
MA4H4 Geometric Group Theory

Exercise sheet 5 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Show that a f.g. virtually Abelian groups is virtually Zn.

Let Γ be f.g. virtually abelian group, then it has a G ≤ Γ such that G is abelian and [G : Γ] < ∞,
however this implies that G is f.g. therefore by the classification theorem G ∼= Zn ⊕i∈I Ci with Ci some
finite cyclic group but then Zn ≤ G of finite index therefore Zn ≤ Γ of finite index and Γ is virtually Zn.

Question 2 Fill in the details in the proof of the following theorem given in lecture: A groups that is
q.i. to Z is virtually Z.

To complete the proof we have to prove the following two exercises.

Exercise 1 If f : Z→ R such that

1. for all n, |f(n)− f(n+ 1)| is bounded, and

2. for all r ≥ 0 there exists p ∈ N such that if |f(n)− f(m)| ≤ r then |m− n| ≤ p.

then the image of f is cobounded in R.

Let d be the bound from part (1) of the definition, then we know C := B(f(Z), d) ⊂ R is an open
interval from property (1). If C was bounded then there would exists an r such that |f(n)− f(m)| ≤ r
for all n,m contradicting property (2) therefore C = (a,∞), C = (−∞, a) or C = R if it is the last case
we are done, so without loss of generality lets assume the first case. Look at f(n) (similarly for f(−n))
suppose f(n) doesn’t tend to ∞, then there exists a convergent subsequence f(bn)→ b. From definition
there exists an N such that for all n,m > N |f(bn)− f(bm)| < 1 clearly contradicting property (2) as
bn →∞. So we have that f(n) and f(−n) both tend to infinity, therefore for sufficiently large n there
exists m ∈ N such that |f(n)− f(−m)| < d from property (1) however this contradicts property (2) as
|n+m| can be arbitrarily large. Therefore C = R and the image of f is cobounded.

Exercise 2 If ψ is a quasi-isometry of R then ψ([0,∞)) lies bounded distance from either [ψ(0),∞)
or (−∞, ψ(0)] (each point in either set lies a bounded distance from a point in the other set).

Assume ψ has constants ki so that

k1|x− y| − k2 ≤ |ψ(x)− ψ(y)| ≤ k3|x− y|+ k4.

Then as ψ is a q.i. we have that ψ([a − 1, a + 1]) ⊂ B(ψ(a), (k3 + k4)) therefore C ′ := ψ([0,∞)]) ⊂
B(ψ(N), (k3 + k4)) =: C so it suffices to show C is bounded distance from [ψ(0),∞) or (−∞, ψ(0)]. As
|ψ(a)− ψ(a+ 1)| ≤ k3 + k4 we get that C ⊂ R is an open interval, which can’t be bounded as ψ is a q.i.
therefore C = [b,∞), C = (−∞, b] or C = R, if it is either of the first cases we are done. Suppose C = R
this implies there exists subsequences xn and yn of N such that ψ(xn)→∞ and ψ(yn)→ −∞. As C = R
choose T ∈ N such that |ψ(T )| ≤ k3 +k4 now choose N > T such that k1|N−T |−k2 ≥ 2(k3 +k4)+1 then
there exists N < xn < ym such that ψ(xn) > 0 and ψ(ym) < 0. However as |ψ(a)− ψ(a+ 1)| ≤ k3 + k4
there exists xn ≤ M ≤ ym such that |ψ(M)| ≤ k3 + k4 implying |ψ(M) − ψ(T )| ≤ 2(k3 + k4) however
|ψ(M)− ψ(T ) ≥ k1|M − T | − k2 ≥ 2(k3 + k4) + 1, therefore C 6= R and we are done.
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Question 3a Give some examples of subgroups of F2 isomorphic to Fn.

We have Fn
∼= 〈bkab−k|1 ≤ k ≤ n〉 ≤ F2.

Question 3b Show that is K is a finite graph then π1(K) ∼= Fn where n = E − V + 1.

Take a finite connected graph K then let T ⊂ K be a spanning tree (subgraph with no cycles, but
still includes every vertex) then as π1(T ) is trivial so we have that π1(K) = π1(K/T ) however K/T is
a wedge of circles so π1(K/T ) ∼= F|E(K/T )| however one can show that |E(T )| = V (K)− 1 giving that
|E(K/T )| = E − V + 1.

Question 3c Show that a finite index subgroup of Fn is isomorphic to Fm for some m ≥ n.

Let Rn signify the graph which contains one vertex and n edges. Then π1(Rn) = Fn, then let G ≤ Fn

be a group of finite index. Therefore G corresponds to a [G : Fn]-cover of Rn called C. However as
C is a finite cover of a finite graph, C is also a finite graph. Therefore π1(C) ∼= Fm however by the
correspondence we know that also Fm

∼= π1(C) ∼= G.

Question 4 Let F2 = 〈a, b〉. Let S = {bnab−n|n ∈ Z}. Show that T = 〈S〉 is the normal closure of {a}
in F2.

Note that N := 〈〈a〉〉 = 〈waw−1|w ∈ Fn〉 therefore we get T ≤ N as S is a subset of the generators of
N . However notice that elements of N contain as many b’s as b−1’s, let n ∈ N then

n =bb1aa1bb2aa2 . . . aan−1bbn

=(bb1ab−b1)bb1aa1−1 . . . aan−1bbn

=(bb1ab−b1)(bb1ab−b1)bb1aa1−2 . . . aan−1bbn

. . .

=(bb1ab−b1)a1bb1+b2aa2 . . . aan−1bbn

. . .

=(bb1ab−b1)a1 . . . (bb1+...+bn−1ab−(b1+...+bn−1))an−1bb1+b2+...+bn

however as there are as many b’s as b−1’s we get that b1 + b2 + . . .+ bn = 0 therefore n ∈ T and N = T .

Question 5 Recall the triangle group ∆(p, q, r) with presentation

〈a, b, c|a2, b2, c2, (ab)p, (bc)q, (ca)r〉.

Question 5a Draw the Cayley graph of ∆(7, 3, 2).
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Above is the tiling of the hyperbolic plane given by the group ∆(7, 3, 2), to realise the Cayley graph
put a vertex in every triangle then connect two vertices who’s relative triangles share an edge. Then
notice that the corner of every triangle either meets 4, 6 or 14 triangles (including itself) in the Cayley
graphs these relate to the relations (ca)4, (bc)6 and (ab)7 respectively. Using these relations one can
colour the Cayley graph uniquely.

Question 5b Decide for which triples (p, q, r) is δ(p, q, r) is q.i. to a point, a euclidean space, or a
hyperbolic space. (Note this question may require some knowledge of basic hyperbolic geometry)

Answer the same to Sheet 2 Question 6b. If 1/p+ 1/q + 1/r > 1 we get it is q.i. to a point, as its
Cayley graph is finite (embeds in a sphere) if 1/p+ 1/q + 1/r = 1 we get it is a tiling of the Euclidean
space therefore q.i. to it and lastly 1/p+ 1/q + 1/r < 1 tiles the hyperbolic space.

Question 5c Describe a proper discontinuous action of ∆(p, q, r) by isometries on either the sphere,
euclidean plane or hyperbolic plane, There should be examples where the fundamental domain is a triangle.

Answer the same to Sheet 2 Question 6c.
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