MA4H4 Geometric Group Theory

Exercise sheet 5-Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.
Question 1 Show that a f.g. virtually Abelian groups is virtually \mathbb{Z}^{n}.
Let Γ be f.g. virtually abelian group, then it has a $G \leq \Gamma$ such that G is abelian and $[G: \Gamma]<\infty$, however this implies that G is f.g. therefore by the classification theorem $G \cong \mathbb{Z}^{n} \oplus_{i \in I} C_{i}$ with C_{i} some finite cyclic group but then $\mathbb{Z}^{n} \leq G$ of finite index therefore $\mathbb{Z}^{n} \leq \Gamma$ of finite index and Γ is virtually \mathbb{Z}^{n}.

Question 2 Fill in the details in the proof of the following theorem given in lecture: A groups that is q.i. to \mathbb{Z} is virtually \mathbb{Z}.

To complete the proof we have to prove the following two exercises.

Exercise 1 If $f: \mathbb{Z} \rightarrow \mathbb{R}$ such that

1. for all $n,|f(n)-f(n+1)|$ is bounded, and
2. for all $r \geq 0$ there exists $p \in \mathbb{N}$ such that if $|f(n)-f(m)| \leq r$ then $|m-n| \leq p$.
then the image of f is cobounded in \mathbb{R}.
Let d be the bound from part (1) of the definition, then we know $C:=B(f(\mathbb{Z}), d) \subset \mathbb{R}$ is an open interval from property (1). If C was bounded then there would exists an r such that $|f(n)-f(m)| \leq r$ for all n, m contradicting property (2) therefore $C=(a, \infty), C=(-\infty, a)$ or $C=\mathbb{R}$ if it is the last case we are done, so without loss of generality lets assume the first case. Look at $f(n)$ (similarly for $f(-n)$) suppose $f(n)$ doesn't tend to ∞, then there exists a convergent subsequence $f\left(b_{n}\right) \rightarrow b$. From definition there exists an N such that for all $n, m>N\left|f\left(b_{n}\right)-f\left(b_{m}\right)\right|<1$ clearly contradicting property (2) as $b_{n} \rightarrow \infty$. So we have that $f(n)$ and $f(-n)$ both tend to infinity, therefore for sufficiently large n there exists $m \in \mathbb{N}$ such that $|f(n)-f(-m)|<d$ from property (1) however this contradicts property (2) as $|n+m|$ can be arbitrarily large. Therefore $C=\mathbb{R}$ and the image of f is cobounded.

Exercise 2 If ψ is a quasi-isometry of \mathbb{R} then $\psi([0, \infty))$ lies bounded distance from either $[\psi(0), \infty)$ or $(-\infty, \psi(0)]$ (each point in either set lies a bounded distance from a point in the other set).

Assume ψ has constants k_{i} so that

$$
k_{1}|x-y|-k_{2} \leq|\psi(x)-\psi(y)| \leq k_{3}|x-y|+k_{4} .
$$

Then as ψ is a q.i. we have that $\psi([a-1, a+1]) \subset B\left(\psi(a),\left(k_{3}+k_{4}\right)\right)$ therefore $\left.C^{\prime}:=\psi([0, \infty)]\right) \subset$ $B\left(\psi(\mathbb{N}),\left(k_{3}+k_{4}\right)\right)=: C$ so it suffices to show C is bounded distance from $[\psi(0), \infty)$ or $(-\infty, \psi(0)]$. As $|\psi(a)-\psi(a+1)| \leq k_{3}+k_{4}$ we get that $C \subset \mathbb{R}$ is an open interval, which can't be bounded as ψ is a q.i. therefore $C=[b, \infty), C=(-\infty, b]$ or $C=\mathbb{R}$, if it is either of the first cases we are done. Suppose $C=\mathbb{R}$ this implies there exists subsequences x_{n} and y_{n} of \mathbb{N} such that $\psi\left(x_{n}\right) \rightarrow \infty$ and $\psi\left(y_{n}\right) \rightarrow-\infty$. As $C=\mathbb{R}$ choose $T \in \mathbb{N}$ such that $|\psi(T)| \leq k_{3}+k_{4}$ now choose $N>T$ such that $k_{1}|N-T|-k_{2} \geq 2\left(k_{3}+k_{4}\right)+1$ then there exists $N<x_{n}<y_{m}$ such that $\psi\left(x_{n}\right)>0$ and $\psi\left(y_{m}\right)<0$. However as $|\psi(a)-\psi(a+1)| \leq k_{3}+k_{4}$ there exists $x_{n} \leq M \leq y_{m}$ such that $|\psi(M)| \leq k_{3}+k_{4}$ implying $|\psi(M)-\psi(T)| \leq 2\left(k_{3}+k_{4}\right)$ however $\left|\psi(M)-\psi(T) \geq k_{1}\right| M-T \mid-k_{2} \geq 2\left(k_{3}+k_{4}\right)+1$, therefore $C \neq \mathbb{R}$ and we are done.

Question 3a Give some examples of subgroups of F_{2} isomorphic to F_{n}.
We have $F_{n} \cong\left\langle b^{k} a b^{-k} \mid 1 \leq k \leq n\right\rangle \leq F_{2}$.

Question 3b Show that is K is a finite graph then $\pi_{1}(K) \cong F_{n}$ where $n=E-V+1$.
Take a finite connected graph K then let $T \subset K$ be a spanning tree (subgraph with no cycles, but still includes every vertex) then as $\pi_{1}(T)$ is trivial so we have that $\pi_{1}(K)=\pi_{1}(K / T)$ however K / T is a wedge of circles so $\pi_{1}(K / T) \cong F_{|E(K / T)|}$ however one can show that $|E(T)|=V(K)-1$ giving that $|E(K / T)|=E-V+1$.

Question 3c Show that a finite index subgroup of F_{n} is isomorphic to F_{m} for some $m \geq n$.
Let R_{n} signify the graph which contains one vertex and n edges. Then $\pi_{1}\left(R_{n}\right)=F_{n}$, then let $G \leq F_{n}$ be a group of finite index. Therefore G corresponds to a $\left[G: F_{n}\right]$-cover of R_{n} called C. However as C is a finite cover of a finite graph, C is also a finite graph. Therefore $\pi_{1}(C) \cong F_{m}$ however by the correspondence we know that also $F_{m} \cong \pi_{1}(C) \cong G$.

Question 4 Let $F_{2}=\langle a, b\rangle$. Let $S=\left\{b^{n} a b^{-n} \mid n \in \mathbb{Z}\right\}$. Show that $T=\langle S\rangle$ is the normal closure of $\{a\}$ in F_{2}.

Note that $N:=\langle\langle a\rangle\rangle=\left\langle w a w^{-1} \mid w \in F_{n}\right\rangle$ therefore we get $T \leq N$ as S is a subset of the generators of N. However notice that elements of N contain as many b 's as b^{-1} 's, let $n \in N$ then

$$
\begin{aligned}
n= & b^{b_{1}} a^{a_{1}} b^{b_{2}} a^{a_{2}} \ldots a^{a_{n-1}} b^{b_{n}} \\
= & \left(b^{b_{1}} a b^{-b_{1}}\right) b^{b_{1}} a^{a_{1}-1} \ldots a^{a_{n-1}} b^{b_{n}} \\
= & \left(b^{b_{1}} a b^{-b_{1}}\right)\left(b^{b_{1}} a b^{-b_{1}}\right) b^{b_{1}} a^{a_{1}-2} \ldots a^{a_{n-1}} b^{b_{n}} \\
& \ldots \\
= & \left(b^{b_{1}} a b^{-b_{1}}\right)^{a_{1}} b^{b_{1}+b_{2}} a^{a_{2}} \ldots a^{a_{n-1}} b^{b_{n}} \\
& \ldots \\
= & \left(b^{b_{1}} a b^{-b_{1}}\right)^{a_{1}} \ldots\left(b^{b_{1}+\ldots+b_{n-1}} a b^{-\left(b_{1}+\ldots+b_{n-1}\right)}\right)^{a_{n-1}} b^{b_{1}+b_{2}+\ldots+b_{n}}
\end{aligned}
$$

however as there are as many b 's as b^{-1} 's we get that $b_{1}+b_{2}+\ldots+b_{n}=0$ therefore $n \in T$ and $N=T$.
Question 5 Recall the triangle group $\Delta(p, q, r)$ with presentation

$$
\left\langle a, b, c \mid a^{2}, b^{2}, c^{2},(a b)^{p},(b c)^{q},(c a)^{r}\right\rangle .
$$

Question 5a Draw the Cayley graph of $\Delta(7,3,2)$.

Above is the tiling of the hyperbolic plane given by the group $\Delta(7,3,2)$, to realise the Cayley graph put a vertex in every triangle then connect two vertices who's relative triangles share an edge. Then notice that the corner of every triangle either meets 4,6 or 14 triangles (including itself) in the Cayley graphs these relate to the relations $(c a)^{4},(b c)^{6}$ and $(a b)^{7}$ respectively. Using these relations one can colour the Cayley graph uniquely.

Question 5b Decide for which triples (p, q, r) is $\delta(p, q, r)$ is q.i. to a point, a euclidean space, or a hyperbolic space. (Note this question may require some knowledge of basic hyperbolic geometry)

Answer the same to Sheet 2 Question 6b. If $1 / p+1 / q+1 / r>1$ we get it is q.i. to a point, as its Cayley graph is finite (embeds in a sphere) if $1 / p+1 / q+1 / r=1$ we get it is a tiling of the Euclidean space therefore q.i. to it and lastly $1 / p+1 / q+1 / r<1$ tiles the hyperbolic space.

Question 5c Describe a proper discontinuous action of $\Delta(p, q, r)$ by isometries on either the sphere, euclidean plane or hyperbolic plane, There should be examples where the fundamental domain is a triangle.

Answer the same to Sheet 2 Question 6c.

