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1. General remarks about finiteness.

1.1. Hyperbolic space.

We begin with a general discussion of hyperbolic geometry in order to introduce our
terminology and notation. More details may be found in [Bea, Chapter 7].

We shall write Sn for the unit n-sphere in euclidean space. We write En for euclidean
n-space, and Hn for hyperbolic n-space. We shall denote the metrics on these spaces
by dsph, deuc and dhyp respectively. We shall drop the subscripts where there can be no
confusion. In each case, we write Isom X for the group of all isometries of X.

If Q is a subset of our space X, we write intQ for the topological interior of Q, and
Q̄ for the closure of Q. If r ≥ 0, we write Nr(Q) = {x ∈ X | d(x,Q) ≤ r} for the uniform
r-neighbourhood of Q. If Γ is a subgroup of IsomX, we write stabΓQ = {γ ∈ Γ |γQ = Q}
for the setwise stabliser of Q. We write ΓQ = {γQ |γ ∈ Γ} for the set of images of Q under
Γ.

In the cases of euclidean and hyperbolic spaces, we write [x, y] for the geodesic segment
joining the points x and y. If z ∈ X \ {x}, we write −→zx for the unit tangent vector based
at z in the direction of x. If also z 6= y, we write xẑy for the angle between −→zx and −→zy.

We can represent Hn conformally as the open unit ball in Rn with infinitessimal
metric dhyp = 2

1−r2 deuc, where r is the euclidean distance from the centre. This is the
Poincaré model. The closed unit ball gives a canonical compactification of Hn, which we
denote by Hn

C. We write Hn
I for the (n−1)-sphere of ideal points, so that Hn

C = Hn∪Hn
I .

Any isometry γ ∈ Isom Hn can be extended to act conformally on Hn
I .

Another conformal representation of Hn is as the upper half-space in Rn; that is,
Rn

+ = {x ∈ Rn | xn > 0}, where xn is the last coordinate of x. The metric is given
infinitessimally by dhyp = 1

xn
deuc. Writing ∂Rn

+ = {x ∈ Rn | xn = 0}, we may identify
Hn

I as ∂Rn
+ ∪ {∞}, where the ideal point ∞ compactifies Rn

+ ∪ ∂Rn
+ into a ball. We shall

refer to the nth coordinate in Rn
+ as the vertical coordinate. Note that if γ ∈ Isom Hn

fixes ∞, then it acts as a euclidean similarity on ∂Rn
+.

A third model for hyperbolic space we shall use is the Klein model. This consists of
the open unit ball with a (non-conformal) Riemannian metric, such that all hyperbolic
geodesics correspond to euclidean line segments (see [Bea, Chapter 7]).

In hyperbolic space, we may extend the notations [x, y], −→zx and xẑy to the case where
x or y or both lie in Hn

I . If x, y ∈ Hn we call [x, y] a geodesic segment. If x ∈ Hn and
y ∈ Hn

I , we call [x, y] ∩Hn a geodesic ray based at x and tending to y. If x, y ∈ Hn
I , we

call [x, y] ∩Hn a bi-infinite geodesic.
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By a subspace of Hn, we mean a complete totally geodesic subset. By a compactified
subspace of Hn

C, we mean the closure in Hn
C of such a subspace.

We may classify non-trivial isometries Hn into three types, namely elliptic, parabolic
and loxodromic as follows.

Let γ be an isometry of Hn. We write fix γ for the set of fixed points of γ in Hn
C.

Brouwer’s fixed point theorem tells us that fix γ must be non-empty.

Suppose that there is some point x in fix γ ∩Hn. We may take x to be the centre of
the ball in the Poincaré model. Then, γ acts as a euclidean rotation on the ball, and we
see that fix γ is a (possibly 0-dimensional) compactified subspace in Hn

C. We call this case
elliptic.

If γ is not elliptic, then fix γ is a subset of Hn
I . Suppose that fix γ consists of just

a single point in Hn
I . We may take this point to be ∞ in the upper half space model,

Rn
+. Now, since γ has no fixed point in ∂Rn

+, it must act as a euclidean isometry of ∂Rn
+.

Moreover, it must preserve setwise each horosphere about ∞. We call this case parabolic.

Suppose that γ fixes precisely two points, x and y, in Hn
I . Let β be the geodesic

joining x to y. In this case, γ acts as a translation on β, and (in general) has a rotational
component in the orthogonal direction. We call this case loxodromic, and we call β the
loxodromic axis. If γ translates β in the direction of x, we call x the attracting fixed point
of γ, and y the repelling fixed point.

Finally, note that if γ has three (or more) fixed points in Hn
I , then these must deter-

mine a fixed point in Hn, so we are back in the elliptic case.

Given a subgroup G ⊆ Isom Hn, we write fixG =
⋂
γ∈G fix γ for the set of all fixed

points of G in Hn
C.

1.2. Groups of isometries.

Let Γ be a subgroup of Isom Hn. It is an elementary result that Γ is a discrete subgroup
if and only if it acts properly discontinuously on Hn, that is to say, each compact subset
of Hn meets only finitely many images of itself under Γ.

In such a discrete group, the finite-order elements are precisely the elliptic isometries.
Thus, Γ acts freely if and only if it is torsion-free. If Γ acts freely, we may form the quotient
manifold M = Hn/Γ which inherits a complete hyperbolic structure.

More generally, if Γ has torsion, the quotient M = Hn/Γ is a complete hyperbolic
“orbifold”, as defined by Thurston [Th1, chapter 13]. That is to say, there is a closed
cell complex Σ in M , such that M \ Σ is an (incomplete) hyperbolic manifold. The set
Σ can be defined as the projection of the set of all fixed points of elliptic elements of
Γ, i.e., Σ =

⋃
γ∈Γ(fix γ ∩ Hn)/Γ. A neighbourhood of a point of Σ may or may not

be topologically singular, but it will always be geometrically singular. In an orientable
2-orbifold, for example, Σ consists of a discrete set of cone singularities, which may be
thought of as points of concentrated positive curvature. We shall call Σ the singular set
of M .

Let Γ ⊆ Isom Hn be discrete. The action of Γ may be extended to Hn
C, and we may

2



Geometrical finiteness for hyperbolic groups

define the limit set Λ ⊆ Hn
I as the set of accumulation points of some Γ-orbit in Hn, i.e.

Λ = {y ∈ Hn
I | there exist γi ∈ Γ and x ∈ Hn with γix→ y}.

It turns out that this definition is independent of our choice of x. Moreover, Λ is a minimal
closed Γ-invariant set, and Γ acts properly discontinuously on its complement Ω in Hn

I .
The set Ω = Hn

I \Λ is called the discontinuity domain. (It is possible for Ω to be empty.)
We may form the quotient orbifold MI = Ω/Γ of Ω. Since Γ acts conformally on Hn

I ,
we see that MI inherits a (singular) conformal structure from Ω. In fact, Γ acts properly
discontinuously on Hn ∪Ω, so we may write

MC = (Hn ∪Ω)/Γ = M ∪MI.

Note that when n = 3, MI is a Riemann surface (in general not connected). This fact
gives rise to a rich analytical theory in this dimension.

One direction of research in discrete hyperbolic groups, is to study the relationship of
various types of “finiteness” — group theoretic, topological and geometric. The simplest
group theoretic restriction is to demand that Γ be finitely generated. We can then ask
what this tells us about the topology and geometry of M .

The first result is purely algebraic.

Selberg Lemma [Sel]. Let k be a field of characteristic 0. Then, any finitely-generated
subgroup of GLn(k) is virtually torsion-free, (i.e. contains a torsion-free subgroup of finite
index).

For a simpler proof, see [Cas].

Since Isom Hn can be represented as a subgroup of GLn+1(R), the Selberg Lemma
can be applied to finitely-generated subgroups of Isom Hn.

Beyond the Selberg Lemma, little seems to be known in general. The main thrust
of research is in dimension 3, and we shall give a summary of 3-dimensional results in
Section 1.3. First, we describe how the 2-dimensional case is trivial from the point of view
of finiteness.

For simplicity, we restrict attention to orientable surfaces. Let M be a complete,
orientable, hyperbolic surface with finitely-generated fundamental group. Then, it turns
out that M consists of a compact surface with boundary, together with a finite number
of “cusps” and “funnels”. A cusp is (isometric to) a horoball in H2, quotiented out by a
cyclic parabolic group (Figure 1a). A funnel consists of a hyperbolic half-space quotiented
out by a loxodromic element (Figure 1b). We see that MI is a disjoint union of finitely
many circles, which serve to compactify the funnels in MC = M∪MI . Thus the topological
ends of MC correspond precisely to the cusps (Figure 1c). We see that, in any meaningful
sense, the geometry of M is only finitely complicated. This is about the strongest assertion
of finiteness one could make.
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1.3. Some 3-dimensional finiteness results.

In this section, we shall give a summary of some finiteness results in 3 dimensions. It
is not meant to reflect the historical development of the subject.

Because of the Selberg Lemma, we shall not leave much essential out of the story if
we restrict attention to torsion-free groups. It will also simplify the exposition a little if
we assume that our group is orientation preserving.

Let Γ be a discrete, torsion-free, orientation-preserving subgroup of Isom Hn. Much
of the technical complication of the subject arises from having to deal with parabolic
subgroups of Γ. Suppose that γ ∈ Γ is parabolic with fixed point p. Let G = stabΓ p be
the stabiliser of p in Γ. In a discrete group, a parabolic and a loxodromic cannot share a
common fixed point (Lemma 3.1.2). Thus, G consists entirely of parabolics. We call p a
parabolic fixed point. We can let p be the point ∞ in the upper half-space model. Now, G
acts freely as a group of isometries on ∂R3

+ ≡ E2. This dimension is special in that such a
group must act by translation. We see that G is isomorphic to either S or S ⊕ S. Taking
B to be any horoball about p, we may form the quotient B/G. If G ∼= S, then ∂B/G
is a bi-infinite euclidean cylinder, and we call B/G a S-cusp (Figure 1d). (Note that a
S-cusp is not quite the same as a “cusp cylinder” or “standard cusp region” which will be
described later in this section. See Chapter 2 for details.) If G ∼= S ⊕ S then ∂B/G is
a euclidean torus, and we call B/G a S ⊕ S-cusp (Figure 1e). We may define such cusps
to correspond to each orbit of parabolic fixed points. In general, one would expect these
cusps to project to a collection of immersed submanifolds in M . However the Margulis
Lemma (see Sections 2.2, and 3.3) tells us that (in dimension 3), by taking our horoballs
small enough, we can arrange that the cusps be disjoint and embedded in M . We shall
write cusp(M) for the disjoint union of all the cusps.

The construction of this set of disjoint cusps is valid for infinitely-generated groups.
From now on, however, we shall insist that Γ be finitely-generated. We first use a purely
topological result.

Theorem (Scott [Sc]). Let M be a 3-manifold with finitely-generated fundamental group.
Then, there is a compact submanifold MT of M , such that the inclusion MT ↪→M induces
an isomorphism of fundamental groups.

We call MT a topological core for M . With M = Hn/Γ, we deduce immediately that
Γ is finitely presented.

In our case, M = Hn/Γ is an irreducible 3-manifold, that is each embedded 2-sphere
in M bounds a 3-ball. Because of this, we can arrange that ∂MT contains no 2-spheres,
and then the inclusion of MT into M is a homotopy equivalence. Moreover, there is a
bijective correspondence between the boundary components of MT and the topological
ends of M . We deduce that M has only finitely many ends. In particular, it contains only
finitely many S ⊕ S-cusps.

In fact (provided that Γ is not cyclic loxodromic), the S⊕S-cusps correspond precisely
to the toroidal components of ∂MT . The remaining ends correspond to components of
genus at least 2. The aim now is to understand something of the geometry of these
remaining ends, which we shall call “non-cuspidal ends”.
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Now, a S-cusp is topologically just a product. Thus, we can assume that each S-
cusp lies entirely within some non-cuspidal end. The effect of removing the S-cusps would
(in general) be to subdivide each such end into smaller pieces, on which we may see
qualitatively different behaviour. It is therefore necessary to take account of these S-cusps
before going on to consider the geometry. We can do this by applying a relative version
of Scott’s theorem to the closure, noncusp(M), of M \ cusp(M) in M . In this section, we
write M ′ = noncusp(M).

Theorem [Mc]. Let N be a 3-manifold with boundary, whose fundamental group is finitely
generated. Let S be a compact submanifold of ∂N . Then, we can find a topological core,
NT , for N such that NT ∩ ∂N = S.

By using this result, together with an Euler characteristic argument, one may deduce
[FMa] that there are only a finite number of S-cusps — a result due originally to Sullivan
[Sul1]. We may now take a core M ′T of M ′ which meets each S ⊕ S-cusp in the bounding
torus, and each S-cusp in a compact annular core of its boundary cylinder. Again, we may
take the inclusion to be a (relative) homotopy equivalence, so that the topological ends
of M ′ correspond to the frontier components of M ′T in M ′. We now look for geometric
information about the ends of M ′.

We have already remarked that, for n = 3, MI = Ω/Γ is a Riemann surface. A
fundamental result about MI is the following.

Ahlfors’ Finiteness Theorem [Ah1,Sul1]. Let Γ be a finitely-generated discrete sub-
group of Isom H3. Then MI = Ω/Γ is a Riemann surface of “finite type”. That is to say,
MI is conformally equivalent to a compact surface with finitely many punctures.

For a proof using deformation theory, see [Sul4]. One needs a special argument to rule out
the possibility of there being an infinite number of (rigid) thrice punctured spheres, but
this is taken care of if we know that there are only finitely many S-cusps [Sul1].

Moreover one may show that the punctures of MI arise only from parabolic elements
of Γ; that is, a small loop around a puncture represents a conjugacy class of parabolics in
Γ.

We want to give Ahlfors’ Finiteness Theorem a more geometric interpretation. We
can do this by using the convex hull of the limit set — a generalisation of the Nielsen
convex region in dimension 2. Let Y be the smallest convex set in H3 whose closure, YC ,
in H3

C contains the limit set Λ. Then, YC meets H3
I precisely in Λ. Since the construction

is equivariant, we may form the quotient core(M) = Y/Γ ⊆ M , which we call the convex
core of M . The nearest point retraction of H3 onto Y extends continuously to all of H3

C,
and therefore gives rise to a map from MC to core(M) (see for example [Th1]). We shall
denote by q, the restriction of this map to MI . Note that q(MI) = ∂core(M).

It is possible for core(M) to have empty interior, but if so, then Γ is either abelian or
“fuchsian” (i.e. preserves some 2-plane in H3). Both these cases are completely understood,
so we shall assume that the interior of core(M) is non-empty. In this case one may show
that ∂core(M) has the structure of a complete hyperbolic surface in the induced path
metric [Th1]. Moreover q is a homotopy equivalence from MI to ∂core(M). In fact, by
applying some kind of smoothing to the nearest point retraction, one may show that q
is homotopic to a quasiconformal homeomorphism. ([EM] includes details of this in the
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case when Λ is connected.) We deduce that the surface ∂core(M) also has finite conformal
type and thus finite hyperbolic area. In other words, we can restate Ahlfors’ Finiteness
Theorem to say that ∂core(M) must have finite 2-dimensional area. (In fact the discussion
applies equally well if Γ has torsion, and then ∂core(M) becomes a finite-area orbifold.)

The parabolic cusps of the hyperbolic surface ∂core(M) are essentially the connected
components of ∂core(M)∩cusp(M). In fact the cusps of ∂core(M) must lie inside S-cusps of
M . The remainder of ∂core(M), namely ∂core(M)∩M ′, is compact. Thus, each component
of ∂core(M) corresponds to an end of M ′. Such an end is topologically a product, being
foliated by components of ∂Nr(core(M)) for r > 0, where Nr(core(M)) is the uniform
r-neighbourhood of core(M). We call such ends geometrically finite. We see that the
geometrically finite ends of M correspond bijectively to components of ∂core(M), and thus
to components of MI . (We may think of MI as the limit of the surfaces ∂Nr(core(M))
as r tends to ∞.) If we fix some η > 0, we can modify the topological core M ′T , so
that ∂Nη(core(M)) ∩M ′ becomes a subset of the frontier of MT . That is, those frontier
components of M ′T in M ′ which correspond to geometrically finite ends, coincide with
frontier components of Nη(core(M)) ∩M ′.

The geometrically finite ends, however, might not account for all the ends of M ′. It
may be that an end makes no impression on the discontinuity domain Ω, so that Ahlfors’
Finiteness Theorem tells us nothing. Such ends were shown to exist by Bers and Maskit
[Ber] [Mas], their geometrically infinite nature being made explicit by Greenberg [Gr].
Jørgensen later described more concrete examples [J]. Thurston [Th3] gives a more general
method of construction.

All the non-geometrically finite ends constructed so far have been “simply degenerate”
as defined by Thurston [Th1, Chapter 9]. A simply degenerate end turns out to be just a
product topologically (i.e. homeomorphic to a surface times a half-open interval), but its
geometry is infinite. For example, every neighbourhood of the end will contain infinitely
many closed geodesics. Bonahon and Otal construct an example of an end containing
closed geodesics of arbitrarily small length [BonO]. There are also examples where lengths
of closed geodesics have a positive lower bound. In the latter case the end has bounded
diameter as one tends to infinity. In general, one may say that the volume of a simply-
degenerate end grows at most linearly. This explains why such an end makes no impression
on the discontinuity domain — geometrically finite ends have exponential growth.

If, as in all the examples constructed so far, each (non-cuspidal) end is either geo-
metrically finite or simply degenerate, we call M geometrically tame. In this case, M is
topologically finite, i.e. homeomorphic to the interior of a compact manifold with bound-
ary. Moreover, one can show that the limit set of such a group has either zero or full 2-
dimensional Lebesgue measure (see [Th1] or [Bon]) — a property conjectured, by Ahlfors,
for all finitely-generated discrete groups. There are examples, however, where the limit
set has Hausdorff dimension equal to 2, while still having zero 2-dimensional Lebesgue
measure [Sul2].

It has been conjectured that all finitely-generated discrete groups are geometrically
tame. Bonahon [Bon] has proven this under the hypothesis that for any free-product
decomposition Γ ∼= A ∗ B, there is some parabolic in Γ not conjugate to any element of
A or B. Also, Otal has shown that if Γ is isomorphic to the free product of two compact
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surface groups, then Γ is geometrically tame. (A partial account is given in [O].) In fact,
it seems that the case of free groups is the most difficult to handle.

We now restrict attention to the case where all the ends of M ′ = noncusp(M) are
geometrically finite. Then, we call M “geometrically finite”. In this case, we can assume
that each end of M ′ is bounded by a component of ∂Nη(core(M)), which means that we
can take the topological core M ′T to be equal to Nη(core(M)) ∩ M ′ = Nη(core(M)) ∩
noncusp(M). In other words, geometric finiteness says that Nη(core(M))∩noncusp(M) is
compact. This is more or less the definition of geometric finiteness (GF4) due to Thurston
[Th1, Chapter 8] (see Section 3.4). (Taking the η-neighbourhood of the convex core allows
us to include Fuchsian groups and cyclic loxodromic groups in the discussion, without
making special qualifications.)

Clearly, Nη(core(M)) meets the boundary of any S-cusp in a compact set. From this
we see that the intersection of Nη(core(M)) with any S-cusp has finite volume. (A S-cusp
admits a totally geodesic embedding of a 2-dimensional cusp. We see that Nη(core(M))
meets the S-cusp is some uniform neighbourhood, Nr(c), of such a 2-dimensional cusp, c
(Figure 1f).) Since each S⊕S-cusp has finite volume, we arrive at Thurston’s second defi-
nition of geometric finiteness (GF5), namely that Nη(core(M)) should have finite volume.
(For the definition GF4, it is enough to insist that core(M) ∩ noncusp(M) be compact.
For GF5, however, it is essential to take some uniform neighbourhood of core(M), as the
example of an infinitely generated Fuchsian group shows.)

If M had no cusps, one sees that MI = Ω/Γ would give a compactification of M to
MC . In the general case, the topological ends of MC correspond precisely to the cusps. In
fact, each end of MC has a neighbourhood isometric to one of two standard types — “cusp
tori” and “cusp cylinders”. Cusp tori are the same as S⊕S-cusps, whereas a cusp cylinder
is an enlargement of a S-cusp to include a portion of MI (Figure 1g). This description of
geometric finiteness (GF1) is due to Marden [Mar].

A fourth description (GF2), due to Beardon and Maskit [BeaM], demands that the
limit set should be a union of (what we call here) “conical limit points” and “bounded
parabolic fixed points”. These will be defined in Sections 3.2 and 3.1 respectively. The
notion of a conical limit point (also called a “radial limit point” or “approximation point”)
originates in [H], and has proven useful to the study of dynamics on limit sets.

Finally, the original and simplest definition of geometric finiteness (GF3) demands
that Γ should possess a finite-sided convex fundamental polyhedron. This hypothesis was
introduced by Ahlfors [Ah2], where he showed that the limit set of such a group must have
either zero or full Lebesgue measure in H3

I .

It has been known for some time, from the references already cited, that these five
definitions are all equivalent in dimension 3. Geometrically finite groups occur frequently
as the simplest examples of 3-dimensional hyperbolic groups. It is conjectured that they
contain an open dense subset of the space of all finitely-generated discrete groups, given
the appropriate topology (see [Sul5]). The hypothesis of geometrical finiteness has often
been used in the study of the dynamics on limit sets. Sullivan, for example showed that
the limit set of a geometrically finite group is either the whole sphere H3

I , or else has
Hausdorff dimension strictly less than 2 [Sul3].
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1.4. Higher dimensions.

The study of discrete hyperbolic groups in dimensions greater than 3 is much less well
developed. Restricting attention to finitely generated groups does not seem to help very
much. In 3 dimensions, this hypothesis gives us topological information (Scott’s theorem),
as well as analytical information (Ahlfors’ Finiteness Theorem). Both these results fail in
higher dimensions. For example, Kapovich and Potyagailo [KP] constructed an example
of a finitely generated discrete subgroup of Isom H4 which is not finitely presented, and
for which the quotient of the discontinuity domain, MI = Ω/Γ is topologically infinite. In
fact one can find such a group which is a subgroup of a discrete cocompact group acting
on H4 [BowM]. Kapovich also has an example [K] of a finitely generated discrete subgroup
of Isom H4 with infinitely many conjugacy classes of parabolic subgroups (in contrast to
Sullivan’s cusp-finiteness theorem [Sul1] in dimension 3). In the same paper, he constructs
another such group containing infinitely many conjugacy classes of elliptic elements. This
is in contrast to a result of Feighn and Mess which says that any finitely generated discrete
subgroup of Isom H3 contains only finitely many conjugacy classes of finite subgroups
[FMe].

A natural question to ask is how one should define geometric finiteness in dimensions
greater than 3. Most authors have taken geometrical finiteness in this case to mean that
the group should possess a finite-sided convex fundamental polyhedron — a direct gen-
eralisation of the original definition. However, in dimension 4 and higher, this definition
becomes more restrictive than the obvious generalisations of the other four definitions.
It seems that these other definitions give rise to a more natural notion of geometrical
finiteness which we aim to elucidate in this work. All the applications of the traditional
geometrical finiteness hypothesis seem to be valid for this more general notion.

The question of defining geometric finiteness in higher dimensions has also been con-
sidered by Apanasov [Ap1,Ap2], as well as by Weilenberg [We] and Tukia [Tu1]. In [Tu2],
Tukia generalises, to dimension n, Sullivan’s result about the Hausdorff dimension of the
limit set. Thus, the limit set of a geometrically finite group is either equal to Hn

I , or else
has Hausdorff dimension less than n− 1.

1.5. Variable curvature.

We remark that the definitions GF1, GF2, GF4 and GF5, as described in this paper,
can easily be interpreted in the case where Hn is replaced by a simply-connected mani-
fold, X, of pinched negative curvature (i.e. all the sectional curvatures of X are bounded
between two negative constants). It turns out that these give rise to a well-defined notion
of “geometrical finiteness” for discrete group actions on X. Of course, here, the term
“finiteness” is less appropriate, though the context seems more natural, in that it removes
the dependence on certain special features of constant curvature, such as the existence of
half-spaces. These matters are discussed in my other paper [Bow].
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2. The Margulis Lemma and Bieberbach Theorem.

In this section we shall be discussing results related to the Margulis Lemma and
Bieberbach Theorems. One form of the Margulis Lemma says the following. Given any
positive integer n, we can find some ε(n) > 0 with the following property. Let (X, d) be
any simply connected Riemannian n-manifold, all of whose sectional curvatures lie in the
closed interval [−1, 0]. Let Γ be any discrete group of isometries acting on X, and x ∈ X
be any point. Let Γε(x) be the group generated by those elements of γ ∈ Γ such that
d(γx, x) ≤ ε(n). In symbols, Γε(x) = 〈γ ∈ Γ | d(γx, x) ≤ ε(n)〉. Then, Γε(x) is virtually
nilpotent (i.e. it contains a nilpotent subgroup of finite index). Moreover, the index of the
nilpotent subgroup in Γε(x) can be bounded by some ν(n) depending only on n. We say
that groups of the form Γε(x) are uniformly virtually nilpotent.

A proof of this result may be found in [BaGS]. In this paper, we shall restrict attention
to the constant curvature cases, namely En and Hn, where we can give a simple proof of
the Margulis Lemma. Also, in these cases we may identify the nilpotent subgroup as being
generated by elements of small rotational part, and it turns out always to be abelian. This
final observation is a consequence of nilpotency, rather than discreteness, so we begin with
a discussion of nilpotent groups of isometries in the geometries Sn, En and Hn. We shall
prove that nilpotent subgroups of Isom Sn, Sim En, and Isom Hn are uniformly virtually
abelian (where Sim En is the group of all euclidean similarities of En). This fact seems to
be well known, though I know of no explicit reference. However all the essential ingredients
may be found in [Th2]. We shall go on to show how nilpotent groups arise out of discrete
isometry groups. In the course of the discussion we deduce some of the classical Bieberbach
Theorems. These results are also described in [Th2], [CarD] and [Wo].

2.1. Nilpotent implies virtually abelian.

Let Sn, En and Hn denote the unit n-sphere, euclidean n-space and hyperbolic n-space
respectively, with metrics dsph, deuc, and dhyp. We shall omit the subscripts where there
can be no confusion. Let Isom X denote the entire group of isometries of X, and Sim En

be the group of euclidean similarities. Throughout, we use the convention on commutators
that [x, y] = xyx−1y−1.

We shall deal with the three geometries in turn.

2.1(i). Spherical geometry.

Let

U(Sn) = {γ ∈ Isom Sn | d(γx, x) < π/2 for all x ∈ Sn}.

We may think of Sn as the unit sphere in Rn+1, with the standard inner-product 〈, 〉. We
see that γ lies in U(Sn) if it moves each vector in Rn+1 through an angle of less than π/2,
in other words 〈γv, v〉 > 0 for each v ∈ Rn+1 \ {0}.

9



Geometrical finiteness for hyperbolic groups

Let γ ∈ Isom Sn. By complexifying, we can extend γ to act on Cn+1. Now, γ preserves
the standard hermitian form on Cn+1, i.e. the form that restricts to the inner product on
Rn+1. We also use 〈 , 〉 to denote this hermitian form.

Now, let v ∈ Cn+1 be any non-trivial complex vector. Write v = x + iy, with
x, y ∈ Rn+1. Then,

Re〈γv, v〉 = 〈γx, x〉+ 〈γy, y〉.

If γ ∈ U(Sn), both the terms on the right hand side are non-negative, and at least one
is strictly positive. It follows that γ lies in U(Sn) if and only if Re〈γv, v〉 > 0 for each
non-trivial v ∈ Cn+1.

We can now prove:

Lemma 2.1.1 : Let β ∈ U(Sn) and α ∈ Isom Sn. If α commutes with [α, β], then α
commutes with β.

Proof : Complexifying, we imagine α and β acting on Cn+1. We see that α commutes
with β−1αβ, so that they are simultaneously diagonalisable. Let V be an eigenspace of α.
Then βV is an eigenspace of βαβ−1. If V 6= βV , then V must intersect non-trivially some
other eigenspace V ′ of βαβ−1, orthogonal to βV . Let v ∈ V ∩ V ′ be non-zero. Then βv
lies in βV , so that 〈βv, v〉 = 0. However, since β lies in U(Sn), the discussion immediately
prior to the lemma tells us that Re〈βv, v〉 > 0. This contradiction means that βV = V .
Since V was an arbitrary eigenspace of α, we deduce that α and β are simultaneously
diagonalisable, and hence commute. ♦

Corollary 2.1.2 : If Γ ⊆ Isom Sn is nilpotent, then 〈Γ ∩ U(Sn)〉 is abelian.

Proof : Let a and b lie in Γ∩U(Sn). By a “nested chain of commutators” in a and b, we
mean an expression of the form d = [c1, [c2, . . . [cn, cn+1] . . .]], where each ci is either a or
b. We take d to be of maximal length, n, such that d 6= 1. This means that d commutes
with both a and b. It follows that [c2, . . . [cn, cn+1] . . .] commutes with d. Applying Lemma
2.1.1, with α = [c2, . . . [cn, cn+1] . . .] and β = c1, we deduce that α and β commute, so that
d = 1. We have contradicted the assumption that n ≥ 1, and so a must commute with b.
♦

Let V be an open symmetric neighbourhood of the identity in Isom Sn such that
V 2 ⊆ U(Sn). There is an upper bound N(n) on the number of disjoint translates of V by
Isom Sn that we can embed in Isom Sn. We deduce that [Γ : 〈Γ ∩U(Sn)〉] < N(n), and so,

Corollary 2.1.3 : Nilpotent subgroups of Isom Sn are uniformly virtually abelian.

2.1(ii). Euclidean geometry.

To prepare for the hyperbolic case, it will be useful to consider the group Sim En of
euclidean similarities. Let S(En) be the set of parallel classes of (semi-infinite) geodesic
rays in En. We shall embed S(En) as the unit (n − 1)-sphere in an inner-product space

10
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V (En), which we can imagine as euclidean space with a preferred basepoint. There is an
obvious bijective correspondence between r-dimensional subspaces of V (En), and foliations
of En by parallel r-planes.

The group Sim En acts isometrically on S(En), so identifying S(En) with Sn−1 gives
us a homomorphism

rot : Sim En −→ Isom Sn−1.

We call rot γ the rotational part of γ. We define

U(En) = {γ ∈ Sim En | rot γ ∈ U(Sn−1)}.

Note that if we embed Em as a plane in En, then U(Em) may be obtained by intersecting
U(En) with the stabiliser of this plane. This observation will allow us to use induction
over dimension. Given γ ∈ Sim En, we shall write

min γ = {x ∈ En | d(x, γx) is minimal}.

Then, min γ is a plane in En on which γ acts either trivially or by translation. Of course,
min γ may consist of just a single fixed point.

Theorem 2.1.4 : If Γ ⊆ Sim En is nilpotent, then 〈Γ ∩ U(En)〉 is abelian.

We shall begin with a lemma.

Lemma 2.1.5 : Let Γ be an abelian subgroup of Sim En. Let σ(Γ) =
⋂
γ∈Γ min γ. Then,

σ(Γ) is a non-empty, Γ-invariant plane, on which Γ acts by translations.

Proof : If Γ is already a translation group, then σ(Γ) = En, and we are done. Otherwise,
choose any γ ∈ Γ which is not a translation. Then, min γ is a proper subspace, and since
Γ is abelian, it is Γ-invariant. The result now follows by induction on dimension. ♦

In fact, our plane σ(Γ) has a natural foliation by (in general) smaller Γ-invariant
planes, namely the set of minimal Γ-invariant planes. That is to say, each leaf is obtained
as the affine span of some Γ-orbit. This foliation determines a subspace W1 of V (En), by
taking the set of geodesic rays lying in any one leaf. Now, W1 lies in a larger subspace
W ′ of V (En), determined by σ(Γ) itself. Let W2 be the orthogonal complement of W1 in
W ′, and W3 be the orthogonal complement of W ′ in V (En). This gives us a canonical
decomposition V (En) = W1 ⊕W2 ⊕W3. Let mi be the dimension of Wi. We shall say
that the decomposition is trivial if mi = n for some i.

If m1 = n, then Γ is a pure translation group, and the directions of translations span
En. If m2 = n, then each point of En is a fixed point of Γ, thus Γ is trivial. If m3 = n,
then Γ has a unique fixed point in En. We are now ready for:

11
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Proof of Theorem 2.1.4 : Let Γ be a nilpotent subgroup of Sim En. We shall assume
that Γ is generated by elements of U(En), i.e. that Γ = 〈Γ ∩ U(En)〉. We want to show
that Γ is abelian.

Let Z(Γ) be the centre of Γ. From the preceding discussion, Z(Γ) determines a
decomposition W1 ⊕W2 ⊕W3 of V (En). Since this is canonical, it is respected by the
whole group Γ. Thus Γ splits as a subgroup of Sim Em1 × Sim Em2 × Sim Em3 , and the
projection of Γ onto each component is nilpotent. If the decomposition is non-trivial, we
may suppose, by induction on dimension, that each projection of Γ is abelian. It then
follows that Γ itself is abelian. We need therefore deal only with the cases when the
decomposition is trivial.

Suppose m1 = n. This means that Z(Γ) is a translation group with no non-empty
proper invariant plane in En. Consider any γ ∈ Γ. Since γ commutes with everything in
Z(Γ), min γ is Z(Γ)-invariant, and hence equal to En. It follows that γ is a translation of
En. Since translations commute, Γ is abelian.

Suppose m2 = n. Now Z(Γ) is trivial. Since Γ is nilpotent, it is also trivial.

Finally, suppose m3 = n. In this case, Z(Γ) has a unique fixed point in En. This
point must be fixed by Γ, so Γ can be regarded as a subgroup of R+ × Isom Sn, where
the first component measures the magnification, and the second, the rotational part of an
element. The projection into Isom Sn is nilpotent and generated by elements of U(Sn). By
Corollary 2.1.2, this projection is abelian. We deduce that Γ is abelian. ♦

As in the spherical case, for any group Γ, the index of 〈Γ ∩ U(En)〉 in Γ is finite, and
has a bound dependent only on n. Thus,

Corollary 2.1.6 : Nilpotent subgroups of Sim En are uniformly virtually abelian.

2.1(iii). Hyperbolic geometry.

We shall write Hn
I for the ideal (n− 1)-sphere at infinity of hyperbolic space Hn, and

write Hn
C for the compactification of hyperbolic space as Hn ∪Hn

I . By a Möbius trans-
formation on the sphere Sn, we mean any map which can be represented as a composition
of inversions in (n − 1)-spheres. (We are allowing Möbius transformations that reverse
orientation.)

We may represent Hn, conformally, as a hemisphere Σ of Sn. Isom Hn then consists of
those Möbius transformations which preserve Σ. Let γ be a Möbius transformation of Sn,
with some fixed point y. Since γ acts conformally, it induces (after scaling) an isometry of
the unit tangent space (T1Sn)y at y. Moreover, we may check that if z is any other fixed
point of γ, then the induced isometries on (T1Sn)y and (T1Sn)z are conjugate. Thus, γ
determines a conjugacy class in Isom Sn, which we shall call rot γ. Since our subset U(Sn)
of Isom Sn is invariant under conjugacy, it makes sense to demand that rot γ should lie in
U(Sn). Restricting to Isom Hn, where all Möbius transformations have fixed points, we
may define

U(Hn) = {γ ∈ Isom Hn | rot γ ⊆ U(Sn)}.

12



Geometrical finiteness for hyperbolic groups

Theorem 2.1.7 : If Γ ⊆ Isom Hn is nilpotent, then 〈Γ ∩ U(Hn)〉 is abelian.

We begin with two lemmas.

Lemma 2.1.8 : If Γ ⊆ Isom Hn is abelian, then fix Γ, the set of points fixed by Γ,
consists of either one or two points in Hn

I , or else is a subspace of Hn
C (i.e. the closure, in

Hn
C, of a plane in Hn).

Proof : Let γ be any non-trivial element of Γ. If γ is parabolic, then its fixed point is
preserved by Γ, so that Γ has a unique fixed point. If γ is elliptic, then fix γ is a proper
Γ-invariant subspace, and we use induction on dimension. For this, we need to check the
1-dimensional case. But it is easily seen that an abelian group of isometries of the real line
must either act trivially, or by translation (thus respecting the two “ideal” points), or else
consist of an involution with a single fixed point. Finally, if γ is loxodromic, then its axis
is Γ-invariant, and we are immediately reduced to the 1-dimensional case. ♦

Lemma 2.1.9 : Suppose Γ ⊆ Isom Hn is nilpotent, then Γ has a fixed point in Hn
C.

Proof : Let σ be the set of points fixed by the centre Z(Γ). Let Γ′ ⊇ Z(Γ) be the subgroup
that fixes σ pointwise. Since σ is canonical with respect to Γ, Γ′ is normal in Γ. Thus
Γ/Γ′ is nilpotent, and acts effectively on σ.

From Lemma 2.1.8, we distinguish three possibilities for σ. Firstly, if σ is a single
point of Hn

I , this point is fixed by Γ, and we are done. Secondly, if σ is a proper subspace
of Hn

C, we use induction on dimension. Thus, we may assume that we are in the third
case, namely that σ consists of precisely two points, x and y, in Hn

I . If Γ/Γ′ is trivial, we
are done. Therefore we may suppose that Γ/Γ′ is an involution. This means that there is
some γ ∈ Γ that swaps x and y. Now, each element of Z(Γ) fixes x and y, and commutes
with γ. We see that Z(Γ) must fix pointwise the geodesic joining x and y. This contradicts
the definition of σ as fix Z(Γ). ♦

Proof of Theorem 2.1.7 : By Lemma 2.1.9, 〈Γ ∩ U(Hn)〉 fixes some point, x, of Hn
C.

If x ∈ Hn, we are reduced to the spherical case, and if x ∈ Hn
I , we are reduced to the

case of euclidean similarities. We observe that our definitions of the rotational part of an
isometry (or similarity) are in agreement, so that the theorem follows from Corollary 2.1.2,
and Theorem 2.1.4. ♦

For completeness, we state:

Corollary 2.1.10 : Nilpotent subgroups of Isom Hn are uniformly virtually abelian.

Proof : If Γ ⊆ Isom Hn is nilpotent, we need that [Γ : 〈Γ∩U(Hn)〉] is uniformly bounded.
But by Lemma 2.1.8, Γ has a fixed point in Hn

C, so the result follows from the spherical
and euclidean (similarity) cases. ♦

Note that all the abelian subgroups constructed in this section are normal, since the
neighbourhoods U(Sn), U(En) and U(Hn) are all conjugacy invariant.
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2.2. Discrete subgroups.

In this section, we describe how nilpotent groups occur naturally when considering
discrete group actions.

Let g be a Lie group, and let | | be any smooth norm on G, for example, distance
from the identity in some Riemannian metric. For any g, h ∈ G, sufficiently near the
identity, we will have |[g, h]| < C|g||h|, for some constant C. Thus, we can find a bounded
symmetric neighbourhood, O(G) of the identity in G such that whenever g, h ∈ O(G), we
have [g, h] ∈ O(G) and |[g, h]| < |g|/2.

Lemma 2.2.1 : If Γ is a discrete subgroup of G, then 〈Γ ∩O(G)〉 is nilpotent.

Proof : The elements of Γ have norms bounded below by some number c > 0, and the
elements of O(G) have norms bounded above by some number k. If m is any integer
greater than log2(k/c), we see that any m-fold commutator in elements of Γ ∩ O(G) will
be trivial. By repeated application of the identity [xy, z] = [x, [y, z]][y, z][x, z], we deduce
that any m-fold commutator in 〈Γ ∩O(G)〉 is trivial. Thus, 〈Γ ∩O(G)〉 is nilpotent. ♦

The following lemma is a modified version of one to be found in [Th2]. It is relevant to
our discussion of the Margulis Lemma. First, we introduce some notation. Given a subset
X of the a group G, we write Xr for those g ∈ G expressible as words of length at most r, in
elements of X together with their inverses (in X−1), i.e. inductively, X1 = X ∪{1}∪X−1,
Xr = Xr−1X1. If Γ is a subgroup of G, we write ΓX for 〈Γ ∩X〉.

Lemma 2.2.2 : Let G be a (locally compact) topological group, with W a neighbourhood
of the identity. Let Ki, i ∈ N be a sequence of symmetric neighbourhoods of the identity.
Suppose K1 is compact, and (Ki)

i ⊆ K1 for each i. Then, there exists some N ∈ N such
that for any discrete group Γ ≤ G, [ΓKN

: 〈ΓKN
∩W 〉] ≤ N .

Proof : Let V be a neighbourhood of 1 with V −1V ⊆ W . Since K1 is compact, there is
an upper bound, k, on the number of right translates V g, g ∈ K1, of V , that we can pack
disjointly into G. Let N = k + 1.

Suppose that Γ ≤ G is discrete. Let {V ai|i = 1, . . . , p} be a disjoint packing with
ai ∈ ΓKN

∩ K1, and p maximal. Note that p ≤ k. Write ΓN = 〈ΓKN
∩ W 〉. We

claim that {ΓNai|i = 1, . . . , p} includes a complete set of cosets for ΓN in ΓKN
, so that

[ΓKN
: ΓN ] ≤ N , as required.

To see this, consider ΓNh with h ∈ ΓKN
. Write h =

∏l
i=1 gi, with gi ∈ Γ ∩KN . If

l ≥ k + 1, consider the collection {V hj |j = 1, . . . , k + 1}, where hj =
∏j
i=1 gi, so that

hj ∈ (KN )N ⊆ K1. These sets cannot all be disjoint. Thus, we can write h = αβγ, with
αβ ∈ K1 and V α ∩ V αβ 6= ∅. Now, αβα−1 ∈ V −1V ⊆W , so αβα−1 ∈ ΓN . Thus, ΓNh =
ΓN (αβα−1)αγ = ΓNh

′, where h′ = αγ. We have reduced the word-length of h, so, by
induction, ΓNh = ΓNh

′′, with h′′ ∈ K1. But then, V h′′ ∩ V ai 6= ∅, for some ai, so that
h′′a−1

i ∈W , and ΓNh
′′ = ΓNai. Hence, ΓNh = ΓNai.

♦
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We again consider the three geometries in turn.

2.2(i). Spherical geometry.

We write U0(Sn) for O(Isom Sn), the neighbourhood of the identity defined at the
beginning of Section 2.2. Since this set may be chosen to be arbitrarily small, we may
suppose that U0(Sn) ⊆ U(Sn). We may also suppose that U0(Sn) is conjugacy invariant.
Now if Γ is a discrete subgroup of Isom Sn, then 〈Γ∩U0(Sn)〉 is nilpotent by Lemma 2.2.1,
and thus abelian by Corollary 2.1.2. It is easily checked that 〈Γ∩U0(Sn)〉 has a finite index
in Γ, which is bounded as Γ varies. Thus we have:

Lemma 2.2.3 (Jordan Lemma) : Discrete subgroups of Isom Sn are uniformly virtually
abelian.

2.2(ii). Euclidean geometry.

We can assume that O(Isom En) has the form

O(Isom En) = {γ ∈ Isom En | d(γa,a) < ε and rot γ ∈ U1}

where ε > 0, a is some point of En, and U1 is some neighbourhood of the identity in
Isom Sn−1 that is contained in U(Sn−1). For notational convenience we shall identify U1

with the set U0(Sn−1) of the Jordan Lemma. We set

U0(En) = {Γ ∈ Isom En | rot γ ∈ U0(Sn)}.

Proposition 2.2.4 : Suppose that Γ is a discrete subgroup of Isom En; then 〈Γ∩U0(En)〉
is abelian.

Proof : To begin with, we do not know that 〈Γ ∩ U0(En)〉 is finitely generated, so we
proceed as follows. Let Dr = {γ ∈ Isom En | d(γa,a) < rε}. Let gr be the dilation of
magnification r about a. Considering Γr = 〈Γ ∩ U0(En) ∩Dr〉, we see that

g−1
r Γrgr = 〈g−1

r Γgr ∩ U0(En) ∩D1〉
= 〈g−1

r Γgr ∩O(Isom En)〉

which is nilpotent (Lemma 2.2.1) and hence abelian (Theorem 2.1.4). Thus, Γr is abelian
for all r, and so 〈Γ ∩ U0(En)〉 =

⋃
r Γr is abelian. ♦

Again, it is easily seen that 〈Γ ∩ U0(En)〉 has bounded index in Γ, so we have:
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Theorem 2.2.5 (Bieberbach) : Discrete subgroups of Isom En are uniformly virtually
abelian. ♦

Note that since U0(Sn) is conjugacy invariant in Isom Sn, the abelian subgroups we
produce in this way will be normal. We shall write ν(n) for the bound on their index.

We can say a little more about the structure of discrete euclidean groups. Clearly, if
two subspaces, τ1, τ2 ⊆ En are Γ-invariant, then τ1 ∩ τ2 is Γ-invariant. We may thus speak
of minimal (non-empty) Γ-invariant subspaces of En. Clearly such minimal subspaces must
always exist.

Proposition 2.2.6 : Suppose Γ acts properly discontinuously on En. Then, a Γ-
invariant subspace, µ ⊆ En, is minimal if and only if µ/Γ is compact. Moreover, any
two such subspaces are parallel, and the action of Γ commutes with the perpendicular
translation between them.

Proof : Clearly, if µ/Γ is compact, then µ is minimal.
Let µ1 and µ2 be two minimal subspaces. Let λ(µi, µj) = {x ∈ µi |d(x, µi) = d(µi, µj)}

⊆ µi. Γ preserves λ(µi, µj). Hence, by minimality, λ(µi, µj) = µi. It follows easily that µ1

and µ2 must be parallel.
Given any two parallel subspaces in En, there is a unique perpendicular translation

mapping one to the other. Any isometry that preserves these two planes must commute
with this translation. It follows that the action of Γ on En must commute with the
perpendicular translation sending µ1 to µ2.

It now remains to show that if Γ acts minimally on En, then it is cocompact. From
the Bieberbach theorem, and the discussion of abelian groups in Section 2.1(ii), we can
find a normal abelian subgroup Γ′, of finite index in Γ, and a plane τ ≤ En, on which Γ′

acts as a cocompact translation group. There are finitely many images, {τ1, . . . , τk}, of τ
under Γ, each preserved by Γ′. Since a cocompact action is minimal, it follows that the
τi are all parallel. We may now find τ ′, parallel to τ , which represents the centre of mass
of the τi in any transverse plane. Now, Γ preserves τ ′, so, by minimality, τ ′ = En = τ .
Hence, En/Γ is compact.

♦
As in the earlier discussion of the abelian case (Section 2.1(ii)), it is easily seen that

the set of minimal planes in En form a foliation of a larger, canonical subspace.

2.2(iii). Hyperbolic geometry.

Given x ∈ Hn, we write

Iε(x) = {γ ∈ Isom Hn | d(γx,x) ≤ ε}.

Let d1 be any Riemannian metric on the unit tangent bundle T1H
n of Hn, invariant under

the action of Isom Hn. Given x ∈ Hn, we write

I ′ε(x) = {γ ∈ Isom Hn | d1(γ~v, ~v) < ε for each unit vector ~v based at x}.
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If Γ is a subgroup of Isom Hn, we write

Γε(x) = 〈Γ ∩ Iε(x)〉

and

Γ′ε(x) = 〈Γ ∩ I ′ε(x)〉.

Now we may suppose that O(Isom Hn) has the form I ′ε1(x) for some ε1 > 0 and x ∈ Hn.
We also assume that I ′ε1(x) ⊆ U(Hn). We now have:

Proposition 2.2.7 : If Γ is a discrete subgroup of Isom Hn, then Γ′ε1(x) = 〈Γ ∩ I ′ε1(x)〉
is abelian.

Note that, by homogeneity, this remains true if we fix ε1, and choose x arbitrarily.
We next show that for small ε, Γε(x) is virtually abelian. To this end, we take I ′ε1(x)

to be the set W of Lemma 2.2.2, and the sets Kr to be I1/r(x). The lemma now tells us
that, for some N > 0,

[Γε(n)(x) : 〈Γε(n)(x) ∩ I ′ε1(x)〉] ≤ N,

where ε(n) = 1/N . Thus,

[Γε(n)(x) : Γε(n)(x) ∩ Γ′ε1(x)] ≤ N.

For notational convenience, we shall assume that N ≤ ν(n), the constant of the Bieberbach
Theorem, and that we have chosen the metric on T1H

n so that ε1 = ε(n). We call ε(n)
the Margulis constant. In summary, we have:

Theorem 2.2.8 (Margulis Lemma) : For all n, there exist ε(n) > 0 and ν(n) ∈ N such
that if Γ is any discrete subgroup of Isom Hn, and x ∈ Hn, then Γε(n)(x) has an abelian
subgroup (namely Γ′ε(n)(x) ∩ Γε(n)(x)) of index at most ν(n).

Note that if 0 < ε ≤ ε(n), then Γε(x) ∩ Γ′ε(n)(x) has index at most ν(n) in Γε(x).

By intersecting all conjugate subgroups to Γε(x) ∩ Γ′ε(n)(x), we see that Γε(x) contains a
normal abelian subgroup of bounded index, where the bound is independent of the choice
of discrete subgroup Γ.

Chapter 3 : Five definitions of geometrical finiteness.

3.1. Parabolic groups and definition GF1.
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Definition : A subgroup G of Isom Hn is parabolic if fixG consists of a single point
p ∈ Hn

I , and if G preserves setwise some horosphere about p.

It follows that G contains a parabolic element and preserves setwise every horosphere
about p. If we represent Hn by the upper half-space model Rn

+, with the fixed point p at
∞, then G acts by euclidean isometry on Rn

+ ∪ ∂Rn
+.

Suppose now that G is a discrete parabolic subgroup. Then, the limit set Λ(G) = {p}.
Thus, MC(G) = (Hn ∪ Ω(G))/G = (Hn

C \ {p})/G. By Proposition 2.2.6, there is a G-
invariant euclidean subspace µ ⊆ ∂Rn

+ with µ/G compact. The subspace µ may not be
unique, but any two such will be euclidean-parallel. Note that there is a unique closed
hyperbolic subspace, σ of Hn, with σ ∩Hn \ {p} = µ. In the upper half-space model, we
may write σ \ {p} = µ × [0,∞) ⊆ Rn−1 × [0,∞) ≡ Rn

+ ∪ ∂Rn
+. Thus, σ is G-invariant,

contains the point p, and (σ ∩ ∂B)/G is compact for any horoball B about p.
Given any r > 0, we write

C(µ, r) = {x ∈ Rn
+ ∪ ∂Rn

+ | deuc(x, µ) ≥ r}.

Thus C(µ, r) is G-invariant, and hyperbolically convex (Figure 3a). We have C(µ, r)/G ⊆
MC(G) (Figure 3b). The complement of C(µ, r)/G in MC(G) is relatively compact.
Clearly

⋂
r∈[0,∞) C(µ, r) = ∅, and so we have:

Lemma 3.1.1 : If G ⊆ Isom Hn is discrete parabolic, then MC(G) has precisely one
topological end. Moreover, the collection {C(µ, r)/G | r ≥ 0}, as described above, forms a
base of neighbourhoods for that end.

Definition : We call a set of the form C(µ, r), for some r and µ, a standard parabolic
region.

Let ρσ : Hn
C −→ σ be the nearest point retraction (as described in Chapter 4). Let

B be the horoball about p of euclidean height r in Rn
+, i.e. such that deuc(∂B, ∂Rn

+) = r.
Thus, σ ∩ ∂B = σ ∩ ∂C(µ, r) = ∂B ∩ ∂C(µ, r). It is not hard to see that C(µ, r) =
ρ−1
σ (σ ∩ ∂B). This gives us an alternative way of defining standard parabolic regions

without explicit reference to the upper half-space model.
We are primarily interested in parabolic subgroups of more general discrete isometry

groups. The following is an essential lemma.

Lemma 3.1.2 : Suppose the elements g, h ∈ Isom Hn have a common fixed point p ∈ Hn
I .

Suppose that g is parabolic, and that h is loxodromic. Then, the subgroup 〈g, h〉 generated
by g and h is not discrete.

Proof : Without loss of generality, we can suppose that p is the attracting fixed point of
h. Then the sequence (high−i)i∈N of elements of 〈g, h〉 tends to the identity. ♦

By a similar argument, we have:
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Lemma 3.1.3 : If g, h ∈ Isom Hn ar loxodromic, and have pricisely one common fixed
point, then 〈g, h〉 is not discrete.

Now, suppose that Γ is any discrete subgroup of Isom Hn. Suppose that G ⊆ Γ is
a parabolic subgroup with fixed point p. By Lemma 3.1.2, we see that stabΓ p cannot
contain any loxodromic element. Thus stabΓ p is also a parabolic subgroup. In fact, it is
clear that stabΓ p is maximal parabolic. This shows:

Lemma 3.1.4 : Suppose Γ ⊆ Isom Hn is discrete. Then every parabolic subgroup of Γ
is contained in a unique maximal parabolic subgroup.

Definition : We say that p ∈ Hn
I is a parabolic fixed point of Γ if stabΓ p is parabolic.

We see that p is a parabolic fixed point if and only if it is fixed by some parabolic
element of Γ. Note that every parabolic fixed point lies in the limit set, Λ(Γ), of Γ.

If γ ∈ Γ, then clearly stabΓ(γp) = γ(stabΓ p)γ
−1. Thus there is a bijective corre-

spondence between Γ-orbits of parabolic fixed points, and conjugacy classes of maximal
parabolic subgroups of Γ.

Suppose p is a parabolic fixed point of Γ. Suppose it happens that we can find a
standard parabolic region, C, for the group G = stabΓ p, with the property that C ⊆ Hn∪
Ω(Γ), and that γC∩C = ∅ if γ ∈ Γ\G. Then C descends to a set E = (

⋃
ΓC)/Γ ⊆MC(Γ),

which is isometric to C/G. (Strictly speaking, we mean that E∩M(Γ) and (C/G)∩M(G)
are isometric.) We see that E is a neighbourhood of an end of MC(Γ). We call such a set,
E, a standard cusp region in MC(Γ). In such a case, we say that the parabolic fixed point
p (or more accurately, the orbit Γp) is associated to the standard cusp region E.

Suppose that p is associated to the region E as above. We may represent Hn by
the upper half-space model Rn

+ with p at ∞. By by hypothesis, C ⊆ Hn ∪ Ω, and so if
C = C(µ, r), we see that Λ \ {p} lies inside the euclidean r-neighbourhood of µ in ∂Rn

+,
i.e. deuc(x, µ) ≤ r for all x ∈ Λ \ {p}. Since µ/G is compact, and Λ is closed, we see that
(Λ \ {p})/G is compact.

Definition : A parabolic fixed point p ∈ Hn
I is bounded if (Λ \ {p})/ stabΓ p is compact.

In other words, p is bounded if and only if deuc(x, µ) is bounded for x ∈ Λ\{p}, where
µ is some (or every) minimal (stabΓ p)-invariant subspace of ∂Rn

+ = Hn
I \ {p}.

We have seen:

Lemma 3.1.5 : If the parabolic fixed point p is associated to a standard cusp region of
MC(Γ), then p is bounded.

In fact, we shall see in Chapter 4 that the converse of of Lemma 3.1.5 is also true
(Corollary 4.5).

Definition (GF1) : Suppose Γ is a discrete subgroup of Isom Hn. We say that Γ is
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“GF1” if we may write MC(Γ) as the union of a compact set and a finite number of disjoint
standard cusp regions.

Suppose that Γ is GF1, and that Ei for i ∈ {1, 2, . . . , k} are the standard cusp regions
given by the hypothesis. We can take the compact set K to be the closure, in MC(Γ), of

MC(Γ) \
⋃k
i=1Ei. In this way, K is a suborbifold of MC(Γ) (Figure 3c). In fact, MC(Γ)

retracts onto K. As a simple consequence, we have:

Proposition 3.1.6 : If Γ is GF1, then Γ is finitely generated.

We also have:

Proposition 3.1.7 : If Γ is GF1, then there is a bound on the orders of finite subgroups
of Γ.

Proof : We can just apply the Selberg Lemma (Chapter 1). Alternatively, one can give a
direct proof by noting that if G ⊆ Γ is finite, then fixG meets the lift of the compact set
K to Hn ∪Ω. ♦

In fact, if Γ is GF1, then it has finitely many conjugacy classes of finite subgroups.
We note that if Γ is GF1, then the quotient, M(Γ) is topologically finite, i.e. it is

orbifold-homeomorphic to the interior of a compact orbifold with boundary.
Another way to say that Γ is GF1 is to say that MC(Γ) has only finitely many ends,

and that each such end has a neighbourhood “isometric” to a neighbourhood of the end
of MC(G), where G is a discrete parabolic group. When we say that two such sets are
“isometric”, we really mean that their metric (non-ideal) parts are isometric. We remark
that this definition also makes sense for manifolds of variable negative curvature.

3.2. Conical limit points and definition GF2.

Suppose Γ ⊆ Isom Hn is discrete. We write π : Hn ∪ Ω(Γ) −→ MC(Γ) for the
projection.

Definition : We say y ∈ Hn
I is a conical limit point if for some (and hence every) geodesic

ray, β, tending to y, and some (and hence every) point x ∈ Hn, there is a sequence (γi) of
elements of Γ with γix → y and d(γix, β) bounded. (Elsewhere, conical limit points have
been called “approximation points” or “radial limit points”)

It is not hard to see that this is equivalent to the following statement. Suppose β is
a geodesic ray tending to y. Then y is a conical limit point if and only if πβ accumulates
somewhere in M = M(Γ), i.e. there is a sequence of points, xi ∈ β, with xi → y and (πxi)
convergent in M .

Note that saying that πβ accumulates somewhere in M is the same as saying that
the collection of images, Γβ, of β under Γ is not locally finite in Hn. The following tells
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us that if πβ has an accumulation point in MC(Γ), then it has an accumulation point in
M(Γ).

Lemma 3.2.1 : Suppose Γ ⊆ Isom Hn is discrete, and that Q ⊆ Hn is convex. Suppose
that the set of images, ΓQ, of Q under Γ is locally finite in Hn. (We take this to imply
that stabΓQ is finite.) Then ΓQ is locally finite on Hn ∪Ω(Γ).

Proof : Suppose y ∈ Ω. Let H1, H2, H3 be three closed half spaces with y ∈ intH1,
H1 ⊆ intH2, H2 ⊆ intH3 and H3 ⊆ Hn ∪Ω. Thus, ∂H2 ∩ hull(∂H1 ∪ ∂H3) is a compact
subset of Hn (Figure 3d). Clearly only finitely many images of Q can lie inside H3. If γQ
meets H1, but is not contained in H3, then γQ must meet ∂H2 ∩ hull(∂H1 ∪ ∂H3). Since
ΓQ is locally finite on Hn, this can happen for only finitely many γ. Thus, only finitely
many images of Q can meet H1. ♦

(Lemma 3.2.1, will also be used in relation to convex cell complexes, Section 3.5.)

Definition (GF2) : Suppose that Γ is a discrete subgroup of Isom Hn. We say that
Γ is “GF2” if the limit set, Λ(Γ), consists entirely of conical limit points and bounded
parabolic fixed points.

It is easily seen that, for any discrete group, the set of bounded parabolic fixed points
and the set of conical limit points are disjoint. In fact no parabolic fixed point can also be
a conical limit point [SusS]. We shall see (Lemma 4.6) that in a geometrically finite group,
every parabolic fixed point is bounded.

Beardon and Maskit [BeaM] give several equivalent definitions of conical limit point,
including one that makes sense in Hn

I . Thus, we have a definitions of geometrical finiteness
intrinsic to the action of Γ on Hn

I . Indeed, one can give a definition intrinsic to the limit
set Λ (see [Bow]).

We remark that if Γ is geometrically finite, then the convergence to conical limit
points is “uniform”, as defined in [BeaM]. One way to say this is that there is a compact
set K ⊆ Hn, such that if y is conical limit point, and β is any geodesic tending to y,
then Γβ accumulates in K. The argument in [BeaM] generalises to any dimension to
show that the limit set of any geometrically finite group has either zero or full spherical
Lebesgue measure [Ap1]. Another simple proof of this fact, uses the definition GF5 (see
[Th1, Chapter 8] for the 3-dimensional case).

3.3. The thick-thin decomposition.

In this section, we describe how to divide a hyperbolic orbifold into a “thick” and a
“thin” part. Our construction agrees with the usual definition in the case of manifolds (Γ
torsion-free).

We have already talked about parabolic subgroups of Isom Hn. Another important
class are what we shall call “loxodromic” subgroups.
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Definition : A subgroup, G, of Isom Hn is loxodromic if G preserves setwise some bi-
infinite geodesic, and contains a loxodromic element.

The bi-infinite geodesic, β, referred to must be unique. (If α were another G-invariant
geodesic, then the set of endpoints of α and β would give us a G-invariant subset of Hn

I

with at least three elements, and so give us a fixed point for G in Hn. This contradicts
the existence of a loxodromic element of G.) We shall call the geodesic β the loxodromic
axis.

Suppose that Γ is any discrete subgroup of Hn. Suppose that G ⊆ Γ is loxodromic
with axis β. Then, stabΓ β is also loxodromic, in fact, a maximal loxodromic subgroup of
Γ. We see (c.f. Lemma 3.1.3) that:

Lemma 3.3.1 : If Γ ⊆ Isom Hn is discrete, then every loxodromic subgroup of Γ is
contained in a unique maximal loxodromic subgroup.

We shall need:

Lemma 3.3.2 : If G ⊆ Isom Hn is discrete and virtually abelian, then G is finite,
parabolic or loxodromic.

Proof : Let N ⊆ G be a normal abelian finite-index subgroup. We can suppose that N
is infinite, and thus contains an element of infinite order. By Lemma 2.1.9, we know that
fixN consists of either one or two points of Hn

I . Thus, X =
⋃

Γ(fixN) is a non-empty
finite G-invariant subset of Hn

I . Since G is infinite, X has at most two elements. If X has
precisely two points, then G preserves the bi-infinite geodesic joining them, and is thus
loxodromic. Thus, we suppose that X = {p}. If G contains a parabolic element, then by
Lemma 3.1.2, G contains no loxodromic element, and must therefore be a parabolic group.
On the other hand, if G contained no parabolic element, then it must contain a loxodromic
element g, and an element h which does not preserve the axis of g. Thus, hgh−1 is another
loxodromic, which shares precisely one fixed point with g. Lemma 3.1.3 now gives us a
contradiction. ♦

We shall now describe the thick-thin decomposition. A more detailed account is given
in [Bow].

Suppose Γ ⊆ Isom Hn is discrete. Suppose ε > 0, and x ∈ Hn. In Section 2.2(iii), we
defined Γε(x) to be the subgroup of Γ generated by those elements that move the point x
a distance at most ε. We set

Tε(Γ) = {x ∈ Hn | Γε(x) is infinite}.

Thus, Tε(Γ) is a closed Γ-invariant subset of Hn. We first consider the cases of parabolic
and loxodromic groups.

Suppose G ⊆ Isom Hn is discrete parabolic with fixed point p. It is not hard to see
that Tε(G) is connected, and meets every bi-infinite geodesic through p in a geodesic ray
tending to p. It follows that Tε(G) is closed in Hn

C \{p}. Note that Tε(G)/G is connected.
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Suppose G ⊆ Isom Hn is discrete loxodromic with axis β. Then Tε(G) retracts onto
β ∩Tε(G). If G0 /G is the subgroup which fixes β pointwise, then G/G0 acts faithfully on
β and is either infinite cyclic or infinite dihedral. It is thus not hard to describe β ∩ Tε(G)
explicitly. In fact β ∩ Tε(G) may be empty, equal to β, or consist of a countable disjoint
union of closed intervals or of points. In each case (β ∩ Tε(G))/G is connected. It follows
that Tε(G) is connected.

Now, let Γ ⊆ Isom Hn be any discrete group. Suppose that ε < ε(n) where ε(n) is the
Margulis constant (Section 2.2(iii)). Suppose that 0 < δ ≤ (ε(n)− ε)/2. By the Margulis
Lemma (2.2.8), we know that for any x ∈ Hn, the group Γε(x) is virtually abelian, and
hence, by Lemma 3.3.2, is finite, parabolic or loxodromic. We have observed (Lemmas 3.1.3
and 3.3.1), that any parabolic or loxodromic subgroup of Γ lies in a maximal such. We see
that if x ∈ Tε(Γ), then x ∈ Tε(G) for some maximal parabolic or loxodromic subgroup G
of Γ. Note that Γε(n)(x) is also virtually abelian, and so either parabolic or loxodromic.
Now G ∩ Γε(n)(x) contains Γε(n)(x) and is thus infinite. It follows that Γε(n)(x) ⊆ G. If
y ∈ Hn with d(x, y) ≤ δ, then Γε(y) ⊆ Γε(n)(x) ⊆ G. Thus, if y ∈ Tε(Γ), then y ∈ Tε(G).
We have shown:

Proposition 3.3.3 : Suppose Γ ⊆ Isom Hn is discrete, and ε < ε(n). Then Tε(Γ) is
a disjoint union of the sets Tε(G), as G ranges over all maximal parabolic and maximal
loxodromic subgroups of Γ. Moreover, if G and G′ are two distinct such subgroups, then
d(Tε(G), Tε(G

′)) ≥ (ε(n)−ε)/2. (Possibly one or both of Tε(G) and Tε(G
′) may be empty.)

We write
thinε(M) = Tε(Γ)/Γ ⊆M.

We call thinε(M) the thin part of M . Thus, thinε(M) is, topologically, a disjoint union
of its connected components. Each such component has the form Tε(G)/G, where G ⊆ Γ
is either maximal parabolic or maximal loxodromic. We call these components Margulis
cusps and Margulis tubes respectively. We write cuspε(M) for the union of all the Margulis
cusps, and call cuspε(M) the cuspidal part of M . We write thickε(M) and noncuspε(M)
for the closures in M of, respectively, M \ thinε(M) and M \ cuspε(M). We call these sets
the thick part and the noncuspidal part of M .

From the description given of Tε(G), it is not hard to see that the thick and thin parts
of M meet precisely in their topological boundaries in M . Note that if Γ is torsion-free,
so that M is a manifold, then

thinε(M) = {x ∈M | inj(x,M) ≤ ε/2},

where inj(x,M) is the injectivity radius of M at the point x. In this case, the definition
has become standard.

We remark that there is an alternative one might attempt to define the thin part of
an orbifold. Suppose Γ ⊆ Isom Hn is discrete, and ε > 0. We set T ′ε(Γ) to be the set of all
those x ∈ Hn for which there is some infinite-order γ ∈ Γ with d(x, γx) ≤ ε. This gives us
an alternative thick-thin decomposition with thin′ε(M) = T ′ε(Γ)/Γ, and thick′ε(M) being
the closure of M \ thin′ε(M). Qualitatively, T ′ε(Γ) behaves like Tε(Γ), except that T ′ε(G) is
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always connected if G is loxodromic. Note that clearly T ′ε(Γ) ⊆ Tε(Γ). We also have that
if ε ≤ ε(n), then Tε/N (Γ) ⊆ T ′ε(Γ), where the constant N depends only on the dimension
n. We leave this last statement as an exercise. We have no explicit use for this alternative
thick-thin decomposition in this paper.

3.4. The convex core and definitions GF4 and GF5.

Suppose Γ ⊆ Isom Hn is discrete. In Chapter 1, we defined the convex hull, hull Λ of
the limit set Λ of Γ. Clearly, hull Λ is Γ-invariant, so we may define

core(M) = (Hn ∩ hull Λ)/Γ ⊆M.

We call core(M) the convex core of M (Figure 3e).

Definition (GF4) : Suppose Γ is a discrete subgroup of Isom Hn. We say that Γ is
“GF4” if core(M)∩thickε(M) is compact for some ε ∈ (0, ε(n)), where ε(n) is the Margulis
constant.

We could equally well say “for all ε ∈ (0, ε(n))” or replace thickε(M) by noncuspε(M).
It should be apparent from the proofs of equivalence that these variations give rise to the
same notion of geometrical finiteness. We could also use the alternative version of the
thick-thin decomposition as described above.

We remark that the thick part of the convex core, core(M) ∩ thickε(M) is defined
intrinsically to core(M).

Definition GF5 : Suppose Γ is a discrete subgroup of Isom Hn. We say that Γ is
“GF5” if there is a bound on the orders of finite subgroups of Γ, and if for some η > 0,
Nη(core(M)) has finite volume.

We could equally well say “for all η > 0”.
I suspect that the bound on the orders of finite subgroups of Γ is superfluous, i.e. that

it is implied by the statement that Nηcore(M) has finite volume. We shall show that this
is indeed the case if:

(i) M , itself, has finite volume, or if

(ii) the dimension n ≤ 3.

Note that, by the Selberg Lemma (Chapter 1), there is always a bound on the orders of
finite subgroups if:

(iii) Γ is finitely generated.
Case (i) therefore tells us, in particular, that a finite volume hyperbolic orbifold is

topologically finite.
Note that any finite subgroup of Isom Hn is conjugate to a subgroup of Isom Sn−1,

and thus, by Lemma 2.2.3, contains an abelian subgroup of bounded finite index. We
therefore see that bounding the orders of finite subgroups is the same as bounding the
orders of elliptic (torsion) elements.
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3.5. Polyhedral complexes and definition GF3.

Definition GF3 is a generalisation of the existence of a finite sided fundamental do-
main. One way to formulate this definition is in terms of what we shall call “polyhedral
complexes”. An example of a polyhedral complex is a locally finite CW-complex, equipped
with a complete, locally compact path-metric such that each open r-cell of the CW-complex
is isometric to an open r-dimensional polyhedron. However, a polyhedral complex is more
general than this, in that we allow for unbounded polyhedral cells. In the complex, the
closure of such a cell is the metric completion of such a polyhedron, or perhaps the quotient
of this completion after performing certain identifications around the boundary. At any
rate, this closure need not be compact. Thus, topologically, each open cell is attached only
along some subset of the compactifying sphere.

To say that a group Γ is GF3 means that the quotient Hn/Γ may be represented as
a finite polyhedral complex. The idea is thus intuitively simple, though it will take some
work to get the subject properly off the ground.

We can speak equally well of euclidean as well as hyperbolic complexes, and we shall
begin with reference to euclidean space, since it is easier to describe examples in this case.
We start with some general remarks about convex sets.

Given any subset A ⊆ En, we write 〈A〉 for the affine span of A, i.e. the smallest
subspace which contains A.

It is a simple observation that if convex subset of euclidean space has empty interior,
then it must lie inside some lower-dimensional subspace. As a consequence, if A ⊆ En is
convex, then A must have non-empty interior in 〈A〉.

By an open interval in the real line, E1, we mean a connected open subset (possibly
empty). We note that a subset A ∈ En is both open and convex in En if and only if
it meets each 1-dimensional subspace in an open interval. More generally, we give the
following definition:

Definition : A subset A ⊆ En is convex-open if it is convex, and meets each 1-dimensional
subspace either in an open interval, or in a single point.

Thus, a convex-open set is certainly convex, but not necessarily open. For example, any
subspace of En is convex-open. Note that the intersection of two convex-open sets is
convex-open. Suppose that µ is a subspace of En, and that A ⊆ En. If A is a convex-open
set, then A ∩ µ is convex-open, both as a subset of En, and as a subset of µ. Conversely,
if A ⊆ µ, and A is convex-open in µ, then A is convex-open in En. Also, the orthogonal
projection of a convex-open set onto a subspace has convex-open image.

It is not hard to see that a convex-open set is open if and only if it has non-empty
interior. We conclude that a convex set A ⊆ En is convex-open if and only if it is open in
〈A〉.

We may give the following intrinsic definition of a convex-open set. Given any x, y ∈
En, write [x, y] for the geodesic segment joining x and y. Write join(x, y) = [x, y] \ {x, y}
if x 6= y, and join(x, x) = {x}. Then, A ⊆ En is convex-open if and only if for all x, y ∈ A,
there exist x′, y′ ∈ A such that x, y ∈ join(x′, y′).
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More generally, given subsets A,B ⊆ En, we define the join of A and B as

join(A,B) =
⋃
x∈A
y∈B

join(x, y).

Clearly, if A is non-empty, then B lies in the closure of join(A,B).

Lemma 3.5.1 : If A,B ⊆ En are convex-open, then join(A,B) is a convex-open.

Proof : Using the intrinsic definition, we are reduced to considering the join of two open
intervals or points in E3. Generically, we have two skew intervals whose join is the interior
of the tetrahedral convex hull. There are a few degenerate cases, each of which is intuitively
clear. We leave the formal verification to the reader. ♦

Lemma 3.5.2 : Suppose A ⊆ En is convex-open, and that x ∈ Ā. Then, join(A, x) = A.

Proof : This is easily verified if A is open. However, this case suffices, since A is always
open in 〈A〉. ♦

As an obvious corollary, we have:

Lemma 3.5.3 : If A,B are convex-open, and B ∩ Ā 6= ∅, then A ⊆ join(A,B).

Corollary 3.5.4 : If A,B are convex-open and A∩B 6= ∅, then join(A,B) = hull(A∪B).

Proof : By Lemma 3.5.3, we have A ∪B ⊆ join(A,B). ♦

Lemma 3.5.5 : If A,B are convex-open, and A ∩B 6= ∅, then Ā ∩ B̄ = A ∩B.

Proof : Clearly, A ∩B ⊆ Ā ∩ B̄. Suppose x ∈ Ā ∩ B̄. Choose some y ∈ A ∩B. We have
join(x, y) ⊆ join(A, x) ∩ join(B, x) = A ∩B, by Lemma 3.5.2. Thus x ∈ A ∩B. ♦

Given a subset S ⊆ En, and a collectionA of subsets of S, we say thatA is convex-open
decomposition of S if the following are satisfied.

(1) Each element of A is a convex-open set.

(2) The elements of A are all disjoint.

(3) S =
⋃
A.

(4) If A,B ∈ A, and B ∩ Ā 6= ∅, then B ⊆ Ā.
Given two convex-open decompositions, A and B, of S, we say that B is a subdivision

of A if each element of B is subset of some element of A. We write B ≤ A. Thus, the set
of all convex-open decompositions of S is partially ordered by subdivision.

Given two convex-open decompositions, A1 and A2, of a set S, there is a unique
maximal common subdivision, namely

〈A1,A2〉 = {A1 ∩A2 |A1 ∈ A1, A2 ∈ A2}.
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Property (4) may be verified using Lemma 3.5.5. By “maximal”, we mean that if B ≤ A1

and B ≤ A2, then B ≤ 〈A1,A2〉.

Proposition 3.5.6 : Suppose S ⊆ En is convex, then S admits a maximal convex cell
decomposition S = S(S) (i.e. if A is any convex cell decomposition of S, then A ≤ S).

Proof : We take S to be the set of all maximal convex-open subsets of S, i.e. if A ∈ S
and B is a convex-open set with A ⊆ B ⊆ S, then A = B.

Suppose x ∈ S. Let C(x) be the set of all convex-open subsets of S containing
the point x. C(x) is partially ordered by set inclusion. Note that C(x) is non-empty,
since {x} ∈ C(x). By Lemma 3.5.1 and Corollary 3.5.4, we see that if A,B ∈ C(x), then
A∪B ⊆ join(A,B) ∈ C(x). Also, any increasing union of convex-open sets must be convex-
open. We conclude that C(x) must have a maximal element, namely A(x) =

⋃
C(x) ∈ S.

We see that the elements of S cover S. Clearly, if A ∈ S and x ∈ A, then A = A(x). Thus
the elements of S are disjoint. Finally, Property (4) may be verified using Lemma 3.5.3 as
follows. If A,B ∈ S with B ∩ Ā 6= ∅, then A ⊆ join(A,B) ⊆ S. Thus, A = join(A,B) and
so B ⊆ Ā. We see that S is a convex-open decomposition of S.

Note that if B ⊆ S is a convex-open subset, then B ⊆ A(x) ∈ S for any x ∈ B. It
follows that S is maximal with respect to subdivision. ♦

Given a convex subset S ⊆ En, we write ri(S) for the interior of S in 〈S〉. We call
ri(S) is relative interior of S. Thus, ri(S) is convex-open, and dense in S. We write
rb(S) = S̄ \ ri(S) for the relative boundary of S. By the dimension, dim(S), of S, we
mean the dimension of 〈S〉. It is easily seen that ri(S) ∈ S(S). In fact, ri(S) is the unique
element of S(S) of maximal dimension.

Definition : A closed convex subset P ⊆ En is a polyhedron if S(P ) is locally finite.

In this case, S(P ) is an example of a “convex cell complex”. Suppose F is a closed
subset of En, then:

Definition : A convex cell complex , A, representing F is a locally finite convex-open
decomposition of F .

In other words, A satisfies Properties (1)–(4) above, together with:

(5) A is locally finite.

We refer to the elements of a convex cell complex as cells.

Note that it is an immediate consequence of Properties (4) and (5) that every cell of
a convex cell complex meets the closures of only finitely many other cells.

Suppose P ⊆ En is closed and convex, and admits a representation as a convex cell
complex, A. Then A is a subdivision of S(P ) and so S(P ) is locally finite. Thus:
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Lemma 3.5.7 : A closed set P ⊆ En is a polyhedron if and only if it is convex, and
admits a representation as a convex cell complex.

Later, we shall relate this to a more obvious description of polyhedra.
Suppose that A is any convex cell complex in En (representing the closed set

⋃
A).

Suppose A ∈ A. We say that B ∈ A is a face of A if B ⊆ Ā. We write FA(A), or just
F(A), for the set of faces of A. Property (4) tells us that F(A) is itself a convex cell
complex, representing Ā. We conclude that Ā is a polyhedron. Note that F(A) ≤ S(Ā).

If P is a polyhedron, we shall refer to the elements of S(P ) as sides of P . Thus the
notion of a side is intrinsic to P , and is distinct from the notion of a face in the case where
P is the closure of a cell of a convex cell complex. We say that P is finite-sided if S(P ) is
finite.

Definition : If A is convex cell complex, and for each A ∈ A we have F(A) = S(Ā), then
we say that A is strictly convex .

In other words A is strictly convex if faces and sides coincide.
The following discussion will give rise to several ways of constructing convex cell

complexes.
Suppose F ⊆ En is closed. Suppose we have some set J , and a means of assigning

to each point of x ∈ F a finite subset J(x) ⊆ J . Given any finite subset J ⊆ J , we write
A(J) = {x ∈ F | J(x) = J} and C(J) = {x ∈ F | J(x) ⊇ J}. We make the following
assumptions about the map [J 7→ J(x)]. Firstly, we assume that [x 7→ J(x)] is “upper-
semicontinuous”, by which we mean that, given any x ∈ F , there is some neighbourhood,
V , about x, such that for all y ∈ V ∩F , we have J(y) ⊆ J(x). We also suppose that C({j})
is convex for each j ∈ J . Thus, C(J) is closed and convex for each finite J ⊆ J . Finally,
we suppose that A(J) is convex-open for each finite J ⊆ J . Now let A = {A(J) | J ⊆
J is finite}. We claim that A is a convex cell complex representing F . Properties (1),
(2), (3) and (5) are immediate. We leave the verification of (4) as an exercise. In fact, in
the cases which interest us, we will have that each C(J) is the closure of A(J), provided
A(J) 6= ∅, and so property (4) becomes trivial.

For an example of this construction, suppose that X ⊆ En is a discrete set of points.
Set J = X. Given any x ∈ En, set

J(x) = {a ∈ X | d(a, x) ≤ d(b, x) for all b ∈ X}.

In other words, J(x) is the set of all nearest points to x in X. It is not hard to see
that [x 7→ J(x)] satisfies the hypotheses given above. Upper-semicontinuity is more or
less immediate. To see that A(J) is convex-open for each finite J ⊆ X, suppose that
x 6= y ∈ En with J(x) = J(y) = J . Then all the points of J lie in a codimension-
1 subspace orthogonal to the line β through x and y. If a ∈ J and b ∈ X \ J , then
d(x, a) < d(x, b) and d(y, a) < d(y, b). Thus if z ∈ [x, y], simple plane trigonometry shows
that d(z, a) < d(z, b). Thus J(z) ⊆ J . By upper-semicontinuity, we see that J(w) ⊆ J for
all w in some neighbourhood V of [x, y]. Since each point on β is equidistant from each
of the points of J , we see that J(w) = J for all w ∈ β ∩ V , and so β ∩ V ⊆ A(J). The
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remaining property of [x 7→ J(x)] is similar. We write D(X) for the convex cell complex
representing En arising in this way.

Definition : We call D(X) the Voronoi tesselation of En corresponding to X.

Note that any Voronoi tesselation is strictly convex in the sense described above.

Suppose that A is any representation of En as a convex cell complex. Let An be the set
of top-dimensional cell (i.e. those cells that are open in En). It is easy to see that

⋃
An is

dense in En. (For example note that lower dimensional cells have zero Lebesgue measure.)
This observation gives rise to the following characterisation of the set of top-dimensional
cells of a convex cell complex representing En.

Lemma 3.5.8 : Suppose that U is disjoint, locally finite collection of open convex subsets
of En whose closures cover En. Then there is a convex cell complex A = A(U) representing
En such that U is the collection of top-dimensional cells of En.

Proof : Given such a collection U and a point x ∈ En, let J(x) = {U ∈ U | x ∈ Ū}.
Let A(U) = {A(J) | J ⊆ U is finite}, where A(J) = {y ∈ En | J(y) = J}. We leave as an
exercise the statement that [x 7→ J(x)] satisfies the properties given above. It follows that
A(U) is a convex cell complex. Note that if U ∈ U then A({U}) = U . Thus U ⊆ A(U).
Now any open set must meet some element of U . It follows that U is precisely the set of
top-dimensional cells of A(U). ♦

Note that A(U) is maximal with respect to subdivision, i.e. if B is a convex cell
complex with Bn = U , then B ⊆ A(U).

We can give now a couple of examples of convex cell complexes by describing their
top-dimensional cells. For example, consider a tiling of E2 in the pattern of a “brick
wall” (Figure 3f). In this picture, each 2-dimensional cell has six 0-dimensional faces,
six 1-dimensional faces and one 2-dimensional face (itself). However each such cell is
intrinsically a rectangle, and so has four 0-dimensional sides, four 1-dimensional sides and
one 2-dimensional side.

As another example, we consider a tesselation of E3 by “planks”, i.e. bi-infinite square
prisms (Figure 3g). The tesselation is made up of successive layers. Each layer is one plank
thick, and consists of an infinite number of of planks laid parallelly. In one layer, the planks
are laid north-south, in the next they are laid east-west, and so on alternately. In this
example, each top-dimensional cell has infinitely many faces, but only finitely many sides.

We remark that a Voronoi tesselation may be defined in terms of its top-dimensional
cells. Suppose X ⊆ En is discrete. Given a ∈ X, write

U(a) = {x ∈ En | d(x,a) < d(x,b) for all b ∈ X \ {a}}.

In other words, U(a) is the set of points nearer to a than to any other point of X. One
can check that U(X) = {U(a) | a ∈ X} satisfies the hypotheses of Lemma 3.5.8, and that
D(X) = A(U(X)).
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We now give another description polyhedra as promised above. We can restrict at-
tention to polyhedra having non-empty interior. By a half-space in En, we mean closed
subset of En of non-empty interior, whose boundary is a codimension-1 subspace.

Lemma 3.5.9 : Suppose P ⊆ En is a closed set of non-empty interior. Then P is
a polyhedron if and only if it may be written in the form P =

⋂
i∈I Hi, where I is an

indexing set, where each Hi is as a half-space, and where the boundaries ∂Hi are locally
finite on P .

Proof : Suppose P has the form
⋂
i∈I Hi as described above. (We can suppose that

Hi 6= Hj if i 6= j.) It is easily seen that rb(P ) = ∂P =
⋃
i∈I(P ∩ ∂Hi). Given x ∈ P , let

J(x) = {i ∈ I | x ∈ P ∩Hi}. Thus each J(x) ⊆ I is finite. It is an exercise that the map
[x 7→ J(x)] satisfies the hypotheses stated above. Thus, we get a representation of ∂P as
a convex cell complex. It follows that {ri(P )} ∪A gives a representation of P as a convex
cell complex. (In fact this gives the set of sides, S(P ), of P .)

Conversely, suppose that the set of sides, S(P ), of P is locally finite. To each
codimension-1 side, A ∈ S(P ), we may associate a half-space H such that ∂H = 〈A〉
(and so P ∩ ∂H = Ā), and such that ri(P )∩H 6= ∅. We leave as an exercise that P is the
intersection of all such half-spaces. ♦

Note that it follows from the argument that P is finite-sided if and only if it is a finite
intersection of half-spaces. It also follows that P is finite-sided if and only if it has finitely
many codimension-1 sides.

We intend to relate the the notion of a convex cell complex to that of a CW-complex.
Suppose A is a convex cell complex representing some closed subset of En. We write Ai for
the set of all i-cells of A, i.e. all cells of dimension i. We write Ki = Ki(A) =

⋃⋃
j≤iAj .

We call Ki the i-skeleton of A. Suppose A ∈ Ai, and B 6= A is a face of A. It is clear that
B must have empty interior in 〈A〉, and so must have dimension less than that of A. Since
rb(A) is the union of all faces of A, other than A itself, it follows that rb(A) ⊆ Ki−1. Note
also that it follows that the i-skeleton is closed in En.

In fact, we claim that, in the definition of a convex cell complex, we could replace
Property (4) by the following:

(4′) If A ∈ Ar, then rb(A) ⊆ Kr−1.

We have already seen that, given axioms (1), (2), (3) and (5), then (4) implies (4′). The
converse is a little more complicated. Suppose that A satisfies (1), (2), (3), (4′) and
(5), and that A ∈ Ar. Using (for example) a measure-theoretic argument, we see that
(
⋃
Ar−1) ∩ rb A is a dense subset of ∂A. Suppose that B ∈ A intersects rb(A). By axiom

(4′), B has dimension at most r− 1. Suppose, for the moment, that B ∈ Ar−1. If B is not
a subset of rb A, then there is some point x in the relative boundary of Ā ∩ B in B. By
considering a neighbourhood of x in rb A, we see that x ∈ rb C for some C ∈ Ar−1, different
from B. But by (4′), we have that rb C ⊆ Kr−2. This contradiction tells us that B ⊆ rb A.
In other words, rb A is a union of closures of (r − 1)-cells. We have deduced property (4)
in the case where dim A− dim B = 1. We now use induction over dim A− dim B. Suppose
then, that B ∈ A is an i-cell intersecting rb A, with dimB < r − 1. Now, B intersects
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rb D for some (r − 1)-cell D ⊆ rb A. By the induction hypothesis, B ⊆ rb D. We see
that B ⊆ rb A. Thus we have shown the equivalence of the two descriptions of convex cell
complexes.

We shall want the following generalisation of Lemma 3.5.8.

Lemma 3.5.10 : Suppose A is a convex cell complex representing En. Suppose that
U is a locally finite collection of r-dimensional convex-open sets, whose closures cover the
r-skeleton of A. Suppose that each U ∈ U is a subset of some A ∈ Ar. Then there is a
natural subdivision, B of A such that Br = U , and Bi = Ai for all i ∈ {r + 1, . . . , n}.

Thus, Lemma 2.5.8 is the case where A = {En}.

Proof : Given a point x in the the r-skeleton, Kr, let J(x) = {U ∈ U | x ∈ Ū}. This
gives rise to a representation of Kr as a convex cell complex, B0, with Br0 = U (c.f. Lemma
3.5.8). Thus, B1 = B0 ∪

⋃n
i=r+1Ai is a convex cell complex representing En. Let B be the

common subdivision B = 〈A,B1〉. ♦
Note that the convex cell complex, B is maximal with respect to subdivision.
The entire discussion we have given so far in this section (except the examples!)

works equally well with euclidean space, En, replaced by hyperbolic space, Hn. (For
example, consider the Klein model for hyperbolic space, where the notions of euclidean
and hyperbolic convexity coincide.)

We want to consider convex cell complexes invariant under a discrete group action. It
will be better to do this with reference to hyperbolic space. Our definition GF3 will be in
terms of such equivariant cell complexes. To give the definitions more intuitive meaning,
we shall relate this to “polyhedral complexes” representing the quotient orbifold. The
discussion of polyhedral complexes is not logically essential for the rest of the paper.

Suppose that Γ is a discrete subgroup of Isom Hn. We say that a convex cell complex
representing Hn is associated to Γ if A is Γ-invariant, and if stabΓA is finite for each
A ∈ A.

For an example, choose any a ∈ X. The Voronoi tesselation, D(Γa), is associated
to Γ. We call D(Γa) a Dirichlet tesselation of Hn for the group Γ. (It is often assumed
elsewhere that stabΓ a is trivial, though we shall have no need for this hypothesis.) More
generally, if X ⊆ Hn is discrete and Γ-invariant, and if the set of orbits, X/Γ is finite, we
shall call D(X) a generalised Dirichlet tesselation.

Lemma 3.5.11 : Suppose X ⊆ Hn is Γ-invariant, with X/Γ finite. Then the generalised
Dirichlet tesselation, D(X) is locally finite on Hn ∪Ω(Γ).

Proof : If x ∈ Ω(Γ), then there is a horoball B about x with X ∩B = X ∩ ∂B consisting
of a non-empty finite set of points. If y ∈ Hn is sufficiently close to x, then the set of
nearest points to y in x is a subset of X ∩B. ♦

Given a ∈ Hn, write

DΓ(a) = {x ∈ Hn | d(x,a) ≤ d(x,Γa)}.
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Definition : We call DΓ(a) the Dirichlet domain for Γ about a.

From the discussion of Voronoi tesselations, we see that DΓ(a) is the closure, in Hn,
of the cell of the Dirichlet tesselation D(Γa) containing a. (This cell is necessarily top-
dimensional). We see that DΓ(a) is a polyhedron. Clearly, the set of images ΓDΓ(a) of
DΓ(a) is locally finite, and covers Hn. By Lemma 3.2.1, (or Lemma 3.5.11) we see that
in fact ΓDΓ(a) is locally finite on Hn ∪Ω(Γ). Let D be the closure, in Hn

C, of DΓ(a). It
follows that

⋃
ΓD \ Λ(Γ) is closed in Hn ∪Ω(Γ). Thus Hn ∪Ω(Γ) ⊆

⋃
ΓD.

We now want to describe polyhedral complexes. Suppose, for the moment, that Γ is
torsion-free. Let π : Hn −→ M be the projection to the quotient manifold M . Suppose
that A is a convex cell complex associated to Γ. In this case, each cell A ⊆ A descends to a
subset πA of M . Since π|A is injective, πA is itself a convex open set in the in the induced
path-metric. The collection B = {πA ⊆ M | A ∈ A} has the structure of a “polyhedral
complex” which we shall axiomatise as follows.

Definition : A polyhedral complex , B, representing a complete locally compact metric
space, M , is a partition of M into a locally-finite collection of subsets (cells) satisfying the
following. For each B ∈ B, there is a polyhedron P ⊆ Hn, together with a representation of
P as a convex-cell complex, F , containing ri(P ), and a map f : P −→M with f(ri(P )) = B
and satisfying the following property. For each C ∈ F we have that f(C) ∈ B, and that
f |C is an isometry from C onto f(C) in the path-metric induced from M .

In particular, each element of B is isometric to a convex-open set in the path-metric induced
from M .

Comparing with the usual definition of a CW-complex, we see that P is analogous to
a closed cell, and that f |rb(P ) is the attaching map.

Note that if F ⊆ Hn is closed, then a representation of F as a convex cell complex is
the same as a representation as a polyhedral complex by this definition.

Suppose now, that Γ is any discrete subgroup of Isom Hn, and that A is a Γ-invariant
convex cell complex representing Hn. Given A ∈ A, write stab0

Γ(A) for the pointwise
stabliser of A in Γ. Thus stab0

Γ(A) is a normal subgroup of stabΓ(A). The property we need
for A to descend to a polyhedral complex representing the quotient orbifold M = Hn/Γ
is that stab0

Γ(A) = stabΓ(A) for all A ∈ A. Note that this is stronger than the property of
being associated to Γ.

Proposition 3.5.12 : If A is a Γ-invariant convex cell complex representing Hn, then
there is a subdivision, B of A, such that stab0

Γ(B) = stabΓ(B) for all B ∈ B. Moreover, if
A is associated to Γ (i.e. stabΓ(A) is finite for all A ∈ A), then we can arrange that each
cell of A contains only finitely many cells on B.

Proof : Suppose A is Γ-invariant. We begin by subdividing the top-dimensional cells.
Choose A ∈ A, and let G = stabΓ(A) and G0 = stab0

Γ(A). Thus G/G0 acts faithfully on
A. We can find some point a ∈ A such that stabΓ(a) = G0. Let

U = {x ∈ A | d(x, a) < d(x, b) for all b ∈ Ga \ {a}}.
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Thus, the images of Ū under G cover Ā. Let U(A) = ΓA be the set of images of U under
Γ. We perform such a construction for some representative, A, of each orbit of An under
Γ, and let U be the union of all the U(A). Note that if U ∈ U , then stabΓ(U) = stab0

Γ(U).
Moreover, we see that U satisfies the hypotheses of Lemma 2.5.10 (with r = n). This
gives us a Γ-invariant subdivision, A1 of A, with An1 = U . We now get to work on the
(n− 1)-dimensional cell of A, and, in a similar way, arrive at a subdivision, A2 of A1 with
An2 = An1 and with the property that for all U ∈ An−1

2 , we have stabΓ(U) = stab0
Γ(U). We

continue inductively, and after n steps set B = An.
If A is associated to Γ it is easy to see that, at each stage, each cell gets subdivided

into only finitely many subsets. ♦
Given a Γ-invariant convex cell complex A, we write A/Γ for the set of orbits of A

under Γ.
We can now give our last definition of geometrical finiteness.

Definition (GF3) : Suppose Γ is a discrete subgroup of Isom Hn. We say that Γ is
“GF3” if there is a Γ-invariant convex cell complex, A, representing Hn, with stabΓ(A)
finite for each A ∈ A, and with the set of orbits, A/Γ, finite.

By Lemma 3.5.12, we see that Γ is GF3 if and only if the quotient orbifold, M = Hn/Γ,
admits a representation as a finite polyhedral complex.

Definition GF3 is roughly equivalent to saying that Γ has a fundamental domain which
is a finite union of polyhedra, each with a finite number of faces (Lemma 3.5.13). In this
context, it has often been assumed elsewhere that the convex cell complex A should be
strictly convex (c.f. the axiom of “side-pairing” [BeaM]). However, we shall have no need
for this hypothesis.

We shall need the following observation.

Lemma 3.5.13 : Suppose Γ ⊆ Isom Hn is discrete. Suppose that A is convex cell
complex associated to Γ, and that A/Γ is finite. Then, for each A ∈ A, the set of faces,
F(A) of A is finite.

In particular, we see that each cell of A is the relative interior of a finite-sided polyhedron.

Proof : We have already remarked that, in a convex cell complex, each cell meets the
closures of only a finite number of others. Since A/Γ is finite, these numbers are bounded
by some constant k1. Moreover, the stabliser of each cell is finite. Thus, there is some
constant, k2, such that | stabΓ(A)| ≤ k2 for all A ∈ A. If A,B ∈ A, then

|F(A) ∩ ΓB| ≤ |{γ ∈ Γ | γB ⊆ Ā}| = |{γ ∈ Γ |B ⊆ γĀ}| ≤ k1| stabΓ(A)| ≤ k1k2.

In other words, at most k1k2 faces of A can lie in any given orbit under Γ. Since there are
only finitely many such orbits, it follows that A has finitely many faces. ♦

We conclude this section by introducing a notion that will be used in the proof of
GF3⇒GF1, as well as in Chapter 5.
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In Section 2.1(ii), we defined S(En) to be the (n − 1)-sphere of parallel classes of
geodesic rays in En. Given a closed convex subset, P ⊆ En, we write Θ(P ) ⊆ S(En) to
be the set of those parallel classes which contain some representative ray lying entirely in
P . If λ is the spherical Lebesgue measure on S(En), we may define θ(P ) ∈ [0, 1] by

θ(P ) = λ(Θ(P ))/λ(S(En)).

Thus, if a ∈ P , the quantity θ(P ) measures the proportion of geodesic rays based at a,
which lie in P . The following is a simple observation.

Lemma 3.5.14 : If P is a collection of closed convex sets in En having disjoint interiors,
then

∑
P∈P θ(P ) ≤ 1.

4. Proofs of equivalence.

In this chapter, we prove the equivalence of the various definitions of geometrical
finiteness we have given. We show the following implications:

We include GF1⇒GF2 and GF1⇒GF4 since they are much simpler than following the
cycle. More detailed arguments for the equivalence of GF1, GF2, GF4 and GF5, in a more
general context, are given in [Bow]. For this reason, we shall try to keep the proofs given
here brief. We also include a proof that any finite volume hyperbolic orbifold (complete,
without boundary) is geometrically finite.

We shall begin with a general discussion of bounded parabolic fixed points.
Suppose Γ ⊆ Isom Hn is discrete, and p is a bounded parabolic fixed point. Let G =

stabΓ p. Put p =∞ in the upper-half space model, Rn
+∪∂Rn

+. Let v : Rn
+∪∂Rn

+ −→ ∂Rn
+

be the vertical projection. Let µ ⊆ ∂Rn
+ be a minimal G-invariant subspace. Now, p is

bounded, and so Λ \ {p} ⊆ R = {x ∈ Rn
+ | deuc(x, µ) ≤ r} for some r > 0. Since v−1R is

convex, we have hull Λ \ {p} ⊆ v−1R (Figure 4a).
Let T = Tε(G) be as described in Section 3.3. From the discussion given there, it is

not hard to see that we can find a horoball B about p such that B ∩ v−1R ⊆ T . Also,
given any horoball B about p, we can find a standard parabolic region C about p such
that C ∩ v−1R ⊆ B. In particular, we conclude the following (Figure 4b):
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Lemma 4.1 : Suppose Γ ⊆ Isom Hn is discrete, and p is a bounded parabolic fixed
point. Let G = stabΓ p. If ε > 0, then we can find a horoball B, and a standard parabolic
region C, about p such that

C ∩ Y ⊆ B ∩ Y ⊆ Tε(G),

where Y = hull Λ.

Note that we have not shown yet that we can choose C to be strictly invariant, i.e.
that γC ∩ C = ∅ if γ ∈ Γ \G. This will be Corollary 4.5.

Proof of GF1⇒GF2 : Suppose Γ is GF1. Let π : Hn ∪Ω −→MC be the projection.
We have MC = K ∪

⋃k
i=1Ei, where K is compact, and each Ei is a standard cusp region.

Let Π be the set of parabolic fixed points associated to one of the standard cusp regions.
(Thus Π =

⋃k
i=1 Γpi where pi is the fixed point of the stabliser of a component Ci of

π−1Ei.) From Lemma 3.1.5, we know that each element of Π is a bounded parabolic fixed
point.

Suppose y ∈ Λ \Π. Choose any geodesic ray β tending to y. It is clear that β ∩π−1K
must be unbounded. Thus, the projection πβ must accumulate somewhere in MC . By
Lemma 3.2.1, it follows that y is a conical limit point. ♦

Note that we can find a compact set K0 ⊆ Hn such that ΓK0 = {γK0 | γ ∈ Γ} covers
π−1K ∩ hull Λ. It is not hard to see that the geodesic β described in the proof, must
accumulate somewhere in K0. This gives the “uniformity of convergence” to conical limit
points mentioned in Section 3.2.

We next want to give a proof of GF2⇒GF1. We begin with some general remarks.

Suppose that Q ⊆ Hn
C is a closed subset such that Q ∩Hn is dense in Q. We write

Nr(Q) for the closure, in Hn
C, of the uniform r-neighbourhood Nr(Q ∩Hn). Given two

such subsets, Q1 and Q2, we write hd(Q1, Q2) for the minimal r ∈ [0,∞] such that both
Q1 ⊆ Nr(Q2) and Q2 ⊆ Nr(Q1). We call hd(Q1, Q2) the Hausdorff distance between Q1

and Q2. Note that if hd(Q1, Q2) <∞ then Q1 ∩Hn
I = Q2 ∩Hn

I .

We will need the notion of the nearest point retraction to convex sets. (See for example
[EM].) Suppose that Q ⊆ Hn

C is closed and convex, and meets Hn (so that Q∩Hn is dense
in Q). There is a natural retaction ρQ : Hn

C −→ Q which may be defined as follows. If
x ∈ Hn, then ρQ(x) is the (unique) nearest point of Q to x. If x ∈ Q∩Hn

I , then ρQ(x) = x.
If x ∈ Hn

I \Q, then there is a horoball B about x such that B ∩Q = ∂B ∩Q = {ρQ(x)}.
One has to check that ρQ is continuous. (This is done in [EM] and in [Bow].)

Lemma 4.2 : Given any λ > 0, there is some L = L(λ) > 0 such that if Q1, Q2 ⊆ Hn
C are

closed and convex, with hd(Q1, Q2) ≤ λ, then for all x ∈ Hn
C \Q, we d(ρ1(x), ρ2(x)) < L,

where ρi is the retraction ρQi
.
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Proof : We first make two observations from hyperbolic trigonometry. First, note that
there is a fixed constant L1 such that if x, y, z ∈ H2, with xŷz ≥ π/4 and xẑy ≥ π/4, then
d(x, y) ≤ L1. Second, given any λ > 0, there is some constant L2 = L2(λ) such that if
x, y, z ∈ H2 with d(y, z) ≤ λ and d(x, y) ≥ L2, then yx̂z < π/4. Let L = max(L1, L2).
Note that L > λ.

Suppose, for contradiction, that there exists some x ∈ Hn \ Q with d(y1, y2) ≥ L,
where yi = ρi(x). Now y2 ∈ Q2 ⊆ Nλ(Q1), and so there is some w ∈ Q1 with d(w, y2) ≤ λ.
Thus wŷ1y2 ≤ π/4. By convexity, [y1, w] ⊆ Q1. Since y1 is the projection of x to Q1,
we see that xŷ1w ≥ π/2, and so xŷ1y2 ≥ π/4. Similarly xŷ2y1 ≥ π/4. We conclude that
d(y1, y2) < L1 ≤ L. This contradiction shows that no such x exists. The case where
x ∈ Hn

I \Q, follows by continuity. ♦

Corollary 4.3 : Suppose X,Q1, Q2 ⊆ Hn
C are closed and convex. Suppose hd(Q1 ∩

NL(X), Q2 ∩NL(X)) ≤ λ, where L = L(λ) comes from Lemma 4.2. Then, ρ−1
1 (Q1 ∩X) ⊆

ρ−1
2 (Q2 ∩NL(X)), where ρi is the nearest point retraction to Qi.

Proof : Let ρ′i be the retraction onto Qi ∩ NL(X). (Note that NL(X) is closed and
convex.) Suppose that ρ′1(x) ∈ X. Certainly then ρ1(x) = ρ′1(x), and so, by Lemma 4.2,
we have d(ρ′1(x), ρ′2(x)) < L. Thus, ρ′2(x) lies in the interior of NL(X). If x ∈ Hn, we see
that ρ′2(x) is locally the nearest point to x in Q2. It follows easily that it must, in fact, be
globally distance-minimising, and so ρ2(x) = ρ′2(x). The case where x ∈ Hn

I is similar. ♦
Suppose now that Γ ⊆ Isom Hn is discrete, and let Π ⊆ Λ be a Γ-invariant set of

parabolic fixed points. Suppose that to each p ∈ Π we associate some subset Q(p) ⊆ Hn
C.

Definition : We say that the collection Q(p) is strictly invariant if Q(γp) = γQ(p) for all
γ ∈ Γ, and if Q(p) ∩Q(q) = ∅ if p 6= q.

Proposition 4.4 : Suppose Γ ⊆ Isom Hn is discrete. Let Π ⊆ Λ be the set of all
parabolic fixed points. Then, to each p ∈ Π we may associate a standard parabolic region
C(p) ⊆ Hn ∪Ω, so that the collection {C(p) | p ∈ Π} is strictly invariant. Moreover, given
any r ∈ [0,∞), we can arrange that d(C(p), C(q)) ≥ r whenever p 6= q.

Proof : If Γ is finite or parabolic, the result is trivial, so we can assume that Y = hull Λ
meets Hn. The retraction ρ : Hn

C −→ Y is clearly Γ-equivariant. Choose some ε ∈ (0, ε(n))
where ε(n) is the Margulis constant. Then, associated to each p ∈ Π, we have the Margulis
region T (p) = Tε(stabΓ p). From the discussion of Section 3.3, we see that the collection
{T (p) | p ∈ Π} is strictly invariant. It follows that the regions S(p) = ρ−1(T (p) ∩ Y ) are
also strictly invariant. We show that each S(p) contains a standard parabolic region C(p).

We fix some p ∈ Π, and set G = stabΓ p and T = Tε(G). We put p = ∞ in the
upper half-space model. From Lemma 4.1, we can find a horoball B about p such that
Y ∩ B ⊆ T . Let µ ⊆ ∂Rn

+ be a minimal G-invariant subspace, and let σ be the vertical
subspace based on µ (i.e. σ is spanned by µ ∪ {p}). Now since Λ 6= ∞, we see that
every point of µ lies within a certain bounded euclidean distance from Λ \ {p} ⊆ ∂Rn

+. It
follows easily that λ <∞, where λ is the hyperbolic hausdorff distance hd(Y ∩B, σ ∩B).
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Let L = L(λ) be the constant of Lemma 4.2, and let B′ be the horoball with ∂B′ a
hyperbolic distance L above ∂B (so that B = NL(B′)). From Corollary 4.3, we see that
ρ−1
σ (σ ∩ B′) ⊆ ρ−1(Y ∩ B) ⊆ ρ−1(Y ∩ T ) = S(p) (Figure 4c). From Section 3.1, we know

that C(p) = ρ−1
σ (σ ∩B′) is a standard parabolic region about p.

Given any γ ∈ Γ, we may set C(γp) = γC(p). Performing this construction for each
orbit of parabolic fixed point in Π, we arrive at a strictly invariant set of standard parabolic
regions.

Given any r > 0, we may find another set of standard parabolic regions {C ′(p)|p ∈ Π},
so that C ′(p) ⊆ C(p), and d(∂C ′(p), ∂C(p)) ≥ r/2. Then, d(C ′(p), C ′(q)) ≥ r if p 6= q. ♦

Corollary 4.5 : A parabolic fixed point p is associated to a standard cusp region of
MC(Γ) if and only if p is bounded.

Proof : Lemma 3.1.5 and Proposition 4.4. ♦

Proof of GF2⇒GF1 : Suppose Γ is GF2. Let Π ⊆ Λ be the set of all bounded parabolic
fixed points. Lemma 4.3 gives us a collection {C(p) | p ∈ Π} of standard parabolic regions
such that d(C(p), C(q)) ≥ 1 if p 6= q. These project to a disjoint collection {Ei | i ∈ I} of
standard cusp regions in MC(Γ) where I is some indexing set. Let K = MC(Γ)\

⋃
i∈I intEi.

We claim that K is compact. It then follows that I is finite, and so Γ is GF1.
To prove the claim, choose any a ∈ Hn, and let DΓ(a) be the Dirichlet domain about

a, as described in Section 2.5. Let D be the closure of DΓ(a) in Hn
C. We saw in Section

2.5 that Hn ∪Ω ⊆ ΓD. It follows that K is the image under projection to MC of the set
D′ = D \ (Λ ∪

⋃
p∈Π intC(p)). It thus suffices to see that D′ is closed in Hn

C and hence
compact.

Now since D is convex, and ΓD is locally finite in Hn, it is clear that D cannot
contain any conical limit point. Since Γ is GF2, we thus have D ∩ Λ ⊆ Π, and so D′ =
D \ ({p} ∪ intC(p)). We thus need to see that, for any p ∈ D ∩ Π, the set D ∩ C(p) is
a neighbourhood p in D. This most easily seen in the upper half-space model. We have
that (Hn

C \ ({p} ∪ int C(p)))/ stabΓ p is compact, and the images of D under stabΓ p are
locally finite. Thus, D \ ({p} ∪ C(p)) is bounded in the euclidean metric. ♦

Proof of GF1⇒GF4 : Suppose Γ is GF1. Write MC = K ∪
⋃k
i=1Ei, where K is

compact, and each Ei is a standard cusp region. Let Hn ∪Ω −→MC be the projection.
Choose a component Ci of π−1Ei. Let Gi = stabΓ Ci, and let pi be the fixed point of
Gi. Thus, pi is a bounded parabolic fixed point. Suppose ε ∈ (0, ε(n)), where ε(n) is the
Margulis constant. By Lemma 4.1, we can find a standard parabolic region, C ′i ⊆ Ci, with

C ′i ∩ hull Λ ⊆ Tε(Gi). Let E′i = π(C ′i) ⊆ Ei ⊆ MC . The closure, K ′, of MC \
⋃k
i=1E

′
i is

compact. Now, core(M) ∩ thickε(M) is a closed subset of K ′ and hence compact. ♦

Lemma 4.6 : If Γ is GF4, then every parabolic fixed point is bounded.
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Proof : Suppose Γ is GF4. Let Y = hull Λ. Let ε ∈ (0, ε(n)), where ε(n) is the Margulis
constant. Suppose p is a parabolic fixed point of Γ. Let G = stabΓ p. Put p = ∞ in the
upper half-space model, Rn

+. Let v : Rn
+ : Rn

+ ∪ ∂Rn
+ −→ ∂Rn

+ be vertical projection.
From the description of Tε(G) given in Section 3.3, it is clear that v(∂Tε(G)) = ∂Rn

+. Thus
Λ \ {p} ⊆ v(Y ∩ ∂Tε(G)). Now (Y ∩ ∂Tε(G))/G may be identified with a component of
the boundary of thickε(M) ∩ core(M) in core(M), and so (Y ∩ Tε(G))/G is compact. It
follows that (Λ \ {p})/G is compact. ♦

Proof of GF4⇒GF2 : Suppose that Γ is GF4. We can suppose that Γ is not finite or
parabolic, so that Y = hull Λ meets Hn. Let π : Hn −→M be the projection.

Suppose y ∈ Λ. Let β ⊆ Y be a geodesic ray tending to y. If β ⊆ Tε(Γ), then
β ⊆ Tε(G), where G ⊆ Γ is maximal loxodromic or parabolic. It follows that y is either a
parabolic fixed point and hence bounded (by Lemma 4.6) or else a loxodromic fixed point
and hence a conical limit point. We may thus suppose that β \ Tε(Γ) is unbounded. It
follows that πβ must accumulate somewhere in core(M) ∩ thickε(M). Thus y is a conical
limit point. ♦

We next prove GF1⇒GF5.
Suppose τ ⊆ Hn

C is a r-dimensional subspace, and that ρτ : Hn
C −→ τ is the nearest

point retraction. If X ⊆ τ is measurable, and h > 0, we have that voln(Nh(τ)∩ρ−1
τ (X)) =

kvolr(X) where voli is the i-dimensional volume, and k is some constant depending on h,
n and r. In particular, we see that Nh(τ) ∩ ρ−1

τ (X) has finite n-volume if and only if X
has finite r-volume.

Suppose now that G is a discrete parabolic subgroup of Isom Hn with fixed point
p. Let C be a standard parabolic region about p. Thus, C has the form ρ−1

σ (σ ∩ B)
where B is a horoball about p, and σ is a (compactified) G-invariant subspace of Hn

C with
((σ ∩ Hn

I ) \ {p})/G is compact. We must have that r = dimσ ≥ 2. Now G acts as a
cocompact group on ∂B ∩ σ = ∂C ∩ σ. Thus we can find a compact K ⊆ ∂B ∩ σ with
∂B ∩ σ ⊆

⋃
GK. Now, X = hull(K ∪ p) \ {p} ⊆ σ has finite r-volume, and so for any

h > 0, the set Nh(σ) ∩ ρ−1
σ (X) has finite n-volume. The images of Nh(σ) ∩ ρ−1

σ (X) under
G cover Nh(σ) ∩ C, and so (Nh(σ) ∩ C)/G has finite n-volume.

Proof of GF1⇒GF5 : Suppose Γ is GF1, and choose any η > 0. By Proposition 2.1.6,
there is a bound on the orders of finite subgroups of Γ. Let MC = K ∪

⋃k
i=1Ei. Let Ci be

a component of π−1Ei. Thus stabΓ Ci = stabΓ pi, where pi is a bounded parabolic fixed
point. Using the upper half-space model, it is not hard to see that there is some standard
parabolic region C ′i = ρ−1

σi
(σi ∩ Bi) ⊆ Ci about pi, such that C ′i ∩Nη(Y ) ⊆ C ′i ∩N2η(σ),

where Y = hull Λ (Figure 4d). From the discussion immediately before the proof, we
see that (C ′i ∩ Nη(Y ))/Gi has finite volume. Each C ′i projects to a standard cusp region
E′i ⊆ Ei ⊆ MC . For each i, therefore, Nη(core(M)) ∩ E′i has finite volume. Since Γ is

GF1, MC \
⋃k
i=1Ei is relatively compact in MC . Thus Nη(core(M)) \

⋃k
i=1Ei is relatively

compact in M and thus has finite volume. Thus Nη(core(M)) has finite volume. ♦

38



Geometrical finiteness for hyperbolic groups

Proof of GF5⇒GF4 : Suppose Γ is GF5. Then Nη(core(M)) has finite volume, and
there is some bound, k, on the orders of finite subgroups of Γ. Choose ε ∈ (0, ε(n)) where
ε(n) is the Margulis constant. Let δ = min(η, ε/2). If x ∈ thickε(M), then we see that
Nδ(x) has volume at most V/k, where V is the volume of a hyperbolic δ-ball. It follows
that a disjoint packing of δ-balls in M , each centred on some point of core(M)∩thickε(M),
must be finite (having at most kvoln(Nη(core(M)))/V elements). If we take a maximal
such packing, then the corresponding (2δ)-balls must cover core(M)∩thickε(M). It follows
that core(M) ∩ thickε(M) is compact. ♦

In Section 3.5, we mentioned three situations where the bound on the orders of finite
subgroups can be shown to be superfluous. The first case is when M = Hn/Γ itself has
finite volume:

Proposition 4.7 : A finite volume hyperbolic orbifold (complete, without boundary) is
geometrically finite.

In fact, Proposition 4.7, is a consequence of the work of Garland and Ragunathan
[GaR], who construct fundamental domains for lattices in rank-1 semisimple Lie groups.
Here we shall offer an alternative proof, which can easily be generalised to the context of
orbifolds of pinched negative curvature, as we shall observe at the end. (This fact is quoted
in [Bow]). We give the proof as a series of lemmas, aiming to establish that thickε(M) is
compact, and so Γ is GF4. The proof of one of the lemmas (4.8) is unfortunately a bit of
a mess, so we shall leave it till last.

Let Γ be any discrete subgroup of Isom Hn. Suppose ε ∈ (0, ε(n)). Recall the defini-
tions of Iε(x), Γε(x) and Tε(Γ) from Sections 2.2(iii) and 3.3. We know from the Margulis
Lemma (Theorem 2.2.8) and Lemma 3.3.2, that for any x ∈ Hn the group Γε(x) is finite,
parabolic or loxodromic. Thus, fix Γε(x) is either a non-empty (compactified) subspace of
Hn

C, or else consists of one or two points of Hn
I . We write

f(x) = fix Γε(x).

We see that f is lower-semicontinuous with respect to set-inclusion. That is to say, given
any x ∈ Hn, there is some neighbourhood, U of x, such that for all y ∈ U , we have
f(x) ⊆ f(y).

We define an equivalence relation ∼ on Hn by x ∼ y if f(x) = f(y). We write F
for the set of equivalence classes. Thus, F is a partition of Hn. If F ∈ F , we write
f(F ) = f(x), where x ∈ F .

The collection F is locally finite on Hn. To see this, suppose x ∈ Hn, and r > 0. If
y ∈ Nr(x), then Iε(y) ⊆ Iε+2r(x). Now Γ∩Iε+2r(x) is finite, and so there are only finitely
many possibilities for Γε(y) = 〈Γ ∩ Iε(y)〉.

Let F∞ = {F ∈ F | f(F ) ⊆ Hn
I }. In other words, if x ∈ F ∈ F∞, then Γε(x) is

infinite. Thus, by definition,
⋃
F∞ = Tε(Γ). We write F0 = F \F∞. From the description

of Tε(Γ) in Section 3.3, it is clear that Tε(Γ) 6= Hn, and so F0 6= ∅. For this, we need to
assume that n ≥ 2. Given F ∈ F0, we shall write d(F ) for the dimension of the subspace
f(F ).

39



Geometrical finiteness for hyperbolic groups

Let F0 = {x ∈ Hn | Γε(x) is trivial}. If F0 6= ∅ (as we shall see must be the case),
then F0 ∈ F0. In fact, F0 is the unique element of F0 with d(F0) = n.

Given F1, F2 ∈ F0, we write F1 → F2 to mean that F1 ∩ F̄2 6= ∅. By the lower
semicontinuity of f , this implies that f(F1) is strictly included in f(F2) and so d(F1) <
d(F2).

Lemma 4.8 : If F ∈ F0 \ {F0}, then F is not open in Hn.

We postpone the proof for the moment.

Corollary 4.9 : If F ∈ F0 \ {F0}, then there is some F ′ ∈ F0 such that F → F ′.

Proof : By Lemma 4.8, there is some point x ∈ F which is not an interior point. Since
F is a locally finite partition of Hn, there must be some F ′ ∈ F with x ∈ F̄ ′. By lower
semicontinuity of f , we have f(F ′) ⊇ f(F ), and so F ′ ∈ F0. ♦

We know that F0 6= ∅. We choose any F1 ∈ F0. Applying Corollary 4.9, we get a
sequence Fi ∈ F with F1 → F2 → F3 → . . .. This continues until we arrive at some Fk =
F0. This must happen after at most n steps, since at each stage we have d(Fi+1) > d(Fi).
This argument shows that F0 6= ∅. We remark that we have proven:

Proposition 4.10 : If ε < ε(n), and M is a hyperbolic orbifold (complete, without
boundary) of dimension at least 2, then M contains an embedded hyperbolic (ε/2)-ball.

Now, the partition F of Hn is Γ-invariant, and so projects to partition, E , of M =
Hn/Γ. Thus, each element of E is the image of an element of F under the projection
π : Hn −→M. Let E0 = {π(F ) ∈ E | F ∈ F0}. Let E0 = π(F0) ∈ E0. Given E1, E2 ∈ E0
we write E1 → E2 to mean that F1 → F2 for some F1, F2 ∈ F0 with π(Fi) = Ei. We
may think of E as the vertex set of a directed graph, where we join E1 to E2 by an edge
if E1 → E2. As we saw above, every element of E can be joined to the element E0 by a
directed path in the graph which contains at most n edges. It follows that the graph has
diameter at most 2n.

Proof of Proposition 4.7 : We suppose now that M = Hn/Γ has finite volume. Since
every 1-dimensional orbifold is topologically finite, we can assume that n ≥ 2. We claim
that

⋃
E0 is bounded (has finite diameter). Since the closure of

⋃
E0 in M is, by definition,

equal to thickε(M), it then follows that Γ is GF4.
Consider any E ∈ E0. Choose F ∈ F0 with π(F ) = E. Let G ⊆ Γ be the pointwise

stabliser of the subspace f(F ). Thus, if y ∈ F , we have Γε(y) ⊆ G, and so |Γε(y)| ≤ k = |G|.
It follows that if x ∈ E, then the (ε/2)-ball Nε/2(x) ⊆ M has volume at least V/k, where
V is the volume of an (ε/2)-ball in Hn. Let X ⊆ E be a maximal subset such that the
balls Nε/2(x) for x ∈ X are all disjoint. Now X must be finite (it has at most kvol(M)/V
elements), and E ⊆ Nε(X). Thus E has finite diameter, and so Ē is compact.

Since the collection E0 is locally finite in M , it follows that Ē meets the closures of
only finitely many other elements of E0. We conclude that, in the graph described above,

40



Geometrical finiteness for hyperbolic groups

each vertex has finite degree. Since the graph also has finite diameter, it must be finite.
Thus, E0 is finite, and so

⋃
E0 has finite diameter. ♦

It remains to give a proof of Lemma 4.8.

Lemma 4.11 : Suppose G is a discrete group acting by isometry on Sn. Then there is
some η > 0 such that for all x ∈ Sn, the group Gη(x) has a fixed point in Sn.

Proof : Given x ∈ Sn, let δ(x) = min{dsph(x, gx) | g ∈ G \ stabG x} ∈ (0, 2π]. Let
0 < η(x) < δ(x)/3. If y ∈ Nη(x)(x), then Gη(x)(x) ⊆ stabG x. The result follows by
compactness. ♦

Lemma 4.12 : Suppose Γ ⊆ Isom Hn is discrete, and F be the partition described
above. Suppose F ∈ F0 so that σ = f(F ) is a subspace of Hn

C. Then, there is some r > 0
such that F ⊆ Nr(σ).

Proof : Let G ⊆ Γ be the pointwise stabliser of σ. If x ∈ σ ∩Hn, we identify the unit
tangent space, T 1

xHn, at x with the unit tangent sphere Sn−1. Thus, G acts faithfully by
isometry on Sn−1. Any two actions arising in this way are conjugate in Isom Sn−1, and so
we can find some η > 0 (depending on σ) satisfying the conclusion of Lemma 4.11. We can
find r = r(η, ε) > 0 such that if x, y, z are three points of Hn with d(x, y) ≥ r, d(x, z) ≥ r
and d(y, z) ≤ ε, then yx̂z < η. Now suppose y ∈ F \ Nr(σ). Let x be the nearest point
on σ to y. We have Γε(y) ⊆ Gη(ξ), where ξ is the unit vector −→xy based at x. Applying
Lemma 4.11, we find that Γε(y) fixes some unit vector in T 1

xHn. Thus, f(y) = fix Γε(y)
must be strictly larger than σ, contradicting the assumption that y ∈ F . We conclude that
F ⊆ Nr(σ). ♦

Lemma 4.13 : Suppose that Q ⊆ Hn
C is a closed convex set, and that Z ⊆ Hn is closed

in Hn. Suppose Z 6⊆ Q, but that Z ⊆ Nr(Q) for some r > 0. Then there is some x ∈ Z
with the following property. If y ∈ Z \ {x}, and β is the geodesic ray based at y through
x, then β ∩Q ⊆ [x, y]

We are interested in the case where Q is a (compactified) subspace (Figure 4e).

Proof : We define a relation < on Z \Q by writing x < y if x 6= y and the geodesic ray
from y through x meets Q in some point outside the segment [x, y]. One verifies that the
relation < is transitive and antisymmetric. (This reduces to the two dimensional case).
We thus have a partial order on Z \Q, and we need to find a <-maximal element. We can
do this by applying Zorn’s lemma, so we need to verify that any (infinite) chain C ⊆ Z \Q
has an upper bound. However, since Z ⊆ Nr(Q) we see easily that, for any x ∈ Z \Q, the
set {y ∈ Z | x ≤ y} is compact. We may thus take as an upper bound for C any (in fact
the unique) accumulation point of C. ♦
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Proof of Lemma 4.8 : We want to show that if F ∈ F0 \ {F0}, then F ∩ ∂F 6= ∅.
Let σ = f(F ). Lemma 4.12 gives us some r > 0 such that F ⊆ Nr(σ). Since F 6= F0,

we can suppose that F is not a subset of σ. Let x ∈ F̄ be a point given by Lemma 4.13,
with Z = F̄ and Q = σ. Let τ = f(x). By the lower semicontinuity of f , we have that
τ ⊆ σ. Again by lower semicontinuity, we can find some neighbourhood U of x such that
f(y) ⊇ τ for all y ∈ U . We can suppose that U is convex, and disjoint from σ.

Given any u ∈ Hn, define h(u) ∈ σ as follows. If τ is a subspace of σ, we take h(u) to
be the nearest point on τ to u. If τ = {p} with p ∈ σ∩Hn

I , we take h(u) = p. If τ = {p, q}
with p 6= q ∈ Hn

I , we take h(u) to be the nearest point to u on the geodesic [p, q] ⊆ σ. In
any case, we see that h(u) varies continuously with u.

Let a = h(x). Let α be the geodesic ray (or bi-infinite geodesic) based at a through
the point x. Choose any y ∈ U ∩ α \ [a, x]. From the choice of x (Lemma 4.13), we know
that y 6= F̄ . Since x ∈ F̄ , using the continuity of the map h, we can find y′ ∈ U \ F̄
(near y) and x′ ∈ U ∩ F̄ (near x) and a′ ∈ σ (near a) so that a′ = h(x′) and x′ ∈ [a′, y′]
(Figure 4f). Now choose any z ∈ [x′, y′] ∩ ∂F . Since U is convex, we have z ∈ U , and
so f(z) ⊇ τ . Thus, Γε(z) fixes τ pointwise. Since x′ ∈ [a′, z] and a′ = h(x′) we clearly
must have Γε(z) ⊆ Γε(x

′). Thus f(z) ⊇ f(x′) = σ. However, since z ∈ F̄ , we have, by
lower semicontinuity, that f(z) ⊆ σ. Thus f(z) = σ and so z ∈ F . We have shown that
F ∩ ∂F 6= ∅. ♦

This concludes the proof of Proposition 4.7.

We remarked earlier that our argument generalises to the case of orbifolds of pinched
negative curvature. That is, if X is a complete simply-connected manifold of pinched
negative curvature, and Γ acts properly discontinuously on X with M = X/Γ having finite
volume, then M is topologically finite (as an orbifold). All the ingredients, notably the
thick-thin decomposition, and a lower bound on the volumes of uniform balls are present
in this context (see [Bow]), and so the proof proceeds in the same way. However, we
should comment on the proof of Lemma 4.13 in this situation. We need to replace < by a
different equivalence relation. Given any λ > 0, and x, y ∈ Z \Q, write x <λ y if x 6= y and
d(y,Q) ≥ d(x,Q) + λd(x, y). For any λ > 0, this relation is transitive and antisymetric.
By hypothesis, there is some z ∈ Z \Q. Let µ = d(z,Q) > 0. Applying Zorn’s lemma, we
arrive at a <λ-maximal element, x, with z <λ x or z = x. Thus d(z,Q) ≥ µ. By choosing
λ sufficiently small in relation to µ, and using standard comparison theorems, we see that
x has the required property.

In Section 3.4, we mentioned another situation in which the bounds on the orders of
finite subgroups in the definition GF5 can be shown to be superfluous. This is when the
dimension n ≤ 3. The 2-dimemsional case is simple, so we sketch a proof in the case where
n = 3.

Proposition 4.14 : If M = H3/Γ is a hyperbolic 3-orbifold, and if for some η > 0,
Nη(core(M)) has finite volume, then there is a bound on the orders of finite subgroups of
Γ.
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Proof : Note that any finite subgroup, G, of Γ is conjugate to a subgroup of Isom S2. It
follows that, if |G| > 60, then G contains a cyclic subgroup, G′, of index at most 4 in G.
Also, β(G) = fixG′ is a bi-infinite geodesic in H3

C, which depends only on G. Also note
that any parabolic subgroup of Γ is conjugate to a discrete subgroup of Isom E2, and so
cannot contain any element of order greater than 6. (These particular numbers, 60, 4 and
6, come from the classification of discrete groups in dimension 2. However, the existence
of such numbers may be deduced easily from the results of Chapter 2.)

Now, let ε = min(η, ε(n)/3). Let V be the set of all x ∈ H3 such that Γε(x) is either
loxodromic, or else finite of order greater than 60. Given x ∈ V , we set β(x) to be the
loxodromic axis, in the first case, or to be the geodesic β(Γε(x)) in the second case.

If x, y ∈ V , and d(x, y) < ε, then Γε(x) and Γε(y) are both subgroups of Γ3ε(x) which
must be finite, parabolic or loxodromic. We conclude that β(x) = β(y). We thus have a
decomposition of V into subsets V (β) = {x ∈ V | β(x) = β}, so that d(V (α), V (β)) ≥ ε if
α 6= β. Note that if G ⊆ Γ is finite of order greater than 60, and β = β(G), then β ⊆ V (β).

Now suppose, for contradiction, that there are finite subgroups Gi ⊆ Γ with |Gi| → ∞.
We assume that |Gi| > 60 for all i. Let βi = β(Gi). We can assume that the geodesics
βi are all inequivalent under Γ. Since |Λ| > 2, we can find zi ∈ Λ \ βi. Let yi be the
nearest point on βi to zi (in the sense of the nearest point retraction). It is easily seen
that yi ∈ hull (Gizi) ⊆ hull Λ. Choose xi ∈ [yi, zi] ∈ ∂V (βi). Then, Nε/3(xi) meets at
most 60 images of itself under Γ. The projection of the balls Nε/3(xi) to M give disjoint
subsets of Nη(core(M)) whose volumes are bounded below. This means that Nη(core(M))
has infinite volume. ♦

It remains to show that GF3 is equivalent to the other definitions. We shall use
the following notation. Given a collection B of subsets of Hn, and another fixed subset
A ⊆ Hn, we write

A ∧ B = {A ∩B |B ∈ B}.

Proof of GF1⇒GF3 : Suppose Γ is GF1. We write MC(Γ) = K ∪
⋃k
i=1Ei, where

K is compact, and each Ei is a standard cusp region. Let π : Hn ∪ Ω −→ MC(Γ)
be the projection. We shall construct the desired cell complex as a generalised Dirichlet
tesselation.

For i ∈ {1, 2, . . . , k}, choose some parabolic fixed point pi ∈ Λ associated to the end
Ei. Let Gi = stabΓ pi. Put pi =∞ in the upper half-space model, so that Ei has the form
Ci/Gi, where Ci = C(µi, ri) = {x ∈ Rn

+ | deuc(x, µi) ≥ ri} with ri > 0 and µi a minimal
Gi-invariant subspace of ∂Rn

+. Let σi = 〈µi, pi〉 be the vertical subspace meeting ∂Rn
+ in

µi. Now choose any ai ∈ σi ∩ intCi.
We perform this construction for each i ∈ {1, 2, . . . , k}, and choose an arbitrary a0 ∈

π−1K (just in case k = 0). Set X =
⋃k
i=0 Γai and let D = D(X) be the generalised

Dirichlet tesselation defined by X (Figure 4g). Thus D is associated to Γ (i.e. stabΓD is
finite for all D ∈ D). We claim that D/Γ is finite.

Fix some i ∈ {1, 2, . . . , k}. Note that X ∩ Ci = Giai. In fact, Giai ⊆ σi ∩ ∂Bi where
Bi is a horoball contained in intCi. We have that (σi ∩ ∂Bi)/Gi is compact, and so every
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point of σi ∩ ∂Bi lies within a bounded distance of Giai. Simple hyperbolic geometry
shows that we can find another standard parabolic region C ′i = C(µi, r

′
i) ⊆ Ci such that if

x ∈ Hn ∩C′i, then dhyp(x,Giai) < dhyp(x, ∂Ci). Thus the set of nearest points of X to x
is a subset of Giai. It follows that C ′i∧D(X) = C ′i∧D(Giai). Now in the upper half-space
model, we see that the structure of D(Giai) is independent of the vertical coordinate.
So, we restrict attention to ∂Bi ∧ D(Giai). Note that the euclidean distance in ∂Bi is
a certain fixed monotonic function of the hyperbolic distance. Thus, if y, z, y′, z′ ∈ ∂Bi,
we have deuc(y, z) < deuc(y

′, z′) if and only if dhyp(y, z) < dhyp(y
′, z′). It follows that

∂Bi ∧D(Giai) is just the euclidean Dirichlet tesselation for the action of Gi on ∂Bi. Since
ai ∈ σi, this in turn is a euclidean product of (σi ∩ ∂Bi) ∧ D(Giai) with an orthogonal
subspace. Now (σi ∩ ∂Bi)/Gi is compact. We conclude that ((σi ∩ ∂Bi) ∧ D(Giai))/Gi,
and so also (D(Giai))/Gi are finite. We have shown that only finitely many orbits of D(X)
under Γ meet C ′i.

We find such a standard parabolic region, C ′i, for each i ∈ {1, 2, . . . , k}. These regions
project to standard cusp regions E′i ⊆ MC(Γ). Since Γ is GF1, we have that K ′ =

MC(Γ) \
⋃k
i=1 intE′i is compact. From the local finiteness of D(X), it follows that only

finitely many orbits of D(X) under Γ meet π−1K ′. We conclude that D(X)/Γ is finite, as
claimed. ♦

We next aim to prove the converse, GF3⇒GF1. First, we give a few definitions.

In Section 3.5, we saw that a “finite sided polyhedron”, with non-empty interior in
Hn, could be defined as a finite intersection of half-spaces in Hn. By a compactified finite-
sided polyhedron we mean the closure in Hn

C of such a polyhedron. It is easy to see that
a compactified finite-sided polyhedron is a finite intersection of compactified half-spaces,
where a compactified half-space is the closure in Hn

C of a half-space in Hn. For the rest of
this section, we shall drop the word “compactified”, and assume that our polyhedra and
half-spaces are closed in Hn

C.

If Q ⊆ Hn
C is a closed convex set, one may define a lower-semicontinuous function,

ω(Q, .) : Q −→ [0, 1] which measures the proportion (in the sense of spherical Lebesgue
measure) of unit tangent vectors based at x which “point inside” Q. Thus, ω(Q, x) is
the Lebesgue density of Q at x. If Q happens to be a finite-sided polyhedron, then this
function has a natural extension to Q∩Hn

I . In fact, it is only this extension which interests
us here, so we give a more detailed treatment in this context.

Suppose that P ⊆ Hn
C is a (compactified) finite-sided polyhedron with non-empty

interior. We may write P =
⋂
i∈I Hi where I is a finite indexing set, and each Hi is a

half-space. We want to define ω(P, y) for y ∈ P ∩Hn
I .

We first deal with the case where Hn
I ∩

⋂
i∈I ∂Hi 6= ∅, and where y ∈

⋂
i∈I ∂Hi. Put

y =∞ in the upper half-space model. Then for each i, Hi∩∂Rn
+ is a euclidean half-space,

and so P ∩ ∂Rn
+ is a finite-sided euclidean polyhedron. We set ω(P, y) = θ(P ∩ ∂Rn

+),
where θ is as defined at the end of Section 3.5. If

⋂
i∈I ∂Hi = {y}, then ω(P, y) may take

the value 0. However, if
⋂
i∈I ∂Hi 6= {y}, then we will have ω(P, y) > 0. Moreover, for

any x ∈ ∂Rn
+ ∩

⋂
i∈I ∂Hi, we have ω(P, x) = ω(P, y). The latter statement follows from

the observation that P is symmetric under reflection in any codimension-1 hyperbolic
subspace orthogonal to the bi-infinite geodesic [x, y]. To see that ω(P, y) > 0, choose any
x ∈ ∂Rn

+ ∩
⋂

i∈I ∂Hi. Then P ∩ ∂Rn
+ is a euclidean cone about x, in the sense that if a
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euclidean geodesic ray, based at x, meets P ∩ ∂Rn
+ at some point other than x, then it lies

entirely in P ∩ ∂Rn
+. Since P ∩ ∂Rn

+ has non-empty interior in ∂Rn
+, it follows easily that

θ(P ∩ ∂Rn
+) > 0.

Suppose now that P =
⋂
i∈I Hi is any finite sided polyhedron. Suppose that y ∈

P ∩ Hn
I . Let P (y) be the intersection of all those half-spaces Hi for which y ∈ ∂Hi.

(Thus, for example, P (y) = Hn
C if y lies in the topological interior of P ∩Hn

I in Hn
I .) We

set ω(P, y) = ω(P (y), y) as defined in the previous paragraph (with the convention that
ω(Hn

C,y) = 1). One needs to check that P (y) is well-defined however we care to write P
as an intersection of half-spaces. (In fact there is a unique minimal such representation.)

If ω(P, y) = 0, we call y a cusp point of P . Thus each cusp point is the unique
intersection point of the boundaries of some subset of the half-spaces defining P . We write
κ(P ) for the set of all cusp points of P .

By considering all possible intersections of half-spaces, we arrive at:

Lemma 4.15 : Suppose P ⊆ Hn
C is a (compactified) finite-sided polyhedron. Then κ(P )

is finite, and there is some δ(P ) > 0 such that if y ∈ P ∩Hn
I \ κ(P), then ω(P, y) ≥ δ(P ).

♦

Lemma 4.16 : Suppose that P is a collection of (compactified) finite-sided polyhedra
in Hn

C, with disjoint topological interiors in Hn. Suppose that y ∈ Hn
I ∩

⋂
P. Then∑

P∈P ω(P, y) ≤ 1.

Proof : One checks that if P1 and P2 are distinct elements of P, then P1(y) and P2(y)
(as in the definition of ω) have disjoint interiors. Thus P1(y) ∩Hn

I and P2(y) ∩Hn
I have

disjoint interiors in Hn
I . Now apply Lemma 3.5.14. ♦

Proof of GF3⇒GF1 : Suppose Γ is GF3. Let A be a convex cell complex associated
to Γ with A/Γ finite. Let P be the set of (compactified) polyhedra formed by taking the
closures, in Hn

C, of all the top-dimensional cells of A. Lemma 3.5.13 tells us that each
element of P is, in fact, a finite-sided polyhedron. Also, by Lemma 3.2.1, P is locally finite
on Hn ∪Ω, and so Hn ∪Ω ⊆

⋃
P.

Given any P ∈ P, we claim that P ∩Λ is a subset of κ(P ), and hence finite. Moreover,
each p ∈ P∩Λ is a bounded parabolic fixed point, and we can find a base of neighbourhoods
of p in P consisting of sets of the form C(p)∩P , where C(p) is a standard parabolic region.
We can clearly choose these regions so that C(p) ∩ C(q) ∩ P = ∅ if p 6= q ∈ P ∩ Λ.

Given the claim of the last paragraph, the proof that Γ is GF1 may be completed
as follows. We choose a set of orbit representatives, {P1, P2, . . . , Pm} for P under Γ. Let
Π0 = Λ ∩

⋃m
j=1 Pj . For each p ∈ Π0, we choose a standard parabolic region C(p), in such

a way that C(γp) = γC(p) if γp ∈ Π0, and such that C(p) ∩ C(q) ∩ Pj = ∅ for each j if
p 6= q ∈ Π0. Since the images of the Pj under Γ cover Hn∪Ω, we see that C(p)∩C(q) = ∅
whenever p and q are distinct points of Π0. It follows that the sets C(p) for p ∈ Π0 project
to a set of disjoint cusp regions, {E1, E2, . . . , Ek} in MC(Γ). Also, for each j, the set
Pj \

⋃
p∈Π0

({p}∪ intC(p)) is closed in P , and hence compact. Let π : Hn ∪Ω −→MC(Γ)
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be projection. We see that MC(Γ) \
⋃k
i=1 intEi =

⋃m
j=1 π(Pj \

⋃
p∈Π0

({p} ∪ intC(p))) is
compact. Thus Γ is GF1.

We now prove the claims. Fix any P0 ∈ P, and suppose y ∈ P0 ∩Hn
I . We show that

either y ∈ Ω, or else y ∈ κ(P0) and is a bounded parabolic fixed point.

Let G = stabΓ p. Certainly G cannot contain any loxodromic element, otherwise we
could contradict the local finiteness of P by iterating the loxodomic with y as repelling
fixed point. Thus G is either finite or parabolic.

Let P(y) = {P ∈ P | y ∈ P . Thus P0 ∈ P(y). We put p =∞ in the upper half-space
model. we distinguish two cases.

Case (1) : y is a cusp point of each polyhedron of P(y) (i.e. ω(P, y) = 0 for all P ∈ P(y)).

By Lemma 4.15, each polyhedron P has only finitely many cusp points, and so P ∩Γy
is finite. Since P/Γ is finite, it follows that P(y)/G is finite. Moreover, we can find a
horoball B about y such that each P ∈ P(y) meets B in a vertical prism in the upper half-
space model. (By this we mean that P ∩ B is euclidean-isometric to a euclidean product
(P ∩ ∂B)× [0,∞).) By Lemma 3.5.13, each polyhedron P ∈ P(y) has only finitely many
faces. Thus, by raising the height of ∂B if necessary, we can arrange that each face of each
polyhedron of P(y) also meets B either in a vertical prism, or not at all. It now follows
that B ⊆

⋃
P(y). For if not, there must be a polyhedron P ∈ P(y) with a codimension-1

face A ⊆ P which meets the boundary of B ∩
⋃
P(y) in B. However, since A is a vertical

prism, we must have y ∈ P ′, where P ′ is the polyhedron of P on the other side of A.
Thus P ′ ∈ P(y), and so A lies in the interior of

⋂
P(y). This contradiction shows that

B ⊆
⋃
P(y) as claimed.

We next want to arrange that the horoball B be strictly invariant, i.e. that γB∩B = ∅
if γ ∈ Γ\G. Suppose we have γB∩B 6= ∅ for some γ ∈ Γ\G. Since B ⊆

⋃
P(y), it follows

that γB meets some polyhedron P ∈ P(y). Now, γ−1P ∩ B 6= ∅ and so γ−1P ∈ P(y).
From the finiteness of P(y)/G, and of stabΓ P for each P ∈ P(y), we conclude that γ must
lie in one of a certain finite number of double cosets of G in Γ. This puts an upper bound
on the euclidean height of the highest point of γB in Rn

+. Thus by raising the height of
∂B, we can arrange that B is strictly invariant.

We next want to construct a strictly invariant region C, which will be either a standard
parabolic region about y, or else a half-space depending on whether G is parabolic or finite.
(In fact, it turns out that the latter case cannot arise in Case (1).)

Since B ⊆
⋃
P(y), we see that the boundary of

⋃
P(y) is a union of lower-dimensional

faces of polyhedra in P(y), none of which meet y = ∞. Since P(y)/G is finite, there is
a bound on the euclidean diameters of such faces. Thus, this boundary lies inside some
uniform euclidean neighbourhood of a minimal G-invariant subspace, µ, of ∂Rn

+. In other
words, for some r > 0, we have that C = {x ∈ Rn

+ ∪ ∂Rn
+ | deuc(x, µ) ≥ r} ⊆

⋃
P(y).

Now, the structure of P(y) restricted to C is independent of the vertical coordinate. Since
P(y) is locally finite on Rn

+, it must be locally finite on C ∩ ∂Rn
+. Thus, C ∩ ∂Rn

+ ⊆ Ω.
If G is parabolic, it follows that y is a bounded parabolic fixed point, and that C is a
standard parabolic region. Moreover, C can be chosen so that C ∩ P0 is an arbitrarily
small neighbourhood of y in P0. If G is finite, then C is a half space, and it follows that
y ∈ Ω. (In this case we may go on to get a contradiction to the hypothesis of Case (1),
though logically we do not need this.)
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Case (2) : There is some P1 ∈ P(y) with ω(P1, y) > 0.
Applying Lemma 4.16 to GP1, and using the fact that stabG P1 is finite, we see that

G must be finite. Since P/Γ is finite, we may set δ = min{δ(P ) |P ∈ P}, where δ(P ) is as
defined by Lemma 4.15. By Lemma 4.16, again, the set P+(y) = {P ∈ P(y) | ω(P, y) > 0}
is finite (having at most 1/δ elements). Also, from the fact that G is finite, and that each
polyhedron has a finite number of cusp points, we conclude that P(y)\P+(y) is finite. Thus
P(y) is finite, and using an argument similar to that of Case (1), we find some half-space,
containing y, and contained in

⋃
P(y). Thus y ∈ Ω. ♦

5. Convex fundamental polyhedra.

The principal objective of this chapter is to give an account of which hyperbolic
groups admit finite-sided fundamental polyhedra. We give a complete description of when
Dirichlet domains are finite-sided.

Suppose Γ ⊆ Isom Hn is discrete, and suppose P ⊆ Hn is closed and convex.

Definition : We say that P is a convex fundamental domain for Γ if ΓP is locally finite
on Hn, if

⋃
ΓP = Hn, and if intP ∩ γintP = ∅ for all γ ∈ Γ \ {1}.

Note that Γ(intP ) satisfies the hypotheses of Lemma 3.5.8 (with Hn replacing En). It
follows that P is a polyhedron. In Section 3.5, we made a distinction between the “sides”
and “faces” of P . To say that P is finite-sided is thus an intrinsic property of P , meaning
that P is a finite intersection of half-spaces. To say that P has finitely many faces means
that P meets only finitely many images of itself under Γ, and is thus a stronger assertion.

Given any a ∈ Hn, the Dirichlet domain, D(a,Γa), about a may be defined by

D(a,Γa) =
⋂
{Hγ(a) | γ ∈ Γ \ stabΓ a},

where Hγ(a) is the half-space {x ∈ Hn | d(x,a) ≤ d(x, γa)}. If a is not fixed by any
element of Γ, then D(a,Γa) is a fundamental domain. For a Dirichlet domain, the notions
of sides and faces coincide.

In dimension n = 3, we have the following equivalent formulations of geometrical
finiteness:

1a (1b) : Some (each) convex fundamental polyhedron has finitely many faces.

2a (2b) : Some (each) Dirichlet domain is finite-sided.

The equivalence of these four notions to GF1 was shown by Marden [Mar], and will follow
also from the results of this chapter. However, these definitions diverge in higher dimen-
sions as we will demonstrate below. The problem, of course, comes from the parabolic
cusps, so we need to say something about euclidean Dirichlet tesselations.
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As in Section 2.1(ii), we define the (n−1)-sphere at infinity, S(En), of euclidean space
to be the set of parallel classes of geodesic rays. Thus the set of all geodesic rays in En

may be identified with En × S(En) where the first coordinate is the basepoint of the ray,
and the second coordinate is the “direction” of the ray. We shall write [β] for the direction
of the ray β. Note that S(En) comes equipped with a natural spherical metric, and that
Isom En acts by isometry on S(En).

Given a closed convex set P ⊆ En, we set (as in Section 3.5) Θ(P ) to be the set
of directions of all those rays lying in P . Thus, Θ(P ) is closed in S(En), and we write
int Θ(P ) for its interior. One can check that if P and Q are convex, then int Θ(P ∩Q) =
int Θ(P ) ∩ int Θ(Q).

We now go in to consider a specific example. Let Γ ⊆ Isom E3 be an infinite cyclic
group generated by an “irrational screw motion” of E3. By this we mean a translation
parallel to τ composed with an irrational rotation of E3 with axis τ (Figure 5a). We claim
that if a ∈ E3 \ τ , then the Dirichlet domain D(a,Γa) is infinite-sided.

To see this, let β be the ray through a meeting τ orthogonally at its basepoint. Now,
Γ acts by irrational rotation on S(E3), and so [γβ] 6= [β] for all γ ∈ Γ \ {1}. We see
that, for all γ ∈ Γ \ {1}, we have [β] ∈ int Θ(Hγ(a)), where Hγ(a) is the half-space
{x ∈ E3 | d(x,a) ≤ d(x, γa)}. If D = D(a,Γa) were finite sided, we could write it
as an intersection D =

⋂
γ∈GHγ(a), where G ⊆ Γ is finite. Thus, [β] ∈ int Θ(D) =⋂

γ∈G int Θ(Hγ(a)). Since Γ acts non-discretely on S(E3), there must be some γ ∈ Γ with
int Θ(D)∩γint Θ(D) 6= ∅. Thus D∩γD has non-empty interior. This contradiction shows
that D is infinite-sided.

The above argument does not give much insight into what the Dirichlet tesselation
actually looks like, so we shall give an informal qualitative description of this. We describe
only the tesselation a long way from the axis τ . To this end, we imagine intersecting the
tesselation with cylinders Sr = {x ∈ E3 | d(x, τ) = r}, and see how the picture changes
as r → ∞. Let S̃r be the universal cover of Sr. In the induced Riemannian metric, S̃r
is isometric to the euclidean plane, E2. There is a S ⊕ S-action on this plane generated
by Γ and the covering transformations of S̃r over Sr. The Dirichlet tesselation gives
us a representation of E2 as a CW-complex invariant under this action. In the generic
situation, this decomposition is combinatorially equivalent to a regular hexagon tesselation
of the plane. As r tends to infinity, the pattern of hexagons changes by an infinite sequence
of “Whitehead moves”. This process is best described with reference to the quotient torus,
Sr/Γ ≡ E2/(S ⊕ S). For a generic r, this torus is decomposed into two 0-cells, three
1-cells and one 2-cell. As r becomes critical, one of the 1-cells collapses to a single point,
giving rise (combinatorially) to a square tesselation of E2. The 4-valent vertex then splits
again into two 3-valent vertices to give another hexagon tesselation (Figure 5b). The
combinatorial structure of the Dirichlet tesselation far away from τ , is thus determined
by the sequence of 1-cells which get contracted by Whitehead moves. This sequence is, in
turn, determined by the continued fraction expansion of the rotation angle θ, measured
as a fraction of a full rotation. (The situation is analogous to following a geodesic in the
moduli space of euclidean tori — see [Ser].) The geometry of the Dirichlet domain, D, is
also related to rational approximation of θ. Clearly, the area of the cross section D ∩ Sr
grows linearly with r, but its diameter grows much more quickly in the radial direction

48



Geometrical finiteness for hyperbolic groups

than in the longitudinal direction (parallel to τ). The relative rates depend on rational
approximations to θ — the better θ is approximated, the quicker the cross sections flatten
out radially. For a quadratic surd, the radial diameter grows asymptotically like r3/4, while
the longitudinal diameter grows like r1/4.

Now, we may extend our cyclic group, Γ, to act on H4 as a parabolic group, with
E3 ⊆ H4 a horosphere about the fixed point p. Let ρ be the 2-dimensional subspace
spanned by τ and p. If a ∈ H4 \ ρ, the hyperbolic Dirichlet domain D(a,Γa) will be
infinite-sided. (This is best seen by putting p =∞ in the upper half-space model, so that
D(a,Γa) is a vertical euclidean prism, with base a euclidean Dirirchlet domain.) However,
Γ is geometrically finite with any of the definitions of Chapter 3.

We may now find a half-space, in H4, disjoint from all its images under Γ, and
disjoint from ρ. This set projects to an embedded half space in the quotient manifold M .
By removing this half space, and doubling M across the boundary, we get a new manifold
M ′, with fundamental group S ∗ S. This gives us a geometrically finite action of S ∗ S on
H4 with no finite sided Dirichlet domain. This example was constructed by Apanasov.

We remark that we may carry this construction further to produce an example of a
discrete group acting on H4 which has a parabolic fixed point with no strictly invariant
horoball. To do this, put p = ∞ in the upper half-space model, and note that we can
find an infinite sequence of half-spaces in H4, whose euclidean diameters tend to ∞, and
which project to disjoint embedded half-spaces in the quotient manifold. We now cut out
all these half spaces, and double the resulting manifold in its boundary. This gives us an
action of an infinitely generated free group on H4. There is no strictly invariant horoball
about p. It seems to be an open question as to whether a finitely generated disctrete
group must have a strictly invariant set of horoballs for each orbit of parabolic fixed point.
In dimensions 2 and 3, this is a consequence of the Margulis Lemma (even for infinitely
generated groups). For geometrically finite groups, it is a consequence of Lemma 4.6 and
Corollary 4.5.

We now move on to a general account of Dirichlet domains.

We say that an isometry, γ, of En is rational if some power of γ is a translation.
We saw in Chapter 2 that any discrete subgroup of En is virtually abelian. Thus, if
Γ ⊆ En is discrete and consists entirely of rational isometries, then Γ contains a finite
index translation group.

If γ ∈ Isom Hn is parabolic, then we say that γ is rational if γ restricted to a horo-
sphere about the fixed point is a rational euclidean isometry. Otherwise, we say that γ is
irrational .

Suppose that Γ ⊆ Isom Hn is geometrically finite. We shall see that if every parabolic
element of Γ is rational, then every Dirichlet domain is finite-sided. If, however, Γ contains
an irrational parabolic, then almost every Dirichlet domain is infinite-sided, i.e. for at least
an open dense set of basepoints a ∈ Hn, D(a,Γa) is infinite-sided.

Note that if n ≤ 3, then every parabolic element is rational. This shows the equivalence
of properties (2a) and (2b) with the the other notions of geometrical finiteness in these
dimensions.

We first discuss the euclidean case.

Suppose Γ ⊆ Isom En is discrete. In Chapter 2, we saw that if µ is a minimal Γ-
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invariant subspace, then Γ contains a finite-index subgroup which acts by translation on
µ. Suppose that τ1 and τ2 are subspaces of En, and that Γ1 and Γ2 are subgroups of
Γ. Suppose that τi is Γi-invariant, and that Γi acts by translation of τi. Then it’s not
hard to see that Γ1 ∩ Γ2 acts by translation on the subspace 〈τ1, τ2〉 spanned by τ1 and
τ2. We may thus define τ = τ(Γ) to be the maximal subspace of En on which some finite-
index subgroup acts by translation. Let Γ′ ⊆ Γ be the subgroup of all elements acting
by translation on τ . If g ∈ Γ, then gΓ′g−1 acts by translation on gτ . Thus, gτ = τ and
gΓ′g−1 = Γ′. In other words, τ is Γ-invariant, and Γ′ is normal in Γ. Note that the set of
all minimal Γ-invariant subspaces form a foliation of some subspace of τ .

Proposition 5.1 : Suppose that Γ ⊆ Isom En is discrete, and that a ∈ En. Then the
Dirichlet domain D(a,Γa) is finite sided if and only if a ∈ τ(Γ).

Proof : Write τ = τ(Γ) and D = D(a,Γa).

Suppose first that a ∈ τ . Now D ∩ τ is the Dirichlet domain for the action of Γ
restricted to τ , and D is a product of D ∩ τ with an orthogonal subspace. Since Γ has a
finite-index subgroup acting by translation on τ , one sees easily that D ∩ τ is finite-sided.
(This also follows from Lemma 5.4 below.)

Suppose now that a ∈ En \ τ . Let b be the nearest point on τ to a, and let β be the
geodesic ray based at b through a. Thus β is orthogonal to τ , and it is easily verified that
β lies in the interior of D.

Now, as described above, Γ acts by isometry on the (n−1)-sphere, S(En). Let Γ0 ⊆ Γ
be the subgroup of elements which preserve the direction [β] ∈ S(En) of the ray β. By the
maximality of τ , we see that Γ0 must have infinite index in Γ. It follows that the action
of Γ on S(En) is not discrete. Note that stabΓD = stabΓ a ⊆ Γ0.

Now suppose, for contradiction, that D is finite-sided. Thus we may write D as a
finite intersection of half-spaces D =

⋂
γ∈GHγ(a), where G ⊆ Γ is finite.

If Γ0 were trivial, the proof could proceed as in the case of an irrational screw motion
on En as described above. We would have [β] ∈ int Θ(D), so we could find γ ∈ Γ with
[γβ] ∈ int Θ(D), and arrive at the contradiction that D ∩ γD has non-empty interior.

To deal with the general case, we write D = D1∩D2, where D1 =
⋂
{Hγ(a)|γ ∈ G\Γ0}

and D2 =
⋂
{Hγ(a) | γ ∈ Γ0}.

For all γ ∈ G\Γ0, we have [γβ] 6= [β] and so [β] ∈ int Θ(Hγ(a)). Thus [β] ∈ int Θ(D1).
It follows that there is a ball of some radius, ε > 0, about [β], in the spherical metric on
S(En) which is contained in Θ(D1). Since Γ acts non-discretely on S(En), we can find
some γ1 ∈ Γ \ Γ0 with dsph([β], [γ1β]) < ε.

Now, D2 is the Dirichlet domain for the action of Γ0 on En. Since Γ0 preserves the
subspace τ and the direction [β], it follows that D2 is a euclidean product of D2 ∩ τ with
an orthogonal subspace, and that D2 ∩ τ is the Dirichlet domain about the point b, for the
action of Γ0 restricted to τ . Thus there is some γ2 ∈ Γ0, such that γ2γ1b ∈ D2∩ τ . Since β
is orthogonal to τ , we have γ2γ1β ⊆ D2. Now, dsph([γ2γ1β], [β]) = dsph([γ2γ1β], [γ2β]) =
dsph([γ1β], [β]) ≤ ε. Thus [γ2γ1β] ∈ int Θ(D1). It follows that γ2γ1β meets D1, and so
meets D1 ∩D2 = D. Thus β ∩ (γ2γ1)−1D 6= ∅. Since γ2γ1 /∈ stabΓ a and since β lies in the
interior of D, we arrive at a contradiction. ♦
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Using a similar argument, we may deduce the following generalisation:

Proposition 5.2 : Suppose Γ ⊆ Isom En is discrete, and X ⊆ En is a finite union
of Γ-orbits (i.e. X/Γ is finite). Then, the generalised Dirichlet domains D(a,X) are all
finite-sided if and only if X ⊆ τ(Γ).

Proof (sketch) : The “if” part, as with Proposition 5.1, is easy. So, suppose that
X 6⊆ τ = τ(Γ). Let Y ⊆ X be the set of points a maximal distance from τ . Thus Y
is Γ-invariant, and Y/Γ is finite. It is easily seen that, sufficiently far away from τ , the
generalised Dirichlet tesselations, D(X) and D(Y ) agree. It thus suffices to see that some
element of D(Y ) is infinite-sided.

Let a1, a2, . . . , am be a complete set of orbit representatives of Y under Γ. Let bi be
the nearest point on τ to ai, and let βi be the geodesic ray based at bi through ai. Let
I ⊆ {1, 2, . . . ,m} be the set of all those i for which there is some γ ∈ Γ with [γβi] = [β1].
Thus I 6= ∅, and we may as well assume that [βi] = [β1] for all i ∈ I. Note that the
orbits Γbi must be disjoint. Let Γ0 ⊆ Γ be the subgroup fixing the direction [β1], so that
[Γ : Γ0] =∞.

Suppose now that, for each i ∈ I, the generalised Dirichlet domain, D(ai, Y ), is finite
sided. Following the proof of Proposition 5.1, for each i ∈ I, we may write D(ai, Y ) =
Di

1 ∩Di
2 with [β1] ∈ int Θ(Di

1) and Di
2 = D(ai,

⋃
i∈I Γ0ai). We see that Di

2 is a euclidean
product of Di

2 ∩ τ with an orthogonal subspace, and that Di
2 ∩ τ = Dτ (bi,

⋃
i∈I Γ0bi)

where Dτ denotes the generalised Dirichlet domain restricted to τ . We now proceed to a
contradiction as in Proposition 5.1. ♦

We now want to apply these results to hyperbolic groups. Suppose that Γ ⊆ Isom Hn

is discrete. Given a ∈ Hn, we write DC(a,Γa) for the closure of D(a,Γa) in Hn
C.

Suppose that Π0 ⊆ Hn
I is a an orbit of parabolic fixed points, which admits a strictly

invariant collection of horoballs {B(p) | p ∈ Π0} (so that B(p) ∩B(q) = ∅ if p 6= q). Given
x ∈ Hn, write J(x) for the set of p ∈ Π0 which minimise d(x,B(p)). We check that the
hypotheses of the construction of Section 3.5 are satisfied. Thus we arrive at a Γ-invariant
convex cell complex

A(Π0,Γ) = {A(Q,Π0) |Q ⊆ Π0 is finite},

where A(Q,Π0) = {x ∈ Hn | J(x) = Q} (so that A(∅,Π0) = ∅). We see that x ∈ A(Q,Π0)
if and only if Π0 ∩ DC(x,Γx) = Q. Note that A(Π0,Γ) is independent of the choice of
strictly invariant horoballs.

Now suppose that Πi, for i = 1, 2, . . . , k, are a finite set of distinct orbits of parabolic
fixed points, each admitting a collection of strictly invariant horoballs. Set Π =

⋃k
i=1 Πi.

The construction of the previous paragraph gives a set of k convex cell complexes, A(Πi,Γ).

These have a common subdivision A(Π,Γ) =
∧k
i=1A(Πi,Γ) obtained by intersecting all

the cells. Thus, each element of A(Π,Γ) has the form A(Q,Π) =
⋂k
i=1A(Q ∩ Πi,Πi),

where Q ⊆ Π is finite. Again, x lies in A(Q,Π) if and only if Π ∩DC(x,Γx) = Q. Note
that, generically, DC(x,Γx) meets Π in an orbit-transversal.

Suppose now that Γ is geometrically finite, and let Π be the set of all (bounded)

parabolic fixed points. Write Π as a disjoint union, Π =
⊔k
i=1 Πi, of orbits under Γ. Let
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A = A(Π,Γ) = {A(Q,Π) | Q ⊆ Π is finite}. Given p ∈ Π, we may put p = ∞ in the
upper half-space model, and set τ = τ(G) ⊆ ∂Rn

+ where G = stabΓ p acts on ∂Rn
+. We set

ρ(p) ⊆ Hn to be the hyperbolic subspace which is compactified by {p}∪τ . The construction
of ρ(p) is natural, so we have ρ(γp) = γρ(p) for all p ∈ Π and γ ∈ Γ. Given a finite subset
Q ⊆ Π, we set ρ(Q) =

⋂
p∈Q ρ(p). Let F (Γ) =

⋃
{A(Q,Π) ∩ ρ(Q) |Q ⊆ Π is finite}. Note

that if every parabolic element is rational, then F (Γ) = Hn. Otherwise Hn \F(Γ) contains
an open dense subset of Hn.

Proposition 5.3 : Suppose Γ ⊆ Isom Hn is geometrically finite. Then D(a,Γa) is
finite-sided if and only if a ∈ F (Γ).

Proof : Suppose first that a lies in a top-dimensional cell of A, so that DC(a,Γa) meets
a single representative pi, from each orbit of parabolic fixed points, Πi. Let B(pi) be a
strictly invariant horoball about pi. We see that the set of nearest points to B(pi) in
Γa is precisely Gia, where Gi = stabΓ pi. It is not hard to see that we can find another
horoball B′(pi) ⊆ B(pi) such that D(a,Γa) ∩ ∂B′(pi) is precisely the euclidean Dirichlet
domain for the action of Gi on ∂B′(pi) based at the intersection point of ∂B′(pi) and
[ai, pi] (c.f. the proof of GF1⇒GF3). This euclidean domain is finite-sided if an only if
a ∈ ρ(pi). Moreover, one can find a standard parabolic region C(pi) about pi so that that
the intersection of the Dirichlet tesselation D(Γa) with C(pi) is independent of the vertical
coordinate in the upper half-space model. We see that C(pi) meets only finitely many
faces of D(a,Γa) if and only if a ∈ ρ(pi). The result in this case now follows from the
description GF1 of geometrical finiteness.

The general case can be dealt with using Proposition 5.2 in place of Proposition 5.1.
Suppose a ∈ A(Q,Π), and that Q ∩ Πi = {pi, γ1pi, . . . , γrpi}. In this case, we can find a
horoball B′(pi) about pi so that D(a,Γa) ∩ ∂B′(pi) = D∂B′(pi)(bi, Gibi ∪

⋃r
j=1Giγ

−1
j bi),

where [ai, pi] ∩ ∂B′(pi) = {bi} and D∂B′(pi) denotes the euclidean generalised Dirichlet
domain in ∂B′(pi). ♦

We now say a few words about convex fundamental domains in general.

Lemma 5.4 : Suppose Γ ⊆ Isom En is discrete and acts by translation. Suppose
P1, P2, . . . , Pk ⊆ En are closed convex subsets, with non-empty interiors, such that En =⋃k

i=1

⋃
ΓPi and such that intPi ∩ γintPj = ∅ unless i = j and γ = 1. Then, each Pi is a

finite sided polyhedron.

Proof : We leave as an exercise that each ΓPi must be locally finite. Thus the set
U =

⋃k
i=1 Γ(intPi) satisfies the hypotheses of Lemma 3.5.8, and so gives rise to a convex

cell complex A = A(U). It follows that each Pi is a polyhedron. Write Fn−1(Pi) for the
set of codimension-1 faces of Pi. From the construction of A, we see that if A ∈ Fn−1(Pi),
then Ā = Pi ∩γPj for a unique γ ∈ Γ and j ∈ {1, . . . , k}. Now Γ is free abelian, so there is
an isomorphism φ : Γ −→ Sm for some m ≤ n. Let ρ : Sm −→ Sm2 be reduction mod 2. We
define λ : Fn−1(Pi) −→ {1, . . . , k}×Sm2 by setting λ(A) = (j, ρ◦φ(γ)) where Ā = Pi∩γPj .
Thus we can think of λ as labelling the codimension-1 faces of Pi with at most 2mk labels.
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We claim that if λ(A1) = λ(A2) then A1 and A2 lie in the same codimension-1 subspace.
From this it follows easily that Pi is a finite intersection of half-spaces.

Suppose then that λ(A1) = λ(A2). Thus Ā1 = Pi ∩ γ1Pj and Ā2 = Pi ∩ γ2Pj , with
γ−1

1 γ2 = g2 for some g ∈ Γ. Suppose that A1 and A2 do not lie in the same codimension-
1 subspace. Choose a1 ∈ A1 and a2 ∈ A2. Let b be the midpoint of [a1, a2] so that
b ∈ int hull(A1 ∪ A2) ⊆ intPi. Now b is also the midpoint of [ga1, g

−1a2]. We have
ga1 ∈ gγ1Pj and g−1a2 ∈ g−1γ2Pj = gγ1Pj . Thus b ∈ gγ1Pj , and so intPi ∩ gγ1Pj 6= ∅.
Since Pj has non-empty interior, this gives a contradiction. ♦

It is possible that the polyhedra Pi may have infinitely many faces. Consider the
tesselation of E3 by planks described in Section 3.5 (Figure 3g). This tesselation is invariant
under a S ⊕ S-action, where one generator translates vertically through two layers, and
the other translates in a north-easterly direction. The planks satisfy the hypotheses of
Lemma 5.4, but each has infinitely many faces. This phenomenon, however, cannot occur
in dimensions 1 and 2:

Lemma 5.5 : With the same hypotheses as Lemma 5.4, if n ≤ 2, then each polyhedron
has finitely many faces.

Proof : The only case that requires verification is that of an infinite cyclic action on E2.
Figure 5c shows the typical situations that can arise. We leave the reader to work out the
details. ♦

Proposition 5.6 : Suppose that Γ ⊆ Isom Hn is geometrically finite, and that each
parabolic element is rational. Then every convex fundamental domain for Γ is finite-sided.

Proof : Let P be a convex fundamental domain for Γ. Suppose p is a (bounded) parabolic
fixed point of Γ. Let G = stabΓ p and let C3 be a standard parabolic region about p.
Let C2 ⊆ intC3 and C1 ⊆ intC1 be strictly smaller standard parabolic regions. Now
(∂C2 ∩ hull(C1 ∪ C3))/G is compact. From the local finiteness of ΓP on Hn, we see that
{γ ∈ Γ | γP ∩ C3 6= ∅} consists of finitely many right cosets of G in Γ (c.f. Lemma 3.2.1).
We can now find another standard parabolic region C ⊆ C3 such that γP ∩ C 6= ∅ if
and only p lies in the closure of γP in Hn

C. Thus, in the upper half-space model, the
intersection of γP with C is independent of the vertical coordinate, and so it is enough
to show that γP ∩ ∂B is a finite-sided euclidean polyhedron for some horoball B ⊆ C.
Now G contains some finite index normal subgroup G′ which acts by translation on ∂B.
Writing {γ ∈ Γ | γP ∩ C 6= ∅} =

⊔m
i=1G

′γi, we see that ∂B ∩ γ1P, . . . , ∂B ∩ γmP satisfy
the hypotheses of Lemma 5.4, and the result follows. ♦

In the 3-dimensional case, we may apply Lemma 5.5 in place of Lemma 5.4 to get:

Proposition 5.7 : If Γ ⊆ Isom H3 is geometrically finite, then every convex fundamental
domain has finitely many faces. ♦
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We have thus shown the equivalence of Properties (1a) and (1b) with geometrical
finiteness in this dimension.

The question remains whether, in each dimension, every geometrically finite group
admits some finite sided convex fundamental domain. This seems very improbable. We
have already seen examples which do not admit any finite-sided Dirichlet domains, and
there are many variations on this construction which ought to yield counterexamples to
the more general question. However I cannot claim to have a definitive proof.
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: Bull. London Math. Soc. 20 (1988) 255–261.

[Bow] B.H.Bowditch, Geometrical finiteness with variable negative curvature : preprint,
IHES (1990).

[BowM] B.H.Bowditch, G.Mess, : in preparation.

[CanEG] R.D.Canary, D.B.A.Epstein, P.Green, Notes on notes of Thurston : “Analytic
and geometric aspects of hyperbolic space”, L.M.S. Lecture Notes Series No.111, ed.

54



Geometrical finiteness for hyperbolic groups

D.B.A.Epstein, Cambridge U.P. (1987) 3–92.
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