Manifolds MA3H5. Exercise Sheet 4

1: Let $P^n = (\mathbb{R}^{n+1} \setminus \{0\})/\sim$ be real projective *n*-space. Given $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$, write $[x_0, \ldots, x_n] \in P^n$ for its \sim -class. Given $0 \le i \le n$, if $x_i \ne 0$, write $\phi_i([x_0, \ldots, x_n]) = (x_0/x_i, x_1/x_i, \ldots, x_n/x_i) \in \mathbb{R}^n$, where, on the right-hand side, we have omitted the term " x_i/x_i ". Note that this is well defined.

Show that the collection of maps $\{\phi_i\}_{i=0}^n$, defined on suitable domains, gives rise to a smooth atlas for P^n .

2: Give a proof of Hadamard's lemma: If $U \subseteq \mathbb{R}^n$ is open $a \in U$, and $f: U \longrightarrow \mathbb{R}^n$ is smooth, then there are smooth funcitons $g_i = g_i^U: U \longrightarrow \mathbb{R}^n$ such that $f(x) = f(a) + \sum_{i=1}^m (x_i - a_i)g_i(x)$ for all $x \in U$. Show, moreover, that the g_i^U can be chosen consistently, that is in such a way that $g_i|V$ depends only on f|V where $V \subseteq U$ is any open set containing containing a.

Deduce that Hadamard's lemma also holds for germs: that is, if $f \in \mathcal{G}_a(M)$, then we can write $f = f(a) + \sum_{i=1}^m (\pi_i - a_i)g_i$ for $g_i \in \mathcal{G}_a(M)$, where $\pi_i \in \mathcal{G}_a(M)$ is the germ of the projection map $[x \mapsto x_i]$.

- **3:** Suppose that $E \longrightarrow M$ and $F \longrightarrow N$ are vector bundles over manifolds M and N. Show that the direct product $E \times F \longrightarrow M \times N$ is a vector bundle. What is the fibre?
- **4:** Suppose that $p: F \longrightarrow N$ is a vector bundle over N, and that $M \subseteq N$ is a submanifold. Let $E = p^{-1}M$. Show that $(p|E): E \longrightarrow M$ is a bundle.
- **5:** Show that the diagonal $\Delta = \{(x, x) \mid x \in M\}$ is a submanifold of $M \times M$. Show how (3) and (4) can be used to give an equivalent construction of the Whitney sum of two bundles over M.
- **6:** If $E, F, G \longrightarrow M$ are vector bundles over M, show that $(E \oplus F) \oplus G \equiv E \oplus (F \oplus G)$.
- 7: Show that for every $q \in \mathbb{N}$, q > 0, there is a non-trivial bundle over S^1 with fibre (isomorphic to) \mathbb{R}^q .
- **8:** Let $E \longrightarrow M$ be a vector bundle. Show that there is a canonical isomorphism from E to E^{**} .

Show that E is trivial if and only if E^* is trivial.

- **9:** Let $\omega = \frac{x\,dy-y\,dx}{x^2+y^2}$ be the 1-form on \mathbb{R}^2 , with cartesian coordinates x,y. Calculate $\int_{\gamma}\omega$, where γ is the unit circle, $\gamma(t)=(\cos t,\sin t)$.
- **10:** Let M be a manifold and $x \in M$. Let $J \subseteq \mathcal{G}_x(M)$ be the of germs $f \in \mathcal{G}_x(M)$ which vanish at x (i.e. f(x) = 0). Check that this is a subspace of $\mathcal{G}_x(M)$.

Let $K \subseteq J$ be the subspace spanned by $\{fg \mid f, g \in J\}$. Let θ : $\mathcal{G}_x(M) \longrightarrow T_x^*M$ be the linear map given by $\theta(f) = df$ at x. Show that θ is surjective.

Show that $\ker \theta = K$ (use Hadamard's Lemma for germs (Q1) above). Deduce that T_x^*M is canonically isomorphic to J/K.

(This gives rise an equivalent, and direct, way of defining the cotangent space, T_x^*M . In this approach, one could retrospectively define the tangent space, T_xM , as the dual to T_x^*M .)