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0. Introduction.

A “Hadamard manifold”, X, is a complete simply-connected riemannian manifold of
non-positive curvature. Such a manifold is diffeomorphic to Rν , and can be naturally
compactified to a closed ball XC = X ∪XI on adjoining the “ideal sphere”, XI . We refer
to [BaGS] for a general account of such manifolds.

In this paper we shall be assuming that X has pinched negative curvature, i.e. that all
the sectional curvatures lie between two negative constants, which (on scaling the metric)
we can take to be −κ2 and −1, where κ ≥ 1. In this case, X is a “visibility manifold”,
which means that any two points x, y ∈ XC are joined by a unique geodesic [x, y], (where
[x, x] = {x}). We say that a subset A ⊆ XC is convex if, for all x, y ∈ A, we have [x, y] ⊆ A.
Given any closed subset Q ⊆ XC , we define the (closed) convex hull, hull(Q), of Q to be
the intersection of all the closed convex sets containing Q. Clearly, hull{x, y} = [x, y].

A major deficiency in the theory of Hadamard manifolds is the sparsity of good con-
structions of convex sets. In the general situation little seems to be known. The only
obvious examples of convex sets are uniform neighbourhoods of points or of geodesic seg-
ments, and their intersections. We see, for example, that any three (non-ideal) points in a
Hadamard manifold must lie in the boundary of their convex hull. Note that with variable
curvature, one would expect generically for the convex hull of three points to have non-
empty interior. It is by no means clear what the convex hull of three ideal points might
look like, even when given an upper curvature bound away from 0.

In the special case of pinched curvature, there is a much more general construction
due to Anderson [A]. Thus, for example, Anderson shows that if Q ⊆ XC is closed, then
XI ∩ hull(Q) = XI ∩Q. In this paper, we aim to develop further the theory of convex sets
in this context. Our paper splits into four sections.

The main result of Section 1 is that the map [Q 7→ hull(Q)] which sends a closed
set to its convex hull is continuous with respect to the Hausdorff topology (Theorem 1.1).
The techniques employed in this section are rather different from the rest of the paper,
although the results will be quoted later.

In later sections, we shall focus our attention mainly on convex hulls of finite sets of
points. These play a central role in hyperbolic geometry as they are precisely the finite-
sided finite-volume polyhedra. One would not expect such a nice picture in pinched variable
curvature (for example a natural decomposition into faces), although many properties do
generalise.

In Section 2, we describe how the convex hull of finite set P ⊆ XC is “tree-like”,
in that it approximates a certain spanning tree for P , in a manner that will be clarified
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later (Theorem 2.1). An analogous statement for hyperbolic polyhedra has been used
[Be] to study the degeneration of discrete hyperbolic groups actions. The importance of
generalising this fact is made apparent, for example, in [P].

In Section 3, we give generalisation of Anderson’s construction. Specifically, we are
aiming at Propositions 3.4 and 3.5.

In Section 4, we put together the ideas from the previous sections to give two new
theorems. The first of these, Theorem 4.1, tells us that the volume of the convex hull of a
set of n points of XC is always finite, and in fact is bounded by some constant C(ν, κ, n),
depending only on n, the dimension ν, and the pinching constant κ. It turns out that, for
fixed ν and κ, C(ν, κ, n) is bounded by some polynomial in n. I suspect, in fact, that this
could be improved to a linear function of n. In an appendix, I show that this is indeed the
case in constant curvature. The second result of Section 4 (Theorem 4.2) tells us that the
volume of the convex hull of a set of n points varies continuously in those points, provided
that no two converge on the same ideal point.

The present paper combines two articles written at the University of Melbourne,
under an Australian Research Council fellowship. I would like to thank Craig Hodgson
for suggesting some of these questions to me. I am also endebted to the referee for many
helpful comments.

1. Continuity of convex hulls.

In this section the main result will be Theorem 1.4. First we quote some basic results
used through out this paper.

Notation

Recall, we are assuming that all the sectional curvatures of X lie in the interval
[−κ2,−1]. We write TxX for the tangent space of X at x. Given ξ, ζ ∈ TxX, we write 〈ξ, ζ〉
and |ξ| =

√
〈ξ, ξ〉, respectively, for the riemannian inner-product and norm on TxX. Given

x ∈ X and y ∈ XC \{x}, write −→xy ∈ TxX for the initial unit tangent vector of the geodesic
from x to y, parameterised by arc length. If z ∈ XC\{y}, write yx̂z = cos−1〈−→xy,−→xz〉 ∈ [0, π]
for the angle between −→xy and −→xz. We write d for the induced path-metric on XC . We shall
sometimes refer to d as the “distance function” on X, to avoid any confusion with the
riemannian inner-product.

Basic comparison theorems.

Given λ ∈ (−∞, 0), write (Hν(λ) for the ν-dimensional space of constant curvature
−λ2. We need the following variants of the Toponogov comparison theorems (see for
example, [Sp] or [CE]). We write dλ for the path-metric on Hν(λ).

Lemma 1.1 : Suppose x ∈ X and y, z ∈ X \ {x}. Choose points x′, y′, z′ ∈ H2(1) such
that d1(x′, y′) = d(x, y), d1(x′, z′) = d(x, z) and y′x̂′z′ = yx̂z. Then d1(y′, z′) ≤ d(y, z).

Lemma 1.2 : Suppose x ∈ X and y, z ∈ X \ {x}. Choose points x′, y′, z′ ∈ H2(κ) such
that dκ(x′, y′) = d(x, y), dκ(x′, z′) = d(x, z) and y′x̂′z′ = yx̂z. Then dκ(y′, z′) ≥ d(y, z).
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Thus, the Rauch Comparison Theorem gives us the infinitesimal case with y close to z.

Another basic property of X is the convexity of the distance function, which is essen-
tially Busemann’s characterisation of non-positive curvature [Bu]:

Lemma 1.3 : If α, β : [0, 1] −→ X are geodesics parameterised proportionately to
arc-length, then the map [(t, u) 7→ d(α(t), β(u))] is convex on [0, 1]2.

Discussion of the main result on continuity.

Let C(XC) be the set of all closed subsets of XC . Now, XC is a topological ball, and
hence metrisable. Choose a metric ρ on XC . Given P ∈ C(XC) and r ≥ 0, we write
N(ρ)(P, r) = {x ∈ XC | ρ(x, P ) ≤ r} for the uniform r-neighbourhood of P . Given P,Q ∈
C(XC), write hd+(ρ)(P,Q) ∈ [0,∞) for the smallest r ≥ 0 such that P ⊆ N(ρ)(Q, r).
Write

hd(ρ)(P,Q) = max(hd+(ρ)(P,Q),hd+(ρ)(Q,P )).

We call hd(ρ)(P,Q) the “Hausdorff distance” between P and Q, with respect to ρ. Thus,
hd(ρ) is a metric on C(XC). Since XC is compact, it is easily verified that the induced
topology on C(XC) is independent of the choice of metric ρ. We refer to it as the Hausdorff
topology . Thus C(XC) is a compact hausdorff space in this topology.

We remark that a more natural approach would be note that since XC is compact
hausdorff, it admits a unique uniformity [K]. This naturally induces a uniformity, and
hence a topology, on C(XC).

Theorem 1.4 : The map [Q 7→ hull(Q)] : C(XC) −→ C(XC) is continuous, where C(XC)
is given the Hausdorff topology.

In fact, we shall find a path-metric ρ on XC such that [Q 7→ hull(Q)] is distance non-
increasing on (C(XC),hd(ρ)).

Note that, clearly, the map [(x, y) 7→ {x, y}] : XC ×XC −→ C(XC) is continuous, and
so as a special case we have that [(x, y) 7→ [x, y]] : XC × XC −→ C(XC) is continuous.
This is also a corollary of Proposition 1.5 below. However, this statement is easily verified
directly, and we may leave it as an exercise. (Indeed, it is true without the lower curvature
bound, −κ2.)

Another consequence of the continuity of geodesics is that the convex hull map has
to be “lower semicontinuous” in the following sense. Suppose ρ is a metric on XC . Then,
given P ∈ C(XC) and ε > 0, there is some δ > 0 such that if hd+(ρ)(P,Q) ≤ δ, then
hd+(ρ)(hull(P ),hull(Q)) ≤ ε. (Note that hd+(ρ)(P,Q) = hd(ρ)(Q,P ∪ Q), and so lower
semicontinuity can be expressed in terms of the Hausdorff topology, and the partial order
on C(XC) by set inclusion.) To prove lower semicontinuity, suppose that Pn is any sequence
with hd+(ρ)(P, Pn)→ 0. We claim hd+(ρ)(hull(P ),hull(Pn))→ 0. Let H ∈ C(XC) be the
set of all y ∈ XC such that xn → y for some sequence (xn) with xn ∈ hull(Pn). From the
continuity of geodesics, we see that H is convex. Clearly P ⊆ H, and hull(P ) ⊆ H. Now,
since XC is compact, we must have hd+(ρ)(H,hull(Pn)) → 0. Otherwise, we could find
a sequence of points yn ∈ H with ρ(yn,hull(Pn)) bounded away from 0, and passing to a
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convergent subsequence would give a contradiction to the definition of H. It follows, then,
that hd+(ρ)(hull(P ),hull(Pn))→ 0 as claimed.

We thus see that the lower semicontinuity of convex hulls is fairly trivial. Achieving
continuity in the pinched curvature case will involve us in a bit more work. The basic idea
is as follows.

Given Q ∈ C(XC), write

join(Q) =
⋃
{[x, y] | x, y ∈ Q}.

Given the continuity of geodesics, we wee that join(Q) is closed in XC . We define, in-
ductively, joinn+1(Q) = join(joinn(Q)) and join∞(Q) =

⋃∞
n=1 joinn(Q). Clearly join∞(Q)

is convex, and, again given the continuity of geodesics, we see that, if Q is closed, then
hull(Q) is just the closure of join∞(Q). Our aim, then, will be to find a metric ρ on XC

such that the map [Q 7→ join(Q)] is distance non-increasing on (C(XC),hd(ρ)). It suffices
therefore to show:

Proposition 1.5 : There is some path-metric ρ on XC such that if x0, y0, x1, y1 ∈ XC ,
then

hd(ρ)([x0, y0], [x1, y1]) ≤ max(ρ(x0, x1), ρ(y0, y1)).

Some other observations about continuity.
Before we set about proving this, let us note another more trivial sense in which

convex hulls vary continuously. We may define, in a similar fashion, a Hausdorff distance,
hd(d), on the set C(X) of all closed subsets of X. In this case, the analogue of Proposition
1.5 follows directly from the convexity of the distance function (Lemma 1.3). We deduce:

Proposition 1.6 : The map [Q 7→ hull(Q)] is distance non-increasing on (C(X),hd(d)).

On the subset of C(XC) consisting of all compact subsets of X, the topologies given
by hd(d) and hd(ρ) agree. However, in general, the topologies are quite different. For
example, (C(X),hd(d)) has infinitely many components.

A related observation which will be used in Section 4 is:

Lemma 1.7 : If P,Q ⊆ X are convex, then hd(d)(∂P, ∂Q) ≤ hd(d)(P,Q).

Proof : Suppose for contradiction, that hd(d)(P,Q) = h, and hd(∂P, ∂Q) > h. Without
loss of generality, there is some x ∈ ∂P , with d(x, ∂Q) = k > h. Now d(x,Q) ≤ h so
N(d)(x, k) ⊆ Q. Since P is convex, it’s easy to see that there is some y ∈ ∂N(d)(x, k) with
d(y, P ) = k, contradicting hd(d)(P,Q) < k. ♦

Putting the last two results together, we see that the map [Q 7→ ∂hull(Q)] is also
distance nonincreasing on (C(X),hd(d)).
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The metric ρ.

We next construct the metric ρ on XC described by Proposition 1.5. In what follows,
we shall write |ds| for a riemannian norm defined pointwise on our space. This induces a
path-metric, d, giving the distance between two points.

The metric ρ on XC will arise from a construction of Floyd [F] (described originally
in the context of discrete groups). We introduce this construction with reference to the
Poincaré model for hyperbolic ν-space Hν = Hν(1). Recall that Hν may be realised a
conformal metric on the euclidean open unit ball, B, obtained by pointwise scaling the
euclidean riemannian norm |dseuc|. Thus, the hyperbolic norm, |dshyp| is given at the
point x ∈ B by the formula |dshyp| = 2

1−h2 |dseuc|, where h ∈ [0, 1) is the euclidean
distance deuc(o, x) from the origin o ∈ B. This induces the hyperbolic path-metric dhyp.
We may invert the process. To recover the euclidean ball, we fix a point p ∈ Hν and scale
the riemannian norm at the point x ∈ Hν by a factor of 1

2 sech2(r/2) where r = dhyp(x, p).

We can generalise this idea to our manifold X. Suppose that f : [0,∞) −→ (0,∞) is a
smooth function with

∫∞
0
f(r)dr = R <∞. Fix any point p ∈ X, and set φ(x) = f(d(x, p))

for x ∈ X. We now scale the riemannian norm |ds| on X according to the function φ.
Thus, the new norm, |dsf | is given at the point x ∈ X by |dsf | = φ(x)|ds|. In this way,
we get a riemannian metric (at least on X \ {p}), and we write df for the induced path-
metric. In general, there may be a singularity at the point p. However, if f has the form
f(r) = f0(r2), where f0 is smooth on a neighbourhood of 0, then the map φ : X −→ (0,∞)
will be smooth at p, and so we get a riemannian metric everywhere.

Now all d-geodesic rays emanating from p are also df -geodesic paths, each of which
has df -length equal to R. (Note that if γ is a smooth curve joining p to some point q
with d(p, q) = k > 0 and parameterised by arc length dt, then d

dtd(p, γ(t)) ≤ 1, and so the

df -length of γ is at least
∫ k

0
f(r)dr, with equality if and only if γ is a d-geodesic.) Also, if

s < R, then N(df , p, s) = N(d, p, r) where r is given by
∫ r

0
f(t)dt = s. In particular, each

such ball is compact.

The idea, then, is to describe XC as the metric completion of (X, df ). However, we
first need to ensure that f does not decay too fast. (For example, if we had f(r) = O(e−λr)
with λ > κ, then we would just obtain the one-point compactification of X.) Suppose then
that, for some r0 > 0, we have f(r) ≥ cosech r for all r ≥ r0. In this case, we have the
following property. Suppose that β is a smooth path in X \N(d, p, r) joining points y and
z. Then yp̂z is less than or equal to the df -length of β. This fact may be deduced from
Lemma 1.1, or directly from its infinitesimal version (the Rauch Comparison Theorem).
Now, we may use the df -exponential map based at p to identify X with a euclidean open
metric ball B. It is easily checked that XC is naturally identified with its closure N , so
that the topologies agree. We thus need to verify that N is indeed the metric completion
of X ≡ B with respect to the metric df . To this end, we make the following simple
observation:

Lemma 1.8 : Suppose N is a compact, first countable topological space. Suppose B ⊆ N
is a dense subset which admits a metric ρ inducing the subspace topology on B. Then,
N is (naturally homeomorphic to) the completion of B precisely if the following condition
holds. Suppose (xi) and (yi) are sequences in B converging respectively to x, y ∈ N . Then
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ρ(xi, yi)→ 0 if and only if x = y. ♦

We apply this to our situation, with ρ = df . The “only if” part of the above criterion
follows from the relation of df -length to visual distance at p already referred to. The “if”
part is an exercise, on noting that euclidean distance along any ray emanating from p
agrees with df -distance. (We remark that we do not need the lower curvature bound for
this construction, unless we want explicit estimates for df .)

For definiteness, in the rest of this paper we shall set f(r) = (sechκr)µ where µ > 0
is sufficiently small. Specifically, we set µ = 1/4κ2. We choose this particular form for
computational convenience. There is probably nothing very special about this formula,
and I suspect that Proposition 1.5 is true much more generally.

We write ρ = df . Now, the completion of a path-metric space is a path-metric space,
and so ρ is a path-metric on XC . Suppose that I ⊆ R is some interval, and γ : I −→ X is
a smooth path. We may define the ρ-length of γ as

lengthργ =

∫
I

φ(γ(u))

∣∣∣∣dγdu (u)

∣∣∣∣ du
where dγ/du is shorthand for γ∗(d/du). Clearly lengthργ agrees with the rectifiable length.
Now, standard riemannian geometry allows us to approximate rectifiable paths by smooth
paths of nowhere-vanishing derivative, and so:

Lemma 1.9 : Suppose x, y ∈ X and ε > 0. Then there is a smooth path γ : [0, 1] −→ X
such that γ(0) = x, γ(1) = y and

φ(γ(u))

∣∣∣∣dγdu (u)

∣∣∣∣ ≤ ρ(x, y) + ε

for all u ∈ [0, 1].

Proof of main theorem.
At last, we are ready to start on the proof of Proposition 1.5. To begin with, let us

suppose that x0, y0, x1, y1 all lie in X. We shall describe later how to deal with ideal points.
Set l = max(ρ(x0, x1), ρ(y0, y1)). By Lemma 1.9, we can find paths γi : [0, 1] −→ XC with
γi|(0, 1) smooth, with γ0(0) = x0, γ0(1) = x1, γ1(0) = y0 and γ1(1) = y1, and so that

φ(γi(u))

∣∣∣∣dγidu (u)

∣∣∣∣ ≤ l + ε

for all u ∈ [0, 1] and i = 0, 1. It will be convenient to assume that γ0(u) 6= γ1(u) for all
u ∈ (0, 1). This can always be achieved by a small perturbation. (Alternatively, it will not
be hard to see how to deal with a degenerate situation.)

Our first task is to span the rectangle γ0 ∪ [x0, y0] ∪ γ1 ∪ [x1, y1] by a ruled surface.
More specifically, we are looking for a closed subset S ⊆ R× [0, 1] together with a smooth
map β : S −→ X with the following properties.
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(1) There are smooth functions q0, q1 : [0, 1] −→ R such that q0(u) < q1(u) for all u ∈ (0, 1),
and so that S = {(t, u) ∈ R× [0, 1] | q0(u) < t < q1(u)} (Figure 1a).

(2) γi = β ◦ σi, where σi : [0, 1] −→ R× [0, 1] is given by σi(u) = (qi(u), u) for i = 0, 1.

(3) The map αu = [t 7→ β(t, u)] : [q0(u), q1(u)] −→ X is a d-geodesic parameterised with
respect to arc length, for all u ∈ [0, 1].

(4)
〈
∂β
∂t (t, u), ∂β∂u (t, u)

〉
= 0 for all (t, u) ∈ S.

Note, in property (4), that the vectors ∂β
∂t = β∗(∂/∂t) and ∂β

∂u = β∗(∂/∂u) are well-defined
over the whole of S.

Now,
dσi
du

=
dqi
du

∂

∂t
+

∂

∂u

and so
dγi
du

(u) =
dqi
du

(u)
∂β

∂t
(σi(u)) +

∂β

∂u
(σi(u)).

Thus,
dqi
du

(u) =

〈
dγi
du

(u),
∂β

∂t
(σi(u))

〉
.

Note that ξi(u) = ∂β
∂t (σi(u)) is determined by the points x = σ0(u) and y = σ1(u). Thus

ξ0(u) = −→xy and ξ1(u) = −−→yx.
Suppose, then, that we have γ0 and γ1, and want to construct β. We can obtain

the functions qi, up to an additive constant, by integrating the quantity
〈
dγi
du (u), ξi(u)

〉
.

We see easily that d
du (q1(u) − q0(u)) = d

du (d(γ0(u), γ1(u))), and so we can arrange that
q1(u) − q0(u) = d(γ0(u), γ1(u)) for all u ∈ [0, 1]. Now, let αu : [q0(u), q1(u)] −→ X
be the geodesic joining γ0(u) to γ1(u), parameterised with respect to arc-length. Define
β : S −→ X by β(t, u) = αu(t). Thus, β◦σi = γi and ∂β

∂t (σi(u)) = ξi(u) for u ∈ (0, 1). Now
(from the Implicit Function Theorem), we know that ξ0(u) varies smoothly in u. It follows
that β is smooth. We need finally to verify property (4). From the formula for dq0

du , we find

that
〈
∂β
∂t (σ0(u)), ∂β∂u (σ0(u))

〉
= 0 for all u ∈ (0, 1). Now the vector field

[
t 7→ ∂β

∂u (t, u)
]

along αu is the first variation of a geodesic, and so its component parallel to αu is constant,

and thus equal to 0, i.e.
〈
∂β
∂t (t, u), ∂β∂u (t, u)

〉
= 0 for all (t, u) ∈ S ∩ (R× (0, 1)) and so, by

continuity, for all (t, u) ∈ S. We have thus constructed β.
We now claim:

Lemma 1.10 : For all (t, u) ∈ S, we have

φ(β(t, u))

∣∣∣∣∂β∂u (t, u)

∣∣∣∣ ≤ l + ε.

Given this lemma, we may complete the proof of Proposition 1.5 as follows:
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Suppose x0, y0, x1, y1 ∈ X, and S, β are as above. Given t ∈ [q0(0), q0(1)], let τ :
[0, 1] −→ S be the path defined as follows. If q0(u) < t < q1(u) for all u ∈ (0, 1), we set
τ = [u 7→ (t, u)]. Otherwise, we let τ begin as the path [u 7→ (t, u)] and continue until it
runs into either σ0 or σ1. We then continue along either σ0 or σ1 until we arrive at σ0(1)
or σ1(1).

Now, let δ = β ◦ τ : [0, 1] −→ X. Thus δ is a path joining α0(t) ∈ [x0, y0] to
α1(δ(1)) ∈ [x1, y1]. Moreover, dδ

du (u) is either ∂β
∂u (t, u) or dγi

du (u). In any case, we have

φ(δ(u))
∣∣ dδ
du (u)

∣∣ ≤ l + ε, and so lengthρδ ≤ l + ε. Thus ρ(α0(t), [x1, y1]) ≤ l + ε. But t and
ε > 0 were arbitrary, and we may also invert the roles of [x0, y0] and [x1, y1], and conclude
that hd(ρ)([x0, y0], [x1, y1]) ≤ l.

Now suppose that x0, y0, x1, y1 ∈ XC are arbitrary. Choose ε > 0. If x0 6= y0, then we
can find x′0, y

′
0 ∈ [x0, y0]∩X so that [x0, x

′
0] ⊆ N(ρ)(x0, ε) and [y0, y

′
0] ⊆ N(ρ)(y0, ε). (This

is trivial given that ρ induces the usual topology on XC .) If x0 = y0, we find x′0 = y′0 ∈ X
so that d(x0, x

′
0) ≤ ε. In either case, we have hd(ρ)([x0, y0], [x′0, y

′
0]) ≤ ε. We can similarly

find x′1, y
′
1 ∈ X with hd(ρ)([x1, y1], [x′1, y

′
1]) ≤ ε. The general case of Proposition 1.5 now

follows by applying the first part, and letting ε tend to 0.

Proof of Lemma 1.10 : Fix u ∈ (0, 1) and write q0 = q0(u) and q1 = q1(u). For
t ∈ [q0, q1], set

g(t) = φ(β(t, u)),

j(t) =

∣∣∣∣∂β∂u (t, u)

∣∣∣∣
and

G(t) = g(t)j(t).

We want to show that G(t) ≤ l + ε.

Now j(qi) =
∣∣∣∂β∂u (σi(u))

∣∣∣ ≤ ∣∣∣dγidu (u)
∣∣∣, and so G(qi) ≤ φ(γi(u))

∣∣∣dγidu (u)
∣∣∣ ≤ l + ε. It thus

suffices to see that G cannot attain a maximum in the open interval (q0, q1).
We shall use primes and double primes, G′, G′′ etc., to denote the first and second

derivatives with respect to t.

Write α = αu for the geodesic [t 7→ β(t, u)]. Now,
[
t 7→ ∂β

∂u (t, u)
]

is a Jacobi field along

α. Thus, except where it vanishes, j is smooth in t. Moreover, from the Jacobi equation
and the upper curvature bound (see for example [CE]), we have that j′′(t) ≥ j(t).

We shall want to bound the first and second derivatives of g. Now,

g(t) = φ(α(t)) = f(h(t)) = (sechκh(t))µ

where h(t) = d(p, α(t)), and µ = 1/4κ2. Thus, g(t) = (H(t))−µ where H(t) = coshκh(t).
We claim that |H ′(t)| ≤ κH(t) and |H ′′(t)| ≤ κ2H(t). Note that H is smooth, even in the
case where α(t) = p. In this special case, the inequalities are easily verified, so we shall
assume that α(t) 6= p. Let r(x) = d(x, p), so h(t) = r(α(t)).

Now, H ′(t) = κdr(α′(t)) sinhκh(t). Since |dr| ≤ 1, the first inequality follows.
For the second inequality, write D2r for the second derivative of r at the point x =

α(t). Thus D2r restricted to ker dr is the second fundamental form of the sphere of radius

8
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r(x) = h(t) at x. From the lower curvature bound, the principal curvatures of such a
sphere are at most κ cothκ(h(t)) (i.e. that of a sphere of radius h(t) in Hν(κ)). We see
that |D2r(α′(t), α′(t))| ≤ κ cothκh(t)(1− dr(α′(t))2). Now,

H ′′(t) = κ sinh(κh(t))D2r(α′(t), α′(t)) + κ2 cosh(κh(t))(dr(α′(t)))2,

from which we deduce that 0 ≤ H ′′(t) ≤ κ2H(t), as required. This proves the claim.
Now, recall that g(t) = (H(t))−µ. Thus g′(t) = −µH ′(t)(H(t))−1−µ and g′′(t) =

−µH ′′(t)(H(t))−1−µ + µ(1 + µ)(H ′(t))2(H(t))−2−µ. We see that

|g′(t)| ≤ κµg(t)

and
|g′′(t)| ≤ κ2µ(2 + µ)g(t).

Now, finally, suppose for contradiction, that G(t) = g(t)j(t) attains a maximum a
some point t ∈ (q0, q1). Thus G′(t) = g′(t)j(t) + g(t)j′(t) = 0 and so

G′′(t)

G(t)
=
j′′(t)

j(t)
− 2

(
g′(t)

g(t)

)2

+
g′′(t)

g(t)

≥ 1− 2(κµ)2 − κ2µ(2 + µ)

= 1− κ2µ(2 + 3µ)

≥ 1− 3κ2µ ≥ 1/4.

Thus G′′(t) > 0 contradicting the existence of such a t.
In summary, there is no maximum of G on (q0, q1) and so G(t) ≤ max(G(q0), G(q1)) ≤

l + ε as required. ♦

2. Spanning trees.

In this section, we describe the treelike nature of convex hulls. First, we introduce
some terminology and notation.

Notation.
From now on, we deal with only one metric on X, namely d, the path-metric induced

from the riemannian metric on X. If Q ⊆ XC is closed, we write N(Q, r) = Q ∪ {x ∈ X |
d(x,Q ∩X) ≤ r} for the uniform r-neighbourhood of Q. Thus, N(Q, r) is closed in XC .

By a (combinatorial) tree, T , we mean a simply-connected finite 1-complex, with
vertex set V (T ), and edge set E(T ). We write V0(T ) ⊆ V (T ) for the set of extreme
points of T , i.e. the those vertices which have degree 1. We demand that each vertex of
V1(T ) = V (T ) \V0(T ) should have degree at least 3. It follows that |V (T )| ≤ 2|V0(T )| − 2,
and so there are only a finite number of combinatorial types of trees with a given number
of extreme points. Given s, t ∈ T , we shall write α(s, t) for the arc in T joining s to t.
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Suppose that P ⊆ XC is finite. By a (geodesic) spanning tree, (T, f) for P , we mean
a tree T together with a map f : T −→ XC , such that:

(a) f |V0(T ) is a bijection from V0(T ) to P ,

(b) f(V1(T )) ⊆ X, and

(c) if e ∈ E(T ), then f(e) = [f(v), f(w)] where v, w ∈ V (T ) are the endpoints of e.
It will be convenient to allow for the possibility that v = w so that f(e) is a single

point. Otherwise, we shall assume that f |e is injective. Note that, up to isotopy along the
edges, f is determined by its restriction to V (T ). Note also that f(T ) ∩XI = P ∩XI .

The main theorem on spanning trees.

Theorem 2.1 : (Figure 2a.) Suppose that P ⊆ XC is a set of n points. Then, there is
a spanning tree (T, f) for P such that

(1) hull(P ) contains f(T ) and lies inside an r1-neighbourhood of f(T ), and

(2) Suppose s, t ∈ T and u lies in the arc α(s, t) ⊆ T joining s to t. If β is any path from
f(s) to f(t) lying in hull(P ), then f(u) lies a distance at most r2 from β.

Here ri = ri(κ, n) are functions only of n and κ, which have the form ri(κ, n) = λ(κ)+µi(n).
Moreover, we can arrange that µ1(n) = O(log log n) and µ2(n) = O(log n).

In most (if not all) cases, one can take f to be injective, so that we get an embedded
tree. If the dimension ν is at least 3, this can always be acheived by a small perturbation.
It seems more natural, however, to speak in terms of immersed trees.

Note that property (1), alone, is not sufficient to capture the treelike nature of hull(P ).
Without property (2), we could form a spanning tree simply by choosing any point a ∈
hull(P ), and joining it to each point of P by a geodesic path. In this way, r1 would be
independent of n.

Even if property (2) is added, I suspect that r1 can be made independent of n, i.e.
that we should be able to get rid of the term µ1(n). However, µ1(n) = O(log log n) is the
best I can do. On the other hand, µ2(n) = O(log n) is the best possible, as can be seen
by considering a set of n points evenly spaced about a circle of radius r in the hyperbolic
plane. In this case, the convex hull is a regular polygon with n vertices. It is not hard to
see that the best spanning tree (in the sense of minimising µ2(n)) is obtained by joining
each vertex to the centre by a geodesic segment of length r. Now, as r tends to infinity,
2r minus the length of a side of the polygon tends to − log sin(π/n) = O(log n). I make
no attempt here to find the best multiplicative constant.

There are several ways one might attempt to refine this result. One of these will be
relevant to the proof of Theorem 4.1 in Section 4. Note that the term µ2 = O(log n) only
really enters when we have a cluster of O(n) vertices of f(V1(T )) in a small region of X.
Thus, if we have a long edge f(e) in our spanning tree, we would expect that hull(P )
should have small cross-section along most of f(e). In other words, hull(P ) separates into
two pieces joined by a long thin tube, which we can imagine as a tubular neighbourhood
of f(e). Such tubes have bounded volume, as will be explained in Sections 3 and 4.

It is by no means clear that the lower curvature bound −κ2 is necessary. Perhaps the
term λ(κ) can be removed. However, Anderson’s construction gives λ(κ)→∞ as κ→∞.
For this reason, we do not bother to estimate λ(κ) here. The reader can obtain such an
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estimate by referring to [A] and [Bo2]. We note however that λ can be assumed continuous
in κ.

A basic geometric lemma.
To study the geometry of spanning trees, we shall need a simple result (Lemma 2.3)

related to well-known facts about the approximation of quasigeodesics by geodesics in
hyperbolic space. The argument we apply is a standard one. First, we note the following
simple consequence of Toponogov’s comparison theorem (Lemma 1.1), and some hyperbolic
trigonometry:

Lemma 2.2 : Suppose that a, b ∈ X, and p ∈ [a, b] is the midpoint of [a, b]. Set
r = d(a, p) = 1

2d(a, b). Suppose that β is a path from a to b with d(p, β) ≥ r. Then
lengthβ ≥ π sinh r. ♦

Lemma 2.3 : Suppose the points x, y ∈ X are joined by a path β of length at most
d(x, y) + h, where h ≥ 0. Then, β lies inside a φ(h)-neighbourhood of the geodesic [x, y].
Conversely, [x, y] lies inside a θ(h)-neighbourhood of β. Here θ(h) = O(log h) and φ(h) =
O(h) are universal functions of h.

Proof : Choose p ∈ [x, y] so as to maximise d(p, β). Let r = d(p, β). Let a ∈ [x, p] and
b ∈ [y, p] satisfy d(a, p) = d(b, p) = r. If d(x, p) ≥ 2r, let a′ ∈ [x, p] be the point with
d(a′, p) = 2r, and choose z ∈ β with d(z, a′) ≤ r. If d(a′, p) < 2r, set a′ = z = x. Note
that d(p, [a′, z]) ≥ r. Similarly choose a point b′ ∈ [y, p] and w ∈ β with d(w, b′) ≤ r and
d(p, [b′, w]) ≥ r (Figure 2b). It will not matter to us in what order the points z and w
occur along β. Let γ be the segment of β lying between z and w. Then, by Lemma 2.2,
we have

d(a, a′) + d(a′, z) + length γ + d(w, b′) + d(b′, b) ≥ π sinh r,

and so

length γ ≥ π sinh r − 4r.

Let β′ be the path obtained from β by replacing γ with the path [z, a′] ∪ [a′, b′] ∪ [b′, w].
We have

h = lengthβ − d(x, y) ≥ lengthβ − lengthβ′

≥ length γ − 6r ≥ π sinh r − 10r.

Thus r ≤ θ(h) where θ(h) = O(log h), and so

[x, y] ⊆ N(β, θ(h)).

Now suppose that q ∈ β. The point q divides β into two subpaths β1 and β2. By
continuity, we can find some s ∈ [x, y] with d(s, β1) ≤ θ(h) and d(s, β2) ≤ θ(h). Since
lengthβ ≤ d(x, y) + h, it follows easily that d(p, s) ≤ φ(h) = 2θ(h) + h/2 = O(h). Thus
β ⊆ N([x, y], φ(h)). ♦
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Spanning trees.
Next, we describe the spanning tree construction. Given the upper curvature bound,

we see that X is k-hyperbolic in the sense of Gromov [Gr], for some fixed parameter, k.
(Here k depends only on the precise formulation of hyperbolicity we choose to use.) In
[Gr, Section 3.2], Gromov outlines a method of constructing spanning trees of finite sets
in such spaces. We quote the following refinement of this result [Bo2, Theorem 7.6.1]:

Lemma 2.4 : Suppose P ⊆ X is a set of n points. Then, there is a geodesic spanning
tree, (T, f) for B, with the property that if v, w ∈ V0(T ), then

length f(α(v, w)) ≤ d(f(v), f(w)) + h(n)

where h(n) = O(log n). ♦
Here, length f(α(v, w)) is equal to

∑p
i=1 d(f(vi), f(vi−1)) where v0 = v, vp = w and

v1, v2, . . . , vp−1 are the successive points of V (T ) along the arc α(v, w). Note that it follows
that for arbitrary s, t ∈ T , then length f(α(s, t)) ≤ d(f(s), f(t)) + h(n). Inspection of the
construction of [Bo1, Chapter 7], shows that f(T ) ⊆ hull(P ).

Most of the work in proving this lemma is involved in obtaining the logarithmic
bound on h(n) (which gives us the polynomial bound on volume in Section 3). If one
is unconcerned about this, it is possible to give an elementary argument as follows. We
choose an arbitrary order on the set of n points, and construct an embedded spanning tree
f(T ) inductively by joining the (i + 1)th point by a geodesic arc to the nearest point on
the spanning tree of the first i points (see [Bo1, Lemma 3.3.1]). We easily see the existence
of some bound h(n). With some work, it turns out to be linear in n. (Unfortunately, the
argument of [Bo1, Chapter 7] is not guaranteed to give us an embedded tree in the case
where X has dimension 2, though I suspect this ought to be possible.)

We want a version of Lemma 2.4 which allows for the possibility of P containing some
ideal points:

Lemma 2.5 : Suppose P ⊆ XC is a set of n points. Then, there is a spanning tree (T, f)
for P such that if s, t ∈ T and α(s, t) is the arc joining them, then

length f(α(s, t)) ≤ d(f(s), f(t)) + h(n),

where h(n) = O(log n) is the same constant as in Lemma 2.4.

Proof : As remarked after Lemma 2.4, the case where P ⊆ X is already dealt with.
For a general P ⊆ XC , we choose a sequence (Pi) of subsets of X, each with n points,

and with Pi tending to P . From the first part, we obtain a spanning tree (Ti, fi) for each
Pi. We can imagine V0 = V0(T ) as a fixed set, with fi(v) tending to a certain element
f(v) ∈ P , for all v ∈ V0. Thus, f : V0 −→ P is a bijection. Now there are only finitely
many possibilities for combinatorial trees with extreme points V0. Thus, passing to a
subsequence, we can take Ti = T to be a fixed tree. It now suffices to define f(u) for all
u ∈ V1(T ) = V (T ) \ V0. We shall take f(u) to be a limit point of the sequence fi(u).
However we do not want f(u) to be an ideal point, so we have to rule out this possibility.
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Suppose then, that u ∈ V1(T ). By definition, u has degree at least 3. Choose
v1, v2, v3 ∈ V0(T ) so that no two lie in the same component of T \ {u}. In other words,
u ∈ α1 ∩ α2 ∩ α3 where αj = α(vj , vj+1) and 3 + 1 = 1. From the construction,
and applying Lemma 1.3, we have fi(αj) ⊆ N([fi(vj), fi(vj+1)], ρ) for all i ∈ N and

j ∈ {1, 2, 3}, where ρ = φ(h(n)). In particular, fi(u) ∈
⋂3
j=1N([fi(vj), fi(vj+1)], ρ). Now,

as i → ∞, we have fi(vj) → f(vj) and so the geodesic [fi(vj), fi(vj+1)] converges to
[f(vj), f(vj+1)]. In particular, given any ε > 0, then for all sufficiently large i, we have

fi(u) ∈ N =
⋂3
j=1N([f(vj), f(vj+1)], ρ+ε). Now, this intersection, N , is a compact subset

of X (see the discussion of “centres” in [Bo1, Chapter 3].) Thus, passing to a subsequence,
we have that fi(u) converges to a point f(u) ∈ X.

We have thus defined f : V (T ) −→ XC . We may extend f over T by sending each
edge e ∈ E(T ) to the geodesic segment [f(t), f(u)] where t, u ∈ V (T ) are the endpoints of
e. Note that fi(e) converges to f(e), so the conclusion of the lemma may be verified. ♦

Note that, in the above proof, we have fi(u) ∈ hull(Pi) for all i, and for all u ∈ V1(T ).
It follows, by Theorem 1.5, that f(u) ∈ hull(P ). Thus, f(T ) ⊆ hull(P ).

Proof of the main theorem.

From now on, we assume that X as curvature pinched between −κ2 and −1. The proof
of Theorem 2.1 will combine the results of the last section with the convex hull construction
of Anderson [A]. The ideas behind this construction will be described in Section 3. For the
present section we just need to quote one direct consequence, which is described in [Bo2].

We say that a closed set Q ⊆ XC is K-quasiconvex if a geodesic joining any two points
x, y of Q remains within a distance K of Q, i.e. [x, y] ⊆ N(Q,K). In [Bo2] it was shown
that, in such a case, hull(Q) lies in a uniform R-neighbourhood of Q, where R depends
only on K and κ. The idea is that if we are sufficiently far away from a quasiconvex set,
it will appear “small” as measured by the maximal angle subtended by two points in the
set. Now Anderson’s construction may be used to find a convex surface separating us from
the set.

Now suppose Q ⊆ XC is an arbitrary closed set. Recall the definition, join(Q) =⋃
{[x, y] ⊆ XC | x, y ∈ Q}, thought of as a first approximation to the convex hull. Now

any two points of join(Q) can be joined by a piecewise geodesic path in join(Q) with at
most 3 geodesic segments. It follows that join(Q) is (2 cosh−1

√
2)-quasiconvex. We arrive

at the following (described in [Bo2]):

Lemma 2.6 : If Q ⊆ XC is closed, then hull(Q) lies inside a σ-neighbourhood of join(Q)
where σ = σ(κ) is some fixed function of the pinching constant κ.

(Although it is not explicitly stated in [Bo2], it is apparent from the construction that
σ is independent of the dimension ν.)

Proof of Theorem 2.1 : Suppose that (T, f) is the spanning tree given by Lemma
2.5. Thus f(T ) ⊆ hull(P ). Applying Lemma 2.3, we see that if s, t ∈ T , we have
[f(s), f(t)] ⊆ N(f(α(s, t)), µ1(n)) where µ1(n) = θ(h(n)) = O(log log n). In partic-
ular, we have join(P ) ⊆ N(f(T ), µ1(n)). By Lemma 2.6, it follows that hull(P ) ⊆
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N(join(P ), σ(κ)) ⊆ N(f(T ), r1), where r1 = σ(κ) + µ1(n). This proves property (1).
To see Property (2), suppose s, t ∈ T and u ∈ α(s, t). We can suppose that u /∈ V0(T ),

and so T \ {u} is disconnected. Thus we can write T = T1 ∪ T2 with s ∈ T1 and t ∈ T2

and such that u ∈ α(x, y) whenever x ∈ T1, and y ∈ T2. (Thus T1 ∩ T2 = {u}.) Now, let β
be any path joining f(s) to f(t) in hull(P ). By continuity and using Property (1), we can
find some b ∈ β with d(b, f(T1)) ≤ r1 and d(b, f(T2)) ≤ r1. Thus, we can find x ∈ T1 and
y ∈ T2 with d(b, f(x)) ≤ r1 and d(b, f(y)) ≤ r1 (Figure 2c). By the construction of (T, f),
we have that

length f(α(x, y)) ≤ d(f(x), f(y)) + h(n) ≤ 2r1 + h(n).

Since u ∈ α(x, y), we have, without loss of generality, that d(f(u), f(x)) ≤ 1
2 (2r1 + h(n)).

It follows that d(f(u), β) ≤ r1 + 1
2 (2r1 + h(n)) = 2r1 + 1

2h(n) = λ(κ) + µ2(n), where
λ(κ) = 2σ(κ) and µ2(n) = 2µ1(n) + 1

2h(n) = O(log n). ♦

3. Tubular neighbourhoods of geodesics.

In this section, we describe a variation of Anderson’s construction of convex sets.
Specifically we are aiming at Propositions 3.4 and 3.5. These will be used in the proof of
Theorems 4.1 and 4.2.

As remarked in the introduction, a uniform neighbourhood of a geodesic segment
is always convex (by the convexity of the distance function, Lemma 1.3). The problem
for us is that, given a fixed radius, there is no upper bound on the volumes of such
neighbourhoods. Indeed the volume will be infinite if one of the endpoints is ideal. To
deal with this problem we will need to vary the radius along the tube in such a way that
convexity is preserved. Our basic building blocks will be called “joints”. They are convex
pieces used to connect together pieces of tube of different radii. By choosing these radii
appropriately we arrange that total volumes remain bounded.

Basic observations.
Recall that X has dimension ν and curvature pinched between −κ2 and −1. Given

a closed convex set Q ⊆ XC , we shall write π = πQ : XC −→ Q for the nearest point
retraction. This map is continuous (see for example [Bo2]). We shall write volν for the
ν-dimensional volume. For m ≥ 0, we write ∆(m) for the m-volume of the unit sphere in
euclidean (m+ 1)-space (so that ∆(0) = 2).

Let us begin by recalling some basic facts about hyperbolic ν-space, Hν . The volume

of a uniform r-ball in Hν equals ∆(ν − 1)
∫ r

0
sinhν−1 xdx ≤ ∆(ν−1)

ν−1 e(ν−1)r. The boundary
of the r-ball is a totally umbilic surface with principal curvatures equal to coth r. Suppose
x, y are distinct points of Hν

I . Let π be the nearest point retraction of Hν
C to [x, y]. Suppose

a, b ∈ [x, y] ∩X, and let l = d(a, b). Then, for all r > 0,

volν(N([x, y], r) ∩ π−1[a, b]) = l∆(ν − 2)

∫ r

0

sinhν−2 x coshxdx

=
l∆(ν − 2)

ν − 1
sinhν−1 r.
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The boundary ∂N([x, y], r) has one (longitudinal) principal curvature equal to tanh r, and
all the remaining principal curvatures (in the radial directions) equal to coth r.

From these observations, we obtain bounds on the corresponding quantities in X.
These may be proven by standard arguments, using Jacobi fields and the Rauch Compari-

son theorem (see [CE]). Thus, the volume of a uniform r-ball inX is at most ∆(ν−1)
κν(ν−1)e

κ(ν−1)r.

Also the principal curvatures of a sphere if radius r lie between coth r and κ cothκr. Sup-
pose that x, y ∈ XI , and π : XC −→ [x, y] is the nearest point retraction. Suppose that
a, b ∈ [x, y] ∩X and l = d(a, b) and r > 0. Then,

volν(N([x, y], r) ∩ π−1[a, b]) ≤ l∆(ν − 2)

κν−1(ν − 1)
sinhν−1 κr.

Also, the principal curvatures of ∂N([x, y], r) all lie between tanh r and κ cothκr. Note
that for any a ∈ [x, y] ∩ X, the preimage π−1(a) is a properly embedded codimension-1
submanifold—the image of a subspace under the exponential map based at a.

The following may also be proven by comparison with hyperbolic space.

Lemma 3.1 : Given K > 0, there is some l = l(K) > 0 so that the following
holds. If x, y ∈ XI are distinct, and π : XC −→ [x, y] is the nearest point retrac-
tion, then for all p, q ∈ X with d(p, q) ≤ l, we have that d(π(p), π(q)) ≤ Ke−r, where
r = min(d(p, [x, y]), d(q, [x, y])). ♦

A variation on Anderson’s construction.
We now describe the idea behind Anderson’s construction. Given x ∈ X, we write

TxX for the tangent space to X at x. We write T 1
xX ⊆ TxX for the unit tangent space at

x. Given ξ, ζ ∈ TxX, we write 〈ξ, ζ〉 and |ξ| for the riemannian inner-product and norm
respectively.

Given a smooth function φ : X −→ R, we write gradφ for the gradient vector field,
and write D2φ for the second derivative of φ. Thus, if ξ, ζ ∈ TxX, we have D2φ(ξ, ζ) =
D2φ(ζ, ξ) = 〈∇ξgradφ, ζ〉. We write

|D2φ(x)| = max{|D2φ(x)(ξ, ξ)| | ξ ∈ T 1
xX}.

Suppose that Q ⊆ X is closed and convex. Define ρ = ρQ : X −→ [0,∞) by ρ(x) =
d(x,Q). Thus ρ is C1, and |grad ρ| = 1, on X \ Q (see [BaGS]). Let us assume that ρ is
smooth on X \ Q. (This is always true in the cases that interest us, for example if Q is
a single point or a bi-infinite geodesic. In fact it is enough to assume that ρ is C2.) The
boundaries of uniform neighbourhoods of Q are level sets of ρ. We aim to join together
pieces of such level sets by convex surfaces, obtained from perturbations of ρ. Our goal,
in this regard, is Lemma 3.3.

Now, D2ρ(x)(ξ, grad ρ) = 0 for all ξ ∈ TxX, and D2ρ(x) restricted to the subspace
(grad ρ(x))⊥ = ker dρ(x) gives us the second fundamental form of the surface ∂N(Q, ρ(x))
at x. Since ∂N(Q, ρ(x)) is strictly convex, the second fundamental form is positive definite.
It follows that if ξ ∈ T 1

xX, then D2ρ(x)(ξ, ξ) ≥ (1 − 〈ξ, grad ρ〉2)m(x), where m(x) is the
minimal principal curvature of ∂N(Q, ρ(x)) at x. In fact, using the Jacobi field equation,
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we find that always m(x) ≥ tanh ρ(x). We shall only need this result here in the case
where Q is a bi-infinite geodesic, which we described above.

Now, suppose that we have a map ψ : X −→ R which is continuous on X, and smooth
on X\Q. Suppose that ψ(x) ≤ 0 for all x ∈ Q, and that 〈gradψ, grad ρ〉 > 0 everywhere on
X \Q. Given r > 0, let M(r) = ψ−1(−∞, r]. Then M(r) is a connected submanifold of X
with smooth boundary ∂M(r) = ψ−1(r), and containing Q in its interior. We may compute
the second fundamental form of ∂M(r) at x ∈ ∂M(r) as 1

|gradψ(x)|D
2ψ(x) restricted to

ker dψ(x). Thus, M(r) will be convex if D2ψ(x) is positive definite on ker dψ(x).
We shall take ψ to be a perturbation of ρ. Thus ψ = ρ − εφ where ε ≥ 0, and

φ : X −→ [0, 1] is smooth, and satisfies |gradφ| ≤ c1 and |D2φ| ≤ c2 where c1 and c2 are
constants. If ε < 1/c1, then 〈gradψ, grad ρ〉 ≥ 1− c1ε > 0 on X \Q. Suppose r > 0, and
x ∈ ∂M(r). Then ρ(x) ≥ ψ(x) = r. If ξ ∈ ker dψ(x) ∩ T 1

xX, then |〈ξ, grad ρ〉| ≤ c1ε < 1,
and so D2ρ(x)(ξ, ξ) ≥ (1 − (c1ε)

2)m(x). Thus D2ψ(x)(ξ, ξ) ≥ (1 − (c1ε)
2)m(x) − c2ε.

Therefore, given that m(x) ≥ tanh ρ(x) ≥ tanh r, the manifold M(r) will be convex
provided that c2ε ≤ (1− (c1ε)

2) tanh r. Note that

N(Q, r) ⊆M(r) ⊆ N(Q, r + ε),

and that
∂M(r) ∩ φ−1(0) = ∂N(Q, r) ∩ φ−1(0)

∂M(r) ∩ φ−1(1) = ∂N(Q, r + ε) ∩ φ−1(1).

The following lemma gives us a suitable perturbation, φ.

Lemma 3.2 : Given any l > 0, there exist constants c1, c2, η > 0, depending on l
and κ, such that for all p ∈ X, there is a smooth map φ = φp : X −→ [0, 1] such that
|gradφ| ≤ c1 and |D2φ| ≤ c2 everywhere, and such that φ(x) = 0 if d(x, p) ≤ η and
φ(x) = 1 if d(x, p) ≥ l − η.

Proof : Let ρp be defined by ρp(x) = d(p, x). Thus ρp is smooth on X \ {p}, and we
know from the above discussion that |D2ρp(x)| ≤ κ cothκρp(x). Choose any η < l/2, and
some smooth function g : [0,∞) −→ [0, 1] such that g|[0, η] ≡ 0, g|[l − η,∞) ≡ 1 and
such that, for all r ≥ 0, |g′(r)| ≤ c1 tanhκr and |g′′(r)| ≤ c3, where c1 and c3 depend
only on κ and l. Now let φ = φp = g ◦ ρp. Then |gradφ(x)| ≤ |g′(ρp(x))| ≤ c1 and
|D2φ(x)| ≤ |g′′(ρp(x))|+ |g′(ρp(x))||D2ρp(x)| ≤ c3 + κc1 = c2. ♦

Let’s return to our discussion with Q ⊆ X closed and convex, and with ρ(x) = ρ(Q, x)
smooth on X \ Q. Given r > 0, we choose ε ≥ 0 so that c2 ≤ (1 − (c1ε)

2) tanh r. Given
p ∈ X, write ψp = ρ − εφp. We see that Mp(r, ε) = ψ−1

p (−∞, r] is convex. Suppose we
have A ⊆ ∂N(Q, r + ε) and B ⊆ ∂N(Q, r) both closed, and such that d(A,B) ≥ l. Set
MB(r, ε) =

⋂
p∈BMp(r, ε). Then MB(r, ε) convex, and

N(Q, r) ⊆MB(ρ, ε) ⊆ N(Q, r + ε),

and
∂MB(r, ε) ∩N(A, η) = ∂N(Q, r + ε) ∩N(A, η)

∂MB(r, ε) ∩N(B, η) = ∂N(Q, r) ∩N(B, η).
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The construction given in [A] takes Q to be a single point. Here, we take Q to be a
bi-infinite geodesic.

Lemma 3.3 : For all k > 0 there is some δ = δ(κ, k) such that the following holds
(Figure 3a).

Suppose x, y ∈ XI are distinct. Let π : XC −→ [x, y] be the nearest point retraction.
Suppose r > 0, and that a, b ∈ [x, y] ∩X with b ∈ [a, y] and d(a, b) ≥ ke−r. Suppose that
r ≤ R ≤ r + δ tanh r. Then there is a convex set M ⊆ X such that

N([x, y], r) ⊆M ⊆ N([x, y], R),

and
∂M ∩ U = ∂N([x, y], R) ∩ U
∂M ∩ V = ∂N([x, y], r) ∩ V,

where U, V are, respectively, neighbourhoods in X of the sets ∂N([x, y], R)∩π−1[x, a] and
∂N([x, y], r) ∩ π−1[y, b].

Proof : Given k > 0, let l = l(k) be the constant of Lemma 3.1. Given this, let c1
and c2 be the constants of Lemma 3.2. Choose δ > 0 so that c2δ ≤ 1 − (c1δ)

2. Thus,
δ depends only on k and κ. Now suppose that x, y, a, b, r, R are as in the hypotheses.
Let ε = R − r ≤ δ tanh r ≤ δ. Thus c2ε ≤ (1 − (c1ε)

2) tanh r. Set Q = [x, y] and let
A = ∂N(Q,R) ∩ π−1[x, a] and B = ∂N(Q, r) ∩ π−1[y, b]. Thus, by Lemma 3.1, we have
d(A,B) ≥ l. Set M = MB(r, ε), U = N(A, η) and V = N(B, η), where η comes from
Lemma 3.2. The result follows from the above discussion. ♦

Given x, y, a, b, r, R as in the hypotheses of Lemma 3.3, we shall write J(a, b, R, r) =
M ∩π−1[a, b], where M is the convex set thus constructed. We may think of J(a, b, R, r) as
a “joint” used to connect two tubes of unequal radii. Write ∂0J(a, b, R, r) = ∂M∩π−1[a, b].
Since J(a, b, R, r) ⊆ N([x, y], R) ∩ π−1[a, b], we have

volνJ(a, b, R, r) ≤ d(a, b)
∆(ν − 2)

κν−1(ν − 1)
sinhν−1 κR.

(Recall that ∆(ν − 2) is the volume of (ν − 2)-sphere.)

Application to the construction of long thin tubes.
Suppose that x, y ∈ XI , and p ∈ [x, y] ∩ X. Let H = π−1[x, p]. (Thus H is the

image of a half-space under the exponential map based at p.) We construct a convex set
containing H ∪ [x, y] by stringing together a bi-infinite sequence of joints as follows.

For convenience, set k = 1, as let δ = δ(κ, 1) be the constant given by Lemma 3.3.
Let c = tanh 1, and η = cδ. Let L = 1/(1− e−η). Note that tanh r ≥ cr for r ∈ [0, 1] and
tanh r ≥ c for r ∈ [1,∞).

We form a bi-infinite sequence (ai)
∞
i=−∞ of points of [p, y], with ai+1 ∈ [ai, y] for all

i, as follows. We set a0 ∈ [p, y] to be the point such that d(a0, p) = L, and demand, for
all i ≥ 0, that d(ai, ai+1) = 1 and d(a−(i+1), a−i) = e−ηi. Note that as i → ∞, we have
ai → y, and, since L =

∑∞
i=0 d(a−i, a−(i+1)), we have that a−i → p.

17
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For i ≥ 0, set ri = (1 + η)−i and r−i = 1 + ηi. Thus, ri+1 < ri for all i. If i ≥ 0, then
ri − ri+1 = η(1 + η)−(i+1) = ηri+1 = δ(cri+1) ≤ δ tanh ri+1 and 1 = d(ai+1, ai) ≥ e−ri+1 .
Thus, by Lemma 3.3, we can construct the joint Ji = J(ai, ai+1, ri, ri+1). We also have
that r−(i+1) − r−i = η = δc ≤ δ tanh r−i and d(a−(i+1), a−i) = e−ηi ≥ e−(1+ηi) = e−r−i .
Again, by Lemma 3.3, we construct J−(i+1) = J(a−(i+1), a−i, r−(i+1), r−i).

Let J = H ∪
⋃∞
i=−∞ Ji. (Figure 3b.) Thus, J is connected, with boundary ∂J =⋃∞

i=−∞ ∂0Ji. We see that, for all i, the boundary ∂J agrees with ∂N([x, y], ri) on some
neighbourhood, U , of ∂N([x, y], ri) ∩ π−1(ai), i.e. ∂J ∩ U = (∂0Ji ∪ ∂0Ji−1) ∩ U =
∂N([x, y], ri) ∩ U . Since convexity for a connected set is a local property, we see that
J is convex. Clearly H ∪ [x, y] ⊆ J .

For i ≥ 0, we have

volνJi ≤
∆(ν − 2)

κν−1(ν − 1)
sinhν−1 κri.

Now, ri = (1 + η)−i ≤ 1, and so sinhν−1 κri ≤ rν−1
i sinhν−1 κ = (1 + η)−i(ν−1) sinhν−1 κ.

Thus

volνJi ≤
∆(ν − 2)

ν − 1

(
sinhκ

κ

)ν−1

(1 + η)−(ν−1)i,

and so

volν(J ∩ π−1[a0, y]) =
∑
i=0

volνJi

≤ ∆(ν − 2)

ν − 1

(
sinhκ

κ

)ν−1(
1

1− (1 + η)−(ν−1)

)
which is finite, and a function only of ν and κ.

Similarly, for any fixed i0 ≥ 0, we have that volν(J ∩ π−1[a−i0 , a0]) =
∑i0
i=1 volνJ−i,

which is bounded by some function of ν, κ and i0. Note that given any q ∈ [p, y] \ {p},
we can find some i0, such that q ∈ [p, ai0 ]. This i0 depends only on κ and d(p, q). We
conclude:

Proposition 3.4 : (Figure 3c.) Given any ζ > 0, there is some constant K(ν, κ, ζ)
such that the following holds. Suppose that x, y ∈ XI are distinct points, and that p, q ∈
[x, y] ∩ X with q ∈ [p, y] and d(p, q) ≥ ζ. Let π : XC −→ [x, y] be the nearest point
retraction, and let H = π−1[x, p] and H0 = π−1[q, y]. Then,

volν(H0 ∩ hull(H ∪ {y})) ≤ K(ν, κ, ζ).

♦

In fact, we see that K(ν, κ, ζ)→ 0 as ζ →∞.

By a similar argument, we arrive also at the following:

18



Convex hulls in manifolds of pinched negative curvature

Proposition 3.5 : (Figure 3d.) Given any ζ > 0, there is some constant K ′ = K ′(ν, κ, ζ)
such that the following holds. Suppose that x, x′ ∈ XI and p, q, p′, q′ ∈ [x, x′] ∩ X are
points occurring in the order xpqq′p′y along [x, x′], so that d(p, q) ≥ ζ and d(p′, q′) ≥ ζ.
Let H = π−1[x, p], H ′ = π−1[x′, p′] and H0 = π−1[q, q′]. Then,

volν(H0 ∩ hull(H ∪H ′)) ≤ K ′(ν, κ, ζ).

♦

For notational convenience, we set K ′(ν, κ, ζ) = K(ν, κ, ζ). (Thus, Proposition 3.4
may be regarded as a corollary of Proposition 3.5.)

4. Boundedness and continuity of volume.

The first result of this section is the fact that convex hull of of finite sets have finite,
indeed bounded volume:

Theorem 4.1 : Given n ∈ N, there is some constant C(ν, κ, n) such that if P ⊆ XC is
a set of n points, then volν hull(P ) ≤ C(ν, κ, n). Moreover, for fixed ν and κ, C(ν, κ, n) is
bounded by some polynomial in n.

We also note that, for fixed ν and n, C(ν, κ, n) can be assumed continuous in κ. As
far as I know, it may be possible to remove dependence on κ altogether, though I suspect
not.

The second result of this section shows how these volumes vary continuously. Let
P = {p1, . . . , pn}. Thus P , and hence hull(P ) vary continuously in (p1, . . . , pn) ∈ Xn

C . In
proving Theorem 4.1, we will effectively show that most of the volume of hull(P ) lies inside
a certain compact convex set. Usually this set can be chosen to be locally constant. The
only problem arises if two vertices pi and pj converge on the same ideal point. Let Λ be the
set of (p1, . . . , pn) ∈ Xn

C such that for two distinct i, j ∈ {1, . . . , n}, we have pi = pj ∈ XI .

Theorem 4.2 : The map fromXn
C to [0,∞) which sends (p1, . . . , pn) to volν hull{p1, . . . , pn}

is continuous on Xn
C \ Λ.

Proof of boundedness of volume.
The ingredients we use for Theorem 4.1 are the existence of a spanning tree (T, f)

with the property that length f(α(s, t)) ≤ d(f(s), f(t)) + h(n) for all s, t ∈ T (Lemma
2.5), together with the fact that for such a tree we have hull(P ) ⊆ N(f(T ), r1(κ, n))
(Theorem 2.1). If we want the polynomial bound, we need that h(n) = O(log n) and that
r1(κ, n) = λ(κ) + µ1(n) where µ1(n) = O(log n). (We know that µ1(n) = O(log log n).) I
suspect that, in fact, C(ν, κ, n) is always bounded by a linear function of n.

Given such a spanning tree, (T, f), we write V (T ) = V0(T )tV1(T ), where V0(T ) is the
set of extremal vertices, and V1(T ) is the set of internal vertices. Thus, f(V0(T )) = P . We
write E0(T ) for the set of extremal edges, i.e. those incident on some vertex of V0(T ). We
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write E1(T ) = E(T ) \E0(T ) for the set of internal edges. We have |V0(T )| = |E0(T )| = n
and |V1(T )| ≤ n− 2 and E1(T ) ≤ n− 3.

The proof of Theorem 4.1 is based on the observation (Lemma 4.5) that hull(P ) lies
inside a certain neighbourhood of f(T ) which consists of uniform balls about each internal
vertex, together with tubes along each of the edges. The volumes of these tubes are
bounded by the results of Section 3. The balls about the vertices can be taken to have
radii O(log n) which gives us our polynomial bound on C(ν, κ, n).

We assume that n ≥ 3. Suppose that e ∈ E1(T ) with endpoints v0, v1 ∈ V1(T ). Any
point in the interior of e divides T into two components, T1 and T2, with vi ∈ Ti. Let
Wi = Ti ∩ V0(T ) and Pi = f(Wi). Thus P = P0 t P1. Let π : XC −→ f(e) be the nearest
point retraction to f(e) = [f(v0), f(v1)].

Lemma 4.3 : If e ∈ E1(T ), and v0, v1, P0, P1, π are as above, then d(f(vi), π(p)) ≤ h(n)
for all p ∈ Pi, and i = 0, 1.

Proof : Let p = f(w) where w ∈ Wi. Let π(p) = f(u) where u ∈ e. Suppose first,
that p ∈ X. By the definition of π, we have d(f(w), f(u)) = d(p, π(p)) ≤ d(p, f(vi)) ≤
length f(α(w, vi)), By the construction of (T, f) (Lemma 1.5), we have length f(α(w, u)) ≤
d(f(w), f(u))+h(n). Thus d(f(vi), π(p)) = d(f(vi), f(u)) = length f(α(w, u))−length f(α(w, vi))
≤ h(n). The case where p = f(w) ∈ XI can be dealt with by taking a sequence of points
wj ∈ T \ {w} tending to w. ♦

By a similar argument, we have:

Lemma 4.4 : Suppose e ∈ E0(T ) is incident on v ∈ V1(T ) and w ∈ V0(T ). Then
d(f(v), π(p)) ≤ h(n) for all p ∈ f(V0(T ) \ {w}). ♦

Now suppose e ∈ E(T ). For any ζ ≥ 0, we define S(e, ζ) to be a (possibly empty)
closed segment of f(e) as follows. If e ∈ E1(T ), incident on v, w ∈ V1(T ), let S(e, ζ) =
{x ∈ f(e) | d(x, {f(v), f(w)}) ≥ h(n) + ζ}. Thus, by Lemma 4.3, d(S(e, ζ), π(p)) ≥ ζ for
all p ∈ P . If e ∈ E0(T ), incident on v ∈ V1(T ) and w ∈ V0(T ), let S(e, ζ) = {x ∈ f(e) |
d(x, f(v)) ≥ h(n) + ζ}. Thus, by Lemma 4.4, d(S(e, ζ), π(p)) ≥ ζ for all p ∈ P \ {f(w)}.
In either case, set G(e, ζ) = hull(P )∩ π−1(S(e, ζ)). Applying Propositions 3.4 and 3.5, we
find that

volνG(e, ζ) ≤ K(ν, κ, ζ)

for all e ∈ E(T ).
For the proof of Theorem 4.2, we will need to note that, given any c > 0, we can

assume that G(e, ζ) lies inside a c-neighbourhood of f(e), provided ζ is sufficiently large
depending on c and κ.

We now come to the result that confines the convex hull to a union of balls and thin
tubes. Let R = R(κ, n) = r1(κ, n) + h(n) = λ(κ) + µ1(n) + h(n) = λ(κ) +O(log n).

Lemma 4.5 : For any ζ > 0,

hull(P ) ⊆
⋃

v∈V1(T )

N(f(v), R+ ζ) ∪
⋃

e∈E(T )

G(e, ζ).
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Proof : Suppose x ∈ hull(P ). Let y ∈ f(T ) be a nearest point in f(T ) to x. We thus
have d(x, y) ≤ r1. Now, y ∈ e for some e ∈ E(T ). If y ∈ S(e, ζ), then x ∈ G(e, ζ). If
y ∈ f(e) \ S(e, ζ), then, by definition of S(e, ζ), there is some v ∈ V1(T ), incident on e, so
that d(f(v), y) ≤ h(n) + ζ. Thus x ∈ N(f(v), R+ ζ). ♦

Proof of Theorem 4.1 : For the proof, we take ζ = 1.
In Section 3, we gave an upper bound for the volume of a uniform ball. Thus,

volνN(f(v), R+ 1) ≤ ∆(ν − 1)

κν(ν − 1)
eκ(ν−1)(R(κ,n)+1) = B(ν, κ, n).

From the form of R(κ, n), we see that, for fixed κ and ν, B(ν, κ, n) is bounded by some
polynomial in n. By Lemma 4.5, we have that

volν hull(P ) ≤ |V1(T )|B(ν, κ, n) + |E(T )|K(ν, κ, 1)

≤ (n− 2)B(ν, κ, n) + (2n− 3)K(ν, κ, 1)

= C(ν, κ, n).

For fixed ν, κ, we see that C(ν, κ, n) is bounded by a polynomial in n. This concludes the
proof of Theorem 4.1. ♦

Proof of continuity of volume.
To prove Theorem 4.2, we need to observe that the boundary, ∂Q of a convex subset

Q ⊆ X has zero Lebesgue measure. (Note, for example, that the Lebesgue density of Q
at any point of ∂Q is at most 1

2 .) Thus, if Q is compact, we can choose η > 0, to make
volνN(∂Q, η) arbitrarily small.

We shall also need the following lemma, which will confine most of the volume of a
convex hull to a certain bounded set.

Lemma 4.6 : Suppose A1, . . . , An are closed subsets of XC satisfying XI ∩ Ai ∩ Aj =
∅ if i 6= j. Then there is a compact convex set M ⊆ X with the following property.
Suppose P = {p1, . . . , pn}, with pi ∈ Ai for all i, and suppose (T, f) is a spanning tree
for P satisfying the same criterion as that of Lemma 2.5, (namely length f(α(s, t)) ≤
d(f(s), f(t)) + h(n) for all s, t ∈ T ). Then, f(v) ∈M for each internal vertex v ∈ V1(T ).

Proof : Suppose v separates the three extremal vertices vi, vj , vk ∈ V0(T ), so that
pα = f(vα) ∈ Aα for α ∈ {i, j, k}. As in the proof of Lemma 1.5, we see that f(v) ∈
N([pi, pj ], ρ) ∩N([pj , pk], ρ) ∩N([pk, pi], ρ) for some fixed ρ > 0. Now this intersection is
bounded. Moreover, as pi, pj , and pk vary in Ai, Aj and Ak respectively, these intersection
are all contained in some bounded subset, D(i, j, k) of X. (This is an elementary conse-
quence of Gromov hyperbolicity of X—see [Gr] or [Bo1].) Now choose some compact ball
M , which contains the sets D(i, j, k) for all distinct i, j, k ∈ {1, . . . , n}. ♦
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Proof of Theorem 4.2 : Suppose (p1, . . . , pn) ∈ Xn
C \ Λ, and ε > 0. Choose ζ > 0

so that K(ν, κ, ζ) < ε/4n, where K(ν, κ, ζ) is the constant in Proposition 3.4. Choose
neighbourhoods Ai of pi so that XI ∩ Ai ∩ Aj = ∅ if i 6= j. Let M ⊆ X be the compact
convex set given by Lemma 4.6, and let M ′ = N(M,R + ζ) where R = R(κ, n) is the
constant of Lemma 4.5. Choose η > 0 so that volν N(∂(M ′ ∩ hull(P )), η) < ε/2. By
continuity in the Hausdorff topology (Theorem 1.5), we can assume (shrinking the Ai if
necessary) that if qi ∈ Ai for i = 1, . . . , n, then hd(d)(M ′ ∩ hull(P ),M ′ ∩ hull(Q)) ≤ η,
where Q = {qi, . . . , qn}. (Note that Theorem 1.5, refers to a different metric on X, so
we need to observe that any two metrics induce the same uniformity on the compact set
M ′.) So, by Lemma 1.7, hd(d)(∂(M ′ ∩ hull(P )), ∂(M ′ ∩ hull(Q))) ≤ η, and so |volν(M ′ ∩
hull(P ))− volν(M ′ ∩ hull(Q))| ≤ ε/2.

Now, let (T, f) be a spanning tree for P . By Lemma 4.5, we have hull(P ) ⊆⋃
v∈V1(T )N(f(v), R + ζ) ∪

⋃
e∈E(T )G(e, ζ). By Lemma 4.6, if v ∈ V1(T ), then f(v) ∈ M ,

so N(f(v), R + ζ) ⊆ M ′. If e is an internal edge of T , then it follows that f(e) ⊆ M ,
so, from the remarks following Lemma 4.4, we can assume that G(e, ζ) ⊆ M ′. Thus,
hull(P ) \ M ′ ⊆

⋃
e∈E0(T )G(e, ζ), where E0(T ) is the set of extremal edges of T . So,

volν(hull(P ) \M ′) ≤ nK(ν, κ, ζ) ≤ n(ε/4n) = ε/4.
Now exactly the same argument shows that volν(hull(Q) \M ′) ≤ ε/4. Putting these

facts together, we see that |volν hull(P )− volν hull(Q)| ≤ ε. ♦

5. Appendix.

In this appendix, we give a brief discussion of the case of constant negative curvature.
In this case, we can use a different technique to obtain a linear upper bound on volumes.

Let Hν be ν-dimensional hyperbolic space (of constant curvature −1). We can define
a (closed, convex, finite volume) polytope in Hν

C as the convex hull of a finite set of points.
Given such a polytope, Π, there is a unique minimal such finite set, which we refer to as
the set of vertices, vert(Π), of Π. Thus vert(Π) is the union of Π ∩ Hν

I and the set of
extreme points of Π ∩Hν . We shall write fi(Π) for the number of i-dimensional faces of
Π.

Theorem 5.1 : For all ν, there is a constant c(ν) > 0 such that if Π ⊆ Hν
C is a polytope

with n vertices, then volν Π ≤ nc(ν).

Before beginning the proof, we make some general observations. We shall assume that
all polytopes have non-empty interior.

Suppose Σ ⊆ Hν
C is a ν-simplex (i.e. f0(Σ) = ν + 1). Then, it’s not hard to see that

the volume of Σ is bounded in terms of the dimension, ν. In fact it’s known [HM] that
volν Σ is maximised precisely when Σ is a regular ideal simplex, Σν0 . Such a simplex Σν0 is
unique up to isometry.

Now suppose that Π ⊆ Hν
C is a polytope with f0(Π) = n, and with non-empty interior,

int Π. By subdividing, we can assume that all the codimension-1 faces of Π are simplices.
By choosing an arbitrary point v0 ∈ int Π, and coning on v0, we obtain a subdivision of Π
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into fν−1(Π) simplices of dimension ν. Obviously, fν−1(Π) ≤
(
n
ν

)
and so this immediately

gives us an upper bound for volν Π which is polynomial in n. In fact, the solution of
the Upper Bound Conjecture (see [MS]) gives a sharp upper bound for fν−1(Π) which is
O(n[ν/2]) where [ν/2] is the integer part of ν/2. Thus for ν ≤ 3, we get a linear bound.
(This also follows directly from Euler’s formula.) The 3-dimensional case is discussed in
[SlTT]. In higher dimensions, we need to do some more geometry.

Suppose Σ ⊆ Hν
C is a ν-simplex. Let E(Σ) be the set of edges of Σ, i.e. closed 1-

dimensional faces. Suppose x ∈ Σ is an interior point of some e ∈ E(Σ). Let Ω(Σ, x)
be the set of unit normal vectors to e based at x which point into the interior of Σ. Let
Θ(Σ, e) be the (ν − 2)-dimensional spherical Lebesgue measure of Ω(Σ, x). This is the
“solid angle” of Σ in e. It is independent of the choice of x. (Thus if ν = 3, then Θ(Σ, e)
is the dihedral angle.) Given v ∈ vert(Σ), let E(Σ, v) ⊆ E(Σ) be the set of edges incident
on v (so that |E(Σ, v)| = ν). Let Φ(Σ, v) =

∑
e∈E(Σ,v) Θ(Σ, e).

Lemma 5.2 : Given ν, there is some k(ν) > 0 such that if Σ ⊆ Hν
C is a ν-simplex, and

v ∈ vert(Σ), then volν Σ ≤ k(ν)Φ(Σ, v).

Proof : Since
⋃
E(Σ, v) ⊆ Σ is starlike, and Σ = hull(

⋃
E(Σ, v)), we have some universal

constant r > 0 such that

Σ ⊆ N(
⋃
E(Σ, v), r) =

⋃
e∈E(Σ,v)

N(e, r).

(Note that a starlike set is quasiconvex—for example, since any two points are joined by
a path consisting of at most two geodesic segments.)

Fix, for the moment, some e ∈ E(Σ, v), and x in the interior of e. Any unit vector
ξ ∈ Ω(Σ, x), together with e, determines a 2-plane σ which intersects Σ in a hyperbolic
triangle. Given u > 0, let l(ξ, u) be the length of the arc σ ∩ Σ ∩ N(e, u). We may
obtain the tolal volume of Σ ∩ N(e, r) by integrating the quantity l(ξ, u) sinhν−2 u first
in u from 0 to r, and then with respect to spherical Lebesgue measure, as ξ varies over
Ω(Σ, x). Now, we may bound

∫ r
0
l(ξ, u) sinhν−2 udu independently of ξ as follows. Note

that l(ξ, u) ≤ L(u), where L(u) is the length of the boundary of the u-neighbourhood of
an edge in a hyperbolic ideal triangle Σ2

0. Thus
∫∞

0
L(u)du = vol2 Σ2

0 = π < ∞, and so

k(ν) =
∫ r

0
L(u) sinhν−2 udu is finite. We deduce that

volν(Σ ∩N(e, r)) ≤ k(ν)Θ(Σ, e).

Finally, summing over all e ∈ E(Σ, v), we obtain

volν Σ ≤ k(ν)Φ(Σ, v).

♦
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Proof of Theorem 5.1 : Let Π be a polytope with n vertices and non-empty interior.
We subdivide Π in into a set S of ν-simplices, by coning over an arbitrary v0 ∈ int Π, as
described above. In this triangulation, there are precisely n edges (1-cells) incident on v0.
If e is such an edge, then ∑

Σ∈S(e)

Θ(Σ, e) = ∆(ν − 2),

where S(e) ⊆ S is the subset of those simplices which have e as an edge. Summing over
all edges incident on v0, we obtain∑

Σ∈S
Φ(Σ, v0) = n∆(ν − 2).

Applying Lemma 5.2, we obtain
volνΠ ≤ nc(ν)

where c(ν) = k(ν)∆(ν − 2). ♦
Certainly, we cannot do better than a linear bound. I don’t know what is the best

multiplicative constant in dimensions greater than 3. In dimension 3, the best such constant
is twice the volume of a regular ideal 3-simplex (2vol3 Σ3

0 = 2×1·01494 . . .). In other words,
the maximal volume of a polytope with n vertices, divided by 2nvol3 Σ3

0, tends to 1 as n
tends to ∞.

Note that, in dimension ν = 2, the same method of subdivision works with variable
curvature, since convex hulls are always polygonal. Here, the lower curvature bound is
irrelevant, and we obtain a best multiplicative constant of vol2 Σ2

0 = π.

References.

[A] M.T.Anderson, The Dirichlet problem at infinity for manifolds of negative curvature :
J. Diff. Geom. 18 (1983) 701–721.

[BaGS] W.Ballmann, M.Gromov, V.Schroeder, Manifolds of non-positive curvature : Prog-
ress in Maths. 61, Birkäuser (1985).
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