
7. Isoperimetric functions.

7.1. Area:

Let (M, d) be a geodesic metric space.

We write Ω for the set of all closed curves in M .

Given a closed curve, γ ∈ Ω in M , we write L(γ) for it (rectifiable) length in M .

We assign to each closed curve γ in M a “spanning area” A(γ), which we assume satisfies
certain axioms namely:

(A1) (Triangle inequality for theta curves):

If γ1, γ2, γ3 ∈ Ω form a theta-curve, then

A(γ3) ≤ A(γ1) + A(γ2).

(A2) (Rectangle inequality):

Suppose γ ∈ Ω is split into four subpaths,

γ = α1 ∪ α2 ∪ α3 ∪ α4.

Then,
A(γ) ≥ d1d2,

where d1 = d(α1, α3) and d2 = d(α2, α4).

Examples.

(1) The general idea is that A(γ) is the minimal area of a spanning disc of A.

This makes sense in a Riemannian manifold.

(To save worrying about existence, we can just take infimum.)

In fact, we could take any spanning surface.

Property (A2) is the Besicovitch inequality.

(2) Here is more abstract, but very general definition.

We consider a cellulation of the unit disc, D, and let σ be its 1-skeleton (so that ∂D ⊆ σ).

If f : σ −→ M is any map we can define

A(σ, λ) =
∑

{(L(λ(∂c)))2}

as c varies over the set of all 2-cells. We now define A(γ) be the infimum of all A(σ, λ) as
σ and λ vary over all such cellulations and maps such that λ|∂D is just the curve γ.
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Again this notion satisfies (A1) and (A2) above.

(3) In the above, we can insist that the length of λ(∂c) is bounded above by some constant,
and then measure area of (σ, λ) the number of 2-cells of σ.

(4) In the case of a Cayley graph of a group, we can reinterpret this in terms of the number
of applications of the relators needed to reduce a word representing the identiy element to
the trivial word.

We discuss this in more detail later.

Given x ∈ [0,∞), let
f(x) = sup{A(γ) | γ ∈ Ω, L(γ) ≤ x}.

Thus f : [0,∞) −→ [0,∞) is the isoperimetric function.

Note that f(x) is non-decreasing in x.

More generally we say that f is an isoperimetric bound if, for any curve γ, we have

A(γ) ≤ f(L(γ)).

7.2. Linear isoperimetric bounds and hyperbolicity.

It turns out that a geodesics space, M , is hyperbolic if and only if has a linear isoperimetric
bound.

We suppose that A is a spanning area satisfying (A1) and (A2) above.

Theorem 7.1 : Let (M, d) be geodesic metric space.

(1) If M is k-hyperbolic and there is some l0 depending only on k such that each curve of
length curve l0 has area bounded by some A0, then M has a linear isoperimetric bound,
depending only on k and A0.

(2) If M has a linear isoperimetric bound, f , then it is k-hyperbolic, where k depends only
on f .

Remarks :

(1) In fact it is enough to assume a subquadratic isoperimetric bound.

In other words there are no isoperimetric functions strictly between linear

(Exercise: If r ∈ [2,∞) there is a complete riemannian plane with isoperimetric function
asymptotic to [x 7→ xr].

I.e. there no other gaps for general geodesic spaces.)

(2) If we assume hyperbolicity, then we can in fact, show that any curve spans a disc of
bounded area in sense (3) above.
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To show that hyperolicity implies isoperimetric function, we use the following:

Lemma 7.2 : Suppose that M is k-hyperbolic. Then there are constants, h > 0 and l
depending only on k such that if γ ∈ Ω has length at least l, then there is an arc in γ if
length l such that the distance in M between its endpoints is at most l − h.

Proof : Fix any basepoint, p, in M and choose x ∈ γ to maximise d(p, x).

Let α ⊆ γ be the arc of length l centred on x.

Let y, z be the endpoints of α.

Now:
d(p, y) ≤ d(p, x)

d(p, z) ≤ d(p, x)

d(x, y) ≤ l/2

d(x, z) ≤ l/2.

It follows by hyperbolicity that d(y, z) is at most l/2 up to an additive constant (for
example, since this is true without and additive constant in a tree).

If h > 0, then choosing l sufficiently large, we get d(y, z) ≤ l−h, and the result follows. ♦

From this, we can deduce a linear isoperimetric bound.

Start with a curve γ as above, and find an arc α as given by Lemma 7.2.

Connecting its endpoints by a geodesic, β gives a theta curve, with components γ, α ∪ β,
and γ1 where γ1 is obtained by taking γ and replacing α by β.

Now

L(α ∪ β) ≤ 2l

and so A(α ∪ β) is bounded, by some A0.

Also

L(γ1) ≤ L(γ)− h.

We now carry out a similar argument with γ1 replacing γ to give a sequence of at most
n ≤ L(γ)/h + 1 curves

γ, γ1, γ2, . . . , γn,

terminating on a curve γn of length at most 2l.

By (A2), we have

A(γ) ≤ nA0 ≤ L(γ)A0/h + A0,

which is linear in L(γ).

In fact, we have constructed a spanning disc of the type described in (3) above.

For the converse, let us assume that [x 7→ λx + k] is an isoperimetric bound for M .
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In other words, for all γ ∈ Ω,
A(γ) ≤ λL(γ) + k.

Lemma 7.3 : There is some r > 0, depending only on λ and k, such that if α is a
geodesic, and β is a (3, 0)-quasigeodesic with the same endpoints, then β ⊆ N(α, r).

Proof : Fix suitable t > 4λ (see below).

If β ⊆ N(α, t), we are done.

If not, let γ1 be a maximal segment of β \ N(α, t). It has endpoints, x, y ∈ ∂N(α, t).

Choose z, w ∈ α with d(x, z) = d(y, w) = t.

Let γ3 = [z, w] ⊆ α and let γ2 = [x, z] and γ4 = [y, w].

Thus,
γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4

is a rectangle in M .

We want to bound length(γ1).

Now let

u =
1

3
length γ1.

Since β is (3, 0)-quasigeodesic, we have d(x, y) ≥ u.

It now follows that
d(γ1, γ3) ≥ t

d(γ2, γ4) ≥ u − 2t.

Thus, by (A2), we have
A(γ) ≥ t(u − 2t).

Also,
L(γ) ≤ 3u + t + t + (3u + 2t) = 6u + 4t.

So the isoperimetric bound gives:

t(u − 2t) ≤ λ(6u + 4t) + k

so
(t − 6λ)u ≤ 4λt + 2t2 + k.

We set t = 7λ, so this gives u ≤ u0, where u0 = (4λt + 2t2 + k)/λ = 126λ + k/λ.

Now
β ⊆ N(α, t + 3u/2)

so we may set r = t + 3u0/2, which depends only on λ and k. ♦

4



From the conclusion of Lemma 7.3, we may deduce that every triangle has a centre as
follows.

Let (α, β, γ) be a geodesic triangle in M .

Let z be the vertex opposite α, and let a be the nearest point to z on a.

Let x be the common vertex of α and β.

We claim that [x, a] ∪ [a, z] is (3, 0)-quasigeodesic.

To see this, suppose that u ∈ [x, a] and v ∈ [a, z].

Now d(a, v) ≤ d(u, v), and so

d(u, a) + d(a, v) ≤ (d(u, v) + d(v, a)) + d(a, v)

= d(u, v) + 2d(a, v)

≤ 3d(u, v)

.

In other words, the segment lying between u and v has length at most 3d(u, v).

But any other segment must lie in either of the geodesics [x, a] or [a, v], and so the claim
follows.

But now, by Lemma 7.3, we see that a must lie a bounded distance from β.

Similarly, it is bounded distance from γ, and hence is a centre for (α, β, γ). By definition,
it follows that M is hyperbolic.

This proves Theorem 7.1.

(The last part of the above argument comes from Masur and Minsky’s paper.)

5


