
MA4H4 Geometric Group Theory

Exercise sheet 6 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Let (X, d) be a length space. We shall write xy for d(x, y). Recall the Gromov product for
x, y, z ∈ X, write

〈x, y〉z =
1

2
(xz + yz − xy).

Question 1a Check the Gromov product is always non-negative. When does it vanish? (i.e. how are x,
y and z positioned relative to each other)

The product is non-negative from the triangle inequality i.e. xy ≤ xz + yz. It vanishes when z lies on
a geodesic between x and y.

Question 1b What does the Gromov product represent when X is a tree?

It represents how far z is from the geodesic connecting x and y i.e. d(z,←−xy).

Question 2 Let ∆ be a geodesic triangle on vertices x, y and z in a length space X. Define a “tripod”
T (∆) this is a metric tree with one vertex of degree 3 and three vertices of degree 1, and whose edge
lengths are 〈x, y〉z, 〈y, z〉x and 〈z, x〉y. We will allow for degenerate cases where some of the edg lengths
are zero. Let O∆ be the central vertex of T (∆). (See lecture notes for a diagram).

Question 2a Show that there exists a map χ∆ : ∆→ T (∆) which is an isometry when restricted to
each side of ∆. The map is unique modulo isometries of T (∆) to itself.

Map x to the vertex of degree one whos length from O∆ is 〈y, z〉x and similarly for y and z then the
geodesics between them continuously to the unique geodesic between the images of the end points. The
length between χ∆(x) and χ∆(y) is

〈y, z〉x + 〈z, x〉y =
1

2
(xy + xz − yz + yz + xy − xz)

= xy

giving that the map on the sides of ∆ is an isometry. The map is unique by looking at the longest side of
∆ (if there are two or more with equal side length then there is an isometry of T (∆) switching these)
then there is a unique geodesic in T (∆) with this length forcing the rest of the choices.

Question 2b Show that X is k-hyperbolic for some k if and only if there exists k′ such that for any
geodesic triangle ∆ in X,

diam(χ−1
∆ (O∆)) ≤ k′.

If diam(χ−1
∆ (O∆)) ≤ k′ then any point in diam(χ−1

∆ (O∆)) is a k′-center, therefore X is k′-hyperbolic.

Suppose X is k-hyperbolic, then let m be a k-center of ∆. There exists a ∈ [x, y] such that d(a,m) ≤ k
therefore a is a 2k-center of ∆. Choose b ∈ [x, y] such that d(b, x) = 〈y, z〉x, it follows from the equivalence
of projections in section 6.3 of the notes that d(a, b) ≤ 2k. Similar a and b exists for a′, b′ ∈ [x, z] and
a′′, b′′ ∈ [y, z] however as χ−1

∆ (O∆) = {b, b′, b′′} the triangle inequality gives us

diam(χ−1
∆ (O∆)) ≤ 6k.
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Question 2c We call a triangle ∆ k′′ − thin if diam(χ−1
∆ (p)) ≤ k′′ for all p ∈ T (∆). Show that the

condition in the previous part is equivalent to the following: there exists a k′′ such that all geodesic
triangles in X are k′′-thin.

Clearly if a triangle is k′′ − thin then diam(χ−1
∆ (O∆)) ≤ k′′.

Suppose our space is k-hyperbolic and diam(χ−1
∆ (O∆)) ≤ k′. Then let ∆ be a geodesic triangle with

vertices x, y and z and without loss of generality suppose p ∈ T (∆) lies in the side of length < y, z >x i.e.
there exists hyperbolic triangle x, r and r′ with points q ∈ [x, r] and q′ ∈ [x, r′] such that xr = xr′ = 〈y, z〉x,
xq = xq′ as χ−1

∆ (p) = {q, q′} and rr′ ≤ k′ as r, r′ ∈ χ−1
∆ (O∆). The path β which follows the geodesic xr

then rr′ is a k′-taught as xr + rr′ ≤ xr′ + k′. Let α be the geodesic xr′ then we know from Lemma 6.4
β ⊂ N(α, 4.5k′) therefore there is a point t ∈ α such that qt ≤ 4.5k′. Then observe from the triangle
inequality we have xq ≤ xt + 4.5k′ and xt ≤ xq + 4.5k′ giving |xq − xt| ≤ 4.5k′ however as xq = xq′

we have |xq′−xt ≤ 4.5k′ so by the triangle inequality qq′ ≤ qt+ |xq′−xt| = 9k′. Giving that ∆ is 9k′-thin.

Note: The last implication isn’t true for any triangle, implicit within Lemma 6.4 is that the [x, r, r′]
triangle must have a k′-center, which is what we used from the space being k′-hyperbolic.

Question 3 A geodesic triangle in a length space X is called k − slim if each side is contained in the
k-neighbourhood of the union of the other two sides.

Question 3a Show that any k-thin triangle is also k-slim.

Suppose ∆ is k-thin, so diam(χ−1
∆ (p)) ≤ k for all p ∈ T (∆). Let q ∈ [x, y] be in the interior and find

χ∆(q) = p. Then χ−1
∆ (p) contains q and atleast one other point q′ in either [x, z] or [y, z]. As ∆ is k-thin

d(q, q′) ≤ k hence ∆ is k-slim.

Question 3b Show that any k-slim triangle is k′-thin, where k′ depends only on k.

These argument is similar to that in 2c, except the use of lemma 6.4 is replaced by that of slimness.
Suppose we have k-slim triangle ∆ with vertices x, y and z. Let cx ∈ [y, z], cy ∈ [x, z] and cz ∈ [x, y]
be such that χ−1

∆ (O∆) = {cx, cy, cz} then as ∆ is k-slim without loss of generality there exists t ∈ [x, y]
such that d(cx, t) ≤ k then by the triangle inequality |yt− ycz| ≤ k (same argument as 2c) giving us that
cxcz ≤ 2k. Applying this same argument with cy in place of cx we get that without loss of generality
cxcy ≤ 2k giving us that cycz ≤ 4k.

Let p ∈ T (∆) where p 6= O∆ and without loss of generality suppose p lies in the edge of length
< y, z >x. Let q ∈ [x, cy] and q′ ∈ [x, cz] such that xq = xq′ where χ−1

∆ (p) = {q, q′}. From slimness there
exists a point t ∈ [x, y] ∪ [y, z] such that pt ≤ k. From the triangle inequality we have |xq′ − xt ≤ k so
qq′ ≤ qt+ |xq′ − xt| = 2k. Giving that ∆ is 4k-thin.
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