
MA4H4 Geometric Group Theory

Exercise sheet 4 - Solutions

If there are any corrections, comments or questions please email alex@wendland.org.uk.

Question 1 Show that there is exactly one n-regular tree up to isomorphism.

Suppose we have a n-regular tree, T . Choose random basepoints x∅ then we can label all other the
vertices with a finite sequence of integers between 1 and n where there is an edge between two vertices if
and only if the sequence are of the form (ai)1≤i≤n and (ai)1≤i≤n+1 i.e one is longer by one entry and
they agree on the earlier position. We assign marking inductively on the distance away from x∅. We
know x∅ has n neighbours so choose an ordering on them and label then xi with 1 ≤ i ≤ n. Suppose we
have a labelling of all vertices at distance k then to vertex x(ai)1≤i≤k

we know it has n− 1 neighbours
without a label as it is a tree therefore choose an arbitary ordering on them and label that x(ai)1≤i≤k+1

where 1 ≤ ak+1 ≤ n−1. This labels all vertices distance k+1 away, so we get such a labelling as T is a tree.

However as T was an arbitrary n-tree if we have another n-tree T ′ we can construct another such
labelling x′(ai)1≤i≤k

and map one to another by x(ai)1≤i≤k
7→ x′(ai)1≤i≤k

which preserving edges and who’s

inverse is defined by x′(ai)1≤i≤k
7→ x(ai)1≤i≤k

giving us an isomorphism.

Question 2 Show that Tn ∼ Tm if m,n ≥ 3. In fact, any tree all of whose vertices have degree between
3 and n for some n ≥ 3, then T ∼ T3. What could happen if we don’t impose an upper bound on the
degree of vertices?

We show the later statement, suppose T is a tree who’s degree is bounded between 3 and n. Use the
labelling above on the tree T , so every vertex is denoted by a finite sequence of integers between 1 and n
and for vertex x(ai)1≤i≤k

let d(ai)1≤i≤k
denote it’s degree. Then we are going to inductively define a map

from f : T3 7→ T , first arbitarily choose a path of length d∅ − 3 in T3 then map the path to vertex x∅,
note that this path has d∅ edges protruding from it, arbitrarily map them to the edges of x∅. Suppose
we have done this procedure for all vertices of sequence length at most k and for sequences of length k
they only have a partial definition (i.e. the edge leading into them is defined). For x(ai)1≤i≤k

choose a
path of length d(ai)1≤i≤k

− 3 starting at the partially defined vertex in T3 and not using the edge that
has already been mapped under f . Then map this path to x(ai)1≤i≤k

and map the d(ai)1≤i≤k
protruding

edges arbitrarily to the edges of x(ai)1≤i≤k
. Note that as T3 is a tree these choices are always possible and

never overlap. Then f is a surjective map so has quasi-dense image and as the path we are contracting
are of length at most n− 3 we get

dT3
(x, y)/(n− 2)− (n− 3) ≤ dT (f(x), f(y)) ≤ dT3

(x, y).

Question 3 Show that R is not q.i to T3.

Label T3 as above and pick 3 paths originating from x∅, labelled xai , xbi and xci such that a1 = (1),
b1 = (2) and c1 = (3) and that ai+1 is a sequence of length 1 larger than ai, similarly for b and c. Suppose
we have q.i. φ : T3 → R, with

k1dT3
(x, y)− k2 ≤ dR(φ(x), φ(y)) ≤ k3dT3

(x, y) + k4

and N(f(T3), k5) = R. Then note that dT3(x∅, xan) = dT3(x∅, xbn) = dT3(x∅, xcn) = n so we have

k1n− k2 ≤ dR(x, φ(xan)) ≤ k3n+ k4

1

mailto:alex@wendland.org.uk


though also we have that
k1 − k2 ≤ dR(φ(xan), φ(xan+1

)) ≤ k3 + k4

so pick N large enough such that k1N − k2 > k3 + k4 then for all n > N we have that φ(xan) > x or
φ(xan) < x, but we get the same statement for b and c so two of which must be mapped to the same
component of R\{x}. Without loss of generality suppose xan and xbn for n > N are both mapped to
[x,∞). However as dR(φ(xan), φ(xan+1

)) ≤ k3 + k4 any point in [x,∞) is at most (k3 + k4)/2 from some
point φ(xan). Moreover, this tells me for all m > N there exists n ∈ N such that |φ(xbm) − φ(xan)| ≤
(k3 + k4)/2 however if we pick m large enough such that k1m − k2 > (k3 + k4)/2 then we know that
|φ(xbm) − φ(xan)| ≥ k1(m+ n)− k2 > (k3 + k4)/2 contradicting the fact that φ is a q.i., so no such φ
exists.

Question 4 Show that R2 is not q.i. T3 (Hint: Suppose φ : R2 → T3 is a q.i. consider the image of a
large equilateral triangle.)

Lemma 0.1 (Bridson and Haefliger - Metric Spaces of Non-Positive Curvature; Lemma 1.11 ‘Taming
Quasi-Geodesics’ p 403). Let X be a geodesic space c : [a, b]→ X a (λ, ε)-q.i. embedding, one can find a
continuous (λ′, ε′) q.i. embedding c′ : [a, b]→ X such that:

1. c(a) = c′(a) and c(b) = c′(b);

2. ε′ = 2(λ+ ε);

3. length(c′|t,t′) ≤ k1d(c′(t), c′(t′))+k2, for all t, t′ ∈ [a, b], where k1 = λ(λ+ε) and k2 = (λε′+3)(λ+ε);

4. the Hausdorf distance between the images of c and c′ is less than (λ+ ε).

Proof. Define c′ to agree with c on Σ := {a, b} ∪ (Z ∩ [a, b]). Then choose geodesic segments joining the
images of successive points in Σ and define c′ by concatinating linear representations of these geodesic
segments. Note that the length of each geodesic segment is at most (λ+ε). So every point of im(c)∪im(c′)
lies in a (λ+ ε)/2 neighbourhood of c(Σ), thus (4) and (1) hold from definition.

For the rest of the proof, see Bridson, Haefliger Metric Spaces of Non-Positive Curvature, we will not
need it for what is done here.

Suppose φ : R2 → T3 is a q.i. with constants ki as above. Then consider an equilateral triangle in R2

with corners A, B and C and geodesics α = [A,B], β = [B,C] and γ = [C,A] connecting them. Consider
αφ := φ ◦ α : I → T3 by the lemma above we know there exists continuous map α′ : I → T3 such that
αφ ⊂ N(α′, r) where r only depends on the constants in the q.i. φ, similarly for β and γ. One can see
that any paths connecting three points in the tree must have at least one common point in the image,
m. However as αφ ⊂ N(α′, r) there exists a point in the image of φ ◦ α with distance at most r from m,
similarly for β and γ. However as φ is a q.i. there exists points on the image of α, β and γ such that

k1dR(x, y)− k2 ≤dT3
(φ(x), φ(y)) as φ is a q.i.

dR(x, y) ≤2r

k1
+
k2
k1

as dT3
(φ(x), φ(y)) ≤ dT3

(φ(x),m) + dT3
(φ(y),m) ≤ 2r

However r just relies on the constants of φ so just pick a equilateral triangle large enough such that the
sides of the triangle has no such points.

Question 5 Suppose that f : Rn → Rn is a proper continuous map. (“proper” means that f−1(K) is
compact for all compact K.) Suppose there is some k ≥ 0 such that for all x ∈ Rn, diam(f−1(x)) ≤ k.
Then f is surjective. (The idea of the proof is to extend f to a continuous map between the onepoint
compactifications f : Rn ∪ {∞} → Rn ∪ {∞}, and using appropriate identifications of R ∪ {∞} with the
sphere, Sn, we can apply the Borsuk-Ulam theorem to get a contradiction.)

Theorem 0.2 (BorsukUlam theorem). If φ : Sn → Rn is continuous then there exists x ∈ Sn such that
φ(x) = φ(−x).
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Consider the one-point compactfication Rn ∪ {∞} where the open sets are U open in Rn and

(Rn\K)∪{∞} such that K ⊂ Rn compact. Extend f to f̂ : Rn∪{∞} → Rn∪{∞} by setting f̂(∞) =∞.

Note that f̂ is continuous as f−1(K) = K ′ is compact so f−1(Rn\K) = Rn\K ′. Suppose f is not surjec-

tive, then we have a continuous map f̂ ′ : Rn ∪ {∞} → Rn ∪ {∞}\{x}. However let g : Sn → Rn ∪ {∞}
and h : Rn ∪ {∞}\{x} → Rn be homeomorphism.

So h ◦ f̂ ◦ g : Sn → Rn is a continuous map, so by the BorsukUlam theorem it identifies two antipodal
points of Sn, p and p′. We can choose the homeomorphism g : Sn → Rn ∪ {∞} so that any pair of
anti-podal points of Sn are arbitarily far apart in Rn∪∞ namely larger that k. However diam(f−1(x)) ≤ k
contradicting what was assumed.

Question 6 Show that any quasi-isometric map from Rn to Rn is a quasi-isometry.

Notice that we can assume φ : Rn → Rn is continuous, to do this put a simplicial structure on Rn
where the verticies are the lattice points Zn. Then if φ′ : Rn → Rn is not continuous define φ setting
φ(z) = φ′(z) for all z ∈ Z however map the higher dimensional simplicies by the linear extensions of
the integer points. Then a point in the image of φ lies at most (k3 + k4)n distance from the image
of an integer point of φ′. So it suffices to show φ is surjective. However look at φ−1(K) where K is
compact, therefore closed and bounded, as φ is continuous φ−1(K) is closed and as φ is a quasi-isometry
φ−1(K) is bounded (dRn(φ−1(y), φ−1(y′)) ≤ dRn(y, y′)/k1 + k1/k2) and therefore compact, so φ is proper.
Now consider φ−1(x), well if φ(y) = x = φ(y′) then d(y, y′) ≤ k2/k1 and so diam(f−1(x)) is bounded.
Therefore by the previous exercise φ is surjective and a quasi-isometry.

Question 7 Show that the relation commensurability of groups is transitive.

Suppose Γ1 ≈ Γ2 and Γ2 ≈ Γ3 then there exists G′ ≤ Γ1, G,H ≤ Γ2 and H ′ ≤ Γ3 all of finite index
such that G ∼= G′ and H ∼= H ′. Then we claim that G ∩H ≤ Γ2 is of finite index. Let x, y ∈ aH ∩ bG
then x−1y ∈ H since x, y ∈ aH and x−1y ∈ G since x, y ∈ bG hence x, y are in the same coset of H ∩G.
Therefore there is at most [Γ2 : H][Γ2 : G] cosets. Then there is a corresponding H ∩G ∼= N ≤ G′ ≤ Γ1

of finite index and H ∩G ∼= N ′ ≤ H ′ ≤ Γ3 giving that Γ1 ≈ Γ3.

Question 8 Let Γ be a group acting on a geodesic space X. The action is said to be quasi-convex if
the orbits are quasi-convex.

Question 8a Show that any isometric Z action on R2 is quasi-convex. What about Zn on Rm?

Let Z = 〈g〉 act on R2, let r := min{d(x, gx)|x ∈ R2} and K := {x ∈ R|d(x, gx) = r}. We claim that
K is a translation of a subspace of R2. Suppose x, y ∈ K then note as g acts by isometries that for any
point z in a line between x and y gets mapped to a point on the line between gx and gy thus mapped by
r and so z ∈ K. Now take any point x ∈ R2 it is of finite distance away from K therefore as g acts by
isometries any image of x lies the same distance, d, from K. However notice that the closest point to x
on K, x′ gets translated by some vector v of length r therefore gnx′ all lie on a geodesic, with gnx′ being
the closest point to gnx. For any two points gnx and gmx there exists a quasi-geodesic going from gnx to
gnx′ along to gmx′ crossing all intermittent powers of gkx′ then to gmx which is distance at most k + r
away from Zx, however as quasi-geodesics are bounded distance b from geodesics we get that [gnx, gmx]
is a bounded distance d+ r + b from Zx.

Notice what was done above didn’t depend on R2 so could have been said for Rm, also if Zn =
〈g1, . . . , gn〉 we can define analogous ri := min{d(x, gix)|x ∈ R2} and Ki := {x ∈ R|d(x, gix) = ri} for
each gi and the Ki are still translated subspaces. One can also observe that gjKi = Ki consider some
point gjx ∈ gjKi then

d(gjx, gigjx) =d(gjx, gjgix) as gi and gj commute

=d(x, gix) as gj acts by isometry

=ri as x ∈ Ki
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giving that gjKi ⊂ Ki however gjKi is a subspace of the same dimension so we get equality (Note: you
can further show that without loss of generality Ki ⊂ Kj or Ki and Kj are perpendicular). However as
this holds for all i, j we know that points under the action any element z ∈ Z must stay the same distance
away from all spaces Ki, so this is more of a restrictive condition on the orbit of any point, therefore let
d = maxi d(x,Ki) and r = maxi ri then every orbit is (d+ r) + b-quasi-convex by the same reasons as
above.

Question 8b Give an example of a quasi-convex action of Z on H2. Is every action on H2 quasi-convex?

Let Z act by any hyperbolic reflection otherwise a trivial action. No, consider a parabolic element
(translation on a horoball).

Question 8c Assume X is proper and suppose the action of Γ by isometries on X is proper and
quasi-convex. Prove that Γ is finitely generated and for any x0 ∈ X, the map sending y ∈ Γ to yx0 ∈ X
is a quasi-isometric embedding. (Hint: If Γx0 is r-quasi-convex, consider the set of nonidentity elements
of Γ which move x0 by at most 2r + 1.)

Let S := {g ∈ Γ|dX(x0, gx0) ≤ 2r+ 1} which is finite as the group action is proper and so is the space
(consider a ball around the point x0 of radius 2r + 1). We want to show that S generates Γ, so consider
some element of γ ∈ Γ, and look at a geodesic α := [x0, γx0]. We know that the action of Γ is r-quasi
convex so α ⊂ N(Γx0, r). Choose an ∈ α such that d(an−1, an) ≤ 1 with a0 = x0 and aN = γx0 we know
there exists a γn ∈ Γ such that dX(γnx0, an) ≤ r with γ0 = 1. Therefore

dX(γn−1x0, γnx0) ≤dX(γn−1, an−1) + dX(an−1, an) + dX(an, γnx0)

≤2r + 1

giving that dX(x0, γ
−1
n−1γnx0) ≤ 2r+1 and so γ−1n−1γn ∈ S therefore we can write γ = (γ−10 γ1)(γ−11 γ2) . . . (γ−1N1

γN )
in terms of S. Notice that G := ∆(Γ, S) embeds in X with the map f : γ 7→ γx0 where we map edges in
linearly across geodesics connecting the vertices. Then set m := mins∈Sd(x0, sx0) and we get

mdG(x, y) ≤ dX(f(x), f(y)) ≤ (2r + 1)dG(x, y).
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