Then, for any $r \geq 0$, there is a horoball B about p with

$$
T \cap N_{r}(W) \subseteq B
$$

(Figure 4f.)

Figure 4 f .

Proof : Proposition 1.1.11(2) gives us a constant $R>0$ such that if x and y lie in the same horosphere about x, and $d(x, y) \leq \epsilon$ then $d(x+t, y+t) \leq R e^{-t}$.

Choose any horoball B_{0} about p. Now $\left(W \cap \partial B_{0}\right) / G$ is homeomorphic to Q / G and hence compact. Thus, there is a compact set $K \subseteq \partial B_{0}$ with $N_{r}(W) \cap \partial B_{0} \subseteq \bigcup G K=$ $\bigcup_{\gamma \in G} \gamma G$. Let $\eta=\frac{1}{2} \min \{d(x, \gamma x) \mid x \in K, \gamma \in G\}>0$. Let $h=\max \left(0, \log _{e}(R / \eta)\right)$. Let B be the horoball $N_{h}\left(B_{0}\right)$. We claim that $T \cap N_{r}(W) \subseteq B$.

Suppose, for contradiction, that there is some $x \in T \cap N_{r}(W) \backslash B$. We have $y=x+t \in$ ∂B_{0} for some $t \geq h$. Now, $N_{r}(W) \cup\{p\}$ is starlike about p (Lemma 4.3), and so $y \in N_{r}(W)$. Thus, $y \in \bigcup G K$, and so, without loss of generality, we can assume that $y \in K$. Since $x \in T$, there is some $\gamma \in G$ with $d(x, \gamma x) \leq \epsilon$. Thus $d(y, \gamma y) \leq R e^{-t} \leq R e^{-h} \leq \eta$ which contradicts the definition of η.

Lemma 4.10: Given $\epsilon>0$, let $T=T_{\epsilon}(G)$. Suppose $Q \subseteq X_{I} \backslash\{p\}$ is closed and G invariant with Q / G compact. Let $H=H(Q)=\operatorname{hull}(Q \cup\{p\}) \backslash\{p\}$. Suppose $y \in X_{I} \backslash\{p\}$. Let $L=L(y)$. Then, there is some $r>0$, and a horoball B about p such that

$$
H \cap T \subseteq H \cap B \subseteq N_{r}(L) \cap B
$$

(Figure 4g.)
Figure 4 g .

Proof : Let $W=W(Q)$, so that by Lemma $4.8, H \subseteq N_{r_{0}}(W)$. By Lemma 4.9, there is a horoball B about p so that $T \cap N_{r_{0}}(W) \subseteq B$. Thus $T \cap H \subseteq B$. By Lemma 4.7, there is some $r_{1} \geq 0$ such that $W \cap B \subseteq N_{r_{1}}(L)$. Thus $H \cap B \subseteq N_{r_{0}}(W) \cap B \subseteq N_{r}(L)$, where $r=r_{0}+r_{1}$, and so $H \cap T \subseteq H \cap B \subseteq N_{r}(L) \cap B$.

Lemma 4.11 : Given $\epsilon>0$, let $T=T_{\epsilon}(G)$. Suppose $r>0$, and $y \in X_{I} \backslash\{p\}$. Let $L=L(y)$. Then, there is some horoball B about p such that

$$
N_{r}(L) \cap B \subseteq T
$$

(Figure 4h.)
Figure 4h.

Proof : From the bounds on the volumes of balls, Propositions 1.1.12 and 1.2.4, we see that an R-ball in X can contain at most $M(r, \epsilon)$ disjoint $(\epsilon / 2)$-balls, where $M(r, \epsilon)$ is the integer part of $V(\kappa r, n) / \kappa^{n} V(\epsilon / 2, n)$. Set $R=r+1+\epsilon / 2$, and $M=M(R, \epsilon)$.

By Proposition 4.2, G contains a parabolic element γ. By the convergence of geodesic rays, there is some $x \in[y, p]$ with $d(x, \gamma x) \leq 1 / M$. Let B be the horoball about p with $x \in \partial B$. We claim that $N_{r}(L) \cap B \subseteq T$.

Suppose $z \in N_{r}(L) \cap B$. Let w be the nearest point to z in L. Translating everything by an element of G, we may as well suppose that $w \in[y, p]$. Since $p \hat{w} z=\pi / 2$ and $z \in B$, we see that $w \in B$. Hence (Proposition 1.1.11(1)), $d(w, \gamma w) \leq d(x, \gamma x) \leq 1 / M$. For any integer $i \in\{0,1, \ldots, M\}$, we have $d\left(\gamma^{i} z, w\right)=d\left(z, \gamma^{-i} w\right) \leq r+i / M \leq r+1$. Thus, the $(\epsilon / 2)$-balls about each $\gamma^{i} z$ are all contained in the $(R+1)$-ball about w. Thus, for some $i \neq j \in\{0,1, \ldots, M\}$, we have $N_{\epsilon / 2}\left(\gamma^{i} z\right) \cap N_{\epsilon / 2}\left(\gamma^{j} z\right) \neq \emptyset$. Thus $d\left(z, \gamma^{i-j} z\right) \leq \epsilon$ and so $\gamma^{i-j} \in \Gamma_{\epsilon}(z)$. It follows that $\Gamma_{\epsilon}(z)$ is infinite and so $z \in T_{\epsilon}(G)=T$.

Proposition 4.12 : Suppose $Q \subseteq X_{I} \backslash\{p\}$ is closed, G-invariant and non-empty, with Q / G compact. Let $H=H(Q)=\operatorname{hull}(Q \cup\{p\}) \backslash\{p\}$. Let $\rho: X_{C} \backslash\{p\} \longrightarrow H$ be the restriction of $\operatorname{proj}_{(H \cup\{p\})}$ to $X_{C} \backslash\{p\}$. Suppose $\epsilon>0$. Let $T=T_{\epsilon}(G)$. Given any $y \in X_{I} \backslash\{p\}$, then there is some $x \in[y, p] \cap X$ such that

$$
C(x) \subseteq \rho^{-1}(H \cap T)
$$

(Figure 4i.)
Figure 4i.

Proof : Let $L=L(y)$. Now, there is some $r>0$, and a horoball B about p such that

$$
H \cap B \subseteq N_{r}(L) \cap B
$$

By Lemma 4.11, there is another horoball B^{\prime} with

$$
N_{r}(L) \cap B^{\prime} \subseteq T
$$

This follows either from Lemma 4.10, or (since we don't need the first inclusion) more directly from Lemmas 4.7 and 4.8. Without loss of generality, we can suppose that B^{\prime} is strictly included in B. Thus $H \cap B^{\prime} \subseteq H \cap B \subseteq N_{r}(L)$ and so

$$
H \cap B^{\prime} \subseteq T
$$

Now $H \cap B \subseteq N_{r}(L) \cap B \subseteq N_{r}(L \cap B)$ (Lemma 4.6). Also, since $Q \neq \emptyset$, it is clear that $L \cap B$ lies inside some uniform neighbourhood of $H \cap B$. In other words, the Hausdorff distance between $H \cap B$ and $L \cap B$ is finite. Now, $H \cap B$ is convex, and $(L \cap B) \cup\{p\}$ is starlike about p, and hence λ_{0}-quasiconvex (Corollary 1.1.6). Let $\rho_{1}=\operatorname{proj}_{(H \cap B) \cup\{p\}}$ and $\rho_{2}=\operatorname{proj}_{(L \cap B) \cup\{p\}}$. Proposition 2.2.2 gives us a constant $k \geq 0$ such that if $z \in X_{C} \backslash\{p\}$ then $\operatorname{diam}\left(\rho_{1}(z) \cup \rho_{2}(z)\right) \leq k$.

Let $x \in[y, p] \cap B^{\prime}$ be the point distant k from the intersection of $[y, p]$ with ∂B^{\prime}. We claim that $C(x) \subseteq \rho^{-1}(H \cap T)$.

Suppose $z \in C(x)$. Lemma 4.5 tells us that $\operatorname{proj}_{L \cup\{p\}}(z)$ meets $B^{\prime \prime}$, where $B^{\prime \prime}$ is the horoball about p with $x \in \partial B^{\prime \prime}$ (so that $B^{\prime}=N_{k}\left(B^{\prime \prime}\right)$). Choose some $w \in \operatorname{proj}_{L \cup\{p\}}(z) \cap$ $B^{\prime \prime}$. Since $B^{\prime \prime} \subseteq B$, clearly $w \in \operatorname{proj}_{(L \cap B) \cup\{p\}}(z)=\rho_{2}(z)$. Since $H \cap B$ is convex, $\rho_{1}(z)$ consists of a single point $u \in H \cap B^{\prime}$. We assumed that B^{\prime} is strictly included in B, and so u lies in the interior of B. Thus, the point u locally minimises in H the distance to z (or locally maximises a Busemann function about z if $z \in X_{I}$). By Lemma 2.2.4, $u=\operatorname{proj}_{H \cup\{p\}}(z)=\rho(z)$. But $u \in H \cap B^{\prime} \subseteq T$. Thus $\rho(z) \in H \cap T$. We have shown that $C(x) \subseteq \rho^{-1}(H \cap T)$.

Lemma 4.13 : Suppose $y \in X_{I} \backslash\{p\}$. Let $L=L(y)$. Suppose B is a horoball about B, and $r \geq 0$. Then $\left(N_{r}(L) \cap B\right) / G$ has finite volume. (Figure $4 j$.)

Figure 4 j .

Proof: We first prove the case where G is infinite cyclic, generated by a parabolic $\gamma \in G$.
Let x be the point of intersection of $\beta=[y, p]$ and ∂B. For $i \in \mathbf{N}$, let $x_{i}=x+i \log _{e} 2$. Thus $x_{0}=x$. By the convergence of geodesic rays (Proposition 1.1.11(2)), we have $d(x+$ $t, \gamma(x+t)) \leq R e^{-t}$ for some constant $R \geq 0$. Thus $d\left(x_{i}, \gamma x_{i}\right) \leq R / 2^{i}$.

Let B_{i} be the horoball about p with $x_{i} \in \partial B_{i}$. (thus $\left.B_{i}=N_{\log _{e} 2}\left(B_{i-1}\right).\right)$
Suppose $z \in N_{r+R}(\beta) \cap\left(B_{0} \backslash B_{1}\right)$. Let w be the nearest point to z on β. Thus $p \hat{w} z=\pi / 2$ and so $w \in B_{0}$. We have $d(w, z) \leq r+R$, and it is easily seen that $d\left(x_{0}, w\right) \leq$ $d(z, w)+\log _{e} 2 \leq r+R+\log _{e} 2$. Thus $d\left(x_{0}, z\right) \leq 2 r+2 R+\log _{e} 2$. This shows that $N_{r}(\beta) \cap\left(B_{0} \backslash B_{1}\right) \subseteq N=N_{2 r+2 R+\log _{e} 2}\left(x_{0}\right)$. Since $L=\bigcup G \beta=\bigcup_{g \in G} g \beta$, we have $N_{r+R}(L) \cap\left(B_{0} \backslash B_{1}\right) \subseteq \bigcup G N$. By Proposition 1.2.4, N has volume at most $V=V(2 r+$ $\left.2 R+\log _{e} 2, n\right)$. It follows that

$$
\operatorname{vol}\left(\left(N_{r+R}(L) \cap\left(B_{0} \backslash B_{1}\right)\right) / G\right) \leq V
$$

So, certainly

$$
\operatorname{vol}\left(\left(N_{r}(L) \cap\left(B_{0} \backslash B_{1}\right)\right) / G\right) \leq V
$$

Now, given any $i \in \mathbf{N}$, let G_{i} be the subgroup of G generated by $\gamma^{2^{i}}$. Let $L_{i}=\bigcup G_{i} \beta$. We claim that $L \cap B_{i} \subseteq N_{R}\left(L_{i}\right) \cap B_{i}$. To see this, suppose that $z \in L \cap B_{i}$. Then $z \in g\left[x_{i}, p\right]$ for some $g \in G$. Now $g=h \gamma^{-j}$ where $h \in G_{i}$ and $j \in\left\{0,1, \ldots, 2^{i}-1\right\}$. Thus $\gamma^{j} z \in h\left[x_{i}, p\right] \subseteq L_{i} \cap B_{i}$. By Proposition 1.1.11(2), we have $d\left(z, \gamma^{j} z\right) \leq d\left(x_{i}, \gamma^{j} x_{i}\right) \leq$ $j\left(R / 2^{i}\right) \leq R$. Thus $z \in N_{R}\left(L_{i}\right)$ as claimed.

By Lemma 4.3, $N_{R}\left(L_{i}\right) \cup\{p\}$ is starlike about p. Applying Lemma 4.6,

$$
N_{r}(L) \cap B_{i} \subseteq N_{r}\left(L \cap B_{i}\right) \subseteq N_{r}\left(N_{R}\left(L_{i}\right) \cap B_{i}\right) \subseteq N_{r+R}\left(L_{i}\right)
$$

Thus $N_{r}(L) \cap\left(B_{i} \backslash B_{i+1}\right) \subseteq N_{r+R}\left(L_{i}\right) \cap\left(B_{i} \backslash B_{i+1}\right)$. Exactly as with the first part of the argument (the case $i=0$), we see that

$$
\operatorname{vol}\left(\left(N_{r+R}\left(L_{i}\right) \cap\left(B_{i} \backslash B_{i+1}\right)\right) / G_{i}\right) \leq V
$$

and so

$$
\operatorname{vol}\left(\left(N_{r}(L) \cap\left(B_{i} \backslash B_{i+1}\right)\right) / G_{i}\right) \leq V
$$

Since G_{i} has index 2^{i} in G, we have

$$
\operatorname{vol}\left(\left(N_{r}(L) \cap\left(B_{i} \backslash B_{i+1}\right)\right) / G\right) \leq V / 2^{i}
$$

Since $B=\bigcup_{i=0}^{\infty}\left(B_{i} \backslash B_{i+1}\right)$, we have

$$
\operatorname{vol}\left(\left(N_{r}(L) \cap B\right) / G\right) \leq V \sum_{i=0}^{\infty} 2^{-i}=2 V
$$

Now, if G is any discrete parabolic group, Proposition 4.2 tells us that G contains a parabolic element γ. Let G^{\prime} be the subgroup of G generated by γ. Let $L^{\prime}=\bigcup G^{\prime} \beta$, where $\beta=[y, p]$. We have

$$
\operatorname{vol}\left(\left(N_{r}\left(L^{\prime}\right) \cap B\right) / G^{\prime}\right)<\infty
$$

But $\left(N_{r}(L) \cap B\right) / G$ is a quotient of $\left(N_{r}\left(L^{\prime}\right) \cap B\right) / G^{\prime}$ by an equivalence relation, and so also has finite volume.

Proposition 4.14: Given $\epsilon>0$, let $T=T_{\epsilon}(G)$. Suppose $Q \subseteq X_{I} \backslash\{p\}$ is closed and G-invariant with Q / G compact. Let $H=H(Q)=\operatorname{hull}(Q \cup\{p\}) \backslash\{p\}$. Then, for any $r \geq 0, N_{r}(H \cap T) / G$ has finite volume. (Figure 4 k.$\left.\right)$

Figure 4k.

Proof : Let y be any point of $X_{I} \backslash\{p\}$, and set $L=L(y)$. By Lemma 4.10, there is some horoball B about p, and $r^{\prime} \geq 0$ so that

$$
H \cap T \subseteq N_{r^{\prime}}(L) \cap B
$$

Thus,

$$
N_{r}(H \cap T) \subseteq N_{r}\left(N_{r^{\prime}}(L) \cap B\right) \subseteq N_{r+r^{\prime}}(L) \cap N_{r}(B)
$$

Note that $N_{r}(B)$ is a horoball about p. The result now follows from Lemma 4.13.

5. Definitions.

We assume that all the sectional curvatures of X lie between $-\kappa^{2}$ and -1 .
In this chapter, we give the four basic definitions of geometrical finiteness, F1, F2, F4 and F5. From property F1, we deduce that a geometrically finite group is finitely generated, and contains only finitely many conjugacy classes of finite subgroups.

5.1. Definition F1.

Suppose $\Gamma \subseteq$ Isom X is discrete. Let $M_{C}(\Gamma)=(X \cup \Omega) / \Gamma$. As a topological space, $M_{C}(\Gamma)$ has associated to it a compact totally-disconnected space of ends. This space can be used to compactify $M_{C}(\Gamma)$. Suppose $E \subseteq M_{C}(\Gamma)$ is a closed subset with compact (topological) boundary. Then, the space of ends of E can be naturally identified as an open and closed subset of the space of ends of $M_{C}(\Gamma)$.

Write $\pi: X \cup \Omega \longrightarrow M_{C}(\Gamma)$ for the natural projection. Suppose $y \in \Lambda$, and $y_{n} \rightarrow y$, with each $y_{n} \in X$. Clearly, the sequence πy_{n} leaves every compact subset of $M_{C}(\Gamma)$. If it happens that πy_{n} tends to an end e of $M_{C}(\Gamma)$, we shall say that y is associated to e. In general, of course, a limit point has no ends associated to it, or indeed, it may have more that one, depending on the sequence $\left(y_{n}\right)$. (Consider, for example, a double limit of quasifuchsian groups in \mathbf{H}^{3}.) We shall be interested only in very special cases.

Suppose that $E \subseteq M_{C}(\Gamma)$ is closed, connected, non-compact, and has compact topological boundary, $\partial_{C} E$. Let Y_{0} be a connected component of the lift of $\pi^{-1} E$ of E to $X \cup \Omega$. Let $G=\operatorname{stab}_{\Gamma} Y_{0}$. Thus, G is determined by E up to conjugacy in Γ. Suppose that G is a parabolic group, with fixed point p. We may identify E as a subset, Y_{0} / G of $M_{C}(G)=\left(X_{C} \backslash\{p\}\right) / G$. Thus, $\partial_{C} E$ is identified with $\partial_{C} Y_{0} / G$ where $\partial_{C} Y_{0}$ is the topological boundary of Y_{0} in $X \cup \Omega$. We claim that E is closed in $M_{C}(G)$. This amounts to saying that $Y_{0} \cup\{p\}$ is closed in X_{C}. Suppose, for contradiction, that $y \in \Lambda \backslash\{p\}$ lies in the closure of Y_{0}. Then there is a sequence of points $y_{n} \in Y_{0}$ tending to y. Choose any orbit $\Gamma z \subseteq X$ disjoint from Y_{0}. Since $y \in \Lambda$, there is a sequence $z_{n} \in \Gamma z$ with $z_{n} \rightarrow y$. Each geodesic $\left[y_{n}, z_{n}\right]$ meets $\partial_{C} Y_{0}$. Choosing $w_{n} \in\left[y_{n}, z_{n}\right] \cap \partial_{C} Y_{0}$, we see that $w_{n} \rightarrow y$. Since $\partial_{C} Y_{0} / G$ is compact, there is a compact set $K \subseteq X \cup \Omega$ with $G K$ covering $\partial_{C} Y_{0}$. We see that the sets $G K$ accumulate at y, contradicting the fact that G acts properly discontinuously on $X_{C} \backslash\{p\}$ (Proposition 3.2.6). This proves the claim. It follows easily that $\partial_{C} E=\partial_{C} Y_{0} / G$ is the topological boundary of E in $M_{C}(G)$.

We know from Proposition 4.4, that $M_{C}(G)$ has precisely one topological end. Thus E is a neighbourhood of that end. It follows that E itself has precisely one end. Thinking of E again as a subset of $M_{C}(\Gamma)$, we see that E is a neighbourhood of an end of $M_{C}(\Gamma)$. This end, e, is determined by E, and is isolated in the space of ends of $M_{C}(\Gamma)$.

By Proposition 4.4, we can assume that E is an orbifold with convex boundary. Thus, Y_{0} has the form $Y \cup \Omega^{Y}(G)$ as described in Section 3.3, where $Y \subseteq X$ is closed and convex. Note that Y contains a horoball about p, and so for all $\gamma \in \operatorname{stab}_{\Gamma} p$, we have $\gamma Y \cap Y \neq \emptyset$, thus $\gamma Y=Y$. We see that $G=\operatorname{stab}_{\Gamma} Y=\operatorname{stab}_{\Gamma} p$. Thus G is a maximal parabolic subgroup of Γ.

Let $y_{n} \in X$ be any sequence of points tending to p. Let $\pi_{G}: X_{C} \backslash\{p\} \longrightarrow M_{C}(G)$
be the natural projection. Now, $\pi_{G} y_{n}$ leaves every compact set in $M_{C}(G)$. Since $M_{C}(G)$ has only one end, we have $\pi_{G} y_{n} \in\left(Y \cup \Omega^{Y}(G)\right) / G \subseteq M_{C}(G)$ for all sufficiently large n. Thus, $\pi y_{n} \in E \subseteq M_{C}(\Gamma)$ for all sufficiently large n. It follows that the end e of $M_{C}(\Gamma)$ is associated to p, in the sense defined above, and that it is the unique end of $M_{C}(\Gamma)$ associated to p. Moreover, we see easily that any other limit point associated to e lies in the orbit Γp of p.

Definition : In the situation described above, we shall call e a parabolic end of $M_{C}(\Gamma)$, and E a standard cusp region (which we assume to be a convex suborbifold).

Suppose $p \in \Lambda=\Lambda(\Gamma)$ is associated to a parabolic end of $M_{C}(\Gamma)$. Then p is a parabolic fixed point, so that $G=\operatorname{stab}_{\Gamma} p$ is a maximal parabolic subgroup of Γ. Now $\Lambda \backslash\{p\} \subseteq \Omega(G)=X_{C} \backslash\{p\}$ and so $(\Lambda \backslash\{p\}) / G \subseteq M_{C}(G)$. Let $E \subseteq M_{C}(\Gamma)$ be a standard cusp region. We may identify E with $\left(Y \cup \Omega^{Y}(G)\right) / G \subseteq M_{C}(G)$, where $Y \subseteq X$ is closed and convex. Now $Y \cup \Omega^{Y}(G)$ does not meet $\Lambda \backslash\{p\}$, and so, in $M_{C}(G), E$ does not meet $(\Lambda \backslash\{p\}) / G$. Since $(\Lambda \backslash\{p\}) / G$ is closed in $M_{C}(G)$, and since E is a neighbourhood of the end, it follows that $(\Lambda \backslash\{p\}) / G$ is compact.

Definition : A parabolic fixed point $p \in \Lambda$ is bounded if $(\Lambda \backslash\{p\}) / \operatorname{stab}_{\Gamma} p$ is compact.
We have shown:
Lemma 5.1.1 : If $p \in \Lambda$ is associated to a parabolic end, then p is a bounded parabolic fixed point.

We shall see that the converse of Lemma 5.1.1 is also true (Corollary 6.3).
We can give an intrinsic characterisation of standard cusp regions as follows. We say that an orbifold E with boundary is an intrinsic standard cusp region if:
(1) E has the form $M_{C}^{Y}(G)$ (as described in Section 3.3), where Y is a metrically complete, simply connected manifold, with all sectional curvatures between $-\kappa^{2}$ and -1 , with convex boundary ∂Y, and where G acts properly discontinuously on Y,
(2) $\partial Y / G$ is relatively compact in $M_{C}^{Y}(G)$, and
(3) G is infinite, and has a unique fixed point in Y_{I}.

These properties (1)-(3) characterise standard cusp regions in the following sense.
Proposition 5.1.2 : Suppose $\Gamma \subseteq$ Isom X is discrete, and $E \subseteq M_{C}(\Gamma)$ is a convex suborbifold which is an intrinsic standard cusp region. Then, E is a standard cusp region in $M_{C}(\Gamma)$.

Proof : From the definitions of convex suborbifold, we know that E has the form $M_{C}^{Y^{\prime}}\left(G^{\prime}\right)$ where $Y^{\prime} \subseteq X$ and $G^{\prime} \subseteq \Gamma$. We can identify Y^{\prime} with Y, and G^{\prime} with G, in the definition of intrinsic standard cusp region. Since Y is G-invariant, and G has a unique fixed point in Y_{I}, we see that G is parabolic. The statement that E is a convex suborbifold tells us that the topological boundary of E in $M_{C}(\Gamma)$ is the closure of $\partial Y / G$ in E, which, by hypothesis,
is compact. Also E is connected and non-compact. From the discussion above, it follows that E is a standard cusp region.

We can now give the first definition of geometrical finiteness.
Definition : The discrete group $\Gamma \subseteq$ Isom X is " F 1 " if $M_{C}(\Gamma)$ has finitely many ends, each a parabolic end.

Another way to say this that $M_{C}=M_{C}(\Gamma)$ is the union of a compact set, K, and a finite number of standard cusp regions, E_{i} for $1 \leq i \leq k$. We can suppose that K is the closure of $M_{C} \backslash \bigcup_{i=1}^{k} E_{i}$ in M_{C}, and thus a suborbifold with boundary. Note that for any standard cusp regions $E_{i}^{\prime} \subseteq E_{i}$, we will have that $M_{C} \backslash \bigcup_{i=1}^{k} E_{i}$ is relatively compact. In this way, we can always arrange that $d\left(E_{i}, E_{j}\right)$ is arbitrarily large for $i \neq j$.

5.2. Definition F2.

The second definition gives a description of geometrical finiteness intrinsic to the action of Γ on Λ.

We shall need the notion of "conical limit point" which is based on the following observation.

Proposition 5.2.1 : Suppose $\Gamma \subseteq$ Isom X is discrete and not loxodromic. Suppose $\left(\gamma_{n}\right)$ is a sequence of distinct elements of Γ, and that $y \in \Lambda$. Then the following are equivalent. 1a(1b): For some (each) $x \in X$ and some (each) geodesic ray β tending to y, we have $\gamma_{n} x \rightarrow y$ and $d\left(\gamma_{n}, \beta\right)$ bounded.
$2 \mathrm{a}(2 \mathrm{~b})$: For some (each) geodesic ray β tending to y, and for every subsequence $\left(\gamma_{n_{i}}\right)$ of $\left(\gamma_{n}\right)$, the sets $\gamma_{n_{i}}^{-1} \beta$ accumulate somewhere in X.
3a: For each $z \in \Lambda \backslash\{y\}$, the sequence of ordered pairs $\left(\gamma_{n}^{-1} y, \gamma_{n}^{-1} z\right)$ remains in a compact subset of $(\Lambda \times \Lambda) \backslash \Delta(\Lambda)$, where $\Delta(\Lambda)=\{(x, x) \mid x \in \Lambda\}$.

Proof : The only implication that requires comment is that (3) implies (1). If Γ is finite or parabolic, this is vacuous. Since Γ is not loxodromic, we can suppose that there are distinct points z and z^{\prime} in $\Lambda \backslash\{y\}$. Let α be the bi-infinite geodesic $[y, z]$, and let x be any point of X. Saying that $\left(\gamma_{n}^{-1} y, \gamma_{n}^{-1} z\right)$ remains in a compact subset $(\Lambda \times \Lambda) \backslash \Delta(\Lambda)$ is the same as saying that $d\left(\gamma_{n}^{-1} \alpha, x\right)$ is bounded. Thus $d\left(\alpha, \gamma_{n} x\right)$ is bounded. It follows that the set of accumulation points of $\left\{\gamma_{n} x\right\}$ is a subset of $\{y, z\}$. Similarly, this set of accumulation points is also a subset of $\left\{y, z^{\prime}\right\}$, and thus equal to $\{y\}$. In other words, $\gamma_{n} x \rightarrow y$. \diamond

Definition : Suppose $\Gamma \subseteq \operatorname{Isom} X$ is discrete. Then $y \in \Gamma$ is a conical limit point if there is a sequence $\left(\gamma_{n}\right)$ of distinct elements of Γ so that, for each $z \in \Gamma \backslash\{y\}$, the sequence $\left(\gamma_{n} y, \gamma_{n} z\right)$ lies in a compact subset of $(\Lambda \times \Lambda) \backslash \Delta(\Gamma)$.

Thus, y is a conical limit point if and only if for some (or each) $x \in X$, and some (or
each) geodesic ray β tending to y, then for some $r \geq 0$, the set $\Gamma x \cap N_{r}(\beta)$ accumulates at y.

Alternatively, y is a conical limit point if and only if for some (or each) ray β tending to $y, \pi(\beta \cap X)$ accumulates in $M=X / \Gamma$, where $\pi: X \longrightarrow M$ is the natural projection. (This means that there is a sequence of points, $z_{n} \in \beta \cap X$, tending to y, with πz_{n} convergent in M.)

Note that, in the above two statements, we need make no special qualifications for loxodromic groups.

Saying that $\pi(\beta \cap X)$ does not accumulate in M is the same as saying that the orbit $\Gamma \beta$ of β is locally finite in X. From Proposition 3.3.1, it follows that $\Gamma \beta$ is locally finite on $X \cup \Omega$, in other words, $\pi(\beta \cap X)$ does not accumulate in M_{C}. Thus:

Lemma 5.2.2 : Suppose $y \in \Lambda$, and β is a geodesic ray tending to y. Let π be the projection from $X \cup \Omega$ to M_{C}. If $\pi(\beta \cap X)$ accumulates in M_{C}, then y is a conical limit point.

Note that a parabolic fixed point, $p \in \Lambda$, may be recognised from the action of Γ on Λ. Thus, p is a parabolic fixed point if and only if it is the unique fixed point in Λ of the infinite group $\operatorname{stab}_{\Gamma} p$. The definition of bounded parabolic fixed point given in Section 5.1 is already intrinsic to Λ.

Definition : The discrete group $\Gamma \subseteq$ Isom X is "F2" if the limit set Λ consists entirely of conical limit points and bounded parabolic fixed points.

It is easily seen that a limit point cannot be both a conical limit point and a bounded parabolic fixed point. We shall see (Lemma 6.4) that if Γ is geometrically finite, then every parabolic fixed point is bounded.

5.3. Definition F4.

Suppose $\Gamma \subseteq$ Isom X is discrete. The (closed) convex hull of the limit set, $\operatorname{hull}(\Lambda)$, is Γ-invariant. Thus we may define

$$
\operatorname{core}(M)=(\operatorname{hull}(\Lambda)) / \Gamma \subseteq M=X / \Gamma
$$

We call core (M) the convex core of M. If core (M) has non-empty interior, then it has the structure of an orbifold with boundary, though in general, it may not. (However, for any $\eta>0$, the η-neighbourhood, $N_{\eta} \operatorname{core}(M)$, is a convex suborbifold of M.)

Definition : The discrete group $\Gamma \subseteq$ Isom X is "F4" if, for some $\epsilon \in(0, \epsilon(n, \kappa))$, we have that core $(M) \cap \operatorname{thick}_{\epsilon}(M)$ is compact.

Here, $\epsilon(n, \kappa)$ is the Margulis constant (Section 3.5). Note that the thick part of the convex core, $\operatorname{core}(M) \cap \operatorname{thick}_{\epsilon}(M)$, is defined intrinsically to core (M).

There are several variations on this definition one could give. For example, we could replace core (M) by $(\operatorname{join}(\Lambda)) / \Gamma$. Instead of $\operatorname{thick}_{\epsilon}(M)$ we could take noncusp ${ }_{\epsilon}(M)$. Instead of saying "for some $\epsilon \in(0, \epsilon(n, \kappa))$ ", we could say "for all $\epsilon \in(0, \epsilon(n, \kappa))$ ". That all combinations arising in this way give rise to the same notion of geometrical finiteness should be apparent from the proofs of equivalence given in the next chapter.

5.4. Definition F5.

Definition : Suppose $\Gamma \subseteq$ Isom X is discrete. Γ is "F5" if there is a bound on the orders of every finite subgroup of Γ, and if, for some $\eta>0, N_{\eta} \operatorname{core}(M)$ has finite volume.

Again, we could replace core (M) by $(j \operatorname{join}(\Lambda)) / \Gamma$, or say that every η-neighbourhood has finite volume.

We have already remarked that $N_{\eta} \operatorname{core}(M)$ is a convex suborbifold. The group Γ is the orbifold fundamental group of $N_{\eta} \operatorname{core}(M)$. Thus, the definition F5 is intrinsic to N_{η} core (M). This statement becomes more transparent given:

Proposition 5.4.1 : If $\Gamma \subseteq$ Isom X is discrete, and neither finite nor parabolic, then every finite subgroup, G, of Γ has a fixed point in hull((Λ).

Proof : We know that G has a fixed point in X. Since the projection to $\operatorname{hull}(\Lambda)$ is Γ-equivariant, we see that the projection of this point to hull (Λ) is also fixed by G.

Thus, the bound on the order of finite subgroups of Γ translates to a bound on the orders of the subgroups of the orthogonal group defining the orbifold structure of N_{η} core (M).

In fact, I suspect that this bound is superfluous, i.e. it should be implied by the statement that $N_{\eta} \operatorname{core}(M)$ has finite volume. This is certainly the case if M itself has finite volume.

Proposition 5.4.2 : Suppose $\Gamma \subseteq$ Isom X is discrete, and that $M=X / \Gamma$ has finite volume. Then, there is a bound on the orders of finite subgroups of Γ.

Proof : Given the lower bound on the volumes of uniform balls in X, (Proposition 1.1.12), the proof is essentially the same as that in the constant curvature case given in [Bo1]. We shall not reproduce the argument here.

In fact, we shall see that if M has finite volume, then it is topologically finite as an orbifold (Proposition 6.6).

5.5. Basic group-theoretic properties.

Proposition 5.5.1 : If Γ is $F 1$, then Γ is finitely generated.

Proof : Write $M_{C}=K \cup \bigcup_{i-1}^{k} E_{i}$, where each E_{i} is a standard cusp region, and K is a compact set which we can take to be a suborbifold with boundary. The orbifold fundamental group of each E_{i} is isomorphic to the corresponding maximal parabolic subgroup. Such a subgroup is finitely generated by Proposition 4.1. The result now follows by the orbifold van-Kampen theorem.

Proposition 5.5.2 : If Γ is $F 1$, then Γ has finitely many conjugacy classes of finite subgroups.

Proof : We have already observed (Section 3.2), that every finite subgroup of Γ lies inside at least one maximal finite subgroup. It thus suffices to show that there are only finitely many conjugacy classes of maximal finite subgroups.

At the end of Section 3.2, we defined the locally finite collection, $\hat{\mathcal{G}}$ of disjoint subsets of $M_{C}(\Gamma)$, which are in bijective correspondence with the conjugacy classes of maximal finite subgroups of Γ. We see that only finitely many elements of $\hat{\mathcal{G}}$ can meet the compact set K. On the other hand, if an element of $\hat{\mathcal{G}}$ meets a standard cusp region E_{i}, we see that (up to conjugacy in Γ) the corresponding maximal finite subgroup lies inside the maximal parabolic subgroup corresponding to E_{i}. Now, Proposition 4.1 tells us that a parabolic subgroup of Γ is finitely generated and virtually nilpotent. The proposition thus reduces to the following group-theoretic statement (Lemma 5.5.3).

Lemma 5.5.3 : A finitely generated virtually nilpotent group has finitely many conjugacy classes of finite subgroups.

Proof : Suppose P is finitely generated, and contains a nilpotent subgroup N of finite index. Then N is also finitely generated, and we can suppose that N is normal in P. Let Z be the centre of N. It is well known that Z is finitely generated. (Alternatively, we could take Z to be the first group of the lower central series, which is clearly finitely generated.) Let T be the torsion subgroup of Z. Thus T is finite. Since T and Z are characteristic in N, they are normal in P. By induction on the height of N, we can suppose that P / Z has only finitely many conjugacy classes of finite subgroup.

Suppose F_{1} and F_{2} are finite subgroups of P. We can assume that $F_{1} Z$ and $F_{2} Z$ are conjugate in P. Thus, we can take $F_{1} Z=F_{2} Z=K$ say. We claim that K / T contains only finitely many transversal subgroups to Z / T up to conjugacy in K / T. Given this, we can assume that $F_{1} T=F_{2} T$. But this group is finite, and so contains only finitely many subgroups. This, then, completes the proof.

To prove the claim, let $H=K / T$, and $A=Z / T$. Thus, A is free abelian, and normal and of finite index in H. The rest of the argument is standard group cohomology. Let G be a transversal subgroup to A in H, i.e. $G A=H$, and $G \cap A=\{0\}$. If G^{\prime} is another transversal subgroup, we have a unique monomorphism $\theta: G \longrightarrow H$ such that the image $\theta(G)$ equals G^{\prime}, and $\theta(g) g^{-1} \in A$ for all $g \in G$.

Suppose that the transversal subgroups G_{1} and G_{2} have corresponding monomor-
phisms θ_{1} and $\theta_{2}: G \longrightarrow H$. If $a \in A$ and $g \in G$, then

$$
a \theta_{1}(g) a^{-1} g^{-1}=a\left(\theta_{1}(g) g^{-1}\right) g a^{-1} g^{-1}=\left(\theta_{1}(g) g^{-1}\right) a g a^{-1} g^{-1}
$$

Thus, $\theta_{2}(g)=a \theta_{1}(g) a^{-1}$ if and only if $\theta_{2}(g) \theta_{1}(g)^{-1}=a g a^{-1} g^{-1}$. We say that G_{1} and G_{2} are A-conjugate if for some $a \in A$, we have $\theta_{2}(g) \theta_{1}(g)^{-1}=a g a^{-i} g^{-1}$ for all $g \in$ G. We see that A-conjugacy is an equivalence relation on transversal subgroups (defined independently of the choice of G). Clearly, A-conjugate transversals are conjugate as subgroups of H.

Now, the set of all maps from G into A form a free abelian group under multiplication in A, of rank equal to $|G| \operatorname{rank} A$. Those maps of the form $\left[g \mapsto \theta(g) g^{-1}\right]$, for a monomorphism θ, form a free abelian subgroup C. Those of the form $\left[g \mapsto a g a^{-1} g^{-1}\right]$, for $a \in A$, form a subgroup B of C. Thus, A-conjugacy classes of transversal subgroups are in bijective correspondence with the elements of $C / B .(C / B$ is the first cohomology group $H^{1}(G, A)$.) We claim that C / B is finite. Since C is finitely generated free abelian, it suffices to see that C / B is a torsion group.

Given a map $\left[g \mapsto \theta(g) g^{-1}\right] \in C$, let $b=\prod_{h \in G}\left(\theta(h) h^{-1}\right) \in A$. Then, for any $g \in G$,

$$
\begin{aligned}
b & =\prod_{h \in G} \theta(g h)(g h)^{-1}=\prod_{h \in G}\left(\theta(g) g^{-1}\right) g\left(\theta(h) h^{-1}\right) g^{-1} \\
& =\left(\theta(g) g^{-1}\right)^{n} g b g^{-1}
\end{aligned}
$$

where $n=|G|$. Thus,

$$
\left(\theta(g) g^{-1}\right)^{n}=b g b^{-1} g^{-1}
$$

and so

$$
\left[g \mapsto \theta(g) g^{-1}\right]^{n}=\left[g \mapsto b g b^{-1} g^{-1}\right] \in B
$$

6. Proofs of equivalence.

We assume that X has pinched negative curvature. The main aim of this chapter is to show the equivalence of the main definitions of geometrical finiteness from Chapter 5.

Theorem 6.1 : The properties F1, F2, F4 and F5, of a discrete subgroup of Isom X, are all equivalent.

This will be largely a matter of tying up loose ends - most of the work has already been done. We shall give proofs of the following implications:

We include $\mathrm{F} 1 \Rightarrow \mathrm{~F} 2$ since it admits a direct proof much simpler than following the cycle. The proof of $\mathrm{F} 1 \Rightarrow \mathrm{~F} 5$ uses $\mathrm{F} 1 \Rightarrow \mathrm{~F} 4$.

Proof of $\mathbf{F 1} \Rightarrow \mathbf{F 2}$: \quad Suppose Γ is F1. We write $M_{C}(\Gamma)=K \cup \bigcup_{i=1}^{k} E_{i}$ where each E_{i} is a standard cusp region, and K is compact. Let $\pi: X \cup \Omega \longrightarrow M_{C}(\Gamma)$ be the projection. Each E_{i} corresponds to an orbit, Π_{i}, of a parabolic fixed point. Let $\Pi=\bigcup_{i=1}^{k} \Pi_{i} \subseteq \Lambda$. By Lemma 5.1.1, each element of Π is a bounded parabolic fixed point.

Suppose $y \in \Lambda \backslash \Pi$. Let β be any geodesic ray tending to y. Now, each component of $\bigcup_{i=1}^{k} \pi^{-1} E_{i}$ is a convex set whose closure meets Λ in a single point of Π. It follows easily that $\beta \cap \pi^{-1} K$ is unbounded. We see that $\pi(\beta \cap X)$ must accumulate somewhere in $K \subseteq M_{C}(\Gamma)$. By Lemma 5.2.2, y is a conical limit point.

Next, we aim to prove F2 \Rightarrow F1.
Lemma 6.2 : Suppose $\Gamma \subseteq$ Isom X is discrete. Let $\Pi \subseteq \Lambda$ be the set of all bounded parabolic fixed points. Write Π as a disjoint union $\Pi=\bigsqcup_{i \in I} \Pi_{i}$ of orbits under Γ, where I is a finite or countable indexing set. Then, each orbit Π_{i} is associated to a standard cusp region $E_{i} \subseteq M_{C}(\Gamma)$. Moreover, the E_{i} are all disjoint in $M_{C}(\Gamma)$. In fact, given any $r>0$, we can arrange that $d\left(E_{i}, E_{j}\right) \geq r$ if $i \neq j$.

Proof : Let $H=\operatorname{hull}(\Lambda)$. Let $\rho=\operatorname{proj}_{H}: X_{C} \longrightarrow H$. Choose any $\epsilon \in(0, \epsilon(n, \kappa))$, and let $T=T_{\epsilon}(\Gamma) \subseteq X$ as in Section 3.5.

Suppose $p_{i} \in \Pi_{i}$. Let $G_{i}=\operatorname{stab}_{\Gamma} p_{i}$. Thus G_{i} is maximal parabolic, and $T_{i}=T_{\epsilon}\left(G_{i}\right)$ is a connected component of T. Since p_{i} is a bounded parabolic fixed point, $\left(\Lambda \backslash\left\{p_{i}\right\}\right) / G_{i}$ is compact. Thus, by Proposition 4.12, we can find a convex set $C_{i} \subseteq \rho^{-1}\left(H \cap T_{i}\right) \subseteq X_{C} \backslash\left\{p_{i}\right\}$ so that C_{i} / G_{i} is a standard cusp region in $M_{C}\left(G_{i}\right)$. Clearly, $\rho^{-1}\left(H \cap T_{i}\right)$ cannot meet Λ, and so $C_{i} \subseteq X \cup \Omega$. We see that C_{i} / G_{i} descends to a standard cusp region $E_{i}=\left(\bigcup \Gamma C_{i}\right) / \Gamma$ in $M_{C}(\Gamma)$. Note that $\bigcup \Gamma C_{i}=\rho^{-1}\left(H \cap\left(\bigcup \Gamma T_{i}\right)\right)$.

We perform this construction for each $i \in I$. By Proposition 3.5.4, we have that, for some $\delta>0$, if $i \neq j$, then $d\left(\bigcup \Gamma T_{i}, \bigcup \Gamma T_{j}\right) \geq \delta$. It follows that the E_{i} are disjoint. In fact, by Proposition 4.4, we can arrange that $d\left(E_{i}, E_{j}\right)$ is arbitrarily large for $i \neq j$.

Corollary 6.3 : A limit point is associated to a parabolic end of $M_{C}(\Gamma)$ if and only if it is a bounded parabolic fixed point.

Proof : By Lemmas 5.1.1 and 6.2.

Proof of F2 \Rightarrow F1: Suppose that Γ is F 2 . Let $\Pi \subseteq \Lambda$ be the set of all bounded parabolic fixed points. Write Π as a disjoint union $\Pi=\bigsqcup_{i \in I} \Pi_{i}$, where I is a finite or countable indexing set. Lemma 6.2 gives us a corresponding collection of standard cusp regions, $E_{i} \subseteq M_{C}(\Gamma)$. We may suppose that $d\left(E_{i}, E_{j}\right) \geq 1$ if $i \neq j$. Let E_{i}° be the topological interior of E_{i} in M_{C}. We claim that $M_{C} \backslash \bigcup_{i \in I} E_{i}^{\circ}$ is compact. It then follows that I is finite, and so Γ is F 1 .

Let $\pi: X \cup \Omega \longrightarrow M_{C}$ be the quotient map. Let $Z=\bigcup_{i \in I} \pi^{-1} E_{i}^{\circ}=(X \cup \Omega) \backslash$ $\pi^{-1} K$. To each point $p \in \Pi$ is associated a component $Y(p)$ of Z, so that $Y(p) / G(p)$ is a neighbourhood of the end of $M_{C}(G(p))$, where $G(p)$ is the maximal parabolic group $\operatorname{stab}_{\Gamma} p$. Distinct components of Z are at least a distance 1 apart, thus $Y(p)$ is open in $X \cup \Omega$, and hence in $X_{C} \backslash\{p\}$. We see that $\left(X_{C} \backslash(Y(p) \cup\{p\})\right) / G(p)$ is compact.

Let $D \subseteq X_{C}$ be any Dirichlet domain for Γ (Section 3.3). Thus D is closed in X_{C} and quasiconvex. Write ΓD for the collection of images of D under Γ. By Corollary 3.3.2, ΓD is locally finite on $X \cup \Omega$, and so $X \cup \Omega \subseteq \bigcup \Gamma D$. We see that $\pi^{-1} K=(X \cup \Omega) \backslash Z \subseteq$ $\cup \Gamma(D \backslash(\Lambda \cup Z))$ and so $K=\pi(D \backslash(\Lambda \cup Z))$. To prove the claim, it thus suffices to see that $D \backslash(\Lambda \cup Z)$ is compact.

Since D is quasiconvex, and ΓD is locally finite on X, it follows easily that D cannot contain any conical limit point of Γ. Since Γ is F2, we have that $D \cap \Lambda \subseteq \Pi$, and so $D \backslash(\Lambda \cup Z)=D \backslash \bigcup_{p \in \Pi}(Y(p) \cup\{p\})$. Since D is compact Hausdorff, it thus suffices to see that $D \cap(Y(p) \cup\{p\})$ is open in D for all $p \in \Pi$.

Fix $p \in \Pi$, and let $Y=Y(p)$ and $G=G(p)$. By Corollary 3.3.2, we know that $G D$ is locally finite on $\Omega(G)=X_{C} \backslash\{p\}$. Now, certainly $D \backslash(Y \cup\{p\})$ is closed in $X_{C} \backslash\{p\}$, and $\left(X_{C} \backslash(Y \cup\{p\})\right) / G$ is compact. We conclude that $D \backslash(Y \cup\{p\})$ is compact, and hence closed in D. Thus $D \cap(Y \cup\{p\})$ is open in D.

Proof of $\mathbf{F 1} \Rightarrow \mathbf{F} 4$: \quad Suppose Γ is F 1 . Let e_{1}, \ldots, e_{k} be the parabolic ends of M_{C}. Suppose $p_{i} \in \Lambda$ is associated to e_{i}. By Lemma 5.1.1, p_{i} is a bounded parabolic fixed point. Let $G_{i}=\operatorname{stab}_{\Gamma} p_{i}$, so that $\left(\Lambda \backslash\left\{p_{i}\right\}\right) / G_{i}$ is compact. Given any $\epsilon \in(0, \epsilon(n, \kappa))$, let $T_{i}=T_{\epsilon}\left(G_{i}\right)$ be as defined in Section 3.5. Let $H=\operatorname{hull}(\Lambda)$ and $\rho=\operatorname{proj}_{H}: X_{C} \longrightarrow H$. Proposition 4.12 gives us a convex set $C_{i} \subseteq X_{C} \backslash\left\{p_{i}\right\}$, with $C_{i} \subseteq \rho^{-1}\left(H \cap T_{i}\right)$, and such that C_{i} / G_{i} is a closed neighbourhood of the end of $M_{C}\left(G_{i}\right)$. It follows that $\bigcup \Gamma C_{i}$ projects to a standard cusp region $E_{i} \subseteq M_{C}(\Gamma)$, which is a neighbourhood of the end e_{i}. Since $C_{i} \subseteq \rho^{-1}\left(H \cap T_{i}\right)$, we certainly have $H \cap C_{i} \subseteq T_{i}$.

We perform this construction for each $i \in\{1,2, \ldots, k\}$. Thus $H \cap\left(\bigcup_{i=1}^{k} \bigcup \Gamma C_{i}\right) \subseteq$ $\bigcup_{i=1}^{k} \bigcup \Gamma T_{i}$.

Projecting to M_{C}, we have

$$
\operatorname{core}(M) \cap\left(\bigcup_{i=1}^{k} E_{i}\right) \subseteq \operatorname{cusp}_{\epsilon}(M),
$$

and so

$$
\operatorname{core}(M) \backslash \operatorname{cusp}_{\epsilon}(M) \subseteq M_{C} \backslash \bigcup_{i=1}^{k} E_{i} .
$$

Since Γ is F1, it follows that the closure, $\operatorname{core}(M) \cap \operatorname{noncusp}_{\epsilon}(M)$, of core $(M) \backslash \operatorname{cusp}_{\epsilon}(M)$ is compact. Thus core $(M) \cap \operatorname{thick}_{\epsilon}(M)$ is compact.

Lemma 6.4 : If Γ is $F 4$, then every parabolic fixed point is bounded.
Proof : Let $H=\operatorname{hull}(\Lambda)$. Suppose $p \in \Lambda$ is a parabolic fixed point. Let $G=\operatorname{stab}_{\Gamma} p$. Given $\epsilon \in(0, \epsilon(n, \kappa))$ let $T=T_{\epsilon}(G)$. Let ∂T be the topological boundary of T in X. Let $v: X_{C} \backslash\{p\} \longrightarrow X_{I} \backslash\{p\}$ be the map $[x \mapsto x-\infty]$. Thus v is a G-equivariant continuous retraction of $X_{C} \backslash\{p\}$ onto $X_{I} \backslash\{p\}$. From the form of T described by Proposition 3.5.2, it is clear that $v(\partial T)=X_{I} \backslash\{p\}$. (In fact, $v \mid \partial T$ is a homeomorphism.) From Section 3.5 , we know that T / G may be identified as a component of $\operatorname{thin}_{\epsilon}(M)$. Thus, $\partial T / G$ may be identified as a boundary component, S, of $\operatorname{thick}_{\epsilon}(M)$. Under this identification, $(H \cap \partial T) / G$ is identified with core $(M) \cap S$, which is a closed subset of core $(M) \cap$ thick $_{\epsilon}(M)$ and hence compact. Now $v(H \cap \partial T) \supseteq \Lambda \backslash\{p\}$, and so $(\Lambda \backslash\{p\}) / G$ is a closed subset of $v(H \cap \partial T) / G$ and hence compact. Thus, p is a bounded parabolic fixed point.

Corollary 6.5 : If Γ is $F 1$, then Γ has finitely many conjugacy classes of maximal parabolic subgroups.

Proof : We know that Γ is also F4, and so by Lemma 6.4, every parabolic fixed point is bounded. Now, maximal parabolic subgroups of Γ are in bijective correspondence with orbits of parabolic fixed points. These in turn (applying Corollary 6.3) are in bijective correspondence with parabolic ends of M_{C}. Since Γ is F1, there are only finitely many such ends.

Proof of F4 \Rightarrow F2 : \quad Suppose Γ is F4. Thus core $(M) \cap \operatorname{thick}_{\epsilon}(M)$ is compact for some $\epsilon \in(0, \epsilon(n, \kappa))$. Since Margulis tubes do not accumulate in M (Proposition 3.5.4), it follows that core $(M) \cap \operatorname{thick}_{\epsilon}(M)$ meets only finitely many Margulis tubes. Since each such tube is compact, it follows that core $(M) \cap \operatorname{noncusp}_{\epsilon}(M)$ is compact.

Let $\Pi \subseteq \Lambda$ be the set of all parabolic fixed points. By Lemma 6.4, each such fixed point is bounded. Suppose $y \in \Lambda \backslash \Pi$. Choose any X in $X \cap \operatorname{hull}(\Lambda)$, and let β be the ray $[x, y]$. Thus $\beta \subseteq \operatorname{hull}(\Lambda)$. From the form of Margulis cusps described by Proposition 3.5 .2 , it is clear that $\beta \cap \pi^{-1}$ noncusp $_{\epsilon}(M)$ is unbounded, where $\pi: X \cup \Omega \rightarrow M_{C}$ is the natural projection. It follows that $\pi(\beta \cap X)$ must accumulate somewhere in core $(M) \cap$ noncusp $_{\epsilon}(M) \subseteq M$. Thus y is a conical limit point.

Proof of F1 \Rightarrow F5 : \quad Suppose Γ is F1. Proposition 5.5 .2 tells us that there is a bound on the orders of finite subgroups of Γ. Suppose $\epsilon \in(0, \epsilon(n, \kappa))$ and $\eta>0$.

Since Γ is F 4 , we know that core $(M) \cap \operatorname{noncusp}_{\epsilon}(M)$ is compact. Thus $N_{\eta}(\operatorname{core}(M) \cap$ noncusp $\left._{\epsilon}(M)\right)$ is compact. We thus need to show that $N_{\eta}\left(\operatorname{core}(M) \cap \operatorname{cusp}_{\epsilon}(M)\right)$ has finite volume.

By Corollary 6.5, we know that $\operatorname{cusp}_{\epsilon}(M)$ consists of finitely many Margulis cusps. Each Margulis cusp has the form $T_{\epsilon}(G) / G$, where $G=\operatorname{stab}_{\Gamma} p$ is a maximal parabolic
subgroup of Γ, with fixed point p. By Lemma 6.4 , $(\Lambda \backslash\{p\}) / G$ is compact, and so by Proposition 4.14, $N_{\eta}\left(H \cap T_{\epsilon}(G)\right) / G$ has finite volume, where $H=\operatorname{hull}(\Lambda)$. Summing over the set of Margulis cusps, we conclude that $N_{\eta}\left(\operatorname{core}(M) \cap \operatorname{cusp}_{\epsilon}(M)\right)$ has finite volume. \diamond

Proof of F5 \Rightarrow F4: Suppose that Γ is F5. Thus, for some $\eta>0, N_{\eta}(\operatorname{core}(M))$ has finite volume, V_{0} say. Also, there is a bound, m, on the orders of finite subgroups of Γ. Given $\epsilon \in(0, \epsilon(n, \kappa))$, we want to show that core $(M) \cap \operatorname{thick}_{\epsilon}(M)$ is compact. Let $\delta=\min (\eta, \epsilon / 2)$.

Let $\pi: X \longrightarrow M$ be the projection. Suppose $a \in \operatorname{thick}_{\epsilon}(M)$. Choose $x \in X$ with $\pi x=a$. Thus $x \in T_{\epsilon}(\Gamma)$, and so $\Gamma_{\epsilon}(x)$ is finite, of order at most m. Since $\delta \leq \epsilon / 2$, it follows that $N_{\delta}(x)$ meets at most m images of itself under Γ. Applying Proposition 1.1.12, we see that $\pi N_{\delta}(x) \subseteq M$ has volume at least $V(\delta, n) / m$. Now, $\pi N_{\delta}(x)$ is the uniform δ-ball, $N_{\delta}(a)$ about a in M. We thus have a lower bound on the volumes of δ-balls in M centred on thick ${ }_{\epsilon}(M)$.

Now choose a maximal subset $A \subseteq \operatorname{core}(M) \cap \operatorname{thick}_{\epsilon}(M)$, such that the balls $\left\{N_{\delta}(a) \mid a \in\right.$ $A\}$ are disjoint in M. Since $\delta \leq \eta$ and $N_{\eta}(\operatorname{core}(M))$ has finite volume, the set A must be finite. (It has at most $m V_{0} / V(\delta, m)$ elements.) Since A is maximal, we have core $(M) \cap$ $\operatorname{thick}_{\epsilon}(M) \subseteq N_{2 \delta}(A)$. Thus core $(M) \cap \operatorname{thick}_{\epsilon}(M)$ is compact.

This concludes the proofs of equivalence (Theorem 6.1).
To finish off, we give the following result, which is a generalisation of a well-known result in case of manifolds. We say that an orbifold is topologically finite if it is orbifoldhomeomorphic to the interior of a compact orbifold with boundary (Section 3.4).

Proposition 6.6 : Suppose $\Gamma \subseteq$ Isom X is discrete. If $M=X / \Gamma$ has finite volume, then it is topologically finite as an orbifold.

Proof : By Proposition 5.4.2, there is a bound on the orders of finite subgroups of Γ. Thus Γ is F5, and so F1. We can thus write $M_{C}(\Gamma)=K \cup \bigcup_{i=1}^{k} E_{i}$, where each E_{i} is standard cusp region, and K is compact subset which we can take to be an orbifold with boundary.

Now, each E_{i} has the form C_{i} / G_{i}, where $G_{i} \subseteq \Gamma$ is a maximal parabolic subgroup, with fixed point p_{i}, and C_{i} is a closed convex G_{i}-invariant subset of $X_{C} \backslash\left\{p_{i}\right\}$. Let v be the retraction $[x \mapsto x-\infty]$ of $X_{C} \backslash\left\{p_{i}\right\}$ to $X_{I} \backslash\left\{p_{i}\right\}$. Since E_{i} has finite volume, it is clear that $v\left(\partial C_{i}\right)=X_{I} \backslash\left\{p_{i}\right\}$, where ∂C_{i} is the boundary of C_{i} in $X_{C} \backslash\left\{p_{i}\right\}$. Since E_{i} is a neighbourhood of the end of $M_{C}\left(G_{i}\right)$, we have that $\partial C_{i} / G_{i}$ is compact. Since v is G_{i}-equivariant, we have that $\left(X_{I} \backslash\left\{p_{i}\right\}\right) / G_{i}=v\left(\partial C_{i}\right) / G_{i}$ is compact. Now, E_{i} is topologically (as an orbifold) a product of $\left(X_{I} \backslash\left\{p_{i}\right\}\right) / G_{i}$ and a half-open interval, and thus topologically finite.

References.

[Ah] L.V.Ahlfors, Fundamental polyhedrons and limit point sets for Kleinian groups : Proc. Nat. Acad. Sci. 55 (1966) 251-254.
[An] M.Anderson, The Dirichlet problem at infinity for manifolds of negative curvature : J. Differential Geometry 18 (1983) 701-721.
[BaGS] W.Ballmann, M.Gromov, V.Schroeder, Manifolds of non-positive curvature : Progress in Maths. 61, Birkhäuser (1985).
[BeM] A.Beardon, B.Maskit, Limit sets of Kleinian groups and finite sided fundamental polyhedra : Acta Math. 132 (1974) 1-12.
[Bo1] B.H.Bowditch, Geometrical finiteness for hyperbolic groups : J. Functional Analysis 113 (1993) 245-317.
[Bo2] B.H.Bowditch, Discrete parabolic groups : J. Differential Geometry 38 (1993) 559583.
[Bo3] B.H.Bowditch, Some results on the geometry of convex hulls in manifolds of pinched negative curvature Comment. Math. Helv. 69 (1994) 49-81.
[Br] M.R.Bridson, Geodesics and curvature in metric simplicial compelexes : in "Group theory from a geometric viewpoint" (ed. E.Ghys, A.Haefliger, A.Verjovsky), World Scientific (1991).
[CE] J.Cheeger, D.G.Ebin, Comparison theorems in riemannian geometry : North Holland (1975).
[EM] D.B.A.Epstein, A.Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces : in "Analytic and geometric aspects of hyperbolic space", L.M.S. Lecture Notes Series No.111, ed. D.B.A.Epstein, Cambridge U.P. (1987) 113-253.
[G] W.M.Goldman, Complex hyperbolic Kleinian groups : in "Complex geometry (Osaka 1990)", Lecture Notes in Pure and Appl. Math. 143, Dekker, New York (1993) 31-52.
[GP] W.M.Goldman, J.R.Parker, On the horospherical geometry of complex hyperbolic space : preprint, Maryland (1991).
[HI] E.Heintze, H.C.Im Hof, Geometry of horospheres: J. Differential Geometry 12 (1977) 481-491.
[M] A.Marden, The geometry of finitely generated Kleinian groups : Ann. Math. 99 (1974) 383-462.
[Pa] J.R.Parker, Dirichlet polyhedra for parabolic cyclic groups acting on complex hyperbolic space : preprint, Warwick (1992).
[Ph] M.B.Phillips, Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc. 115 (1992) 221-228.
[S] M.Spivak, A comprehensive introduction to differential geometry : Publish or Perish (1979).
[T] W.P.Thurston, The geometry and topology of 3-manifolds : notes, Princeton University Maths Department (1979).

[^0]: \dagger Written at I.H.E.S., Bures-sur-Yvette, with the support of a Royal Society European Exchange Fellowship.

