MA4H4 Geometric Group Theory

Exercise sheet 4 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.ukl

Question 1 Show that there is exactly one n-regular tree up to isomorphism.

Suppose we have a n-regular tree, T. Choose random basepoints zy then we can label all other the
vertices with a finite sequence of integers between 1 and n where there is an edge between two vertices if
and only if the sequence are of the form (a;)1<i<n and (a;)1<i<n+1 i.€ one is longer by one entry and
they agree on the earlier position. We assign marking inductively on the distance away from xy. We
know xy has n neighbours so choose an ordering on them and label then z; with 1 < i < n. Suppose we
have a labelling of all vertices at distance k then to vertex x(q4,), ,., we know it has n — 1 neighbours
without a label as it is a tree therefore choose an arbitary ordering on them and label that (4, _,,,,
where 1 < agy1 < n—1. This labels all vertices distance k+1 away, so we get such a labelling as T is a tree.

However as T' was an arbitrary n-tree if we have another n-tree 7’ we can construct another such
: / / : : bl
labelling Tla ) cian and map one to another by z(,),.,, — L)1 cicn which preserving edges and who’s
. . p . . 3

inverse is defined by Tla)cicr 7 Lla)i<icy 8IVING US an isomorphism.

a;
Question 2 Show that T}, ~ T,, if m,n > 3. In fact, any tree all of whose vertices have degree between

3 and n for some n > 3, then T ~ T3. What could happen if we don’t impose an upper bound on the
degree of vertices?

We show the later statement, suppose T is a tree who’s degree is bounded between 3 and n. Use the
labelling above on the tree T', so every vertex is denoted by a finite sequence of integers between 1 and n
and for vertex z(q,),,., let d(q,),,., denote it’s degree. Then we are going to inductively define a map
from f: T3 — T, first arbitarily choose a path of length dy — 3 in T35 then map the path to vertex xy,
note that this path has dy edges protruding from it, arbitrarily map them to the edges of xy. Suppose
we have done this procedure for all vertices of sequence length at most k& and for sequences of length &
they only have a partial definition (i.e. the edge leading into them is defined). For x(,,),_,., choose a
path of length d(q,),_,., — 3 starting at the partially defined vertex in T3 and not using the edge that
has already been mapped under f. Then map this path to x(,,),.,., and map the d(,,),_,_, protruding
edges arbitrarily to the edges of z(4,),,.,. Note that as T3 is a tree these choices are always possible and
never overlap. Then f is a surjective map so has quasi-dense image and as the path we are contracting

are of length at most n — 3 we get
dr, (z,y)/(n = 2) = (n = 3) < dp(f(2), f(y) < dr,(2,y).
Question 3 Show that R is not q.i to T5.

Label T5 as above and pick 3 paths originating from zg, labelled z,,, 2, and x., such that a; = (1),
by = (2) and ¢; = (3) and that a;11 is a sequence of length 1 larger than a;, similarly for b and c¢. Suppose
we have q.i. ¢ : T3 — R, with

kadr, (€, y) — k2 < dr(6(2), ¢(y)) < kadr, (z,y) + ks
and N(f(T3),ks) = R. Then note that dr, (zg, x4, ) = dry (g, s, ) = dr,(Tg, Tc,) = n so we have

kin — ky < dr(x, (24, )) < kan + ky
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though also we have that
ki — ke < dr(d(2a,), d(a, ) < k3 + ks

so pick N large enough such that k; N — ks > k3 + k4 then for all n > N we have that ¢(x,,) > = or
d(xq,) < x, but we get the same statement for b and ¢ so two of which must be mapped to the same
component of R\{z}. Without loss of generality suppose z,, and x;, for n > N are both mapped to
[z,00). However as dr(¢(2a, ), ?(Ta,,,)) < ks + k4 any point in [z, 00) is at most (k3 + k4)/2 from some
point ¢(z,, ). Moreover, this tells me for all m > N there exists n € N such that |¢p(zp,,) — d(za, )| <
(ks + k4)/2 however if we pick m large enough such that kym — ko > (k3 + k4)/2 then we know that
|p(zp,,) — d(xa,)| > ki(m +n) — k2 > (ks + k4)/2 contradicting the fact that ¢ is a q.i., so no such ¢
exists.

Question 4 Show that R? is not q.i. T3 (Hint: Suppose ¢ : R? — T3 is a q.i. consider the image of a
large equilateral triangle.)

Lemma 0.1 (Bridson and Haefliger - Metric Spaces of Non-Positive Curvature; Lemma 1.11 ‘Taming
Quasi-Geodesics’ p 403). Let X be a geodesic space ¢ : [a,b] = X a (A €)-q.i. embedding, one can find a
continuous (N, €' ) q.i. embedding ¢ : [a,b] — X such that:

1. c¢(a) = (a) and c(b) = ¢/ (b);

2. € =2\ +¢);

3. length(c'|¢.v) < k1d(c'(t), (') + ke, for allt,t' € [a,b], where ki = A(A+€) and ko = (A’ +3)(A+¢€);
4. the Hausdorf distance between the images of ¢ and ¢’ is less than (A + ¢€).

Proof. Define ¢ to agree with ¢ on ¥ := {a,b} U (Z N [a,b]). Then choose geodesic segments joining the
images of successive points in ¥ and define ¢’ by concatinating linear representations of these geodesic
segments. Note that the length of each geodesic segment is at most (A+¢€). So every point of im(c) Uim(c’)
lies in a (A 4 €)/2 neighbourhood of ¢(X), thus (4) and (1) hold from definition.

For the rest of the proof, see Bridson, Haefliger Metric Spaces of Non-Positive Curvature, we will not
need it for what is done here. O

Suppose ¢ : R? — T3 is a ¢.i. with constants k; as above. Then consider an equilateral triangle in R?
with corners A, B and C' and geodesics o = [A, B], 8 = [B, C| and y = [C, A] connecting them. Consider
ag = ¢oa: I — T3 by the lemma above we know there exists continuous map o' : I — T3 such that
ay C N(o/,r) where r only depends on the constants in the q.i. ¢, similarly for 8 and 4. One can see
that any paths connecting three points in the tree must have at least one common point in the image,
m. However as ay C N(a/,r) there exists a point in the image of ¢ o @ with distance at most r from m,
similarly for § and . However as ¢ is a q.i. there exists points on the image of a, § and  such that

krdr(z,y) — k2 <dr,(¢(z), d(y)) as ¢ is a q.i.
da () g,ﬁ—f 4 ’,j— as dr, (6(2), (1)) < dr, (B(x),m) + dr, ($(y),m) < 21

However r just relies on the constants of ¢ so just pick a equilateral triangle large enough such that the
sides of the triangle has no such points.

Question 5 Suppose that f: R™ — R” is a proper continuous map. (“proper” means that f~!(K) is
compact for all compact K.) Suppose there is some k > 0 such that for all z € R", diam(f~!(z)) < k.
Then f is surjective. (The idea of the proof is to extend f to a continuous map between the onepoint
compactifications f : R™ U {oco} — R™ U {00}, and using appropriate identifications of R U {oo} with the
sphere, S™, we can apply the Borsuk-Ulam theorem to get a contradiction.)

Theorem 0.2 (BorsukUlam theorem). If ¢ : S™ — R™ is continuous then there exists x € S™ such that

d(x) = ¢(—x).



Consider the one-point compactfication R™ U {oco} where the open sets are U open in R™ and
(R™\K')U{oo} such that K C R™ compact. Extend f to f : R"U{oo} — R™U{oo} by setting f(c0) = co.
Note that f is continuous as f~!(K) = K’ is compact so f~1(R"\K) = R"\K’. Suppose f is not surjec-
tive, then we have a continuous map f’ : R" U {oo} — R" U {co}\{z}. However let g : S — R™ U {o0}
and h : R™ U {oo}\{z} — R™ be homeomorphism.

So ho f og:S™ — R™ is a continuous map, so by the BorsukUlam theorem it identifies two antipodal
points of S, p and p’. We can choose the homeomorphism ¢ : S™ — R™ U {oo} so that any pair of
anti-podal points of S™ are arbitarily far apart in R Uoco namely larger that k. However diam(f~!(z)) < k
contradicting what was assumed.

uestion ow that any quasi-isometric map from o is a quasi-isometry.
ti 6 Show that i-i tri f R™ to R™ i i-i t

Notice that we can assume ¢ : R” — R is continuous, to do this put a simplicial structure on R”
where the verticies are the lattice points Z"™. Then if ¢’ : R™ — R" is not continuous define ¢ setting
#(2) = ¢'(z) for all z € Z however map the higher dimensional simplicies by the linear extensions of
the integer points. Then a point in the image of ¢ lies at most (ks + k4)™ distance from the image
of an integer point of ¢’. So it suffices to show ¢ is surjective. However look at ¢~1(K) where K is
compact, therefore closed and bounded, as ¢ is continuous ¢~*(K) is closed and as ¢ is a quasi-isometry
¢~ 1K) is bounded (dg~ (¢~ 1(y), o~ (v)) < drn(y,y’)/k1 + k1/k2) and therefore compact, so ¢ is proper.
Now consider ¢~ (z), well if ¢(y) = x = ¢(y') then d(y,y’) < ko/k1 and so diam(f~1(x)) is bounded.
Therefore by the previous exercise ¢ is surjective and a quasi-isometry.

Question 7 Show that the relation commensurability of groups is transitive.

Suppose I'1 = I'y and 'y & I's then there exists G’ < T'1, G, H <T'3 and H' < Tz all of finite index
such that G = G’ and H = H'. Then we claim that G N H < I'y is of finite index. Let z,y € aH NbG
then 'y € H since =,y € aH and x~ 'y € G since z,y € bG hence z,y are in the same coset of H N G.
Therefore there is at most [['y : H][['s : G] cosets. Then there is a corresponding HNG =2 N <G <T
of finite index and H NG = N’ < H' <TI's giving that I'1 ~ I's.

Question 8 Let I' be a group acting on a geodesic space X. The action is said to be quasi-convex if
the orbits are quasi-convex.

Question 8a Show that any isometric Z action on R? is quasi-convex. What about Z™ on R™?

Let Z = (g) act on R?, let r := min{d(z, gz)|z € R?} and K := {z € R|d(z, gz) = r}. We claim that
K is a translation of a subspace of R?. Suppose z,y € K then note as ¢ acts by isometries that for any
point z in a line between = and y gets mapped to a point on the line between gx and gy thus mapped by
r and so z € K. Now take any point = € R? it is of finite distance away from K therefore as g acts by
isometries any image of x lies the same distance, d, from K. However notice that the closest point to x
on K, z' gets translated by some vector v of length r therefore g™z’ all lie on a geodesic, with gz’ being
the closest point to g™x. For any two points gz and ¢z there exists a quasi-geodesic going from g™z to
g"x' along to g™x’ crossing all intermittent powers of gFz’ then to g™z which is distance at most k + r
away from Zx, however as quasi-geodesics are bounded distance b from geodesics we get that [¢"z, g™ z]
is a bounded distance d + r + b from Zzx.

Notice what was done above didn’t depend on R? so could have been said for R™, also if Z" =
{g1,-..,9n) we can define analogous r; := min{d(xz, g;x)|r € R?} and K; := {z € R|d(x, g;z) = r;} for
each g; and the Kj; are still translated subspaces. One can also observe that g;K; = K; consider some
point g;x € g;K; then

d(gjz, gigjx) =d(g;7, g;9:x) as g; and g; commute
=d(z, gix) as g; acts by isometry
=Ty as xr € K;



giving that ¢; K; C K, however g; K; is a subspace of the same dimension so we get equality (Note: you
can further show that without loss of generality K; C K; or K; and K are perpendicular). However as
this holds for all 7, j we know that points under the action any element z € Z must stay the same distance
away from all spaces K, so this is more of a restrictive condition on the orbit of any point, therefore let
d = max; d(z, K;) and r = max; r; then every orbit is (d + r) + b-quasi-convex by the same reasons as
above.

Question 8b Give an example of a quasi-convex action of Z on HZ2. Is every action on H? quasi-convex?

Let Z act by any hyperbolic reflection otherwise a trivial action. No, consider a parabolic element
(translation on a horoball).

Question 8c Assume X is proper and suppose the action of I' by isometries on X is proper and
quasi-convex. Prove that I' is finitely generated and for any xy € X, the map sending y € T" to yxg € X
is a quasi-isometric embedding. (Hint: If Tz is r-quasi-convex, consider the set of nonidentity elements
of T" which move zg by at most 2r + 1.)

Let S :={g € T'|dx (xo,920) < 2r + 1} which is finite as the group action is proper and so is the space
(consider a ball around the point g of radius 2r + 1). We want to show that S generates I, so consider
some element of v € T, and look at a geodesic a := [zg, yxo]. We know that the action of T" is r-quasi
convex so a C N(T'zg,r). Choose a,, € a such that d(a,—1,a,) <1 with ag = z¢ and ay = yzo we know
there exists a 7, € I such that dx (v,20,a,) < r with 9 = 1. Therefore

dx (Yn-120, Yn®0) <dx (Yn—1,an-1) + dx(an—1,an) + dx (an, YnTo)
<2r+1

giving that dx (9,7, Vno) < 2r+1and so 7, ', v, € S therefore we can write v = (75 '71) (71 '72) - - - (fy;,ll’yN)
in terms of S. Notice that G := A(T", S) embeds in X with the map f : v +— vy where we map edges in
linearly across geodesics connecting the vertices. Then set m := mingecgd(zg, sxo) and we get

mdg(z,y) < dx(f(x), f(y)) < (2r + Dda(z,y).



