MA4H4 Geometric Group Theory

Exercise sheet 6 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Let (X,d) be a length space. We shall write xy for d(x,y). Recall the Gromov product for $x, y, z \in X$, write

 $\langle x, y \rangle_z = \frac{1}{2}(xz + yz - xy).$

Question 1a Check the Gromov product is always non-negative. When does it vanish? (i.e. how are x, y and z positioned relative to each other)

The product is non-negative from the triangle inequality i.e. $xy \le xz + yz$. It vanishes when z lies on a geodesic between x and y.

Question 1b What does the Gromov product represent when X is a tree?

It represents how far z is from the geodesic connecting x and y i.e. $d(z, \overline{xy})$.

Question 2 Let Δ be a geodesic triangle on vertices x, y and z in a length space X. Define a "tripod" $T(\Delta)$ this is a metric tree with one vertex of degree 3 and three vertices of degree 1, and whose edge lengths are $\langle x,y\rangle_z$, $\langle y,z\rangle_x$ and $\langle z,x\rangle_y$. We will allow for degenerate cases where some of the edg lengths are zero. Let O_{Δ} be the central vertex of $T(\Delta)$. (See lecture notes for a diagram).

Question 2a Show that there exists a map $\chi_{\Delta}: \Delta \to T(\Delta)$ which is an isometry when restricted to each side of Δ . The map is unique modulo isometries of $T(\Delta)$ to itself.

Map x to the vertex of degree one whos length from O_{Δ} is $\langle y, z \rangle_x$ and similarly for y and z then the geodesics between them continuously to the unique geodesic between the images of the end points. The length between $\chi_{\Delta}(x)$ and $\chi_{\Delta}(y)$ is

$$\langle y, z \rangle_x + \langle z, x \rangle_y = \frac{1}{2}(xy + xz - yz + yz + xy - xz)$$

= xy

giving that the map on the sides of Δ is an isometry. The map is unique by looking at the longest side of Δ (if there are two or more with equal side length then there is an isometry of $T(\Delta)$ switching these) then there is a unique geodesic in $T(\Delta)$ with this length forcing the rest of the choices.

Question 2b Show that X is k-hyperbolic for some k if and only if there exists k' such that for any geodesic triangle Δ in X,

$$\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta})) \le k'.$$

 $\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta})) \leq k'.$ If $\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta})) \leq k'$ then any point in $\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta}))$ is a k'-center, therefore X is k'-hyperbolic.

Suppose X is k-hyperbolic, then let m be a k-center of Δ . There exists $a \in [x, y]$ such that $d(a, m) \leq k$ therefore a is a 2k-center of Δ . Choose $b \in [x,y]$ such that $d(b,x) = \langle y,z \rangle_x$, it follows from the equivalence of projections in section 6.3 of the notes that $d(a,b) \leq 2k$. Similar a and b exists for $a',b' \in [x,z]$ and $a'',b'' \in [y,z]$ however as $\chi_{\Delta}^{-1}(O_{\Delta}) = \{b,b',b''\}$ the triangle inequality gives us

$$\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta})) \le 6k.$$

Question 2c We call a triangle $\Delta k'' - thin$ if $\operatorname{diam}(\chi_{\Delta}^{-1}(p)) \leq k''$ for all $p \in T(\Delta)$. Show that the condition in the previous part is equivalent to the following: there exists a k'' such that all geodesic triangles in X are k''-thin.

Clearly if a triangle is k'' - thin then $\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta})) \leq k''$.

Suppose our space is k-hyperbolic and $\operatorname{diam}(\chi_{\Delta}^{-1}(O_{\Delta})) \leq k'$. Then let Δ be a geodesic triangle with vertices x, y and z and without loss of generality suppose $p \in T(\Delta)$ lies in the side of length $< y, z >_x$ i.e. there exists hyperbolic triangle x, r and r' with points $q \in [x, r]$ and $q' \in [x, r']$ such that $xr = xr' = \langle y, z \rangle_x$, xq = xq' as $\chi_{\Delta}^{-1}(p) = \{q, q'\}$ and $rr' \leq k'$ as $r, r' \in \chi_{\Delta}^{-1}(O_{\Delta})$. The path β which follows the geodesic xr then rr' is a k'-taught as $xr + rr' \leq xr' + k'$. Let α be the geodesic xr' then we know from Lemma 6.4 $\beta \subset N(\alpha, 4.5k')$ therefore there is a point $t \in \alpha$ such that $qt \leq 4.5k'$. Then observe from the triangle inequality we have $xq \leq xt + 4.5k'$ and $xt \leq xq + 4.5k'$ giving $|xq - xt| \leq 4.5k'$ however as xq = xq' we have $|xq' - xt| \leq 4.5k'$ so by the triangle inequality $qq' \leq qt + |xq' - xt| = 9k'$. Giving that Δ is 9k'-thin.

Note: The last implication isn't true for any triangle, implicit within Lemma 6.4 is that the [x, r, r'] triangle must have a k'-center, which is what we used from the space being k'-hyperbolic.

Question 3 A geodesic triangle in a length space X is called k – slim if each side is contained in the k-neighbourhood of the union of the other two sides.

Question 3a Show that any k-thin triangle is also k-slim.

Suppose Δ is k-thin, so $\operatorname{diam}(\chi_{\Delta}^{-1}(p)) \leq k$ for all $p \in T(\Delta)$. Let $q \in [x,y]$ be in the interior and find $\chi_{\Delta}(q) = p$. Then $\chi_{\Delta}^{-1}(p)$ contains q and at least one other point q' in either [x,z] or [y,z]. As Δ is k-thin $d(q,q') \leq k$ hence Δ is k-slim.

Question 3b Show that any k-slim triangle is k'-thin, where k' depends only on k.

These argument is similar to that in 2c, except the use of lemma 6.4 is replaced by that of slimness. Suppose we have k-slim triangle Δ with vertices x, y and z. Let $c_x \in [y, z]$, $c_y \in [x, z]$ and $c_z \in [x, y]$ be such that $\chi_{\Delta}^{-1}(O_{\Delta}) = \{c_x, c_y, c_z\}$ then as Δ is k-slim without loss of generality there exists $t \in [x, y]$ such that $d(c_x, t) \leq k$ then by the triangle inequality $|yt - yc_z| \leq k$ (same argument as 2c) giving us that $c_x c_z \leq 2k$. Applying this same argument with c_y in place of c_x we get that without loss of generality $c_x c_y \leq 2k$ giving us that $c_y c_z \leq 4k$.

Let $p \in T(\Delta)$ where $p \neq O_{\Delta}$ and without loss of generality suppose p lies in the edge of length $\langle y, z \rangle_x$. Let $q \in [x, c_y]$ and $q' \in [x, c_z]$ such that xq = xq' where $\chi_{\Delta}^{-1}(p) = \{q, q'\}$. From slimness there exists a point $t \in [x, y] \cup [y, z]$ such that $pt \leq k$. From the triangle inequality we have $|xq' - xt| \leq k$ so $qq' \leq qt + |xq' - xt| = 2k$. Giving that Δ is 4k-thin.